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Introduction 

Consider a sys tem of n stochast ic  differential  equat ions  

d~(t) = bC~Ct)) dt + a(~Ct)) dwCt) (0.1) 

where b =(bx . . . .  , b~), ~ ~ (~o) is an  n x n ma t r i x  and  w = (w x, ..., w n) is n-dimensional  Brown-  

iau mot ion.  Unde r  s t andard  smoothness  and  growth  condit ions on b and  a, :the process 

~(t) is a diffusion process (see [7], [8], [11]) wi th  the  differential  genera tor  

n 2 n 

t ,J-1 i l 

where a o = ~ k .  Denote by q(x, t, A) the transition probabilities of the diffusion 
process. I f /~  is elliptic then  a fundamen ta l  solution for the  Cauehy p rob lem associated wi th  

the  parabol ic  equat ion  
0u 

~ - - ~  = 0  (0.2) 

can be constructed,  under  suitable smoothness  and  growth  condit ions on the  coefficients 

(see [3], [1]); denote  it  b y  K(x,  t, ~). I t  is also known (see [7], [8]) t h a t  this fundamen ta l  

solution is the  dens i ty  funct ion for  the  t rans i t ion probabil i t ies  of (0.1), i.e., 

q(t, z, A) = ~ K ( x ,  t, ~) d( (0.3) 
JA 

for  a n y  t > 0, x E R n, and for  a n y  Borel  set  A in R n. 

The  present  work  is concerned with  the  case where L is degenerate  elliptic, i.e., the  
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matr ix  (a,j(x)) is degenerate on some set S. The purpose of the paper  is to construct a 

fundamental  solution (or a "generalized" fundamental  solution) under some conditions 

on the nature of S and on the coefficients of L. 

In  section 1 we consider the parabolic equation 

n U 

~ Z ~ + z / u - ~ . - -  (e>O) 

and show tha t  its fundamental  solution converges (as e-~O through some sequence) to a 

function K(x, t, ~), provided x~S,  ~ S .  

In  section 2 we obtain some bounds on K(x, t, ~) away from the set S. 

In  sections 3, 6--10 we specialize to the case where 8 is an "obstacle" in the following 

sense: 8 consists of a finite disjoint union of hypersurfaees and of isolated points; the 

"normal  diffusion" of (0.1) vanishes on 8, and the "normal  drif t"  is either identically zero 

("two-sided obstacle") or it  is of one sign ("one-sided obstacle"). 

I n  section 3 we construct a function G(x, t, ~) and obtain estimates on it  near the set 8. 

[In section 6 it  is shown tha t  G(x, t, ~) coincides with K(x,  t, ~) if x is on tha t  side of 8 

with respect to which S is an obstacle.] The estimates derived in section 3 show tha t  G(x, t, ~) 

decreases "almost"  exponentially fast  as x or ~ (depending on the sign of the normal drift  

a t  8) tends t~ O. This behavior is strikingly different from the behavior of Green's function 

in the non-degenerate case; for in the latter case G decreases to zero at  a linear rate  only. 

In  section 4 we obtain estimates on K and G near oo. These estimates seem to be new 

even in the non-degenerate case (i.e., in case ~ is the empty  set). 

In  section 5 it is shown tha t  the function K(x, t, ~) constructed in section 1 satisfies 

the  relation (0.3) provided x {~S, A 0 S = 0 .  

In  section 6 it  is shown tha t  if 8 is a two-sided obstacle then 

Px{~(t)E8 for all t > 0 } ~ l  if xES. 

On the other hand, if 8 is "s t r ic t ly"  one-sided obstacle, say from the exterior of 8, 

then 
Pz{~(t)E[8 U (int 0)]}--0 if t > 0 ,  xE,S'. 

Finally, it is proved tha t  if 8 is an obstacle with respect to the exterior of S then K(x, t, ~) -~ 

G(x, t, ~) if x is in the exterior of 0. 

In  section 7 we construct a "generalized" fundamental  solution in the case of two- 

sided obstacles; for x~8 ,  it  coincides with the function K(x, t, ~) (and, therefore, with 

G(x, t, ~) for x in the exterior of 8), and, for xES,  it  is some measure supported on 8. 

In  section 8 we show tha t  if 8 is a strictly one-sided obstacle then the function K(~, t, ~) 

is well defined for all x E R ~, t > 0, ~ E / ~ \ 8 ,  and it is a fundamental  solution. 
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In proving the result~ of sections 7, 8 we make a crucial use of the probabilistic results 

of section 6. 

In  section 9 we derive lower bounds on K(x, t, ~) both near S and n ea r  ~ .  These 

results show that  the upper bounds derived in sections 3, 4 are sharp. 

In  section 10 we consider the Cauchy problem 

Lu----Ou---- 0 if t > O, u(x, O) =/(x).  

I t  is assumed that  S is either two-sided obstacle or strictly one-sided obstacle. I t  is proved 

that  the solution u(x, t )fExf($(t))  is continuous for t>O if f(x) is measurable and, say, 

bounded. (When S is a two-sided obstacle, an additional condition on f is required.) 

We conclude this introduction with a simple example is case n = 1. The equation 

u t  .~ xg"uxz "l- b(x)  uz  

is a special case of the equations treated in section 7, if b(0) =0,  and in section 8, if b(0) ~:0: 

1. Construction of the would-be fundamental  solution 

We shall denote the boundary of a set ~ by ~ .  Let  

n ~2 u n 
L u -  ~ aij(x) ~-z~--~ + ~ b~(x) Ou 

,yffil Vxtvxj ~-1 "~t (a~y=aYt)' 
and assume: 

(A). The functions 
8 2 

a~y(x), -~x a,J(x), ~ a , j ( x ) ,  b,(x), s  

are uniformly H61der continuous in compact subsets of R n. 

Let  S be a closed subset of R' ,  and assume: 

(Bs). The matrix (atj(x)) is positive definite for any x ~S, and positive semi-definite for 

any xES. 
When S is the empty set 0 ,  we denote the condition (Bs) by  (Bz). When (A) and (Bz)  

hold, a fundamental solution for the parabohc equation 

0u 
L u - ~ = 0  in the strip 0 < t <  ~ ,  xER n (1.1) 

is known to exist [10]. If (a,j(x)) is uniformly positive definite and if some global bounds 

are assumed on the functions in (A), then a fundamental solution can be construor having 

certain global bounds (see [1], [3]). 
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The present work is concerned with the case S =~O, (The bounds derived in section 4, 

though, seem to be new also in case S=O.)  

In the present section we shall construct a function K(x, t, ~) as a limit of fundamental 

solution Ks(x , t, ~) for the parabolic equations 

L.u--~---O, where L . - - L u + e ~ x ~ -  I (e>O). (1.2) 

In the following sections we shall show, under some conditions on S and on the coefficients 

of L, that  a fundamental solution of (1.1) coincides with K(x, t, ~), at least away from S. 

Let  

B.--{x; I~1 <m}, m=1,2 . . . . .  

Denote by Gm.~(x, t, ~) the Green function for (1.2) in the cylinder qm =Bin x (0, oo). Thus 

G,n.~(x, t, ~), its first t-derivative and its second x-derivatives are continuous in (x, t, ~) 

for XEBm, t>0 ,  ~E/]m, and as a function of (x, t), 

0 L.a,..,(x,t,~)-~Or...(z,t,~)=O if (x, t) eq . ,  (~fixed in Bin), 

Gm..(~,t,D~O ift--.O, xW-~,x~.B,., 

6t,...(x, t, ~) = 0 ift>O, xeOBm. 

Finally, for any continuous function/(~) with support in Bin, the function 

u(~, t) = lB. Om..(X, t, ~) / (~ )~  

satisfies: 
Leu(x, t)=0 in Qm, 

u(x, t)~/(z) if t-,O, xeB,,, 

u(~, t )=0  if t>0 ,  xeOB,,. 

I t  is well known [3; p. 82] tha t  such a function Gm.e(x, t, ~) exists and is uniquely deter- 

mined by the above properties. 

Denote by L*, L* the adjoint operators of L, L8 respectively. Denote by G*m.e(x, t, ~) 

the Green function for the equation 

L*u _ ~ 0 

in Qm" Again, its existence and uniqueness follow from [3; p. 82]. As proved in [3; p. 84], 

Gm..(x, t, ~) = G*.,(~:, t, z). 
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It follows that  as a function of (~, t), 

Z * a , , . , ( ~ ,  t ,  ~) - o a , , .~(~,  t,  ~) = 0 
Gb 

ff(~,t)EQ~ (x fixed in B=). 

LEMMA 1.1. Let (A) hob/. Then, 
(i) 

O<~G,~,(x,t, ~)< G~+x.,(x,t, ~) if (x, t) e Q,,,, ~:EB,,,, 

lira am.,(x, t, ~) =Ks(x, t, ~) is finite/or all xeR", t >0, ~ER". 

(ii) The/unetion~ 

K,(x, t, ~), o~aK,(x, t, ~), ~ K,(x, t, ~), ~) 

(I,3) 

(1.4) 

are, continuous in ix,t, ~)/or xe.R", t >0, ~ER'~;/or anyeontinuo'us /unaion ](~) w@hcom~,et 
8upIaor$, the ]unetion 

u(x, t) = JRf Ks(x' e, ~)](~)d~ (1.5) 

satisfies L s u -  ~ = O  i /xeR" ,  $>0, (1.6) 

u(x,O--,./(x) q t - + o .  

(iii) The ]u~ion8 

are c ~ t i n ~  in (x,t, ~) ]or ~ER", t >0, ~ER";/or  any c ~ i n ~  /u~.~ion gCx) with c ~ .  
p~w.~ 8up~or~, the [u~ion  

v(~, ~) = [ K~(x, e, ~)gCx)dx (1.7) 
j zz 

av 
,ati#ies: L*~v-~=O i /~ER '~, t >0,  (1.8) 

Proo]. The proof given below exploits some ideas of 8. Ito [10]. The inequalities in 

(1.3) are an easy consequence of the maximum principle (cf. [1], [3], [10]]. In fact, for any 

continuous and nonnegative function f,(~) with support in Bin, 

0 ~< 
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by  the maximum principle. Taking a sequence (/k} converging to the Dirac measure at 

t ~ the inequalities in (1.3), at  ~ =~o, follow. 

