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Introduetion
Consider a system of n stochastic differential equations
d&(t) =b(&(6)) dt +o(& () dw(t) (0.1)

where b=(by, ..., b,), 0=(0},) is an n X n matrix and w=(w!, ..., w*) is n-dimensional Brown-
ian motion. Under standard smoothness and growth conditions on & and o, the process
&(t) is a diffusion process (see [7], [8], [11]) with the differential generator

n 82 n a
L= #) ——+ > by(x) =—,
"Elaﬁ( )ax‘amj 2:1 o )3:1':;

where a;;=3%, 0,05 Denote by g(z,t, A) the transition probabilities of the diffusion
process. It L is elliptic then a fundamental solution for the Cauchy problem associated with
the parabolic equation

ou
L —— = 0.2
ot 0 (0.2)

can be constructed, under suitable smoothness and growth conditions on the coefficients
(see [3], [1]); denote it by K(z, ¢, &). It is also known (see [7], [8]) that this fundamental
solution is the density function for the transition probabilities of (0.1), i.e.,

att,z, 4) = LK‘”" b, 0)de (0.3)

for any ¢>0, € R", and for any Borel set 4 in R*.
The present work is concerned with the case where L is degenerate elliptic, i.e., the
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matrix (a,(z)) is degenerate on some set S. The purpose of the paper is to construct a
fundamental solution (or a ‘‘generalized” fundamental solution) under some conditions
on the nature of S and on the coefficients of L.

In section 1 we consider the parabolic equation

* *u

¢ i=1 '5;‘2

and show that its fundamental solution converges (as ¢->0 through some sequence) to a
function K(z, t, £), provided z ¢3S, £¢8.

In section 2 we obtain some bounds on K(z, ¢, £) away from the set S.

In sections 3, 6-10 we specialize to the case where 8 is an “obstacle’ in the following
sense: S consists of a finite disjoint union of hypersurfaces and of isolated points; the
“normal diffusion” of (0.1) vanishes on §, and the “normal drift” is either identically zero
(“two-sided obstacle™) or it is of one sign (“‘one-sided obstacle”).

In section 3 we construct a function G(z, ¢, £) and obtain estimates on it near the set 8.
[In section 6 it is shown that G(z, t, £) coincides with K(x, ¢, £) if « is on that side of §
with respect to which S is an obstacle.] The estimates derived in section 3 show that Gz, t, &)
decreases “almost” exponentially fast as = or £ (depending on the sign of the normal drift
at S) tends to S. This behavior is strikingly different from the behavior of Green’s function
in the non-degenerate case; for in the latter case G' decreases to zero-at a linear rate only.

In section 4 we obtain estimates on K and @ near oo. These estimates seem to be new
even in the non-degenerate case (i.e., in case S is the empty set).

In section 5 it is shown that the function K(z, ¢, £) constructed. in section 1 satisfies
the relation (0.3) provided z¢8, A n §=0.

In section 6 it is shown that if S is a two-sided obstacle then

+I/u—%t—u=0 (6>0)

P {&t)€S forall t>0}=1 if xz€S.

On the other hand, if S is “strictly” one-sided obstacle, say from the exterior of S,

then

P {&(t)E[S U (int 8)]} =0 if t>0, z€S.
Finally, it is proved that if § is an obstacle with respect to the exterior of 8 then K(z,,£) =
G(z, t, &) if x is in the exterior of S. ‘

In section 7 we construct a ‘“‘generalized” fundamental solution in the case of two-
sided obstacles; for 48, it coincides with the function K(z,t, &) (and, therefore, with
Q(z, t, &) for z in the exterior of S), and, for z€ 8, it is some measure supported on 8.

In section 8 we show that if S is a strictly one-sided obstacle then the function K (=, ¢, &)
is well defined for all z€ R", t>0, £ € R™\S, and it is a fundamental solution.
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In proving the results of sections 7, 8 we make a crucial use of the probabilistic results
of section 6.

In section 9 we derive lower bounds on K(x,f, £) both near 8 and near oo. These
results show that the upper bounds derived in sections 3, 4 are sharp.

In section 10 we consider the Cauchy problem

Du—%l:=0 if £>0, wu(x,0)=f(z).

It is assumed that S is either two-sided obstacle or strictly one-sided obstacle. It is proved
that the solution wu(z, t)=E,f(&(f)) is continuous for >0 if f(x) is measurable and, say,
bounded. (When 8 is a two-sided obstacle, an additional condition on f is required.)

We conclude this introduction with a simple example is case »=1. The equation

Uy =22 Uy, +b(x) U,

is a special case of the equations treated in section 7, if 5(0) =0, and in section 8, if 5(0) =O0.

1. Construction of the would-be fundamental solution
We shall denote the boundary of a set Q by oQ. Let

) 2, n
LuE:Z a;(x) gu + Zb,(x)a—g

A (@ =ay),
=1 ox,0x;  §1 o,

and assume:

(A). The functions

2
_a—ai;(x), by(z), ég‘ by(x)

0
ay(x), a_zlau(z), 220, z

are uniformly Holder continuous in compact subsets of R".
Let S be a closed subset of R", and assume:
(Bs). The matrix (a,,(x)) is positive definite for any x ¢S, and positive semi-definite for
any z€8. . : .
When 8 is the empty set &, we denote the condition (Bg) by (Bz). When (A) and (Bg)

hold, a fundamental solution for the parabolic equation
ou . .
Lu_ét-=0 in the strip 0<t< oo, zER" (1.1)

is known to exist [10]. If (a,;(x)) is uniformly positive definite and if some global bounds
are assumed on the functions in (A), then a fundamental solution can be constructed having
certain global bounds (see [1], [3]).
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The present work is concerned with the case S =@, (The bounds derived in section 4,
though, seem to be new also in case S=0.)
In the present section we shall construct a function K(z, £, £) as a limit of fundamental

solution K, (=, ¢, &) for the parabolic equations

n a2
L,u—%=0, whereL,=I/w+eZ—a-E (e>0). (1.2)
{

i=1

In the following sections we shall show, under some conditions on S and on the coefficients
of L, that a fundamental solution of (1.1) coincides with K(z, ¢, £), at least away from S.
Let
B,={z; |z| <m}, m=1,2,...

Denote by G, (z, t, §) the Green function for (1.2) in the cylinder @,,= B,, % (0, ). Thus
Gp {2, 1, &), its first ¢-derivative and its second x-derivatives are continuous in (z, ¢, §)

for z€ B, t>0, £€ B, and as a function of (z, ¢),
LG, 8)= 200 2,8,8) =0 i (2,1)€Qn (Efixed in By),

Gy, (%, 8, E)>0 ift->0,24¢,2€B,,
G oz, t,E)=0 ift>0,2€3B,.

Finally, for any continuous function f(£) with support in B,, the function
)= [ GntotEEE
satisfies:
Lou(z,t)=0 in @,

u(z, t)—~>f(z) ift-0,z€B,,
u(x, t)=0 if t>0, x€0B,,

It is well known [3; p. 82] that such a function G,, ,(z, ¢, &) exists and is uniquely deter-
mined by the above properties.

Denote by L*, L¥ the adjoint operators of L, L, respectively. Denote by G, t, £)
the Green function for the equation

ou
* — e T2
Liu 0

in @, Again, its existence and uniqueness follow from [3; p. 82]. As proved in [3; p. 84],
G’m,c(x: t’ §) = G;l.‘(&’ t’ x)'
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It follows that as a function of (&,%),

LGt )= S G, t, 610 H(§,0)€Qn (o fixed in By).

LeMwma 1.1. Let (A) hold. Then,
(®)
0< G (2,8, E) < Gy ef2, 1, &) if (2, 8)€Q,, EE€EB,, (1.3)
. Lim Gy H(z,t, &) = Kz, t, &) is finile for all x€ER", t >0, ER". (1.4)
m—>00
(ii) The functions

2

Koz, 5), Kelz,1,8), = —— Ki(a, 8, 5), Kz, &)

are continuous in (%,t, £) for z€R®, £ >0, EER™; for any continuous function f(&) with compact
support, the function

u(x, t) = Lﬂ K (x,¢, £)f(£)dE (1.5)

satisfies Lsu—zi:=0 if z€R", ¢ >0, (1.6)
u(z, t)—>flz) f £->0.
(iii) T'he functions

K (2,1, &) —= Ko, 1, £)

5 35 35;4

are continuous in (x,t,£) for x€ER™, t >0, £ER™; for any continuous function g(x) with com-
pact support, the function

v(&,1)= Lﬂ K(x,t, §)g(x)dx - (L.7)
L . . OV .
satisfies: Liv— Frie 0 sf £ER >0, (1.8)

Proof. The proof given below exploits some ideas of S. Ito [10]. The inequalities in
(1.3) are an easy consequence of the maximum principle (cf. [1], [3], [10]]. In fact, for any
continuous and nonnegative function f,(£) with support in B,

0< L G .o, 2, E)I‘k(E)dé<L Gms,o(2, 8, &) f(£)dE
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by the maximum principle. Taking a sequence {f,} converging to the Dirac measure at
£, the inequalities in (1.3), at £ =£9, follow.

Again, by the maximum principle,
[, etz 1.9)
Bm
Similarly J‘ G oz, 1, E)dz< 1. (1.10)
B

Now fix a positive integer m. Denote by 9/07T'; the inward conormal derivative to

0B, at {. By Green’s formula: for any positive integer k, k >m,

Gk.e(x; t’ E) = fB Gm. B(x’ 8, C) Gk. B(C’ t— 8, 8)d¢-

# [ [ oGm0, DGt =2 0, E)dSdo 11y
0 JoBn 0T
for any 0<s<¢, z€B,, £€B,. Taking s=1£/2 and using the estimates (see [3])

G,,.,.(x, % c) <C, (z€B,,€EB,) (1.12)

’6%0"'"(2:’ o, C)‘<C,,, (€0B,,z€EK,0< ¢<8) (1.13)
¢

where K is a compact subset of B, (C,, depends on m, ¢,¢, K), we get

Go e t, §)<Cn f Gk.s(c,f,s)dcwm f f Gy o0, 0, &)Scdo
Bm 2 t2 JoBm

t
<0m+0mf f Gr. oL, 0, £)d8; do, (1.14)
£12 J O0Bm

where (1.10) has been used. If we replace the ball B, by a ball B,,,; (0<2<1) with center
0 and radius m + A, and Green’s function G,, . by the corresponding Green function G, ;
then the constants C,,, ; will remain bounded, independently of 1. In fact, this can be veri-
fied as follows: If |z—(|>¢>0,0<s<T, or if 0 <c,<s<T, the inequality

Gria oz, 8,0)<C (C depends on ¢, ¢y, &, T but not on 1) (1.15)
follows from [3; 'p. 821. For fixed z, the function
‘U(C, 8) =Gm+l.e(z’ 8, C)

Lfv—(dvfos)=0 in B,,,; x (0, =), (1.16)

satisfies:

v({,8)=0 if (€oB, ,, s>0.
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By (1.15), if « varies in a compact set K, K< B, if 0<s<T and if { varies in a B, ,-
neighborhood V of 0B,,; such that KNV =0, then »<C. Using this fact and (1.16),

and applying standard estimates (for instance, the Schauder-type boundary estimates [3]),
we deduce that

iiamz..(x, s, C)‘<0 (117)
o,
if z€K, 0<s<T, {€V. From this inequality and (1.15) we see that, analogously to (1.14),

we have
. ¢

G, (2,8, E) < Cpya+Cria f Gr.o(L, 0, E)dSdo, Cpia<On (1.18)
/2 J/ 0Bm+4
where the constant O}, is independent of A, provided €K, &€ B,,, t>0. The constant Cp,
may depend on ¢t. However, as the proof of (1.18) shows, if ¢, <t<T, where £,>0, Ty>0,
then Oy, can be taken to depend on ¢, T,, but not on ¢.
Integrating both sides of (1.18) with respect to 4, 0<A<1, we get