Again, by the maximum principle, 

f Gm.,(x,t, ~)d~< 1. (1.9) 
m 

f Gm.,(x, t, ~)dx~< 1. (1.10) Similarly 
jB m 

Now fix a positive integer m. Denote by O/aTe the inward conormal derivative to 

~B m at ~. By Green's formula: for any positive integer k, k >m, 

qk..(x, t, D = I_  q~.,(x, s, ~) q~. ,(~, t - s, 8) d~. 
jB m 

fffo ~ + ~ G m  .(x, a, ~)G~.~(~, t - s +  a, ~)dS~da (1.11) 

for any 0 < s < t ,  xEBm, ~EB m. Taking s=t/2 and using the estimates (see [3]) 

t ~) <~ Cm (xEB", ~EBm) (1.12) 

where K is a compact subset of Bm (Cm depends on m, e, t, If), we get 

ifo ~ Cm + 6',. Ok..(r a, ~)dScda, (1.14) 
12 Bm 

where (1.10) has been used. If we replace the ball Bm by a ball B,.+a (0<~<1)  with center 

0 and radius m +~, and Green's function Gm.~ by the corresponding Green function (~m+~.s, 

then the constants 6"m+a will remain bounded, independently of 2. In fact, this can be veri- 

f iedas  follows: If  I x - F [  >~c>0, O<s~T, or if O<co<S~T, the inequality 

Gm+~.8(x,s,~)<6" (6" depends on c, c0, e , T but  not on ~) (1.15) 

follows from [3; p.  82]. For fixed x, the function 

v(~, s) ---G,.+~.~(x, s, ~) 
satisfies: 

L*v--(Ov/Os) = 0  in Bin+ ~ x (0, oo), (1.16) 

v(~, s)=0 if ~EOB,.+a, s>O. 
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By (1.15), if x varies in a compact set K, K c B m ,  if 0 < s < T  and if ~ varies in a Bin+ ~- 

neighborhood V of 0Bin+ ~ such that  K N 17=O, then v<.C. Using this fact and (1.16), 

and applying standard estimates (for instance, the Schauder-type boundary estimates [3]), 

we deduce that  

~ Gm+~.a(x, 8, ~) l ~ G (1.17) 

if x E K, 0 < s < T, ~ E V. From this inequality and (1.15) we see that,  analogously to (1.14), 

we have 

f;f0 0~. e(x, t, ~) <~ Cm§ + Cm+~ Gk.,(~, a, ~)dS~d~, Cm+~ <<. C*m (1.18) 
/2, B~+il 

where the constant C*m is independent of ~, provided x EK, ~E Bin, t >0. The constant C* 

may depend on t. However, as the proof of (1.18) shows, if to~t<~T o where to>0, T0>0, 

then C* can be taken to depend on to, To, but not on t. 

Integrating both sides of (1.18) with respect to ~, 0 <~ < 1, we get 

";Io 1 2 ,  m 

where Dr, is the shell {x; m <  Ix I < r e + l } .  Using (I.10) we conclude that  

O~.~(x, t, ~) ~ C** if XEK, ~ E B~, to <<.t ~ T o (1,19) 

where C~* is a constant independent of ]r Combining this with (1.3), the assertion (1.4) 

follows. 

The inequality (1.19) for m replaced by m §  and K-~J~m shows that  the family 

(G~.~(x,t,~)} (for /r is uniformly bounded for xeBm,~EBm, to<t<To. We can 

employ the Sehander-type interior estimates [3], considering the G~.e first as functions of 

(x, t) and then as functions of (~, t). We conclude tha t  there is a subsequence which is 

uniformly convergent to a function G~(x, t, ~) with the corresponding derivatives 

0 8 2 0 0 8 2 

0x~' axa0x~' ~ '  0~a' 0~a0~' q.20) 

in compact subsets of {(x, t, ~); x eBb, to <t  < To, ~ e B~}. Since however the entire sequence 

{6~.~(x, t, ~)} is convergent to K~(x, t, ~), the same is true of the entire sequence of each of 

the partial derivatives of (1.20). I t  follows that  the function K~(x, t, ~) and its derivatives 

K. 82 0 82 
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are continuous in (x, t, ~) for x, ~ i n / ~  and t >0 .  Further, as a function of (x, t), 

L;K. - -~K,=O (~ fixed), 

and as a function of (~, t) 
, a 

L,K , - f f IK ,=O (x fixed). 

Consequently, the functions u, v defined in (1.5), (1.7) satisfy the parabolic equations 

of (1.6), (1.8) respectively. I t  remains to show that  

u(x, 0-~/(z) if t-*0, (1.21) 

v(x, 0-~g(x) if t-~0. (1.22) 

Note that (1.3), (1.4), (1.9), (1.10) imply that  

LK.(x,,, e)de.< 1, f (123) 
We proceed to prove (1.21). Let the support of f be contained in some ball Bin. Suppose 

first that  lEO a. For /c>m,  consider the functions 

uk(x, t) -- f~, Gk.,(x, t, ~)l(~)d~. 

The lmlform convergence of {Gk..ix, t, ~)} to K,(x, t, ~) implies that  u~(x, t)-~ u(x, t) for any 

xE/i. ~, t >0.  Notice next tha t  

I u.(x, t) l < (sup I ! l) f~, Ok.,(x, t, ~)a~ < sup I/I 

u~(x, 0)--/ ix) is a Ca function. 

Hence the Schauder-type boundary estimates [3] [for the parabolic operator L , - a / ~ ]  

imply that  the sequence {u~(x, t)} is ,nlformly convergent (with its second x-derivatives) 

for xEBm, t~>0. I t  follows that  u(x, t) ( t>0) has a continuous extension u(x, 0) to t = 0  

and 
u(x, 0) = lira ~(x, 0) =/(x). 

k-r 

If f is only assumed to be continuous, let !l be C a functions such that  

7, - sup I!,(x) - !(x) I ~ 0 if i-~ oo, 
zG/V* 

and such that  the support of each !~ is in Bin. Then 
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by (1.23). Also, by what we have already proved, 

179 

~(f)=-{fB=K~(x,t,~)f~(~)d~-ft(x)Joo, i f t -~0  (if fixed). 

I t  follows that  

lira l u(x,  t) - f(x) I ~ 2y~ + lira 6~(t) = 27,. 

Since ~-~0  if i-~oo, the assertion (1.21) follows. The proof of (1.22) is similar. This 

completes the proof of Lemma 1.1. 

We now recall the definition of a fundamental solution for a nondegenerate parabolic 

equation. For simplicity we specialize to the case of the equation (1.2). 

Definition. Let Ks(x,t, 4) be a function defined for x E R ~ , t > 0 , 4 E R  ~, and Borel 

measurable in 4 (for (x, t) fixed). Suppose that  for every continuous function f(4) with 

compact support the function u(x, t) defined by (1.5) exists and satisfies (1.6). Then we say 

that  K~(x, t, 4) is a fundamental solution of the parabolic equation 

L s u - - ~ = O  for xERa, t >O. 

From now on we shall designate by K~(x, t, 4) the fundamental solution constructed in 

the proof of Lemma 1.1. 

Remark. There are well known uniqueness theorems for the Cauchy problem for a 

parabolic equation with coefficients that  may grow to r as [ x I -~ c~ (see, for instance, [3] 

and a recent paper [4]). When such a uniqueness theorem can be applied to the solution of 

(1.6), then the fundamental solution (when subject to some global growth condition as 

I xl-~ ~ )  is uniquely determined. 

THV.ORV.~ 1.2. Let (A), (Bs) ho/d. Then there exists a sequence e,,'~ O suehthut, asm-> c~, 

K,,,(x, t, 4 )~  K(x, t, 4) (1.24) 

together with the first two x-derivatives, the first two 4-derivatives and the first t-derivative 

uniformly for all x, 4 in E, ~ < t < l ] 6 ,  where E is any compact set in R ~ such that E fl S = 0 ,  

and ~ is any positive number, 0 <6 < 1. 

Proof. Let E o be a compact set which does not intersect S. 

Let Bx(0 <2 ~< 1) be a family of bounded open sets such t h a t / ~ c  Bx, if 2 <2', Eo~ B 0, 

B1 fl S = 0 ,  and such tha t  as ~t varies from 0 to 1 the boundary ~B~ covers simply a finite 

disjoint union D of shells, and dx =~dSad2, where dS x is the surface element of OBx and 
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is a positive continuous function. I t  is assumed tha t  each ~B~ consists of a finite number of 

C s hypersurfaces. 

Taking/r oo in (1.11) and using the monotone convergence theorem, we obtain the 

relation (1.11) with Gk.e replaced by K r This relation holds also with Bm replaced by B~ 

and Gin. ~ replaced by Green's function G~,~ of L~-8 /~  in the cylinder Ba • (0, oo). The 

estimates (cf. (1.15), (1.17)) 

G,.~(x,t,~)<<. Ce (xEE o, ~eB~, to <<.t<~T o (1.25) 

I~TcG~.,(~,t, ~)]< Ce (~eEo, CeSB~, 0<~< T) (1.26) 

hold, where to>0, T 0 < ~ .  Since (a~j(x)) is positive definite for x 6 B  1, the constants C e 

can be taken to be independent of both e and 2; the proof is similar to the proof of (1.15), 

(1.17). I t  follows that  if Xe Eo, ~ e Eo, to <t <~T o, 

t ~ <c*+c* / / K./~, ~+#,~)d~a~ (1.27) 
Jo jos~ \ 

where C* is a constant independent of e, ~; (1.23) has been used here. Integrating with 

respect to 2 and using (1.23), we find that  

Ke(x, t, ~) ~< C (C independent of e). (1.28) 

This bound is valid for x, ~ in E 0 and t6[t0, To]; the constant C depends on E0, to, T 0, but 

n o t  o n  6 .  

From the Schauder-type interior estimates applied to K~(x, t, ~) first as a function of 

(x, t) and then as a function of (~, t) we conclude, upon using (1.28), that  

K,(~, t, ~), ~ K , ( ~ ,  t, ~), 0 - - ~  K,(~, t, ~), 

satisfy a uniform H61der condition in (x, t, ~) when x~E ' ,  ~EE',  to+~<. t<To-~ for any 

~>0,  where E'  is any set in the interior of Eo; the H61der constants are independent of e 

(since (a~(z)) is positive definite for xeEo). Since Eo, to, To are arbitrary, we conclude, by 

diagonalization, that  there is a sequence ~e~}, e~-~0 if m-~ ~ ,  such that  

K(x, t, ~) -- ~ K.m(X, t, ~) 
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exists, and the convergence is uniform together with the convergence of the respective 

first two x-derivatives, first two ~-derivatives and first t-derivative, for al l  x, ~ in any 

compact set E, E N S = O ,  and for all t, O~<t~<l/8, where ~ is any positive number. 

COROLT.ARY 1.3. The ]unction K(x, t, ~) satis]ies: (i) as a ]unction of (x, t), LK(x,  t, ~) 

-~K(x ,  t, ~)/~t--0, and (ii) as a ]unction of (~, t), L*K(x, t, ~)-~K(x,  t, ~)/St=0, ]or all 

~r162 t>0. 

The function K(x, t, ~) seems to be a natural candidate for a fundamental solution of 

(1.1). I t  will be shown later on that,  under suitable assumptions on S and on the coefficients 

of L, this is "essentially" the case, at least away from S. 

2. Interior e s ~ m a ~  

We denote by D~ the vector (~/Sxl, ..., ~/~xn). 

LEMMA 2.1. Let (A), (Bs) hold. Let B be a bounded domain with C 2 boundary 8B, andlet 

B N S-=0.  Denote by GB.~(x, t, ~) the Green function o] L~-8/St  in the cylinder B x (0, ~ ) .  

Then, for any compact subset B o o] B and ]or any e0 > 0, T > 0, 

Gs.~(x, t, ~) <. (C/t '~'2) i / (x ,  ~) E (B x Bo) U (B o x B), 0 <t <~ T, (2.1) 

Os.~(x,t,~)<Ce -c/t i / ( x , ~ ) e ( B x B o ) U ( B o x B  ), I x - ~ [ > ~ 0 , 0 < t < T ,  (2.2) 

ID~GB.~(x,t,~)l<Ce -~/~ i f ( x , ~ ) e B x B o ,  lx-~]>~eo, O < t < T ,  (2.3) 

]D~Gs.~(x,t,~)]<Ce -c/~ i / ( x , ~ ) e B o x B ,  ] x - ~ ] > ~ e 0 , 0 < t < T ,  (2.4) 

where C, c are t~ositive constants depending on B, B0, Co, T but independent o/e. 

Proo]. We write (cf. [3; p. 82]) 

Gs.~(x, t, ~) = s t, ~) + V~(x, t, ~ (2.5) 

where F~(x, t, ~) is a fundamental solution for 1,8-~/~t in a cylinder Q =B '  x (0, c~) and B' 

is an open neighborhood of /~  such that  its closure does not intersect S. Since L is non- 

degenerate outside S, the construction of F can be carried out as in [3], and (see [3; p. 24]) 

+ lD,  < c e  -o,, if [x-~]  >~ao>O, O < t < T ;  (2.6) 

the positive constants C, c can be taken to be independent of e. Notice also that  

_<C 
] r , ( x , t , ~ ) ] - ~  i f 0 < t < T .  (2.7) 

By the methods of [3] one can actually also prove that  
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i ~ r , ( = , t , ~ ) } + l D ,  r , (~ , t ,~ ) l<ve  -~,, if Ix-~l~>~0>0,0<t<T.  (2.8) 

The points (x, ~) in (2.6)-(2.8) vary in B'. 

The function V,(x, t, ~), for fixed ~ in B, satisfies 

L , V , - ~  V~=O ff xEB,rO<t<T,  

V,(x,t,~)= -F , (x , t , ~ )  ifxEOB, 0 < t < T ,  

V,(x,O,~:)=O if xEB. 

If  ~ remains in a compact subset E of B then, by (2.6) and the maximum principle, 

l V~(x, t, $)1 <~Ce-~/~ (xEB, ~EE, 0 < t < T ) .  (2.9) 

This inequality together with (2.5)-(2.7) imply (2.1), (2.2) for (x, ~)E B • B o. Since similar 

inequalities hold for Green's function G*~.~(x, t, ~) of L*-O/at, and since Gn.~(x, t, ~) = 

G*.,(~, t, x), the inequalities (2.1), (2.2) follow also when (x, ~)E B 0 • B. 

From (2.6), (2.8) we see Chat for any ~ in a compact subset E of B there is a function 

[(x, t) which coincides with -P , (x ,  t, ~) for x E~B, 0 < t < T, and which satisfies 

It(z, t)l + IDd(x, t)l + IDj(x ,  t)l + ]~ / ( x ,  t)l <C*e -~'~ (xEB, 0 < t < T )  

where C* is a constant independent of ~, e. We use here the fact that  OB is in C S. Notice 

that  

L.( V. - /) - ~ (v, - /) 

if(z, t) l < c**e -~ 

= -Ld+~-l, 

(xEB, 0<  t <  T), 

V~-]=O i fzE~B,  O < t < T  o r i f x E B ,  t=O; 

the constant C** is independent of e. By the proof of the (1 +~)-estimate in [3; Chap. 7] 

we conclude that  

[D.[V,(x, t, ~ ) - / (x ,  t)] I <C1r -c't if x e B ,  0 < t < T ,  

where C1 is a constant independent of e. Recalling (2.5), (2.6), the assertion (2.3) follows. 

GB.., since GB..(z. t, ~)=G~.J~,  t, x), this A similar inequality holds for Green's function * �9 

inequality gives (2.4). 

THV.OI~V.M 2.2. Let (A), (Bs) hold. Let E be any compact subset in R n suchthat E N l~--0 

and let co, T be any positive numbers, Then 

.<C 
K ( x , t , ~ ) . ~ 7  ~ i / x E E ,  ~EE, 0 < t < T ,  (2.10) 
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K(x, t ,~)<Ce -c~ i/ xeE, ~ E ,  ]x-~l>~eo, O < t < T ,  (2.11) 

where G, c are positive constants. 

Proof. Let B~ (0 42 < 1) be an increasing family of bounded open sets with C 2 bound- 

ary, as in the proof of Theorem 1.2. Let ~' be a compact subset of B 0. Recallthat B1 n S = 0 .  

We proceed as in the proof of Theorem 1.2 to employ the relation (1.11) with B m replaced 

by B~ and with Gm replaced by GB~: 

Gk.~Cx, t, ~) = fBGB~.~ (x, S, ~) Gk.,(~, t -- s, ~)d~ 

§ ~ - -Gm, ( x , a , r  (2.12) 
JOB~aT: " 

From the proof of Lemma 2.1 we see that  the estimates (2.1)-(2.4) hold for G~.~ with 

constants C, c independent of 2. Using (2.1), (2.4) for B = B a  in (2.12), we obtain, after 

applying the inequality (1.10) for m = k, integrating with respect to 2 (0 <2 < 1) and applying 

once more (1.10) with m--k, 

.<C G~.,(x,t, ~) .~ ~-~ provided xEF,  ~E2', 0 < $ <  T. 

Taking k-~ ~ ,  we get 

K~(x,t,~)~< $-~j'~ if xEF,  ~EF, 0 < $ < T .  (2.13) 

Taking e =em-~ cr the inequality (2.10) follows. 

To prove (2.11), let A, /v  be disjoint compact domains, (A U $')N S--~D, and let ~F 

be in C ~. Consider the function 

v~(x,t)=K~(x,t,~) f o rxEF ,  O < t < T  (~f ixed inA) .  

Denote by Gr.~(x, t, ~) the Green function of L 8 -~/~t in F x (0, ~) .  By I~mma 2.1, 

ID~Gp.~(x, t, ~)l <Ce-clt if ~EOF, x E F  0, 0 < t < T ,  (2.14) 

where ~'0 is any compact subset in the interior of F.  

We have the following representation for v~(x, t): 

f:I0 GF.,(x,s,~)v.(~,s)dS~d~ (xEint$',  O< ~ < T)  (2.15) v.(~, ~) - -  0 

Indeed, this formula is valid for v~.~(x, t) ~G~.~(x, t, ~) since v~.~(x, 0) =0. Taking k-~ ~ and 

using the monotone convergence theorem, (2.15) follows. 

Substituting the estimates (2.13), (2.14) into the right-hand side of (2.15), we obtain 
C' 
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where C', c', C, c are positive constants independent of e, Taking e =e,"-~0, the assertion 

(2.11) follows. 

~;. Boun&~ 7 estimates 

We shall need the condition: 

(C) There is a finite number of disjoint sets G 1 . . . .  , qk., G~.+a .. . . .  Gk such that  each 

Gi(1 ~<i~<k0) consists of one point z~ and each Gj(k0+l ~<~<k) is a bounded closed domain 

with C s connected boundary aGj. Further, 

atj(z~)=0, bt(zz)=0 i f l~</~<ko; l~<i ,~<n,  (3.1) 

~ at~(x)l, tv~=O for xEOG~ (ko+l~<~<k),  (3.2) 
| . t - 1  

j - l \  j=l oxj 1 

where v = (v x ..... v.) is the outward normal to OGj at x. 

k k 

Let n = U G,, h = / ~ \ n ,  cO, = O, = {z,} if 1 ~< j ~< k o, O~ = U eGr 
1-1  1 -1  

In this section, and in sections 6-10, we shall assume that  

S =0~1. (3.4 

Let {N'} be a sequence of domains with C s boundary ON.,, such tha t  2 ~ ' c  N,"+lc ~ ,  

U" N" = ~.  We take N"  such that  ON,, consists of two disjoint parts: OlN," which lies in 

(1/m)-neighborhood of 0~ and O~N" which is the sphere Ix] =m. 

Denote by G'(x, t, ~) the Green function for L-O/at in N," • (O, ~) .  By arguments 

similar to those used in the proofs of Lemma 1.1 and Theorem 2.2, we have: 

O ~< G'(x, t, ~) ~< O'+1 @, t, ~), (3.5) 

G(x, t, ~) = hm G'(x, t, ~) is finite (3.6) 

for all x, ~ in ~ ,  t > 0. Further 

G'(x,t,~)<t~,2 i f x E E ,  0EE, 0 < t < T ,  (3.7) 

G'(x,t,~)<Ce -c/t if x~E, ~ E ,  [ x - ~ l / > e  0, 0 < t < T ,  (3.8) 

G(x,t,~)~<t,C- ~ if xEE, ~EE, 0 < t < T ,  (3.9) 

G(x,t,~)<~Ce -~n if xEE, ~fiE, [x-~l>~e o, 0 < t < T ,  (3.10) 
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where E is any compact set such that E c ~ ,  T and e 0 are any positive numbers, and C, c 

are positive constants depending on E, e0, T but independent of m. We also have, by the 

strong maximum principle [3], that G(x, t, ~) > 0 if x E ~,  t > 0, ~ E ~. Finally, 

LG(x , t ,~ ) -~G(x , t ,~ ) -~O if xE~, t > 0  (~ fixed in ~), (3.11) 

L*G(x, t, ~) - ~ G(x, t, ~) = 0 if ~ E ~ ,  t > 0 (x fixed in ~). (3.12) 

Notice that in proving (3.5)-(3.12) we do not use the conditions (3.1)-(3.3). 

Denote by R(x) the distance from xE~ to the set ~. This function is in C a in some ~- 

neighborhood of ~ and also up to the boundary [J~.~,+I~G r 

T H E O R E M  3.1. Let (A), (Bs) , (C) and (3.4) hold. Let E be any compact subset o/ ~ .  

Then/or any T > 0 and/or any ~ > 0 su//ieiently ~mall, there are positive constants G, 7 such 

that 

G(x, t, ,) <-.. C exp{-~(logR(x)) ~} (3.13) 

i/ t e E ,  xE~ ,  R(x)<e, 0 < t < T .  

COROLLARY 3.2. I / i n  Theorem 3.1, the condition (3.3) is replac2~d by the condition 

then G(x, t, ,)  <... C exp{-7( logR(, ) )  2} (3.15) 

(3.14) 

i~ xEE,  ~e~ ,  R(~)<~, 0 < t < T .  

The point of these results will become obvious when, in section 6, we shall prove that 

K(x, t, ~)=G(x, t, ~) if xE~, ~E~, t>0.  

Proo/ o/ Theorem 3.1. For any e>0, denote by M e the set of all points xE~  for which 

R(x)<e, and by F~ the set of all points xE~  with R(x)--e. The number e is such that 

E N M e--~ and R(x) is in C~(M~); later on we shall impose another restriction on the size 

of e (depending only on the coefficients of L). 

Let  Me.m--M 6 nN, , .  Its boundary aM~.~ consists of Fe and of 81hr~ (the "inner" 

boundary of Nm), provided m is sufficiently large, say m/> m0(e ). 