¢
Gk. e(x’ t’ 5) < 0:, + 0:1 J;/z fD Gk.s(C’ g, E) dfdo',

where D,, is the shell {x; m < |x| <m +1}. Using (1.10) we conclude that
Gy .o, t, ) <Oy if €K, E€B,, t,<t<T, - (1.19)

where 7 is a constant independent of k. Combining this with (1.3), the assertion (1.4)
follows. k '

The inequality (1.19) for m replaced by m-+1 and K =B, shows that the family
{Gy.x, 8,8} (for k>m) is uniformly bounded for xz€B,, E€B,, t,<t<T, We can
employ thé Schauder-type interior estimates [3], considering the G, , first as functions of
(z, t) and then as functions of (&,¢). We conclude that there is a subsequence which is
uniformly convergent to a function G, (z, ¢, £) with the corresponding derivatives

2 2
o & 9o o _@ 1.20)

in compact subsets of {(x, t, &); € By, t,<t <T,, £€ B,,}. Since however the entire sequence
{Gy.(x, t, &)} is convergent to K (x, £, £), the same is true of the entire sequence of each of
the partial derivatives of (1.20). It follows that the function K. (x, ¢, £) and its derivatives

2 & {7 0 &

—K,, ——K K K,, ——K,
oz 02202, 0&,08, K

eya_t 635—&
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are continuous in (z, ¢, &) for z, £ in R* and ¢ >0. Further, as a function of (z,?),

L;K,-§K,=o (£ fixed),
and as a function of (£,1)

L,'K,—a%K,=O (x fixed).

Consequently, the functions u, v defined in (1.5), (1.7) satisfy the parabolic equations
of (1.6), (1.8) respectively. It remains to show that

ulz, t)~>f(z) if £-0, (1.21)
oz, t)>g(x) if t—~0. (1.22)
Note that (1.3), (1.4), (1.9), (1.10) imply that

f K(x,t, &)dE<], f K (x,t, E)dz <1. ©(1.23)
Rn Rn

We proceed to prove (1.21). Let the support of f be contained in some ball B,,. Suppose
first that f€C3. For k>m, consider the functions

u’k(x, t) = J‘Eﬂ Gk, ,(x, ts g) f(f)ds-
The uniform convergence of {G,, «(,?, &)} to K,(x,¢, &) implies that u,(x,t)—u(x, t) for any
z€ER™ ¢ >0. Notice next that
.01 < Gupl [ Gudont, raE<supl|

(2, 0) = f(x) is a C° function.

Hence the Schauder-type boundary estimates [3] [for the parabolic operator L,—&/o¢]
imply that the sequence {u,(z, ¢)} is uniformly convergent (with its second x-derivatives)
for z€B,, t>0. It follows that u(z, f) ({>0) has a continuous extension u(z, 0) to {=0

and
u(z, 0)=lim w(z, 0) = f(z).
‘ k0

If f is only assumed to be continuous, let f, be C® functions such that

yi=sup|f{@)— f@)|>0 if i~ oo,
ZeRn
and such that the support of each f, is in B,,. Then

[ 1xeeov@-rena<y [, Kt ou<y
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by (1.23). Also, by what we have already proved,

o,(t)=

f K. (2,8, &) f(£)dE— ()| >0 if t—>0 (if fixed).
Bm

It follows that _
lim | u(x, t) — f(x) | < 29, + lim 6,(¢) = 2y,.
=0 -0

Since y,~0 if ¢—>o0, the assertion (1.21) follows. The proof of (1.22) is similar. This
completes the proof of Lemma 1.1.
We now recall the definition of a fundamental solution for a nondegenerate parabolic

equation. For simplicity we specialize to the case of the equation (1.2).

Definition. Let K (z,t, &) be a function defined for x€R* t>0, £€R", and Borel
measurable in & (for (z,t) fixed). Suppose that for every continuous function f(£) with
compact support the function u(z, t) defined by (1.5) exists and satisfies (1.6). Then we say
that K (x, t, &) is a fundamental solution of the parabolic equation

Lsu—%u=0 for x€R™t>0.

From now on we shall designate by K,(z, ¢, £) the fundamental solution constructed in
the proof of Lemma 1.1.

Remark. There are well known uniqueness theorems for the Cauchy problem for a
parabolic equation with coefficients that may grow to o as || — o (see, for instance, [3]
and a recent paper [4]). When such a uniqueness theorem can be applied to the solution of
(1.6), then the fundamental solution (when subject to some global growth condition as
[| = o0) is uniquely determined.

TaEOREM 1.2. Let (A), (Bs) hold. Then there exists o sequence g, "\ 0 such that, asm—> oo,
K., (2 t, &)~ K(, 1, &) (1.24)

together with the first two x-derivatives, the first two &-derivatives and the first t-derivative

uniformly for all z, & in B, §<t<1/8, where E is any compact set in R™ such that EN S =0,
and § is any positive number, 0 <5 <1.

Proof. Let E, be a compact set which does not intersect §.

Let B;(0<A<1) be a family of bounded open sets such that B,< B;. if A<1’, E,< B,,
B, N 8=0, and such that as A varies from 0 to 1 the boundary 2B, covers simply a finite
disjoint union D of shells, and da=pdS4dA, where dS4 is the surface element of B, and p
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is a positive continuous function. It is assumed that each 2B; consists of a finite number of
C?® hypersurfaces.

Taking k— o in (1.11) and using the monotone convergence theorem, we obtain the
relation (1.11) with G; , replaced by K,. This relation holds also with B,, replaced by B,
and G, , replaced by Green’s function G, ; of L,—d/et in the cylinder B; x(0, o). The
estimates (cf. (1.15), (1.17))

Gorle,t,0)<C, (z€Ey LEBy, ty<t<T, (1.25)
\ é% 6 0) 1 <0, (EE, LE€dB, 0<t<T) (1.26)
¢

hold, where t,>0, T,<occ. Since (a,(z)) is positive definite for € B,, the constants C,
can be taken to be independent of both ¢ and 4; the proof is similar to the proof of (1.15),
(L.17). It follows that if x€ Ey, £€ By, £, <t <T,

ti12
K (z,t & <C* f K,(a:, f, 5) de+ o*f f _K,(c, L s, e) dStdo
BA 2 o JaB 2
t12 t
<0*+0*f f Ks(f, ~+o0, £)dSido (1.27)
0 0B; 2

where C* is a constant independent of ¢, ; (1.23) has been used here. Integrating with
respect to A and using (1.23), we find that

K. (x,t, &) <C (C independent of ). - (1.28)

This bound is valid for z, £ in B, and t€[t,, T,}; the constant C depends on E,, ty, T, but
not on s.

From the Schauder-type interior estimates applied to K.(z, ¢, §) first as a function of
(z, t) and then as a function of (£, t) we conclude, upon using (1.28), that

2

7 a
K&(xa ta 5), %Kc(x’ ts 5)’ WKS(Z’ t; &)’
"

2 2
P Ks s t: > AE
5 Kel@:t, €) 2,
satisfy a uniform Hélder condition in (z, ¢, &) when x€ E',E€E’, t,+d<t<T,—4d for any
4>0, where E’ is any set in the interior of Eg; the Hélder constants are independent of ¢
(since (ay,(x)) is positive definite for 2 € E,). Since E,, t,, T, are arbitrary, we conclude, by
diagonalization, that there is a sequence {&,}, £,~0 if m— oo, such that

2
Kzt 8), a—gf;a&mx, t, )

K(x,t, &)= lim K,,(z,t,&)
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oxists, and the convergence is uniform together with the convergence of the respective
first two az-derivatives, first two &-derivatives and first f-derivative, for all z, £ in any
compact set E, ENS=0, and for all ¢, § <¢<1/d, where J is any positive number.

CorOLLARY 1.3. The function K(x, t, §) satisfies: (i) as a function of (x,t), LK (x, t, &)
—0K(x,t, &)/ot =0, and (ii) as a function of (£,t), L*K(z,t, &) —0K(x, t, £)[e¢=0, for all
x¢8,5¢8,¢>0.

The function K(z, ¢, &) seems to be a natural candidate for a fundamental solution of
(1.1). It will be shown later on that, under suitable assumptions on 8§ and on the coefficients

of L, this is “essentially’’ the case, at least away from S.

2. Interior estimates
We denote by D, the vector (9/0x;, ..., 9/éx,).

LeMMa 2.1. Let (A), (Bs) hold. Let B be a bounded domain with C2 boundary 0B, and let
BN S=0. Denote by Gy ,(,t, £) the Green function of L,—~8[ét in the cylinder B x (0, o).
Then, for any compact subset B, of B and for any g,>0, T >0,

Qg o, t, £)<(C[t*2) if (&, £)€(B x By) U (B, x B), 0<t<T, 2.1)

@y o2, 8, £)<Ce=" if (z, &)€(Bx By) U (B, x B), |z—&| >e, 0<t<T, (2.2)
| DG ez, 8, &)| <Ce™* if (x, )€EBx By, |x—&|>gp, 0<t<T, (2.3)

| DG, oz, 8, &) <Ce"* if (x,£)€Byx B, |x—E|>8,0<t<T, (2.4)

where C, ¢ are positive constants depending on B, By, ¢,, T' but independent of ¢.

Proof. We write (cf. [3; p. 82])
Gy o(@, 8, E) =T, b, &)+ Vo2, £, & 2.5)

where I';(z, ¢, £) is a fundamental solution for L, —2/0t in a cylinder @ =B’ x (0, o) and B’
is an open neighborhood of B such that its closure does not intersect S. Since Z is non-
degenerate outside 8, the construction of I" can be carried out as in [3], and (see [3; p. 24])

T, £, &)| + | D,Tuie, 1, §)| <Ceo'* if |z—&| >e9>0,0<t<T; 2.6)

the positive constants C, ¢ can be taken to be independent of ¢. Notice also that

Ty, 8, &) <t,,% if 0<t<T. (2.7)

By the methods of [3] one can actually also prove that



182 AVNER FRIEDMAN
IDEI‘E(:::, t,&)| +| D, Le(z, ¢, 3] <Ce®* if |x—&| >,>0,0<t<T. (2.8)
The points (z, £) in (2.6)—(2.8) vary in B’.
The function V,(z, i, £), for fixed & in B, satisfies

L,V.—gt V.=0 if z€BJO<t<T,

Vyx,t, &)= —D\u(x,t, &) if z€8B, 0<t<T,
V(z,0,8)=0 if z€B.
If £ remains in a compact subset E of B then, by (2.6) and the maximum principle,
|Velz, t, §)]| <Ce™*"* (z€B,£€E,0<¢<T). (2.9)
This inequality together with (2.5)-(2.7) imply (2.1), (2.2) for (z, £) € B x B,. Since similar
inequalities hold for Green’s function G%.(z, ¢, &) of L; —8/dt, and since Gp (2, ¢, &)=
% o(&, t, x), the inequalities (2.1), (2.2) follow also when (, £) € By x B.

From (2.6), (2.8) we see that for any & in a compact subset & of B there is a function
f(z, t) which coincides with —I',(z, ¢, &) for z€8B, 0<¢<T, and which satisfies

|fz, &)] + | D=, )] + | D.flx, t)| + | Difix, t)] <C* ™" (z€B,0<t<T)

where C* is a constant independent of &, &. We use here the fact that 9B is in C*. Notice
that

Ls(Va‘—f)"g’t('vs—f)r' _Lsf+g{Ef;

|, 8)| < O**e™c" (x€B, 0<t<T),
V.—f=0 if x€dB, O0<t<T orif z€B,t=0;

the constant C** is independent of &. By the proof of the (1 +d)-estimate in [3; Chap. 7]
we conclude that

| DLV, t, &) — fw, ]| SC O™~ if z€B,0<t<T,

where C, is a constant independent of ¢. Recalling (2.5), (2.6), the assertion (2.3) follows.
A similar inequality holds for Green’s function G%..; since Gg ((z, ¢, &)= %.o(&, £, x), this
inequality gives (2.4).

THEOREM 2.2. Let (A), (Bs) hold. Let E be any compact subset in R* suchthat E N S =2
and let &y, T be any positive numbers. Then

K(,t, §)<t—,% if x€E, £€B, 0<t<T, (2.10)
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K(z,t,8)<Ce ™ if x€R, EER, |z —E|>6, 0<it<T, (2.11)

where C, ¢ are positive constants.

Proof. Let B; (0<1<1) be an increasing family of bounded open sets with C? bound-
ary, as in the proof of Theorem 1.2. Let F be a compact subset of B,. Recall that B, N S=0.
We proceed as in the proof of Theorem 1.2 to employ the relation (1.11) with B, replaced
by B, and with G, replaced by Gz

Gt )= [, G0, )G, b=, 088

s i _ )
+ fo faBi,aT(; Goae(®, 0,0) G ol t — 8+ 0,8)dSL dy. (2.12)

From the proof of Lemma 2.1 we see that the estimates (2.1)—(2.4) hold for G's;,s with
constants C, ¢ independent of 4. Using (2.1), (2.4) for B=B, in (2.12), we obtain, after
applying the inequality (1.10) for m =k, integrating with respect to A (0 <A <1) and applying
once more (1.10) with m=F£,

Gy ez, 8, &) < 9 provided 2€F, §€F, 0<i<T.

tnIZ
Taking k— oo, we get
K (z,t,8)< 2,% if zEF, §EF, 0<i<T. (2.13)

Taking ¢ =g, oo, the inequality (2.10) follows.
To prove (2.11), let A, F be disjoint compact domains, (4 U F)NS=@, and let oF
be in C2. Consider the function
vy, 8) =K (x, ¢ &) forx€F,0<t<T (& fixed in A).
Denote by Gy (z, ¢, £) the Green function of L, —8/ét in F x (0, o). By Lemma 2.1,
| DGy, (. 8, )| <Ce™¢* if L€OF,x€F,, 0<t<T, (2.14)

where F,is any compact subset in the interior of F.

We have the following representation for v,(, t):
t
ve(, §) = f f —a—GF_e(x, 8, L)vs(L,8)dS;ds  (x€int F, 0<it<T) (2.15)

Indeed, this formula is valid for vy .(z, £) =G, (=, i, §) since vy (x, 0)=0. Taking k- and
using the monotone convergence theorem, (2.15) follows.
Substituting the estimates (2.13), (2.14) into the right-hand side of (2.15), we obtain

4

C .
v(x, 1) < t,Tze“ "t Cemclt
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where C’, ¢/, C, ¢ are positive constants independent of ¢. Taking ¢=g¢,—>0, the assertion
(2.11) follows.

3. Boundary estimates

We shall need the condition:

(C) There is a finite number of disjoint sets G, ..., G, Go+1, ---» Gy such that each
G(1 <i<k,) consists of one point 2z, and each G,(k,+1<j<k) is a bounded closed domain
with C® connected boundary 8G,. Further,

y(2) =0, by(z)=0 i 1<I<ky 1<4,5<n, 3.1)
2 ay(x)yy;=0 for z€6G, (ko +1<j<k), (3.2)
i, j=
> (b,(x) -> M) »,<0 for z€3G, (ky+1<j<k) (3.3)
-1 =1 0%

where v ={(»,, ..., »,) is the outward normal to 8G, at .
k R k
Let Q=U G, Q=RB"\Q, 8G,=G,={z} if 1<j<ky, oQ=U 2G,.
§=1 J=1

In this seetion, and in sections 6-10, we shall assume that
S =0K. (3.4

Let {N,,} be a sequence of domains with C® boundary &N, such that N,<N,,,< f),
U.N, =Q. We take N, » Such that N, consists of two disjoint parts: 8, N, which lies in
(1/m)-neighborhood of 8Q and &, N,, which is the sphere |z]| =m.

Denote by G, (x, ¢, &) the Green function for L—é/ét in N, x (0, o). By arguments
similar to those used in the proofs of Lemma 1.1 and Theorem 2.2, we have:

0<Gy(z, t, E) <G, (2, 8, &), (3.5)
Gz, t, £) = lim G,,(x, ¢, &) is finite (3.6)
m-—»0
for all 2, & in Q, t>0. Further
@z, t, £) <t,% if z€E, 9€E, 0<i<T, (3.7)
Gz, t,E)<Ce " if €K, E€R, |2—&|> g, 0<t<T, (3.8)
G(z,t, §)\<.t—g§ if z€E, E€ER, 0<i< T, (3.9)

G(z,t, &)< Ce™"* it zER, E€E, |x—§&|> &, 0<i<T, (3.10)
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where E is any compact set such that E< Q, T and &, are any positive numbers, and C, ¢
are positive constants depending on E, g,, T' but independent of m. We also have, by the

strong maximum principle [3], that G(x, ¢, £) >0 if z€Q, t>0,& €Q. Finally,

LG(x,t,S)—a%G(x,t,E)=O if €Q, >0 (£ fixed in Q), (3.11)
LG, t, §)—§G(w,t,§)=0 if £6Q), t>0 (v fixed in Q). (3.12)

Notice that in proving (3.5)~(3.12) we do not use the conditions (3.1)-(3.3).
Denote by B(x) the distance from 2€Q to the set Q). This function is in C? in some Q-
neighborhood of 2Q and also up to the boundary Ujy,+10G,.

TuaeoreM 3.1. Let (A), (By), (C) and (3.4) hold. Let E be any compact subset of Q.
Then for any T >0 and for any p.> 0 sufficiently small, there are positive constants C, y such
that

G(a,t,£)<C exp{-— ’;’ (log R(x))z} (3.13)
if £€ B, 2€Q, R(x)<p, 0<t<T.

CoRrOLLARY 3.2. If in Theorem 3.1, the condition (3.3) is replaced by the condition

S (bi(x) - i%—(x)) 1=0 for z€aG,(ko+1<j<k), (3.14)
i=1 j=1 0%;
then G, t,£) < C exp { —~ ’—t’ (log R(E))z} (3.15)

if x€E, £€Q, R(E)< g, 0<t<T.
The point of these results will become obvious when, in section 6, we shall prove that
K(x,t, &)=z, t, & if z€Q, £€Q, t>0.

Proof of Theorem 3.1. For any ¢>0, denote by M, the set of all points z€Q) for which
E(z)<e, and by I, the set of all points x€Q with R(x)=¢. The number ¢ is such that
ENM,=@ and R(z) is in C%(M,); later on we shall impose another restriction on the size
of ¢ (depending only on the coefficients of L).

Let M, ,=M.NN,. Its boundary oM, , consists of I, and of &, N, (the “inner”
boundary of N,,), provided m is sufficiently large, say m =my(e).

For m > mg(e), consider the function

v(x, 1) =Gz, t, &) forx€M, ., 0<t<T (£fixedin E).
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If €0, N, v(x, t)=0. If z€T,, 0<i < T, then, by (3.8),
0<o(z, t)<Ce ",

Finally, v(x, 0)=0if €M, ,,. We shall compare v(z, t) with a function of the form
w(zt)=Cexp { —%l (log R(x))z} (y(log &) <c) (3.16)

where y is a sufficiently small positive constant independent of m. Notice that w(z, 0)=0
if €M, ,,, wiz, t)>0 if x€, N, and w(z, t)=>Ce " if z€T',, 0<t<T. Hence, if we can

show that
Lw—w,<0 forz€M, ,, 0<t<T, (3.17)

then, by the maximum principle,
Gnlz, 8, &) =0(z, ) <w(z, 1).

Taking m—> co, the assertion (3.13) follows.
To prove {3.17), set ®=1/w. Then

_ _12ylogR
Ys= "9 R
4y*(log R 2ylog R 2ylog R
Tz = 6 {—t%( ;giz ) R:uRz; t R2 Rz, Rz, ty 1%2 RI(RI]_ %T Rﬂ:,},
—we= "—‘ (logR)
Hence
4% (log R)? y 1
[.DLU t]q) — %( Og ) z {;Rl‘l Rz'; Rz (1 + log ) zauR.t(Rz‘]
2 2y 1 1
+ g (log R) 2.ay R+ ty B (og Il) 2b,R;— 3—;(log R).
Setting A=2a,R;R:,
B = zb, R,u + ZGHRJ‘:,,
we find that
_ 4y*(log R)* | 2y1+log(1/R) 2ylog(1/R)., _y 2 (319
(Lw—w,)® = 2 B A ) R® A+ : R B ta(logR)- (3.19)

By (3.1), (3.2), 4A=0 on aQ. Since 4 >0 everywhere, we conclude that

A<C,R®* if O<R(z)<1 (C, positive constant). (3.20)
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When A4 =0 we have (by [6])
20y Roysy= = Z 11, on 6Q.

Recalling (3.1)-(3.3) we deduce that B <0 on &Q, so that
B<CyR i 0 <R(x)<1 (C, positive constant). (3.21)
Now, if y is sufficiently small then, by (3.20),

47’ (log\R) )4 < 1 7 (lOg R)z

t2
Since also 22’£i%=?(y_mA< 0 if R(x)<e, e<1,
we conclude from (3.19) that
2ylog(1/R 1
(o= )@= 221G B 1 % o .

28
Using (3.21) we see shat if ¢ is sufficiently small then (3.17) holds.

Proof of Corollary 3.2. The formal‘."'ad?joi‘nt 6 L 38

Lru= za,,a o +Zbig%+6u

oa, 4.4

where b =—b+227
63:,

s day _Za_bi

¢ = .
ox,;0x, oz;

(3.22)
. ¥ _somy . [ aai,)
Since b; Z—axj (b,- Z——ax, ,

the condition (3.14) implies the condition (3.3) for L*. The proof:of (3.17) remains valid
for L* (with a trivial change due to the term cw) We conclude that Green’s function
G’,';(x t, &) corresponding to L*—ajot i 1n N, % (0 oo} satlsfles

Gz, t, &) <w(x,t) (€M, ,, 0<t<T, EEE).

Recalling that Q,,(z, t, £) =Gn(&, t, ) and taking m—> oo, the assertion (3.15) follows.
We shall now assume that

A(x) =0(R?+1), as R(x)—0, (3.23)

where p is a positive number, p>1.
13 — 742902 Acta mathematica 133. Imprimé le 30 Janvier 1975
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TuroreM 3.3. Let (A), (By), (C), (3.4) and (3.23) hold. Let E be any compact subset of

Q. Then, for any T >0 and for any o >0 sufficiently small, there are positive constants C, y
such that

Gz, t, &) < C exp { - 7—; (R(z))“"} (3.24)
if E€EE, z€Q, R(z)<p, 0<t<T.