For m >/m0(e ), consider the function 

v(x, t)-~Gm(x , t, ~) for xEMs.m, 0 < t < T  (~ fixed in E). 
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If xES~Nm, v(z, t)=0. If x~P~, 0 < t <  T, then, by (3.8), 

0 ~v(x, t)<~Ce -~/t. 

Finally, v(x, O)=0 if xEMe. m. We shall compare v(x, t) with a function of the form 

where 7 is a sufficiently small positive constant independent of m. Notice that w(x, O) =0 

if xEM~.m,w(x,t)>~O if xE~xN,,,, and w(x,t)>~Ce -on if xEF~,0<t~<T. Hence, if we can 

show that 
L w - w t < O  for xeM~.m, 0 < t < T ,  (3.17) 

then, by the maximum principle, 

am(x, t, ~)-vCx, t) <w(x, t). 

Taking m-~ ~ ,  the assertion (3.13) follows. 

To prove (3.17), set dp=l/w. Then 

1 2 7 log R _ w,,= r  ~- .n~,, 

c t  7 -~  i ~ "'""J' 

-w t  = - ~ ,  (logR)'. 

Hence 
472(logR) z_ 2 y 1  [1 1) 

[L,w-wt]@=-ff --~ Za~jR~,R~j- t R~\  +log.~ 5a~jR.~,R~ t 

27 1 27 1 

Setting A = ~.afjR,,Rxj, 

B = ~btRz, + 5atjBx, zj, 
we find that 

( .~ -wt )@=4~( l~  271+l~ 271~ B - 7  "lo R "~ (3.19) 

By (3.1), (3.2), M = 0 on 0~. Since ,4 >/0 everywhere, we conclude that 

,4 <~ GoR ~ if ,0 <<. R(x) <~ 1 (G o positive constant). (3.20) 
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When ,~ =-.0we have  ( b y  [6]) 

Recalling (3.1)-(3.3) we deduce that  B ~< 0 on  ~ so that  

B < CoR 'if 0 ~< R(x) ~< i (C o positive constant). (3.21) 

Now, if 7 is sufficiently small then, by (3.20), 

Since, also - 2y 1+  10g;(1/R)A < 0 ,  :if R(x)< e, e<  1, 
t 

we conclude from (3.19) that  

(~ . - -  2 7 l o g ( I / R ) -  17 . . . .  
~ - w ~ } ~  ~ : ~ - ~ 0 o g ~ j ,  

Using (3.21) we see shat if e is sufficiently small then (3.17) holds. 

Proo/ o/ Corollary 3.2. The foiuial;~ad]oint ! : ~ f ~  is ~ 

, , ~ u  - ~ _ 

where ~ = - b~ + 2 ~. aa~ ~, 
8xj' 

c= ~x~r ~-~x," {3.22) 

Since b ~ - Z ~ x  = (b,-Z~x~) , 

the condition (3.14) implies the condition (3.3) for L*. I Th~ pro0f':~f (3:17) remains valid 

for L* (with a trivial change due to the term 5w). We conclude that  Green's function 

G~(x, t, ~) corresponding to L* :8/St in N~ • (0, r Satisfie~; 

G*(x, t, ~)<.w(x, t) (xeM~.,,,O<t<T, ~fiE). 

Recalling that  Gin(x, t, ~)= G*(~, t, x) and taking m-~ ~ ,  the assertion (3.15) follows. 

We shall now assume that  

~4(x) ~ 0(~+~),  as R(x)-~ O, (3.23) 

where p is a positive number, p > I. 

1 3 -  742902 Acta mathematica 133. Imprim6 le 30 Janvier 1975 
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THEOREM 3.3. Let (A), (Bs), (C), (3.4) and (3.23) hold. L e t E  be any coml~tct subseto/ 

~.  Then, /or any T > 0 and for any @ > 0 sufficiently small, there are positive constants C, 7 

such that 

i / ~  E, x e f i ,  R(x) <0 ,  0 < t  < T. 

COROr.LARY 3.4. I[ in Theorem 3.3, the condition (3.3) is replav~ by the condition 

(31.4), then 

il xeE, ~efi, R(~)<0, 0< t<  T. 

Proo/o /  Theorem 3.3. We proceed as in the proof of Theorem 3.1, but  change the 

definition of w(x, t). First we consider the interval 0 < t  <~ (r is small and will be determined 

later on), and take 

If we prove that, for any 7 > 0  sufficiently small and independent of m, (3.17) holds for 

xEM~. m, 0 <t <~, then the inequality (3.24), for 0 < t  <r follows as in the proof of Theorem 

3.1. To prove (3.17), set ~Pffil/w. Then 

1 7P-- 
w~, = ~ t R~ 1 Rx,, 

1 ~y~(p- 1)~ R R 

1 7 1 

~( - -  1) ~ .,4 ~ ( p  - 1) .,4 (Lw-w,)Cb - 7  
P~ 2 R2~ t R ~+1 

Hence 

If 7 is sufficiently small, then, by  (3.23), 

72(~_i)z .,4 1 7 1 
R,~ < ~t~R~-I" 

By (3.21) 7 ( P - l )  • < 1 7  1 . 
t R r 3t2R p-1 

YP( - 1) Rz, Rxj. 4 7 ( P -  1)Rn~t } 
tR v+l t ~  ' 

t R~ t~R~_~. (3.27) 
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if 0 < t < ~  and 8 is sufficiently small. From: (3.27) we then conclude that  (3.17) holds if 

0 < t < &  As mentioned above, this implies {3.24) for 0 < t < &  In order to prove (3.24) for 

< t < T we introduge another comparison function, namely, 

where 0, ~, ;t) are positive numbers. With q) = 1/w ~ we have 

( /~o wtO)~=~2(P - 1) 2 A ~P (P -  1) .,4 + ~ ( P -  1) B r 1 
( t + l ) ~  R ~, (-/-~i~; R~s-~ ( - / - ~ i ~  (~+~I"*~R "-~" (3.281 

We choose ~. (independently of ~) so large that  ~ > 1 and 

(p-l)~< 1; 3 T §  

this is possible by (3.21). With ~ fixed we net choose ~ so small that  

~(p - 1) 2 .~ ~<I_).. 
(8 + 1) 4-I R ~+1 3 

I t  then follows from (3.28) that  LuP - w ~ < 0 if x E M~, m, J < t < T. Notice that  if ~ is suffi- 

eienty small and ~ is sufficiently large {both independent of m), then, by {3.8), 

Gin(x, t, ~)~uP(x, ) (~ fixed in E) {3.30) 

if x E F e, 0 < t < T. The same inequality clearly holds also if x E axN,n, t > 0 and, by what we 

have already proved above, for xEM~.m, t=&  Hence, we can apply the maximum prin- 

ciple and conclude that  {3.30) holds for xEM~.m, ~ < t <  T. Taking m - + ~ ,  the proof of 

{3.24), for ~ < t  < T, follows. 

The proof of Corollary 3.4 is obtained by applying the proof of Theorem 3.3 to the 

equation L*u-~u/~ =0; the proof of Corollary 3.2. The details may be omitted. 

Remarlc 1. Suppose ~ consists of a finite disjoint union of closed domains Gj, i.e., 

k 0 =0.  The estimates of Theorems 3.1, 3.3 show that  G(x, t, ~) is actually Green's function 

for L-~/~t  in ~ • (0, o~). When L is nondegenerate, Green's function vanishes for xES~ 

at a linear rate, i.e., ~G(x, t, ~)/8~ ~=0 (~ is the norma ! to 8~ at  x); in fact this is a consequence 

of the maximum principle (see [3]), In  the present case where L degenerates on ~L2, Green's 

function vanishes on 8f~ at  a rate faster than any power of R(x). 

Remarlc 2. Set ~0-- in t  ~.  In Theorems 3.1, 3.3 and their corollaries we were concerned 

with Green's function G(a~, t, ~) for x, ~ in ~ .  Similarly one can construct a Green function 
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G0(x; t,:~) fdr x,~' in D o. If  (A),: (Bs), (C) ~nd (3.4) hold with v ( i n  ~(C~)i being~:the inward 

normal %o, fiG~:at x(k0+l <~<k)  then (3.13);holds with G(x,t, ~) replaced ~ by G~(x, t, ~); 

6 E, x 6 F2 0, 0 < t < T, dist (x, 8F~) < 0, where E: is any~ compact ~subset dr: Do, Similarly; if 

{3.3) is replaced by (3.14) (v the inward normal) then (3.15) holds with G(x, t, ~) replaced 

by Go(x, t, }); xeE, ~eDO, 0<t<T, dist (~, 8Ft) <'~. The assertions of Theorem 3.3 and 

Corollary 3.4 also extend to Go(x, $, ~). Note that  Go(x, t, ~)=0 if x6G~, ~6G~ a n d i . h ;  

G~ -~intG v 

4. Eatlmate~ near i . [ i . i ~ ]  

In this section we replace th~ conditions (C), (3.4) by the much weaker condition: 

Let ~ = R~\S. 
S is a Comvaet set. (4.1) 

T ~ o ~ . ~  4.1. Let (A), (Bs) and (4.1) hokL Assume also that 

a,g~)~,x, < c0(1 +i[~ 1% (4.2) 
~.3=1 

+ i 1,) (4.3) 

:where Co is a positive constant: Let E ~ any boitnded *ubset: of '~. Then,/or any T > 0 and/or 

any ~ suHiciently large, there,are ~ositive ,constants C,~ 7 such that  

i/ ~eE,  [x[>~, O<t<T.  

Notice ~th~t~ fhe .elo~ure~ o ~  maydnters~ct S 

(4.4) 

COROLLkRY 4.2. If. in Theorem 4.1, the condition (4.3)is replaced by the conditions 

~t n 

|~1  {=1 

then 

.x-,~8~ ~) :  ~ ~ ~ ( X )  . j~  .~,, . i ' 

K(~,t, 0~Cexp  log}~l (4.7) 
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Proo/O/ T~orem 4:l:~.~nsiderdfir~ the, ease where'~E ff~=O.,  For any ~>0 ,  m 

positive 4nteger, let'.~,~ 

The number @ is sufficiently small (to he'determined l~ter on), whereas m >5. The boundary 

of Nm. o then consists of the spheres AQ,:~; Proceeding similarly t ~ the proof of Theorem 

3.1, we shall compare the function v(x, t)=Gm.~(x , t, ~) (~ fixed in E i with a function 

w(x, t) in the cylinder Nm. 0 x (0, T i. V~e take 

} 
where C, y are positive ~cbnstants, ~It is clear thar (3.19) holds with R(x)= Ix If n replaced 

by Le, aij replaced ,by a~, 7 a~,i~- e ~  ~here 

1 : : 8  A - ~ a , , ( x ) x , x ,  

' 5 B= N [~x~b,(x! + ~.a[,(x)] : ~a~,(x)x,x,. 

By (4.2),:,(4.3) we have, for all R(x)= ]x[ sufficiently large,: 

J4 ~< Co R ~, - B < Co R (C o positive constant): 

Now choose ~ so small that  
4y" (log R) 2 . 1 a % R, 2 

n 2 i A 4 ~ (  g ~ (4.9) 

Next choose 0 such that  if R(x) = ]x[~ q~t 

2yl+ log(1]R)  ,~ 2 ~ l o g R - l _  17 2 
- t  R2 : , ~ - - t - : ~ - , A < ~ [ , ( l o g R ) ,  (4.10) 

�9 7 ' 

~- ~ - , < ~ i ,  uog~) (4.11) 

for all 0 < t < T .  I t  follows that L~w-wr <O if x~Nm.o, 0 < t < T .  