CoROLLARY 3.4. If in Theorem 3.3, the condition (3.3) is replaced by the condition
(31.4), then

Gz, t) < Cexp{— ’;' (R(E))“"} (3.25)

if t€E, £€Q, R(&)<p,0<t<T.

Proof of Theorem 3.3. We proceed as in the proof of Theorem 3.1, but change the
definition of w(z, t). First we consider the interval 0 <t <4 ( is small and will be determined
later on), and take ' '

wlz, t) = C exp { - 1; (R(x))‘“”}. : (3.26)

If we prove that, for any y >0 sufficiently small and independent of m, (3.17) holds for
€M, ., 0<t<9, then the inequality (3.24), for 0 <t <4, follows as in the proof of Theorem
3.1. To prove (3.17), set ®=1/w. Then

1 [y¥(p—1)? -1 -1
Wriz; = 6 {)’ (p ')‘ R:nR;i o ‘}'P__(__) R:uRr, + Z(—IL_‘) Ruzi}:

£R> LR tR®
1 y 1
| p-1P A “1) A _yp—1)B
Hence (I/w—w;)(l)=)-/~(pt2 ) ﬁ—mu; )R”*1+y(pt )—Iy’—t“ 7;_1. (3.27)

If y is sufficiently small, then, by (3.23),

By (3.21) rie=1)
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if 0<t<4 and & is sufficiently small. From (3.27) we then conclude that (3.17) holds if
0<t<g. As mentioned above, this implies (3.24) for 0 <¢<4. In order to prove (3.24) for
d<t<T we introduce another comparison function, namely,

wz, t) = ¢ exp { - m —l)-ll)l (R(x))l—p}

where C, $, 4) are positive numbers. With ® = 1/u®, we have

(+1)® R® (t+1), B\ ((+1) R? (t+1) RO

Lp—utyp =P BV A _Fpp-1) A fp-DB__ i1 4.,

We choose A (independently of #) so large that 4 >1 and

B 1 i
?-DR<37+7

this is possible by (3.21). With A fixed we net choose § so small that

=1 A _1

(6+ 1) 1 RFH? <z

It then follows from (3.28).that Lu® —w} <0 if €M, ,,  <¢<T. Notice that if § is suffi-
cienty small and C is sufficiently large (both independent of m), then, by (3.8),

Gz, t, E)<wz,) (£ fixed in K) o (3.30)

if €T, 0 <¢<T. The same inequality clearly holds also if €0, N, {>0 and, by what we
have already proved above, for x€M, ,,t=4. Hence, we can apply the maximum prin-
ciple and conclude that (3.30) holds for €M, ,, d <t<7'. Taking m— oo, the proof of
(3.24), for § <t < T, follows.

The proof of Corollary 3.4 is obtained by applying the proof of Theorem 3.3 to the
equation L*u —du/ot =0; the proof of Corollary 3.2. The details may be omitted.

Remark 1. Suppose Q consists of a finite disjoint union of closed domains G, i.e.,
ky=0. The estimates of Theorems 3.1, 3.3 show that G(z, {, £) is actually Green’s function
for L—0/ot in Qx (0, o). When L is nondegenerate, Green’s function vanishes for x€2Q
at a linear rate, i.e., 9G{(z, ¢, £)/0» +=0 (v is the normal to dQ at x); in fact this is a consequence
of the maximum principle (see [3]). In the present ease where L degenerates on 9€), Green’s
function vanishes on 0Q at a rate faster than any power of R(z).

Remark 2. Set Q,=int Q. In Theorems 3.1, 3.3 and their corollaries we were concerned

with Green’s function G(z, ¢, £) for z, £ in Q. Similarly one can construct a Green function
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Gz, t, &) for , & in Q. If (A), (Bs), (C) and (3.4) hold with » (in.{C)): being: the inward
normal ‘to: 8G; at x(k,+1<j<k) then (3.13).holds with G(x,t, &) replaced.by Gz, ¢, £);
EEE, x€Q,, 0<t<T, dist(z, dQ) <p, where E:is any.compact subset of (.  Similarly, if
(3.3) is replaced by (3.14) (v the inward normal) then (3.15) holds with G(z, ¢, £) replaced
by Golz,t, &); xEE, E€Q,, 0<t<T, dist (£, 2Q) <p. The assertions of Theorem 3.3 and
Corollary 3.4 also extend to Gy(x,t, &). Note that Gy(z, t, £)=0 if z€G}, £€GY, and j=+h;
G =int G, :

- 4. Estimates near infinity

In this section we replace the conditions (C), (3.4) by the much. weaker condition:

S is a compact set. 4.1)
Let §=R™S.

TEEOREM 4.1. Let (A), (Bs) and (4.1) kold. Assume also that

‘glv&,,‘(x)x,x,@oa +a]Y), (4.2)
—[z‘ég?‘».@),er z'a;,w)] <Oyl +]af) 4.3)
RS 1S BRI e 15 |

where Cy is a positive constant. Let E be dny bounded subset of S. Then, for any T >0 and for
any o sufficiently large, there are positive constants C,y such that_

B, 1< Cexp|~ Y ogl)] (4

if E€E, |x|>p, 0<t<T.
Notice that tHe €losurer of 'E may intersect S

CoROLLARY 4.2. If. in Theorem 4.1, the condition (4.3) is replaced by the conditions

:gl“xih&w}aﬂgl' k) <Co( 1+ |2 %), (4.5)

"azamy)_l_"abc(@') TS PO TR T T A
gmitn, 2 %‘fﬁog @+]e)Pade) e ~0 i rew),  (46)

then K(z,t, &) <Cexp {— 7—; ‘(logﬁ[ & I)z} (4.7)

apa€B;| e, 0 < P
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Proof of Theorem 4.1.:Consider’first the case where E n8=@. For any 9>0, m
positive-integer, let:<.. 7
Moo= e<|ol <m}, A=t |e] =g}, "Bu=fet fol =m}.
The number g is sufficiently small (to be deteérmined later on), whereas n >g. The boundary
of N, , then consists of the spheres A,, A, Proceedmg mmﬂarly to the proof of Theorem

3.1, we shall compare the function v(x t) Gp.e(2, £ £) (& fixed in E’) with a function
w(z, t) in the cylinder N,; , % (0, T'). We take

w(z,t)=Cexp { - 7—; (log ] x»|)2>} (4.8)

where O, y are positive ‘constants. Tt is clear that (3.19) holds with R(z)= |z|, L replaced
by L, a;; replaced by a; =a,;+&d,;, where

1«
,A?WZa@(x)m,
B | | [z Z; b (x) + zaﬁ(x)] | I3 Za,,(x)xixj

By (4.2),.(4.3) we have, for all R(x)= |x| sufficiently large, .
A<CyR?, —B<C,R (C, positive constant):
Now choose ¥ so small that

422’ Uog B , < 1% log RY? (4.9)

Next choose g such that if R(z)=|x|>p,"

2v1+log(1/R 2ylog B —1 1
—7” 1?2( 3 ,t”}ing ,4<3:;(logR)2, (4.10)

2plog (1/R).s. 2y]og Ry Ly e
A B= — ;- B< 3h (log R) (4.11)
for all 0 <t <T'. Tt follows that'L,w — wt<0 if €N, ,, 0<t<T.

Notice that ¢ was chosen 1ndependently of y. With' ¢ now fixed, we further decrease y
(if necessary) so pha;o

'm.o

v, ) <w(z, t) i x€A, 0T

for some positive constant C (in, (4.8))..The. last inequality.evidently holds also if €A,
0<t<Torif x€N, ,t=0. Applying the maximum principle, we get
O o(, 8, ) =0(z, ) <w(x, 1) if 2EN, , 0<t<T.

From this the assertion (4.4) follows by taking first m— oo and then ¢ =¢,,—0.
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So far we have proved (4.4) only in case £ N S=@. Now let E be any bounded set
disjoint to S. Let Z be a sphere containing both E and § in its interior A. From what we
have proved so far we know that if z€XN,, , then

G o(2, 8, E) <w(z, t) (4.12)

if £€X, 0<t<T. Now, as a function of (£, t) the function w(x, t) satisfies:
PR YO PP 4 2
L! al? ¢(&) 2 (log | z|)?| w(x, t)< 0

if g is sufficiently large and £€A, 0 <t <T'. Hence, by the maximum principle, (4.12) holds
also for £€A, 0 <t <T. Taking m— oo and then £ =¢,—0, the inequality (4.4) follows.

Proof of Corollary 4.2. We apply the proof of Theorem 4.1 to the adjoint L* of L (cf.
the proof of Corollary 3.2). Since (4.9)—(4.11) remain valid (with B replaced by — B) with
the factor 1/3 on the right-hand sides replaced by 1/4, it remains to show that

: ly 2
c(x)< 4t:;(log R)%,

where ¢ is defined in (3.22). In view of (4.6), this inequality holds if 0<¢<T, provided g
is sufficiently small and R(z)=|z| >¢.
Suppose next that (4.2) is replaced by
n
D ay@)ax < Co(l+|zl'?) (0<p<2). (4.13)

i.f=1

Then we can use, for 0 < ¢< 4, the comparison function
w(x,t)=0exp{—%’|x|”}. (4.14)

In fact one easily verifies that L.w—w,<0 for z€N,, ,, 0<t<4, provided y and é
are sufficiently small. For 6 <¢ <7 we use the comparison function

A

w’(z,t)=C exp{— (tfl)‘lxlp}' (4.15)

Choosing first 4 sufficiently large, and then § sufficiently small, we find that L,u® —du®/ot <0
if €N, ,0<t<T.
With the aid of these comparison functions we obtain:

THEOREM 4.3. Let (A), (By), (4.1), (4.13) and (4.3) hold. Let E be any bounded subset of
8. Then, for any T >0 and for any o sufficiently large, there are positive constants C, y such
that
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Kz, b £)< Oexp{—lt’ |x|"} (4.16)
if E€E, |z] >0, 0<t<T.

COROLLARY 4.4. If in Theorem 4.3, the condition (4.3) is replaced by the conditions
(4.5) and

b Fayle) 3 oba)

<k‘ v -0 if r— o0), 4.1
3 et = 3Tl < s labul) =0 if roo) (®17)

then K(z,t, £)<Oexp{—%}|§|"} (418)

if t€E, |&] >, 0<t<T.
The proof of the corollary is obtained by applying the proof of Theorem 4.3 (with the
same comparison functions w, w° as in (4.14), (4.15)) to L*.

Remark 1. Denote by S the unbounded component of R™\S. One can construct
the function G(z, t, &), for z, £ in § and ¢>0, in the same way that we have constructed
Gz, t, &) forz, &in Q, t>0, as a limit of Green’s functions G,,(z, ¢, &) (cf. the remark follow-
ing (3.12)). Using the same comparison functions as in Theorems 4.1, 4.3 and Corollaries
4.2, 4.4, we can estimate the functions G,(=z, ¢, £) and, consequently, also G(z, ¢, &). The

estimates on G are the same as for K, except that now E n S is required to be empty.

Remark 2. Let M be an affine matrix. If we change the definition of w(x, ) in (4.8),
replacing |#| by [Mz|, then we can establish the estimate (4.4) when (4.2), (4.3) are
replaced by the more general conditions

n

> (@) Ry By < Co1 + |2 fP),

4,i=1
- [gl bi@) But 2 ayla) Rm,] <Oyl +|=]),

where]B(x) = | Mx|. Similar remarks apply also to the other results of this section.

5. Relation between K and a diffusion process

1f the symmetric matrix (a,(x)) is positive semi-definite and the a,, belong to C2(R™),
then (by [2] or [12]) there exists an 7 x n matrix o(x) = (g,,(x)) which is Lipschitz continuous,
uniformly in compact subsets of B", such that
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6(2)0*(#) =2(a,(x)) [o* =transpose of o],

ie., X oy(@)ou(r) =2a,). If

Ex ay(x) <C(1+|=z[), (51)
then, clearly, N {
n o alz)] <0+ |2]) (5.2)

with a different constant C. Conversely, (5.2) implies (5.1).and, in fact, implies
2 lay@)|<C+|=[).
14=1
‘We shall now assume that (5.1) holds and, in addition,
> |buz) | <0 +| =) (5.3)
i=1 :

Set b=(by, ..., b,). Since we always assume that (A) holds, the functions ¢(x), b(x) are
uniformly Lipschitz continuous:in.eompact subsets.of RE".

Consider the system of » stochastic¢ differentialequations
dE() = ol€(e) dw(t) +b(EWE)dt (5.4)

where w(t) is n-dimensjonal Brownian motion. It is well known (see, for, instanée, [71, 18],
[11]) that this ,syéﬁem h;a,s a unique _splution S(f) (for ¢>0) for vav,n,y 1pres<-:1"ibed\ initial condi-
tion £(0)==x. The prbcess §(t)>de'fines‘x a tiine-ilomogeneous diffusion process, and the
transition probabilities ate given by -

P(t,2; Ay=E(£(t)€A) 5.5)
for any Borel set 4 in R,.

Definition. If there is & function I'(z, t,"t)definéd for all x, £ in R, and {>0 and Borel
measurable in £ for fixed (z, t) ,such that

Pit, x, 4) = j I(z, ¢, §)d£ (5.6)
' A

for any Borel set 4 in R and for any x€ R", t >0, then we call T'(z, t; &) the fundamental
solution of the parabolic equation (1.1).

Note that I'(z, ¢, £),if existing, is uniguely -determined,.for each (, t) almost every-
where in . Note also that for any continuous function f(§) with compact support.

'E,[f('?(t))];f; Tz, )f(@)dE. (5.7
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Suppose now that f(£) is also in C2. If the matrix'{a;;l&)) is positive definite, the o) are
in C2 (by [2]). But then, by {7], [8], the left-hand-side of (5.7); w(,t), is a classical solution
of the Cauchy problem ‘

du~u,=0 if t>0,2€R", (5.8)

w(z, 0)=f(x) if zE€R™. (5.9)

If }is just assumed to be continuous, let f,,,(x) be a C? functlon with umformly bounded
supports such that j unlformly in R" as m—> oo, Leét um(x, t)=E,(f.{£@t)))- "Then
Ot

Lu,—
ot

=0 if£>0,z€R",

Ung(®, 0} = fm(®) . if ZER™.

Noting that u,,,(x t)—>u(z, t) as m— oo, umformly in (z, t) in bounded sets of R"x [0, oo),
5.9) follows. Applylng to u, the Schauder- type interior éstimates [3] we “also find that
{un} converges to w together with the first: two - -derivatives and the first i-derivative.
Consequently, » is a solution of (5. 8) We have thus proved that for any continuous function
f with compagt support, the rlght hand side of (5.7 )isa classwal solutlon of (5.8), (5 9)
Thus when the matrix (a1 ,(x)) is posltwe defmlte I‘(x, t,&)isa fundamental solutlon in the
usual sense (see Section 1). When (a;(x)) is unlformly positive definite and the a;,b, satlsfy
some boundedness conditions at oo, this fundamental solutlon I" can be constructed by the

parametrix method [3]. Under milder growth condmons it was constructed in [4].

TarorEM 5.1. Let (A), (Be) and (5.1), (5.8) hold. Then
-li_l)% K (a,t, &) exists-for all x4 8, §¢8S,t>0, (5.10)

and the function K(x.t. &) =1lim K.(x.t, &) satisfies:
&0

Penedr- [ Ko (6.12)
4.
for any Borel set A with ANS=0).
Proof. In section 1 we have proved that there is a sequence {s;} converging to zero

such that
K., (x,t, &> K(x;t, &) a8 'm—3 o0 (5.12)

for all x ¢S, £¢.8, t>0; the convergence:i$ uniform when %, & vary in any compact set B,
EnS=0, and ¢ varies in any interval (J, 1/§), >0. The same proof shows that anv

sequence {¢,,} converging to zero has a subsequence {ey,} such that

Ko (8/4,8)>Miz,1,8), as m—oo
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for some function M, and the convergence is uniform in the same sense as before. If we can
show that M(x, t, £) = K(x, t, £) then the assertion (5.10) follows.
If we show that

P,(E(t)€A) =‘f M(x,t, &) dE (5.13)
A

for any bounded Borel set 4, 4 N §=0, then, by applying this to the particular sequence
{em} we derive (5.13) with M replaced by K. This will show both that M=K (so that
(5.10) is trlie) and that (5.11) holds. Thus, in order to complete the proof of the theorem it
remains to verify (5.13).

For any ¢>0, consider the stochastic differential system
dE(t) =" (E°(¢)) dw(t) + D(E*(t)) dt (5.14)

where ¢° is such that ¢°(0°)* =2(a,; +¢2,;); here (6°)* =transpose of o°. We then have
PEwes - [ Kiatae (5.15)
A

Indeed, by the argument following (5.7), for any continuous function f with compact
support, the function Ef(£(t)) is a solution of (5.8), (5.9). The function

[ e onemn

is also a solution of (5.8), (5.9). Since both solutions are bounded (the boundedness of the
second solution follows from the proof of Theorem 4.1) they must coincide (by [3; p. 56,

Problem 2]). Taking a sequence of f’s which converges to the characteristic function of 4,
(5.15) follows.

Since (by [2]) 6°(x, t)—o(z, t) uniformly on compact sets, as ¢—>0, a standard argument

shows (cf. [6]) that ;
‘ E. &) —&@)|2~>0 if e~0. (5.16)

Suppose now that A4 is a ball of radius R and denote by B, (9>0) the ball of radius ¢
concentric with 4. From (5.16) it follows that if p <R <p’ then

lim P,(§°(t)€B)) < P(§()€4),

lim P,(£(¢) € B,) > P,(£(t) € 4).
Jim .

By (5.15) and Theorem 1.2 we also have

P,(&(t)€B,/B,) = J; s K (2, t,£)dE<C(o" — )
e
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provided g’ is sufficiently ¢lose to R (so that 1—3‘,' N 8 =), where C is a constant independent
of &. From the last three relations we deduce that

P(E(t)€A)~P,(E(t)EA) if 0. (5.17)

‘Taking £=¢},~0, the right-hand side of (5.15) convergés to the right-hand side of
(5.13). If A4 is a ball then, by (5.17), the left-hand side of (5.15) converges to the left-hand
side of (5.13). We have thus established (5.13) in case 4 is a ball with A N §=@. But then
(5.13) follows also for any Borel set 4 with 4 N S=@.

THEOREM 5.2. Let (4), (Bg), (4.1) and (5.1), (5.3) hold. Then, for any €S8,
K(z,1,§) =lim K.(x,1, £) (5.18)
0
exists for all & &8, ¢>0; the convergence is uniform with respect to (£, t) in compact subsets of

(R™\S) x [0, ), and (5.11) holds for any Borel set A with ANS=Q. Finally, for any
disjoint compact sets M, E in R" with S< M, and for any T >0,

K(x,t,E)<Ce " forallx€EM,EEE, 0<t<T (6.19)
where C, ¢ are positive constants depending on M, E, T'..

Proof. Let E be a compact set, £ N § =, and let M be a bounded neighborhood of §
such that M N E =@. For fixed & in E, consider the function

ve(x, 8y =K (x,t, &) forz€M,0<t<T.
If x€0M, 0 <t <T then, by the results of sections 1, 2,
0<v,z, t)<Ce "
where C, ¢ are positive constants independent of &, e. Further,
V(z, 0)=0 ifx€M,

L,v.;%#o if €M, t>0.

Hence, by the maximum principle,

: 0<p(e,8)<Ce™" if z€M,0<t<T,

ie.,
0Kz, ¢t E)<Ce " if x€M,0<t<T, E€EE. - (5.20)

Fix « in 8§ and consider the function

(£, t) =K (m,t, &) for EEE, 0<t<T.
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By (5.20) this function is bounded. Since ¢(&, 0)=0 if £€ E, and -
L2¢,—a%¢e=0 if £€B,0<t<T,

and since L* is nondegenerabe for £€ E, we can apply the Schauder-type estimates [3] in
order to conclude the followmg
For any sequence {em} convergmg to 0 there is a subsequence {e,,,} such that {¢e }
is convergent to some function ¢( , t) -k (z,t, &), together with the first tderlvatlve and
the first two &-derivatives, umformly for £ in any set interior to £ and ¢ in [O T By dia-
gonalization, there is a -subsequence {7} of {e}.}. for which
Kym (2,8, &)~ R(x,t, &) for all £ER™S,t>0;

the first ¢-derivatives and the first two f-dei'ivatives also converge, and the convergence is
uniform for (&, %) in edmpact subsets of { R"\S) x [0, 5).

Notice ‘that the sequence {¢,,} may depend on the parameter z. Now let 4 be a Borel
set such that 4 NS=@. Taking, in (5. 15) 'z€8 and e=¢,,~0, and noting (upon usitig
{5.20)) that the proof of (5.17) remains valid for €S, we conclude that

Thus, K(z, t, &) is independent of the particular sequence {en} that we have started with.
It follows that (5.18) holds. The other assertions of the lemma now follow 1mmed1ately,
in particular, (5.19) follows from (5.20). .

From the above proof we see that, for fixed x in S.

LK@, b 8~ 5 K t,£)=0 it £¢5, 1>0.

TarorEM 5.3. Let (A), (By), (4.1) and (5.1), (5.3 hold. Then for any disjoint compact
sets M, E in R™ with Sc M, and for apy T >0
K (x,t,8)<Ce " forallx€B,6€M,0<t<T, (6.21)
Kz, 1, £<Ce" for all z€ B, EEM\S, 0<t<T, (5.22)
where O, c are positive constants depending on M, E, T.
Indeed, we apply the ‘argument which led to(5.20) to L*, K2(z, ¢, £) instead of L,

K (=, t, £). We then get ' ) ’
" K@, i, §)<Ce™"

if x€EM, £E€E, 0<t<T. Since K*(z, t, £§)=K (£, t, ), (5:21) Tollows. Since K (&, ¢, x)—~
K(&,t, x) as >0, provided £ ¢S, z ¢,:(5:22) algo follows.
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‘6. The behavior of £(t) near S’

Tn section 3 we have ifitrodtiéed ‘the conltition (CJ. In this section we shall need also
other similar conditions:”

(Co) The condition (C) holds with one exception. namelv. the condition (3.3) is omitted.

(C’) The condition (C) holds with one exéeppimi. namely, the inequality (3.3) is re-
placed by the inequality (3.14). )

(€*)" The contlition (C) holds with" ohé" exception, namely, the inequality (3.3) is
replaced by equality, i.e,.

n

jﬁl (bi(x) - 2 %‘x)) »=0 for z€3G, (ky+1<j<k). (6.1)
= T 4,=: i j"

- {C**). There is a finite number of disjoint closed bounded domains G,(1 <j<k) with

(3 connected boundary 6G,, such that

2ayr)vy,=0 forz€al, (1<j<k), (6.2)
n n
> (b,-(x) -> 6*_0,,,(:0));_”{ >0 for z€9G, (1<j<k): (6.3)
i=1 j=1 0% ’
where » = (v,, ..., »,) is the outward normal to &G, at .