Notice that  0 was chosen ind~pend'ently of~i with" 0 now fixed, we further decrease y 

(if necessary) s9 tha~t 

for some positive constant C (ia (4:.,8)),The last inequality,evid~nt!y ,holds also if x ~Am, 

0 < t < T or if x q Nz.0, t = 0. Applying the maximum principle, we get 

From this the assertion (4.4) follows by taking first r a~  oo and then e = e ~ 0 .  
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So far we have proved (4.4) only in case E N S = 0 .  Now let E be any bounded set 

disjoint to S. Let  ~ be a sphere containing both E and S in its interior A. From what we 

have proved so far we know that  if x E Nm. r then 

Gm.~(x, t, ~) <~w(x, t) (4.12) 

if }EY., 0 < t  < T, Now, as a function of (}, t) the function w(x, t) satisfies: 

w 

if ~ is sufficiently large and ~ E A, 0 < t < T. Hence, by the maximum principle, (4.12) holds 

also for ~ E A, 0 < t < T. Taking m-* ~ and then e = em~0, the inequality (4.4) follows. 

Proo] o/Corollary 4.2. We apply the proof of Theorem 4.1 to the adjoint L* of L (el. 

the proof of Corollary 3.2). Since (4.9)-(4.11) remain valid (with B replaced by - B )  with 

the factor 1/3 on the right-hand sides replaced by 1/4, it remains to show that  

~(x) < I 
(log R) ~, 

4 

where ~ is defined in (3.22). In view of (4.6), this inequality holds if 0 < t <  T, provided e 

is sufficiently small and R(x)= [x[ >~. 
Suppose next  tha t  (4.2) is replaced by 

au(x)x~x,<Co(l + lxl '-p) (0<p~<2). (4.13) 
i.]=l 

Then we can use, for 0 < t < ~, the comparison function 

w(x,t)=Cexp{-~lx," }. (4.14) 

In fact one easily verifies that  Lew-=wt<O for zENm.o, O<t<8, provided y and 

are sufficiently small. For ~ < t < T we use the comparison function 

w~ (t~-~,x, '}.  (4.15) 

Choosing first ~t sufficiently large, and then 3~ sufficiently small, we find that  L~w ~ -0w~ < 0 

if T, ENm.o, (~< t<  T. 

With the aid of these comparison functions we obtain: 

THEOREM 4.3. Let (A), (Bs), (4.1), (4.13) and (4.3) hold. Let E be any bounded ~hseto/ 
~. Then,/or any T > 0 and/or any ~ ~ru//iciently largel there are positive constants C, F 6~ch 
that 
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K(x , t ,  ,)<. C exp l -  ~ I xp' l (4.16) 

ill,E, I~1 >e, 0 < t < T .  

COROLLARY 4.4. I1 in Theorem 4.3, the condition (4.3) /s rep~ed by the conditionz 

(4.5) and 

a~a"(x) ~ ~b'(x)-<(1---~ +1~1")~(1'~1) (,7(r)-~0 q r-~oo), (4.17) 
t.j=l ~Xi~XJ tffil ~Xi 

i l x e E ,  I~1 >0,0<t<T. 
The proof of the corollary is obtained by applying the proof of Theorem 4.3 (with the 

same comparison functions w, w ~ as in (4.14), {4.15)) to L*. 

Remark 1. Denote by ~q the unbounded component of Rn\S. One can  construct 

the function G(x, t, ~), for x, ~ in ~q and t > 0, in the same way that  we have constructed 

G(x, t, ~) for x, ~ in ~,  t > 0, as a limit of Green's functions Gin(x, t, ~) (cf. the remark follow- 

ing (3.12)). Using the same comparison functions as in Theorems 4.1, 4.3 and Corollaries 

4.2, 4.4, we can estimate the functions Gin(x, t, ~) and, consequently, also G(x, t, ~), The 

estimates on G are the same as for K, except tha t  now E fi S is required to be empty. 

Remark 2. Let  ~ be an affine matrix. If we change the definition of w(x, t) in (4.8), 

replacing Ixl by I ~ x l ,  then we can establish the estimate (4.4) when (4.2), (4.3) are 

replaced by the more general conditions 

a,,(x).~x,i~zi ~< Co(1 -I-I ~,1~), 
~,J=l 

tff i l  LJ=-I J 

where,,%,) = I ~ 1 .  Simil~ remarks apply al~o to the other result~ of this section. 

5 ,  Relation between K and a difflmion process 

If the symmetric matrix (a.(x)) is positive semi.definite and the 'a~i belong to C~(R"), 

then (by [2] or [12]) there exists an n • n matrix a(x) = (a,l(x)) which is Lipschitz continuous, 

uniformly in compact subsets of R n, such tha t  
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a(x)a*(x) =2(a.(~)) 

i.e., Z a~(x)a~(x)=2a~(x).  If 

[a *= transpose of a], 

c(1 + I (5.i) 
I=1 

then,  clearly , 
1~(~)1 ~<c(14 I~1) (5.2) 

with a different constant C. Conversely, (5.2) implies (5.1)~ and, in fact, implies 

la,,(~)i<c(x + t~l'). 
| J - I  

We shall now assume that  (5.i)ho)ds and, in addition, 

|~1= l b'(x)I~ < C(1 + I ~I)- (5.3) 

Set b = (b~ ..... ba). Since we always assume that  (A) holds, the functions a(x), b(x) are 

uniformly Lipschitz conttnuousAn:eompact subsets of R". 

Consider the system of n stochastic differential, equations 

it~(t) = a(~(t)) dw(t) + b(~(t)) dt ~ (5Ai 

where w(t) is n-dimensional Brownian motion. I t  is well known (see, for instance, [7], [8], 

[11]) that  this system has a unique solution ~(~) (for t>O~= for any prescribed initial condi- 

tion ~(0)= x. The process ~(t) defines a time-homogeneous diffusion process, and the 

transition probabilities= a~e given b~ 

:P(t, 2i A) ~= E~(~(t) eA)  :(5.5) 

for any Borel set A in R n. 

Definition. If there is a, function F(x, t;~:),defin~d for all x, ~ in R ,  and t > 0 and Borel 

measurable in ~ for fixed (x, t) ,such that  

 e(tl 

for any Borei se~ A in R" and for any xffR;,  t>01 then ~e call F(x, t, ~"tae lunaamentat 

solution of the parabolic equation (1.1). 

Note that  F(x, t, ~),Af: existing, is unitquely d~$er~.ined,~for=,eaeh (x, t) almost every- 

where in ~. Note also that  for any continuous function/(~) wi th  compact support. 
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Suppose: now thdt/(~) is als0 in G ~. If t~hr matr i~  (a~)(x)) is ~ positive definite, $he (by{x) are 

in C ~ (by [2]). But then, by [7], :[g],~ ~he left:hand~ide of'(5.7); u(~, ' t ) , isa classical S~luVio~i 

of the Cauchy problem 
. .ITa-u~=O ~ t > O . x ~ R  ~. (5.8) 

u(x, 0)=/(iv) if x E R ' .  (5.9) 

If [ is just  assumed to be  continuous; let ]m(X ) be  a: C 2 functibn with uniformly bounded 

supports sdch tha~ ~ / ' u n i f 0 ~ l y ] i l  R ~, as m-~ odl Let ~/~m(~,t)= E~(/m(~(t)))'. ~hen 

Lure VUm = o i f t > 0 ,  x~R ~, 
Ot 

u m ( x , O } = / m ( X  ) , i f  xeR n. 

Noting that u~(x, t)~u(x, t) as m-->oo, uniformly in (x, t) in bounded sets of Rn• [0, c~), 

(5.9) follows. Applying to u m the Schauder-type mtermr est,mates [3] we MSO find~tha{ 

{Uz} converges to u together with the first two x-derivatives and the first t-derivative. 

Consequently, u is a solution of (5.8). We hav.e thus proved that  for any continuous function 

] with compact support, the right-hand side of (5~7) is a classical solution of (5.8), (5 9). 

Thus, when the matrix (a~(x)) is positive definite F(X, t~ ~) is a fundamental solution in the 
. . . .  . ~ . . . .  " : '  ~ '  ' ; ~  ~ : t  " : ' ,  

usual sense (see Section 1). When (au(x)) is uniformly positive definite and the au, b~ satisfy 

some boundedness conditions at 0% thicfundamenta 1 solution F can be constructed by the 
, I 

parametrix method [3]. Under milder growth conditi0hs it was constructed in [4]. 

THEORV.M 5.1. Let,(A), (B~) and (5.1), (5.3) ho/d. Then 

Jim Ke(x, ~, ~) exist8 :/or all x ~ S, ~ ~ S, t >0, 
e--~O 

and the/unct ion K(x.  t. ~) = lim K~(x, t, ~) satisfie6: 

P~(~(t) CA) = f a  K(x,  t, ~)d~ 

/or any  Bore.l set A with A N S = ~ .  

(510) 

(5.11) 

Proo]. In section 1 we have,prd~ed:that there is a sequenoe. (sin} converging t o z e r o  

such that  
l~,n(x, t, ~)"~ K (x; t, b') ~ "aS m ~ ~ (5.12) 

for all x ~S, ~ r t > 0; the convergence i~ Uniform when ~', ~ vary in any compact set E, 

E f l S = O ,  and t varies in any interval ((~, 1/~),~>0. The same proof shows that  anv 

sequence {e~n} converging to zero has a subsequence {e2}such that  
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for some function M, and the convergence is uniform in the same sense as before. If we can 

show that  M(x, t, ~)=K(x,  t, ~) then the assertion (5.10) follows. 

If we show that  

d~ (5.13) 

for any bounded Borel set A, -~ N S = 0 ,  then, by applying this to the particular sequence 

(era} we derive (5.13) with M replaced by K. This will show both that  M = K  (so that  

(5.10) is true) and that  (5.11) holds. Thus, in order to complete the proof of the theorem it 

remains to verify (5.13). 

For any e > 0, consider the stochastic differential system 

d~(t) =a~(~(t))dw(t) + b(~(t)) dt (5.14) 

where a ~ is such that  o~(a') *= 2(a~j +e2~tj); here (o~) *= transpose of a ~. We then have 

E A) = fa K6(x, t, ~)d~. (5.15) P~(~'(t) 

Indeed, by the argument following (5.7), for any continuous function / with compact 

support, the function E/(~(t)) is a solution of (5.8), (5.9). The function 

fa ,  K,(x, t, ~)/(~) d~ 

is also a solution of (5.8), (5.9). Since both solutions are bounded (the boundedness of the 

second solution follows from the proof of Theorem 4.1) they must coincide (by [3; p. 56, 

Problem 2]), Taking a sequence o f / ' s  which converges to the characteristic function of A, 

(5.15) fonows. 