We shall also need the.following condition:

(A) The inequalities (5.2), (5.3) hold, and,o(x), b(#) are.uniformly Lipschitz eontinuous
in compact subsets of R™. Finally, the matrix a =1o0* is continuously differentiable in R".

Notice that if (A), (Bs) and (5.1), (5.3) hold, then the condition (A,) is satisfied.

If (Ay) and (C’) hold then, by [6],

P,{3t>0 such that £(¢)€Q}=0 if 2€Q, (6.4)
ie., if £(0) =2€Q then with probability one £(¢) remains in Q for all ¢>0. Thus we may
¢onsider 8Q as an obstacle for £(t) from the dide 8, or briefly, as a one-sided obstacle.

If (Ay) and {C) hold then, by{6];"
P,{3t>0 such that &(t)€@QUQ)} =0 if 2€Q, (6.5)
where Q,=int Q. Thus 2Q is an obstacle for E(t‘)’f’ﬁ'om the side Q,. If, in particular, (C*)
holds, then 0Q is an obstacle from bHotki: sides-C and £y; we then say that 9Q is a two-sided
obstacle.
TarorEM 6.1. Let (A,), (C*) hold. Then, for any 1 <j<k,
P{E(t)€2G, for allt>0}=1 if €3G, (6.6)
Proof. Since (6.6) is obvious if x=z,, 1 <j <7$0, it remains to consider the case where
ky+1<j<k. !
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Let R(x) be a function such that R(z)=dist. (2, 8G,) if x is in a small Q-neighborhood
of 8G.; R(x)=—dist. (z, 8G,) if  is in a small Q;-neighborhood of 2G;; R(z) +0 if x ¢0G,;
R(x) =const. if |z| is sufficiently large, and R(z) is in C*(R"). Then

LR¥z)=23 a,RsRsy+ 2R {Zay Ruyo)+ 2, Ry}
=24+ 2RB< CR?,

since 4=0(R?), |B| =O(R) if R issmall, and 4=B=0 if |z| is large. By Ito’s formula,
t 4
E,R¥E(t) — B¥(z)=E, f LR(£(s))ds < CE, J R¥(s))ds.
0 0
If 2€0G, then R(x) =0. Setting ¢(t) = E,R*£(t)), we then have

s<0 [ pds, 40)-0.
Hence ¢(t) =0 for all ¢, i.e., R%(&(t)) =0 a.s. This proves (6.6).

THEOREM 6.2. Let (4,), (C**) hold. Then, for any t>0,
P e@)=0 if x€dG; (1<j<k). (6.7)
In view of (6.4) and (8.7), if zeQu 2€2, then with probability one, £(t)€f2. This moti-

vates us to call 2Q a strictly one-sided obstacle, from the side fl, when the condition (C**)
holds.

Set o(x) =dist. (z, 9Q).
We shall first establish the following lemma.
LemMMa 6.3. Let (A,), (C,) hold. Then
E,o*E(@) <O if z€2Q, 0<t<1 (C constant). (6.8)

Proof. Since g(&(#))=0 if 2=z, (1<j<k,), it remains to prove (6.8)in case x€0,Q,
where

k
%Q U oG,

J=ket+1
Set (@) =dist. (z, 5,9Q)-
Let M(z) be a C* function in R" such that

0o(®), if z is in a small ﬁ-neighborhood of 3,9,
M(x) =1 — go(%), if z is in & small Q-neighborhood of 3,12,

||, if | =] is sufficiently large,
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and M(x)+0 if 240,Q. If €9, then, by Ito’s formula,

ML) = f: M, odw+ f ' L.

0

Squaring both sides and taking the expectation, we obtain

i ¢ \2
B, M) < GE,f |M,o[tds + CE, ( f |L’M‘|d‘s) . (69)
- , o . : ° .
Near 8,1, .
0
(.03 (30, 2) - 00 - 030,

i \Jj L7

by (3.2), and near oo, ‘
| M, 0|2 =0(|z|?) =0(M?)

by (5.2). Next, for || large :

|LM| <C|z|=CM

by (5.2), (5.3), and for |z| in a bounded set,
|LM| <C.

Using all these estimates in (6.9), and using Schwarz’s inequality, we get
¢ t

E M¥E&@t) < Of E, M*&(s))ds + Ct f E, M*&(s))ds + CER.
0 0

By iteration we then obtain

B, M¥&@)) <CH,
and this implies (6.8).

Proof of Theorem 6.2. For any £>0, let G, , be the set of points x€G; with g(z) <e.
The boundary 8@, . of G , consists of G, and 0'G, ; the latter is the set of all points  in
@, with g(z) =¢. Denote by 7, the hitting time of G, ,.

Let ¢, be a small positive number, so that p€C2?in G, ,. Let

—ol@) if 2€G,,,

qf(ﬂ:{ 0 ifz¢d,

(6.10)

Then D, ¥ is continuous, and D3V is piecewise continuous, with discontinuity of the first
kind across éG,.

Define A=2a,0u04
B=2a,0nz+ 2bi0n



202 AVNER-FRIEDMAN

for x €4, ... Then .
LY (x)= — (24 + 20B) if z€G, .

Hence, by (6.2), (6.3), if &, is sufficiently small then

Bolx) if z€G,,, (B positive constant),

LY (@) 2{0" fz¢G,.

By an approximation:argument (see {5]), one can justify the use of Ito’s formula for
Y'(£(t)). Recalling (6.10), (6.11) and taking 0< £< &, we then get

tA

0= E, ¥ (&t 1)) ::=~E,J ' ' LY(£(s))ds >0 (r€2G,).
o -

Hence E,V'(£(¢ At.)) =0; by (6.10) this implies
. P(E(ENT,)€ED'G, ) =0
ie., \
P,(r,>t)=1.
Since this is true for any ¢>0, P (r,=)=1, i.e.,
P,(E()€G\G,.0) =0.
Since this is true for any 0 <& <&,
PLE() € int G)=0 (2€3G). (6.12)
Thus, in order to complete the proof of Theorem 6.2 it remains to show that
P(E(t)€0Q) =0 if 263Q, (>0 (6.13)
Let ¥'(z) be a C? function in Q U 8Q such that

z) i 0<o(z)<7y,
¥o= {i( g if"g(i)e>‘ L
where 0<r, <1, and ¥'(z) >0 if g‘(x)-;%().‘ If r, is sufficiently small then, by (6.2),-(6.3),
LY () > >0 if p(z) <7,. Henée, for all z€Q U 2Q,
LY (z)z ay—€67¥(x) (Cy positive constant). (6.14)
Notice also:that for all z€Q.U oQ,

LY (r)<a, (a, positive constant). '(6.15)
By (6.12) and (6.4), :

P,{3t>0 such that £(t) ¢ QUAQK=0 if z€aQ.
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Hence, if 2€9Q, we can apply Ito’s formula to get
¢
B, V(&)= fo E LY (&(s))]ds. (6.16)

Using (6.14)-(6.16) we find that

E,'F(-f(t)) 2o0t,
i
BY(E))> aat— C, B, fo V(&) ds.

Hence, oot < B, V(EE)) + Lo, O, .

gt<E;g(§(t)), H0<t<t* (z€0Q) (6.17)

Consequently
provided ¢* is sufficiently small and « is any positive constant such that a'¥'(x) <aye(z)
for all z€Q.

Set 0,(t) =P, (5(t) €8Q).
Then, by (6.17) and Lemma 6.2,

g 1< B {Xewmetn 006 (0)} < { B Xewetr Y > { B0 (E(0)}'* < C {1 — 8.(8)}¢.
It follows that % < (-8,
i.e <o=1-2 <1 ifo<t<tr (6.18)
., )0 402 . .

By the Markov property, if { =s+r where s, r are positive numbers smaller than £*,

P,(&(t) €0Q) = E{)ere o0 Pecn(é(r) €0Q)} + E {Yzine Peco(€(r) €0Q) }.
The second term vanishes, by (6.4). Applying (6.18) to use the first term, we get
P(E(t) €2Q) <OE,{xeneon} =0P.(E(s) €2Q) <&
Similarly, P (&(8) €0Q) <™
for any m, if ¢t <t*m. Taking m-> oo, the assertion (6.13) follows.

We shall now establish a relation between the functions K(z,?, &) and G(=,¢, &),

Go(x, ta 5)
14 — 742902 Acta mathematica 133. Imprimé le 18 Février 1975
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THEOREM 6.4. If (A), (Bs), (C), (3.4) and (5.1), (5.3) hold, then
K@, 1,8 =0, t, &) if z€Q, £€Q,t>0. (6.19)
If (A), (B), (C), (3.4) and (5.1), (5.3) hold, then
K(z,t, £) =0z, t, &) if 2€Q, £€Qy, t>0. (6.20)

The function G was constructed in section 2, and the function G, was defined at the
end of section 2,

Proof. Let f(x) be a continuous nonnegative function with support in a compact Borel

set 4, Ac Q). Choose m so large that A< N,,, and consider the function

U (2, t)=f G (z,t, E)f(EYdE (6.21)
A
ou,, . ,
It satisfies: m =0 if z€N,, t >0,

Un(%,0)=f(x) if zENy,
Up(2,8) =0 if z€ON,, t>0.

Using Ito’s formula, we get

U, 8) = B fulE(zn), — Tn)} = BT E ) ommt}

where 7, is the first time the process (s, £(s)) hits the set {oN,, x (0,8)} U {NV,, x {t}}. If
(C’') holds then (6.4) holds, so that z,,~¢ a.s. as m— co. Hence

tim (e, )= ELAEO) =~ | Kot EDEIGE,
m—>00 A
by Lemma 5.1. Since on the other hand, by (6.21),
lim u,,(z, §) =f Gz, t, &) f(£)dE,
m—>00 A
the assertion (6.19) holds. The proof of (6.20) is similar.

TEEOREM 6.5. If (A), (Bs), (C'), (3.4) and (5.1), (5.3) hold, then
Kz, t, =0 if z€Q, £€Q,. (6.22)
If (A), (B), (C), (3.4) and (5.1), (5.3) hold, then

Kz, t,£)=0 if z€Q,, EEQ. (6.23)
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~ Indeed, this follows from Lemma 5.1 and (6.4) (when (C’) holds), (6.5) (when (C)
holds).

7. Construction of generalized fundamental solution in case of two-sided obstacle

We consider in this section the case where 2Q is a two-sided obstacle, i.e., (C*) holds.
We shall also assume:
(D) Denote by L, the restriction of the elliptic operator L of the manifold 2G,,
-ky+1<i<k. Then, each L, is elliptic on 0G,.
Thus, in local coordinates 0,, .., 6;_, of 6Gi,
n-1

L'=l,,,z 23u(0) 7o )26, ao 2 ﬂ"aol

A=1

and the (n—1) x (n—1) matrix («},(0)) is positive definite for each 6.

Denote by K,(z, t, &) the fundamental solution of L, for the cylinder 8@, x (0, ). Its
existence is well known (see, for instance, [9]). For £€0G,, denote by K (z, t, d§) (ky+
1 <i<k) the measure supported on 8G; with density K (z, ¢, £)dSt, where dS} is the surface
element on 8@, For 1 <i<k,, let

K (2;, t, d£) =the Dirac measure concentrated at & =z,.