Since (by [2]) a~(x, t)~a(x, t) uniformly on compact sets, as e-~0, a standard argument 

shows (cf. [6]) tha t  
E~[~(0-~(012+0 if e-~0. (5.16) 

Suppose now that  A is a ball of radius R and denote by B o (0 >0) the bah of radius 

concentric with A. From (5.16) it follows that  if ~ < R <~' then 

lira P~(~(t) E Be) ~ P~(~(t) E A ), 
e--~O 

lim Pz(~(t) EBo. ) >1 P~(~(t) EA). 
a l e  

By (5.15) and Theorem 1.2 we also have 

P,(~(t) EBe./B q) 
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provided ~' is sufficiently close to R (so that/]Q, N S =O),  where C is a constant independent 

of r From the last three relations we deduce that  

P~(C(t) EA)~P~(~(t)EA) if e~0 .  (5.17) 

Taking e=e'~,-~0, the right-hand side of (5.15) converges to the right-hand side of 

{5.13). If A is a ball then, by (5.17), the left-hand side of (5.15) converges to the left-hand 

side of (5.13). We have thus established {5.13) in case A is a ball with z{ N S = 0 .  But then 

(5.13) follows also for any Borel set A with A N S = 0 .  

THEOREM 5.2. Let (A), (Bs), (4.1) and (5.1), (5.3) hold. Then,/or any xES,  

K(x, t, ~) = lira Kc(x, t, ~) (5.18) 
t-*O 

exists for all ~ $S, t>O; the convergence is uni/orm with respect to (~, t) in compact subsets o/ 

(R' \S)  • [0, oo), and (5.11) holds /or any Borel set A with A N S = 0 .  Finally, /or any 

disjoint compact sets M, E in R" with S c M, and/or any T > O, 

K(x, t, ~)~Ce -c/t /or a l t xEM,  $EE, 0 < t  < T (5.19) 

where C, c are positive constants depending pn M, E ,  T. 

Proo/. Let E be a compact set, E N S = 0 ,  and let M be a bounded neighborhood of S 

such that  M N E = O. For fixed ~ in E, consider the function 

v~(x, t)=K~(x, t, ~) for xEM,  O < t < T .  

If xE~M, 0 < t <  T then, by the results of Sections 1, 2, 

0 <<.v~(x, t) <<.Ce -cn 

where C, c are positive constants independent of ~, e. Further,  

vs(x, 0 ) = 0  i f x E M ,  

L.v.-~--O if xEM, t>O. 

Hence, by the maximum principle, 

i.e., 
0 ~ re(v, t)<~ Ce-C! t i f  X E M, 0 ~ t <~ T, 

~t~'e i f x E M ,  O<~t<~T,~EE. O<~K,(x, t, ~) .~ -tit (5.20) 

Fix x in S and consider the function 

~b,(~. t) ~ K,(x, ~'t, ,r). for ~ s E, 0 ~ t ~ T . :  
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By~ {5,20) this function is buunde~l. Since ~(~, 0 )~0  if~ E E, and .  

L* , ~ - ~ 4 , ~ =  0 if ~eE,  0<  t~< T, 

and since L* is n0ndegenerate for ~ e E, we can apply the Schauder-type estimates [3] in 

order to conclude he fo ing: 

For  any sequence {e~} converging to 0 there is a subsequence {e~} such that  {~b~, l 

is convergent to s0me:function ~b'(~, t)=i~(x, t, ~); i0gether with the first t-derivative and 

the first two ~-derivatives, uniformly ~or ~ in any set in~ri0r to E and  t in [01 ~ T]. By'dis- ' 

gonalization~ there is a subsequence {e~n}: of {e*}, for which 

K, m (x, t, ~)-+/~(x, t, ~) for all ~eR~\S, t >0; 

the first t-derivatives and the first two ~-derivatives also converge, and the convergence is 

uniforni' for (~,'t) in C6mpaet subsets of (R"\S) • [0, o5)': 
�9 i r  . , , , : . . . .  ~otice :that th}:' sequence' {e,i} may depend :on the  parameter x. 2~ow let A be a Borel 

set such that  .4 N S = ~ .  Taking, in (hAh),:'xGS and e=ehm-+O, and not ing(upon using 

(5.20)) that  the proof of (5.17) remains valid for x e S ,  we conclude that  

-- f~ ~(x,,8, ~)d~. P,(~(t teA) 
o 

Thus, K(x; t, ~) is independent of the ~particular Sequence { e ' ) t h a t  ~'e have ~tarted with. 

I t  fonows that  (5.18) holds. The other asserti0ns clothe lem'ma no~v follow i~mediateiy; 

in particular, (5.19) follows from (5.20~. 

From the above proof we see that, for fixed x in S. 

L*K(x, t, ~) - ~ K(x, t, ~) ~ 0 if r S, t > O. 

THEORV.M 5.3. Let (A), (Bs)?:(4.1)/~ntt (5.1);: ($i~)hot& T h ~ / o r  a n y  disjoint compact 

sets M, E in R n with 8 ~ M, and/or a~y  T >, 0 

K~(,, t, ~) <~Ce-C/! .~ /or all x e E ,  ~eM,  0 <t < T, (5.21) 

K(x, t, ~)<~Ce - ~  /or all x~J~, ~ M \ S ,  0 < t < T ,  (5.22) 

where C, c are positive constants depending on M, E, T. 

Indeed, we apply the '~argumenr Which led t~) {5.20) r L*, K*(x, t, ~) instead of L, 

K~(x,t, ~). We then get 
i; < ce -~ 

if x e M ,  ~eE,  0 < t < T .  Since K*(x, t, ~)=Ke(~;::t,x), (5.~1) follows. . . . . . .  Since K~(~, t, x)-~ 

K(~, t, x) as e-~0, provided ~ ~S, x r a~o fo]lo.ws.. 
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6 .  Thebehavtor of ~(t) near S 

In section 3 w e  )/ave i~trod~c~l the ~ Condition (C). In this SUction We shah need als6 

other similar conditior~s~: 

(Co) The condition (C) holds with one execution, namely, the condition (3.3) is omitted. 

(C') The condition (C) holds with one exeep~tion, namely, the inequality (3.3) is re- 

placed by the inequality (3.14). 

IC*)" The eonitition (C) holds "with one  exception, namely, the inequality (3.3):is 

replaced by equality, i.e.. 

~ ( b ~ , x ) - ~ ] v ~ = O  forxE~Gj ,k0q-l~<j~<k ). ,6.1) 

(C**). There is a finite number of disjoint closed bounded domains G j(1 ~<j ~< k)with 

C a connected boundary 8Gj, such that  

~a~(~x.)~,~v~=~O for"xE~Gj (1 ~]~./c), (6.2) 

| f f i l  

where v - (Vl ..... v~) is the outward normal to OG s at x. 

We shall also need the.following condition: 

(A0) The inequalities (52),, (5.3)hold, an4a{x), b(z} are~uniformty Lipschitz continuous 

in compact subsets of R ~. Finally, the matrix a = ~laa* is continuously differentiable in _RL 

Notice that  if (A), (Bs) and (5.1), (5.3) hold, then the condition (A0) is satisfied. 

If {An) and (C') hold then, by [6], 

P~{3t>0 such that  ~( t )e~}=0 if x6s (6.4) 

i.e., if ~ ( 0 ) - x E ~  then with probability one ~(t) remains in ~ for all t>0 .  Thus we may 

6bnsider a~  as an obst~le for ~(t)/rom the ~ide ~, .or briefly, as d One.sided obstacle. 
-If (A0) and(C) hold then, b3h[~](~ 

Pz{3t>0 such that  ~(t)6(O~ U ~ ) } = 0  if x 6 ~  0 ~(6.5) 

where ~0= in t  ~.  Thus ~ is an obstacle foe,~(t) from the side ~0. If, in particular, (C*) 

holds, then ~ is an obstacle from b0tJ~sides~ arid ~0; we then say that  ~ is a two-sided 
obstacle. 

Tr~EORE~ 6.1. Let (A0) , (C*I hold. Then,/or any 1 <<.j <~k, 

P~{~(t)E~Gj /or all t > 0 } = l  i /x~G~. (6.6) 

Proo/. Since (6.6) is obvious if x=z~, 1 ~<?~<~0, it remains to consider the case where 

ko+l  ~j~k .  
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Let R(x) be a function such that  R(x)=dist. (x, OGj) if x is in a small ~-neighborhood 

of ~G:', R(x)=-dis t .  (x, ~Gj) if x is in a small ~0-neighborhood of OGj; R(x)#0 if x$OGj; 
R(x) =const. if Ix] is sufficiently large, and R(x) is in CS(R"). Then 

LR~(X) = 2 5 atjR~,R~ j + 2R {5 a~jR~,~j~+ 5 b IR=~} 

~- 2M + 2RB < CR ~, 

since .,4 = O(R~) ,  I B ] = O ( R )  if R is small, and .,4 = B = 0 if ] x i is large. By Ito's formula, 

E=R2($(t))- R'(x)= E= ftLR=(~(s))ds <~ CE= [t R~(s))ds. 
Jo jo 

If xEaGj then R(x)= 0. Setting ~(t)= EzRZ(~(t)), we then have 

f: ~(t)-<< c ~ ( s )&,  4(o) = o. 

Hence ~(t)=0 for all t, i.e,, R~(~(t))=0 a.s. This proves (6.6). 

THEOREM 6.2. Let (Ao) , (C**) ho/d. Then, for any t>0 ,  

Pz(~(t)eG,) =o i /xe8a,  (1 <J</0. (6.7) 

In view of (6.4) and (6.7), if z E ~  O ~ ,  then with probability one, ~(t)6~. This moti- 

,cares us t o  call O~ a strictly one-~ted obsta~, ]rom the side ~, when the condition (C**) 

holds. 

Set ~(x) =dist .  (x, a~). 

We shall first establish the following lemma. 

LEMMA 6.3. Let (Ao) , (Co) ho/d. Then 

ExQZ(~(t))<.Ct 2 i] xEa~, 0 < t < l  (C constant). (6.8) 

Proof. Since 0(~(t))-0 if x=zj (l~<j~<k0), it remains to prove (6.8)in case xE~o~, 

where 
k 

aof~ U ~G,. 
}ffik,+l 

Set ~o(=) = dist. (=, ~o~). 

Let M(=) be a C 2 function in R" such that  

Qo(x), if x is in a small ~-neighborhood of ~o~, 

M(x) = J - ~o(X), if x is in a small ~-neighborhood of 0o~, 
/ 
[ I x  ], if ix ] is sufficiently large, 
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and M(x)~=0 if xr If xE@o~ then, by Ito's formula, 

M(~(t))= f l  M=adw+ f l  LMds. 

Squaring both sides and taking the expectation, we obtain 

Near ~0 ~,  
/ \ 2 

I M , , ,  r = = o(r  = o ( w ) ,  

by (3.2), and near co, 

by (5.2). Next, for Ixl large 

IM,~,,I'=O(i~I') =O(M') 

[LM I <<.C[x[ =CM 

(6.9) 

by (5.2), (5.3), and for Ix[ in a bounded set, 

ILMI <c. 

Using all these estimates in (6.9), and using Schwarz's inequality, we get 

E~M2(~(t)) <~ C f i  E~M'($(s))ds + Ct f l  E, M2(~(s))ds + eL ~. 

By iteration we then obtain 

EzM2(~(t)) <. Ct 2, 
and this implies (6.8). 

Proo/o/ Theorem 6.2. For any e>0,  let G~. e be the set of points xEG~ with Q(x)<e. 

The boundary ~G~.~ of G~.~ consists of OG~ and O'G~.~; the latter is the set of all points x in 

G~ with q(x) =e. Denote by v~ the hitting time of O'G~,~. 

Let e 0 be a small positive number, so that  ~ EC z in G~.~o. Let 

~F(x) [-Q(x) ifxEG,.~o, (6.10) 
"~ 0 ifx~.Gf. 

Then D~F is continuous, and D~F is piecewise continuous, with discontinuity of the first 

kind across ~G~. 

Define J4 = ~ afj~Qz~ 
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for x E G~.~o. Then 
L~g'(x) = - (2~4 + 2~B) if x E G~. ~,. 

Hence, by (6.2), (6.3), if e0 is s ~ e i e n t l y  small then 

L~(x)>~{~ O(x) if xEG"~~ (/~positiveconstant), 

By an approximution~argument (see [5]~ one can justify the use of Ito's formula for 

~F(~(t)). Recalling (6.10), (6.11) and taking 0< e< e,, we then get 

(xE~G,). 

Hence Ex~(~(t ATe))=0; by (6.10) this implies 

Px(~(t A ~E) EO'G~.~) =0 

P~(v~ > t )=1 .  

Since this is true for any t >0, P~(ve = c~) -~ 1, i .e '  

P~(~(t) E G,\G,.~) = O. 

Since this is true for any 0 < ~ < e0, 

P~(~(t) E.int G~.~=O (xE~G~). (6.12) 

Thus, in order to complete the proof of Theorem 6.2 it remains to show that  

P~(~(t) E~O~I) ~=0 if x 60~, t > 0 (6.13) 

Let ~]f(x) be a C ~ function in ~ U ~ such that  

= ll ffp(x)>l 

where 0 < h < 1, and ~F(x)~.> 0 i f ~(x) ~0.~ I f  ~1 is sufficiently small tl~en, b y  (6.2),: (6.3), 

Lg2"(x) >~a0>0 if ~(x) < r  r Hence, for all xE(~ U ~ ,  

L~2"(x) >1 o:o~ G~XF(x) (C1 positive constant). (6.14) 

Notice also. that  tor all x E~:U O~, 

Lqi'(x) ~ a~ (o h positive constant). '(B:is) 
By (6.12) and (6.4), 

P~{3t>0 such that  ~(t) r  U0O}v=0 if xe0f~. 
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Hence, if x E ~ ,  we can apply Ito's formula to get 

E.~(~(O) - [L~(~(s))]ds. (6.16) 

Using (6.14)-(6.16) we find that  

Ex~(~(t))/> ~ot- c1 Ex fi'I'(~(s))ds. 

Hence, ~ t  < ExxF(~(t)) + �89 ~1C1 $2- 

Consequently 2t~<E~(~(t)), if 0<  t<$* (xEa~) (6.17) 

provided t* is sufficiently small and ~ is any positive constant such tha t  acXF(x)<~o~(x) 

for all x $ ~ .  

Set ~(t) =P~(~(t) e o~). 

Then, by (6.17) and Lemma 6.2, 

CE g ~112rE 2""'t"~llz G{1-O=(t)}llz$. 

of 
I t  follows that  ~ ~< (1 - 0~($)) 1/~, 

6{ 2 
i.e., 0~(t) < 0 =  1 - ~ - ~ <  1 if 0 <  t <  $*. (6.18) 

By the Marker property, if t =s  + r  where 8, r are positive numbers smaller than t*, 

The second term vanishes, by (6.4). Applying (6.18) to use the first term, we get 

Similarly, P~(~(t) ~ ~ )  <~ ~ 

for any m, if t <t*m. Taking m-~ oo, the assertion (6.13) follows. 

We shall now establish a relation between the functions K(x, t, ~) and G(x, t, ~), 

~0(~, t, ~) 
14-742902  Acta mathematica 133. Imprim6 le 18 F~vrier 1975 
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THEOREM 6.4. I l (A), (Bs), (C'), (3.4) and (5.1), (5.3)/w/d, then 

K(x, t, ~ )=q(x ,  t, ~) i! ~e~, ~ e h ,  t>0 .  (6.19) 

I !  (A), (Bs) , (C), (3.4) and (5.1), (5.3)/w/d, then 

K(x, t, ~)=G0(z, t, ~) i/xE~0, ~E~0, t>0. (6.20) 

The function G was constructed in section 2, and the function G O was defined at  the 

end of section 2. 

Proo!. Let !(x) be a continuous nonnegative function with support in a compact Borel 

set A, A c ~.  Choose m so large that  A c Nm, and consider the function 

urn(x, t)= f ~ Gin(x, t, ~)!(~)d~ (6.21) 

Lu _~Um= I t  satisfies: ~ 3t 0 if xENm, t >0, 

urn(x, 0) = / (x)  if xe~Vm, 

um(x,t)=O if xE~Nm, t>O. 

Using Ito's fomula ,  we get 

urn(x, t) = E~{u(~(~),  t -  7,)} = E~{/(~(Tm)) Z, , -  ~} 

where ~m is the first time the process (s, ~(s)) hits the set (~Nm • (0, t)} U {N m x (t)}. If 

(G') holds then (6.4) holds, so that  ~m-+t a.s. as m:+ ~ .  Hence 

u,n(x, t) = E:/(~(t)) = f K(x, t, ~))!(~)d~, lim 
JA 

by Lemma 5.1. Since on the other hand, by (6.21), 

urn(x, t)= ~ O(x, t, ~)/(~)d~, lira 
jA 

the assertion (6.19) holds. The proof of (6.20) is similar. 

T~EoR~,~ 6.5. 1/(A), (Bs), (C'), (3.4) and (5.1), (5.3)/w/d, then 

K(x, t, ~) =0 i / x E ~ ,  ~E~ o. (6.22) 

I!  (A), (Bs), (C), (3.4) and (5.1), (5.3)/w/d, then 

K(x, t, ~)=0 i/xEf2 o, ~e~.  (6.23) 
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Indeed, this follows from Lemma 5.1 and (6.4) (when (C') holds), (6.5) (when (C) 

holds). 

7. Construction of generalized fundamental solution in case of two-sided obstacle 

We consider in this section the case where a ~  is a two-sided obstacle, i.e., (C*) holds. 

We shall also assume: 

(D) Denote by Lt the restriction of the elliptic operator L of the manifold aG~, 

k0+ l  ~i~<k. Then, each Lt is elliptic on ~G~. 

Thus, in local coordinates 0x .... 0x-1 of ~Gt, 

n-1  ~2 n-1 l"-q 

L , =  ~ ~ ( 0 ) ~  0 a0 7. ~ 0  

and the" ( n - l )  x ( n - 1 )  matrix (~,(0)) is positive definite for each 0. 

Denote by ~i(x, t, e) the fundamental solution of L~ for the cylinder 8Gt x (0, oo), I ts  

existence is well known (see, for instance, [9]). For xEaG~, denote by K~(x, t, de) (ko+ 
1 ~ i  ~<k) the measure supported on 8Gi with density ~ ( x ,  1, e )d~ ,  where dS~ is the surface 

element on 8G~. For 1 ~< i ~< k0, let 

K~(z~, 1, de)=the Dirac measure concentrated at e - z t .  

Now define K(x, t, e ) = 0  if x ~ ,  eES~, t>0 ,  and set 

[ K(x,t,e)de i f x r  

F(x,t, de)J Kt(x,t, de ) ff xEaGf, t > 0  (ko+l<i-<</c), 
1 
[K~(z,t, de) if t > 0  (1 ~< i <  ko). 

In view of Theorems 6.4 and 6.5, 

G(x, t, e) de 

F(x, 1, de) = Go(X, t, e)de 

0 

THEOREM 7.1. Let (A), (Bz), (C*), 

Borel set A in R n, 

if ~eh,  eeS,  t >o, 
if Xe~o, e E~2o, t >0,  

if Xe~,  ee~o,  t >0  or xeric,  e e l ,  t >o.  

(7.1) 

De/inition. F(x, t, de) is called the generalized ]undamental solution for (1.1). 

For x $~2, it is given by  K(x, t, e)de, and for xfi0~2 it is a certain measure supported 

on ~ .  

E,(e(t) eA) = f r(x, t, de). (7.2) 

(3.4), (D) and (5.1), (5.3) hold. Then, ]or any 
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Proo/o/ Theorem 7.1. Consider first the case where x~a~ .  If A n ( a ~ ) ~ O  then (7.2) 

is a consequence of Theorem 5.1. If A c a ~  then both sides of (7.2) vanish. The t ru th  of 

(7.2) for any Borel set A follows from the preceding special cases, upon writing A = 

(A n a~) U (A\a~). 
Consider next  the case where xEa~. If xEa61j and 1 ~<]r  then x=z~ and, by the 

definition of F, 

F(zj,~, d~) ffi if z~A. 

On the other hand, by Lemma 6.1, 

E~(,(t)E(A)-{: ifzjEA' 
if zjq.A. 

Thus (7.2) follows. If xEa(Tj and k0+ 1 ~<j<k, then by I~mma 6.1 $($) remains on aG~ for 

all t > 0 .  Let  

= f__ J~j(x, t, y)f(y)dS~, / continuous (xEaqj), 4(x, t) 
J o~  t 

and extend d into a neighborhood of aqj by  defining it as constant along normals. Applying 

Ito's formula to ~(~(s), t - s )  and taking E~, where xeaG~, we find that  

=/oajl~j(x, t, y)/(y) dS~y. E./(~:(~)) 

~)d~ (7.3) 
J s  

Hence, 

for any Borel set B in ~G~. 

Again, by Lemma 5.1, 

Pz(~(t) cA) =Px[~(t) ~ (A n aa,)] 

for any Borel set A in R n. Using (7.3) with B =A  n aGj, we get 

/Anoajl[~(x, t, ~)dS~= f A F(x, t, d~) Pz(~(t) EA) 

where the definition of F has been used in the last step. We have thus completed the proof 

of the theorem. 

Remark 1. The estimates derived in section 2 for the functions (7, G O are, by Theorem 

6.4, estimates on F. 

Remark 2. We have assumed in Theorem 7.1 that  the L~ (k 0 + 1 ~<i ~< k) are non-degener- 

ate elliptic operators on aGt. Suppose now that  a particular Lt degenerates along a C a 
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(n-2)-dimensional manifold A, A c  G~, and tha t  A is a two-sided obstacle. Then we can 

analyze the generalized fundamental solution _~ on ~G~ by the same procedure as in 

Theorem 7.1. Thus, if the restriction of L t to A is non-degenerate, then _~(x, t, d~) will be 

(on ~G~) of the form K~(x, t, ~)dS~ if x$A; for xEA it is given by some measure supported 

on A. (If A consists of one point z then this measure is the Dirac measure concentrated at  

z.) If  the restriction of L~ to A is degenerate on an (n-2)-dimensional manifold then we 

can further explore the situation by the method of Theorem 7.1. Thus, in general, the 

measu re /~  may consist of densities distributed on submanifolds of ~G~ of any dimension 

l, O<.l<~n-2. 