Now define K(x, t, £)=0 if x ¢08, £€2Q, t >0, and set
K(z,t,£)dE  if 240Q,t >0,
Dz, t,d&)} Ky, t,dE)  if €86, >0 (ky+1<i<k), (7.1)
K(z,t,d8) ift>0 (1< i< ky).
In view of Theorems 6.4 and 6.5,
Gz, t, £)dE  if z€Q, £€Q,£>0,
D(x,t,dE) =1 Gylx, 1, £)dE if x€Q,, EE€Q,, >0,
0 if:pEf),§€Qo,t>00rxeﬂo,§€f2,t>0.
TrEOREM 7.1. Let (A), (By), (C¥), (3.4), (D) and (5.1), (5.3) hold. Then, for any
Borel set A in R", ‘
Er(f(t)EA)=f (z,t, d§). (7.2)
: , 4
Definition. I'(z, t, d&) is called the generalized fundamental solution for (1.1).

For z ¢0Q, it is given by K(x, t, £)d¢, and for 2 €2Q it is a certain measure supported
on dQ.
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Proof of Theorem 7.1. Consider first the case where z¢9Q. If 4 N (0Q)=0 then (7.2)
is a consequence of Theorem 5.1. If 4<2Q then both sides of (7.2) vanish. The truth of
(7.2) for any Borel set A follows from the preceding special cases, upon writing 4 =
(4naQ)u (AN\2Q).

Consider next the case where z€2Q. If x€0G, and 1<j<k,, then =z, and, by the

definition of T,
1 if z€A4d,
f F(zl9 t’ dé) =
4 0 if z¢4.
On the other hand, by Lemma 6.1,
B E) {l if z €4,
t =
(&) 0 if z,¢4.

Thus (7.2) follows. If z€8G, and ky+ 1 <j<k, then by Lemma 6.1 £(¢) remains on 9@, for
all £>0. Let

bz, t) = LG R, t,9)}(y)dS,, f continuous (x€aG,),
s

and extend 4 into a neighborhood of 8@, by defining it as constant along normals. Applying
Tto’s formula to 4(&(s), ¢ —s) and taking E,, where 2€2G,, we find that

BHE0)- [, it )fw)ds,

Hence, P.(&(t)€EB)= f R, ¢, £)dSt (7.3)
B

for any Borel set B in 0G,.
Again, by Lemma 5.1,
P,(5(t)€4)=P,[E()€(4 N9G)]

for any Borel set 4 in R". Using (7.3) with B=4 NG, we get
P (&(t)€A) f R (x,t,£)dSt= f ['(2,t, d&)
ANdG; A

where the definition of I has been used in the last step. We have thus completed the proof
of the theorem.

Remark 1. The estimates derived in section 2 for the functions G, G, are, by Theorem

6.4, estimates on I'.

Remark 2. We have assumed in Theorem 7.1 that the L, (£, +1 <4 <k) are non-degener-
ate elliptic operators on 9G,. Suppose now that a particular L, degenerates along a O3
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(n—2)-dimensional manifold A, A< @,, and that A is a two-sided obstacle. Then we can
analyze the generalized fundamental solution K, on 8@, by the same procedure as in
Theorem 7.1, Thus, if the restriction of L, to A is non-degenerate, then K ,(z, £, d¢) will be
(on 2@,) of the form K (x, ¢, £)dSt if x ¢A; for z€A it is given by some measure supported
on A. (If A consists of one point z then this measure is the Dirac measure concentrated at
z.) If the restriction of L; to A is degenerate on an (n—2)-dimensional manifold then we
can further explore the situation by the method of Theorem 7.1. Thus, in general, the
measure K; may consist of densities distributed on submanifolds of 8G, of any dimension
l,o<li<n-2.

Remark 3. For any 6 >0, denote by V° the d-neighborhood of 2Q. If x€2Q,

lim f Ky(x, t, £)dE =lim P,(£(t) € V)= P,(§(t) €0Q) =1, (1.4)
Vs &0

&0

where (5.15) and Lemma 6.1 have been used. This implies that, for any « >0,
?uvp {K(z, ¢, &) [dist. (£, 0Q)]'*}> o if £ 0; (7.5)
Vs

for, otherwise, the left-hand side of (7.4) would converge to 0 as ¢—0.

8. Existence of fundamental solution in case of strictly one-sided obstacle
We shall now replace the condition (C*) by the condition (C**). We define

T(z,t, &) =K(z,t,&) if zER", >0, £ ¢0Q. (8.1)

For definiteness we also set I'(z, t, &) =0 if x€ R t>0, £€0Q. Notice, by Theorem 6.5,
that

Tz, ¢ 8)=0 if 2€Q, t>0, £€Q,.
by Theorem 6.4,

[(z,t, &) =Gz, t, &) if z€Q, >0, £€Q.
Thus, the boundary estimates derived in section 3 apply to I'.

THEOREM 8.1. Let (A), (Bg), (C**), (3.4) and (5.1), (5.3) hold. Then I'(x,t, &) is the
fundamental solusion of the parabolic equation (1.1).

Proof. We have to verify the relation

P, (E(t)EA)= f K(xz,t, &) dé (8.2)
4

for any Borel set A. Consider first the case where x¢0Q. For any § >0, let Vs be the -
neighborhood of 2Q.
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If § is sufficiently small, then z¢ V4. Using Theorem 5.3, we get

f K.z, t, &) dE< of dE< 03,
ANV ANVE

f K(x,t,£)YdE < C6.
ANV
Recalling that for each § fixed,

f Ei(e,t, &) dE~ f K(z,t,§)dE if =0,
A\Vs A\ Vs
we conclude that

f K (z,t, &) dE—»f K(z,t,&)dé if e—~0. (8.3)
4 4

Using the estimate (5.21) of Theorem 5.3 and the estimate (2.13), we can argue as in
the proof of (5.17) to deduce the relation

P(E(t)€A)~P(E(t)€A) if e—0 (8.4)

provided A4 is a ball. Taking £¢—0 in (5.15) and using (8.3), (8.4), the relation (8.2) follows in
case A4 is a ball. This relation is therefore valid also for any Borel set A.

Consider next the case where z€¢Q. By Theorem 5.2,
f K, (z,t,£) d§—>f K(x,t,£)dé  if e~0. (8.5)
A Vs A\ Vs

Suppose 4 is a ball. By Theorem 5.2, K,(z, ¢, £) <C if £ belongs to a small neighborhood of
A\Vs. Hence, the argument used to prove (5.17) can be applied also here to deduce
that

P& () €A\Vs) =P (5(t) €A\Vs) if >0 (8.6)

Taking £—0 in (5.15) (with A4 replaced by 4\V;) and using (8.5), (8.6), we get
P,(&(t) € A\Vs)= f K(=,t,&)d¢ (8.7)
A\Vs
for any  >0. Since K(z, t,£)=>0 for all £, the monotone convergence theorem yields
lim f K(z,t,§)dé= f K(z,t, &) dE. (8.8)
350 JA\vs 4

Using Theorem 6.2 we also have

lim P (£(¢) €A\V,) = P,(§(t) €A\OQ) = P, (£(t)€A). (89)
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Taking >0 in (8.7) and using (8.8), (8.9), the assertion (8.2) follows in case 4 is a
ball. But then (8.2) clearly holds also for any Borel set A.

Remark 1. From Theorem 6.2 and (8.2) it follows that
K(x,t, &Y=0 if x€2Q,t>0,£€Q. (8.10)

From Theorem 6.2, P,(&(t) Ef)) =1 if £€0Q. Hence, by the strong maximum principle [3],
K(z, t, £)>0 if z€0Q, t>0, EGQ. If A is a closed ball in fl, and A4’ is a closed ball in the
interior of A4, then (cf. the proof of Lemma 10.2)

lm P> PyE0e4) [ Kt 8d>0
)

zeQ), 2>y

if y €0Q. It follows that
P L) €A)>0 if z€Q, dist. (x, 0Q) <g,

for some &y small. Applying the strong maximum principle to §, K(z, ¢, £)d&, as a function of
(z, t), we conclude that

f K(x,t,£)dE >0 if 2z€Q,£>0.
4

Applying once more the maximum principle, to K(z, ¢, &) as a function of (&, £), we conclude
that

K(z,t,£)>0 if z€Q,t>0,£€Q. (8.11)

Remark 2. Theorem 8.1 extends without difficulty to the case where the condition
(C**) is replaced by the more general condition where the inequality (6.3) holds for j =1, ..., I
and the reverse inequality holds for j=I+1, .., k. In case n=1 we can just assume that
each G, consists of one point z; and either a(z;) =0, b(z;) >0 or a(z;) =0, b(z;) <O0.

Remark 3. One can easily combine cases of strictly one-sided obstacles with two-sided
obstacles. Thus, if 9G, is a strictly one-sided obstacle with respect to either @, or B"\G,,
for ¢=1, ..., k, and if G414, ..., G, are two-sided obstacles, then (7.2) holds with I" define das

follows:

k
K(z,t,8)dE if G,
I'(x,t,d&)= (@5 )l i x¢i_l£+13 !

Tz, t,dE) if x€06, (h+1<i<k)

where I'; is a measure defined as in Theorem 7.1.

Remark 4. Remark 2 following the proof of Theorem 7.1 extends to the case that L,
degenerates on A and A is strictly one-sided obstacle for L,.
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Remark 5. Theorem 8.1 extends to the case where S is any compact subset of B” such

that
P {t)€S}=0 for all zER", 1>0. (8.12)

Let S be a C! manifold of dimension k (0 <k<n—1), and denote by d(z)(z€8) the rank of
the linear operator (a,;(x)) restricted to the linear space normal to S at x. By Theorem 3.1

of [5], if
d(x)>3 forall z€8 (8.13)

then (8.12) holds for all = ¢.8. We claim that (8.12) holds also for z€S. To prove it note, by

Theorem 3.1 of [5], that
P {&()eS\Vs}=0 if t>0,

for any J-neighborhood Vs of z. Hence P,(4(¢) € S\{z}) =0. Thus, it remains to prove that
P{E(t)=2}=0 ift>0 (€S). (8.14)
Suppose for simplicity that 2=0. Let o(x) be a function in C?(R") such that
e(x)___{le if || is small,
1 if | x| is large,
and o(x) >0 if 2 0. Since Xa,,(0) >0,
vo—Coo(z) <Lp(®)<y, (v€R™ (8.15)

where y,, Cy, ¥; are positive constants. By Ito’s formula,

(1
Eyo(£(8))=E, LLQ(E(S)) ds<yyd,
(] t
Eyo(&(t))=E, L Lg(&(s)) ds = yyt — Co E, fo o(&(s))ds.

¢
Hence vot < Byo(é(t)) + Cy J; y18ds = Ey0(&(t)) + 1 Coys °.

It follows that
y't< Ey0(£(¢)) (y' positive constant)

if ¢ is sufficiently small, say ¢ <¢*. Hence
y<Ey|&@)|? if t<t* (p positive constant). (8.16)
Setting d,(¢) =P,(£(t) =0), we then have

PE< ol |£0) |2} < {Bogeso} *{Bo|£0) |} < C{1 —84()}'" ¢,
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since B,|&(f)|*<Ce. Hence
Jot) o<1 if 0<i<i* (6 constant).

We can now proceed to establish (8.14) by the argument following (6.18).

The assertion (8.12) can be proved also in cases where d(y)>2 for all y€8. For ¢S,
one applies Theorems 4.1, 4.2 of [5]. If €8, we cannot reduce the proof of (8.12) to that of
proving (8.14) as before; instead, we proceed directly to prove (8.12) by the argument used
to prove (8.14), employing the function

0(&)=o(dist. (£, 8))
instead of g(£). Note that also g satisfies the differential inequalities of (8.15).

9. Lower hounds on the fundamental solution

In Theorem 3.1 we have derived the bound
G(z,t,8) < Cexp{—%(log R(x))z} (C>0,c>0) 9.1)

if £ varies in a compact set E of fl, o<t<T, fo), and R(z) is sufficiently small. Recall
that the condition (C') was assumed in that theorem.
We shall now assume that the condition (C’) holds and that

n

2 a,/(x)RyRy;>aR?  (a positive constant) 9.2)
i,j=1

for all # in some Q-neighborhood of 8Q, where R(x) = dist. (z, #Q). We shall then derive
the estimate

G, 1, 5>>Nexp{~§(log R(w))z} (N >0,v>0) (9.3)

for some positive constants N, », for all F€E, 0<t<T, xefl, provided R(x) is sufficiently
small.

To do this, we compare (for fixed £ € E) the function
v(@, )=, t, ) (z€Q,0<R(x)<e, 0<t<T)

with a function w(x, t) of the form
w(z, t)= N exp { ~*(log R(x))”},

‘where ¢ is sufficiently small, ¥ is sufficiently small, and » is sufficiently large. We fix ¢
such that e <1, dist. (x, £)=c,>0 if (€K, z€Q and R(x)>¢, and such that R(z) is in C?



212 AVNER FRIEDMAN
if xefl, R(zx)<e. Fix m so large that N, (defined in section 3) contains the set where
xefl, R(z)=¢. By [0],
Gz, t, &) >w(x, t) if foZ, R(x)=¢,0<t<T
provided N is sufficiently small and » is sufficiently large.
Since G(x, t, &) =G (2, t, &), we have

o, t)>w(z, ) if €0, Rx)=s, 0<t<T.
Notice also that

o(z, 0)=w(z, 0)=0 if z€Q, 0<R(x)<e,
im [z, t)— w(z,H)]= im o(z,8)>0 if O<t<T.
R(r)y>0 R(z)~>0
Hence, if

Lw—w,>0 for z€Q, 0<R(z)<e, 0<t<T, (9.4)

then the maximum principle can be applied; it yields the assertion (9.3). Now, the left-hand
side of (9.4) can be expressed by (3.19) with y =». Since, by (C’), B/R> —C, it is clear that
if v is sufficiently large, then the first term on the right-hand side (with 4 =») dominates
the negative contribution of each of the remaining terms. Thus (9.4) holds.

Similarly one can prove that, when (9.2) and the condition (C) hold,

Gz, t,£)> N exp { —;i (log R(g»?} (N >0,»>0) (9.5)

provided z€ B, 0<t< T, EEQ, R(&)<e. We can thus state:

TrEOREM 9.1. Let (A), (By), (C), (3.4) and (9.2) hold. Let E be any compact subset of Q.
Then, for any T >0 and for any o>0 sufficiently small, there are positive constants N, v
such that (9.3) holds if £€ B, €Q), R(z) <o, 0<t<T. If the condition (C') is replaced by the
condition (C), then (9.5) holds for z€ E, £€Q), R(§)<p, 0<t<T.

If the condition (9.2) is replaced by ‘the weaker condition
Sa(x) Ry Ry > aRP* (2>0,p>1) (9.6)

for all z in some Q-neighborhood of 8Q, then we can establish, instead of (9.3), (9.5), the
inequalities

G(z,t,&)>N exp{— tf (R(x))l“’},

G(z,t, &) > N exp { - ; (3(5))1-1:}

respectively (for z, £, £ in the same sets as before).
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Finally, lower bounds at oo, supplementary to the upper bounds derived in section 4,
can also be obtained using the above comparison function w(z) with R(x)= ||, or, more
generally, with R(z)= | z| where M is an affine matrix.

10. The Cauchy problem

Consider the Cauchy problem
Lu—u,=0  if x€R™ t>0, (10.1)
u(z, 0)=f(x) if x€R",

where f(x) is a bounded Borel measurable function. We define the solution of this problem

to be the function
u(z, t) = B }(§(¢)). (10.2)

When the matrix (a;(x)) is positive definite and f(z) is continuous, the function
u(x, t) is a classical solution of the Cauchy problem (see section 5).
The purpose of this section is to investigate the continuity of u(x, ) when (a(x)) is

degenerate and f is continuous or just measurable.

TaEorEM 10.1. Let 0y, b; be uniformly Lipschitz continuous in compact subsets of K"
and let (5.2), (5.3) hold. If f(x) is bounded continuous function, then u(z, t) is continuous in
(%, ©)€ R* x [0, o), and u(z, 0) =f(z).

Proof. It is well known [8] that

El&,)—&E ()2 <n(|z—y|2+|t—s]) (5(r)>0 if r—>0) {10.3)

where £,(f) is the solution £(f) of (5.4) with &,(0)=2. Hence, by the Lebesgue bounded

convergence theorem,
EHE/(0)—~ Ef(E(s)) if z—y, t—s.

This proves the continuity of u(y,f) at (x,s); x€R"* s>0. Notice that u(z,0)=
E;(£(0)) ={(x).

We now consider the more general case where f(x) is Borel measurable. When (a;;)
is uniformly positive definite and a fundamental solution I'(z, £, £) can be constructed by
the parametrix method [3], the solution of the Cauchy problem can be written in the
form

f T(w, ¢, /(&) dé;
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one can then show (using continuity properties of I') that this solution is continuous in
(z, t) in B" x (0, °). We shall prove here a similar result in case (@,;) is degenerate.

LemMa 10.2. Let oy, b, be uniformly Lipschitz continuous in compact subsets of E* and
let (5.2), (5.3) hold. Let A be a bounded domain with C' boundary and suppose that P,(£(s) €0A)
=0 for some x€ R", $>0. Then the function

(y, )P, (E()EA)
s continuous at the point (y, t)=(z, s).
Proof. From (10.3) it follows that

lim P,(E(H(€A)< P,(£(s)EAs) for any & >0,

y=>Z,1->8
where A; is a d-neighborhood of 4. Taking 6—0, we get

m P,(§()€4) > Po(E(s) €4 U 24) = Po(E(s) €4).

Similarly,
lim P,(§(€4)> Py(£(s) €4)
y=>2,t->8

and the proof is complete.

TurorEM 10.3. Let f(x) be a bounded Borel measurable function in R", and let (4.6)
and the assumptions of Theorem 8.1 hold. Then the solution wu(x,t) is continuous in
(@, t)E R™ x (0, oo).

Proof. If A is as in Lemma 10.2 then, by Theorem 8.1,
P (£(t)€04) = f K(z,t,&)dE=0 (1 >0).
94

Thus, by Lemma 10.2, the function
(x, t)>Py&(t)€A) is continuous in B" x (0, o=). (10.4)

Consider now the special case where f has compact support. For any ¢ >0, let g(x) be a
simple function such that
sup |g] <1+sup|f|,

g(x) = (x; constant) if v€4, (1<i<1), 4, N A,=Dif i+j, Uj-14, contains the support of
f, each A, is bounded, g(x) =0 if z¢ U{-1 4, and |f(z) —g(z)| <e almost everywhere. Let B,
be bounded domains with C* boundary such that B, >4, and the Lebesgue measure of
U!-1(B)\4,) is less than «.

Then, for all (z, ¢), (', ¢'),
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] f Kot 06)d% | Kot 01(6)2¢

<§&

< &.

' fRnK(x" t, &) g(&)dE— L»K(xl’ v, E)J(&)dE

Further, if (', t')— (z, 1), >0,
im| [ v, o026~ [ Kt 00 de|

<1+ sup|f|){1_iﬁf K@ t,85)dE+ f K(x,t, &) dE
E E
by (10,4), where B = U{.,(B)\4,). From the proof of Lemma 10.2,
i [ K60, de< [ Kiat, e
E E

where E; is any d-neighborhood of E.
Putting these estimates together, we conclude that if (', ¢')—>(z, £), >0, then

lim | u(2’, ) — u(u, £) | < 26+ 2(1 + sup | f|) onK(x, t, &) dé.

Since ¢ and § are arbitrary, the left-hand side can be made arbitrarily small. Consequently
« is continuous at (x, ).

Consider now the general case where f,, is a bounded measurable function. Let
flx) if|x|<m,

f"‘(x)={ 0 if|z|>m.

Denote the solution of the Cauchy problem corresponding to f,, by u,. By what we have
already proved, each u, is continuous. By Corollary 4.2, u,—u uniformly on compact
subsets. Consequently, % is continuous.

Consider next the case of two-sided obstacle, where only a generalized fundamental
solution exists. We first take

f(®) =xa(®), (10.5)

the characteristic function of a set 4. We assume: _

(E). A is & bounded domain with C? boundary, and it intersects precisely one of the
sets 0G,; further, k,+1<i<k and the intersection d4 N3G, is a C! (n—2)-dimensional
hypersurface.

TaEOREM 10.4. Let the assumptions of Theorem 7.1 and (10.5), (E) hold. Then the
solution u(x, t) is continuous in (z, t) € B* x (0, o).
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Proof. It is enough to prove the continuity of u(y, t) at y €0Q. In view of Lemma 10.2,
it suffices to prove that

P,(£(t)€24)=0 if y€aq, ¢>0. (10.6)

In view of Theorem 6.1, the left-hand side of (10.6) vanishes if j &:. If j =4, then, by Theo-

rems 6.1, 7.1,
P,(£(t)€04) =P, () E@A N G)}

= f R(z,t,£)dS=0.
94ANG;
Thus the proof is complete.

Remark 1. If A contains in its interior the point z; and does not intersect the other
sets G}, j =1, then the assertion of Theorem 10.4 is again valid.

Remark 2. Theorem 10.4 extends to any measurable function f(x) which can be approxi-
mated uniformly on compact subsets of R" by simple functions of the form X ¢,y , provided
each set 4, is a bounded closed domain, and either 4,n 8Q =0, or A, satisfied the condition
(E), or 4; contains in its interior one point z, but does not intersect the remaining sets
G, l+i. In particular, Theorem 10.4 remains valid for any bounded Borel measurable

function f(x) which is continuous at all the points of 2.

Remark 3. The assertion of Theorem 10.4 is clearly false if ¢4 N &G, contains a set of
positive surface area, or if 4 consists of one point z,, 1 <i <k,

Remark 4. If f is a bounded continuous function in R", then u(z, t) is continuous (by
Theorem 10.1). Let
f (x) lf x =i=zh

f(z)z{ft if x=2 (fi*+Hz)

for some ¢, 1 <i <k, Denote by 4 the solution corresponding to f. Then @(z, t) =u(z, ¢) if

x =+z;, but
Uz, t) =f,+f(z)) =u(zy, 0).

Consequently, «(z, t) is discontinuous at the points (z,, ), t >0.

Remark 5. It is easily seen that Theorems 10.1, 10.3 and remark 2 extend to the case
where f(x) is assumed to have a polynomial growth.

Remark 6. If S is as in remark 5 at the end of section 8, so that (8.12) holds, then
Theorem 10.1 remains valid even if one changes the definition of f(z), in an arbitrary manner,
on the set S. Further, the solution u(z, t)(¢ >0) does not change when one changes the
definition of f on 8.
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