Remark 3. For any ~ >0, denote by V ~ the ~-neighborhood of ~ .  If xE~2, 

lim [ K~(x, t, ~)d~ = limP~(~(t) E V~) = P~(~(t) ES~) = 1, (7.4) 

where (5.15) and Lemma 6.1 have been used. This implies that,  for any ~r >0, 

sup{K,(x, t, ~) [dist. (~, 0~)]~-~}-~ c~ if e ~ 0 ;  (7.5) 
~e V8 

for, otherwise, the left-hand side of (7.4) would converge to 0 as e-+0. 

8. Existence of fundamental solution in case of strictly one-sided obstacle 

We shall now replace the condition (C*) by the condition (C**): We define 

F(x, t, ~)=K(x, t, ~) if x E R  n, t>0 ,  ~ a ~ .  (8.1) 

For definiteness we also set F(x, t, ~)=0 if xER' ,  t>0 ,~ES~ .  Notice, by Theorem 6.5, 

that  

F (x , t ,~ )=0  i f x E ~ , t > 0 , ~ E ~  o. 

by Theorem 6.4, 

F(x, t, ~)=G(x, t, ~) if xE~,  t>O, ~E~. 

Thus, the boundary estimates derived in section 3 apply to F. 

THEORE~ 8.1. Let (A), (Bs), (C**), (3.4) and (5.1), (5.3) ho/d. Then r(x, t, ~) is the 
/undamental solution o/ the parabolic e~luation (1.1). 

Proo/. We have to verify the relation 

Px(~(t) E A)= fA K(x, t, ~) d~ (8.2) 

for any Borel set A. Consider first the case where x Ca~. For any ~ > 0, let Vo be the ~- 

neighborhood of ~ .  
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If  ~ is sufficiently small, then x~ Vo. Using Theorem 5.3, we get 

fan v K,(x, t, D d# < C fAn v d# <'<Co, 

f anv K(x, t, ~)d~ < C~. 

Recalling tha t  for each 8 fixed, 

we conclude that  

fA\v Ks(x, t, ~) d~-+ fA\voK(x, t, ~)d~ if e-+O, 

fAK~(x, t, ~) JaK(x, t, ~) (8.3) 
f, 

d~ -+ d~ if 8 - + 0 .  

Using the estimate (5.21) of Theorem 5.3 and the estimate (2.13), we can argue as in 

the proof of (5.17) to deduce the relation 

Pz(~(t) EA)-+Pz(~(t)EA) if e-+0 (8.4) 

provided A is a ball. Taking e-+0 in (5.15) and using (8.3), (8.4), the relation (8.2) follows in 

case A is a ball. This relation is therefore valid also for any Borel set A. 

Consider next  the case where xEO~. By Theorem 5.2, 

f ,  K'(x't'Dd~-+ fa K(x't' ')d# if ,vn (8.5) 

Suppose A is a ball. By Theorem 5.2, K~(x, t, ~) <<. C if ~ belongs to a small neighborhood of 

A\Vo. Hence, the argument used to prove (5.17) can be applied also here to deduce 

that  
Pz(~(t) EA\Vb)-+P,(~(t)EA\Vo) if e-+0 (8.6) 

Taking e-+0 in (5.15) (with A replaced by  A\Vn) and using (8.5), (8.6), we get 

Px(~(t) EA\Vo)= f K(x, t, ~)d~ (8.7) 
3a 

for any J >0.  Since K(x, t, ~) >1 0 for all ~, the monotone convergence theorem yields 

lim \voK(x't'#)d#=- faK(x'"#)d#" (8.8) 

Using Theorem 6.2 we also have 

lira Px(~(t) E A\ V~) = Pz(~(t) EA\Of2) = P,($(t) EA ). (8.9) 
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Tal~ing &+0 in (8.7) and using (8.8), (8.9), the assertion (8.2) follows in case A is a 

ball. But  then (8.2) clearly holds also for any Borel set A. 

Remark 1. From Theorem 6.2 and (8.2) it  follows tha t  

K(x, t, ~)=0 if x E ~ ,  t>O, ~E~. (8.10) 

From Theorem 6.2, Px(~(t)E~)= 1 if x E ~ .  Hence, by  the strong maximum principle [3], 

K(x, t, ~)>0  if x E ~ ,  t > 0 ,  ~E~.  I f  A is a closed ball in ~ ,  and A'  is a closed hall in the 

interior of A, then (el. the proof of Lemma 10.2) 

Px(~(t) EA) >1 Pv(~(t)EA') = f K(y, t, ~) lim d~ > 0  
XE~, x--~y JA 

if y E ~ .  I t  follows tha t  

P~(~(t)eA) > 0  if x E ~ ,  dist. (x, 8~)<co  

for some e 0 small. Applying the strong maximum principle to SA K(x, t, $)d~, as a function of 

(x, t), we conclude tha t  

fA K(x,t,~}d~>O if xE~2, t >0 .  

Applying once more the maximum principle, to K(x, t, ~) as a function of (~, t), we conclude 

tha t  
K(x,t,~)>O i fxE~, t>O,~6~.  (8.11) 

Remark 2. Theorem 8.1 extends without difficulty to the case where the condition 

(C**) is replaced by  the more general condition where the inequality (6.3) holds for j = 1 . . . .  , l 

and the reverse inequality holds for j = l + l  . . . .  k. In  case n = l  we can just assume tha t  

each G~ consists of one point z~ and either a(zt)=0, b(z~)>0 or a(z~)=0, b(zt)<0. 

Remark 3. One can easily combine cases of strictly one-sided obstacles with two-sided 

obstacles. Thus, if Odtt is a strictly one-sided obstacle with respect to either Gt or Rn\Gt, 
for i = 1 ..... h, and if Gh+l ..... G~ are two-sided obstacles, then (7.2) holds with F define das 

follows: 

K(x, t, e)d~ if x~i 00G~, 
r (x ,  t, d~) = ~-h§ 

[F~(x,t,d~) ifxEaGt (h+l<i<k)  

where F~ is a measure defined as in Theorem 7.1. 

Remark 4. Remark  2 following the proof of Theorem 7.1 extends to the case tha t  Lt  

degenerates on A and A is strictly one-sided obstacle for Lt. 
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Remark 5. Theorem 8.1 extends to the case where S is any compact subset of R ~ such 

that  
Pz{~(t)ES}=0 for all xER n, t>0 .  (8.12) 

Let S be a C u manifold of dimension b (0~k~<n-1) ,  and denote by d(x)(xES) the rank of 

the linear operator (ass(x)) restricted to the linear space normal to S at x. By Theorem 3.1 

of [5], if 
d(x)>~3 for all xeS  (8.13) 

then (8.12) holds for all x~S. We claim that  (8.12) holds also for xES. To prove it note, by 

Theorem 3.1 of [5], that  
ex{~(t)es~v~}=o if t>o, 

for any &neighborhood V~ of x. Hence P~(}(t) eS~{x}) =0. Thus, it remains to prove that  

P~{~(t)=x}=o i f t>o  (xes). (8.14) 

Suppose for simplicity that x =0. Let O(x) be a function in C2(R ~) such that 

~(X)__ { ,lX,2 if 'X' is small, 

if Ix] is large, 

and ~(x)>0 if x 4 0 .  Since Za,,(0)>0, 

ro-Coe(x) <Le(x) <7,  (xeR~) (8.15) 

where 70, Co, 71 are positive constants. By Ito's fomula ,  

Eoe(~(t)) = Bo I:Le(~(s)) ds < 7,t, 

Eoe(~(t)) = Zo flLe(~(~))~ ~> n t -  CoEo f l  e(~(~)) ds. 

7 o  t ~< Eoe(}(t)) + Co itT, sd~ -- Eoe(}(t)) + �89 Co}', t 2 . 

.lo 
Hence 

I t  follows that  
},'t~ Eo~(}(t)) (7' positive constant) 

if t is sufficiently small, say t ~ t*. Hence 

rt<Eol~(t)l ~ if t<t* 

Setting ~x(t)--Px(}(t)=0), we then have 

(7 positive constant). 

rt < Eo{Z~.).o I}(t) I ~} < {EoZ~(~,.o}'J~{Eo I }(t) I'} ''~ < C{1-0o(0} ''~ t, 

(8.16) 
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since E o ]~(t) [ 4 ~ Gt ~. Hence 

(~0(t)~(~<l if 0 < t < t *  (~ constant). 

We can now proceed to establish (8.14) by the argument following (6.18). 

The assertion (8.12) can be proved also in cases where d(y)~>2 for all yeS. For x r 
one applies Theorems 4.1, 4.2 of [5]. If  xeS, we cannot reduce the proof of (8.12) to that  of 

proving (8.14) as before; instead, we proceed directly to prove (8.12) by the argument used 

to prove (8.14), employing the function 

~(~) =e(dist. (~, S)) 

instead of ~(~). Note that  also ~ satisfies the differential inequalities of (8.15). 

9. Lower bounds on the fundamental solution 

In Theorem 3.1 we have derived the bound 

G(x,t,~)~Cexp{-~(logR(x)) 2} (C>0,  c>0)  (9.1) 

if ~ varies in a compact set E of ~,  0 < t <  T, x e ~ ,  and R(x) is sufficiently small. Recall 

that  the condition (C) was assumed in that  theorem. 

We shall now assume that  the condition (C') holds and that  

n 

a~j(x) Rx~R~j >~ ~R ~ (~ positive constant) (9.2) 
t , t~1  

for all x in some A-neighborhood of ~ ,  where R(x) = dist. (x, aQ). We shall then derive 

the estimate 

for some positive constants N, ~, for all ~ E E, 0 <'t < T, x E ~ ,  provided R(x) is sufficiently 

s m a l l .  

To do this, we compare (for fixed ~ e E) the •nction 

v(x, O=O(x, t, ~) (xe~, 0<R(x)<e, 0<t<T) 

with a function w(x, t) of the form 

w(x,~)= N exp {-~ (log R(x) )~}, 

where e is sufficiently small, N is sufficiently small, and v is sufficiently large. We fix e 

such that  e < l ,  dist. (x, ~)>~c0>0 if teE, xe~ and R(x)>e, and such that  R(x) is in C 2 
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ff xE~,  R(x)<e. Fix m so large that  N m (defined in section 3) contains the set where 

xe~, R(~)--~. By [0], 

Gin(x, t, ~)>w(x, t) if xe~ ,  R(x)=~, 0 < t < T  

provided N is sufficiently small and v is sufficiently large. 

Since G(x, t, ~) >~ Gin(x, t, ~), we have 

v(x, t)>w(x, t) if x e ~ ,  R(x)=e, 0 < t < T .  
Notice also that  

v(x, O)=w(x, O)=0 if x e ~ ,  0 < R ( x ) < e ,  

lira [v(x,t)-w(x,t)]= li_mm v(x,t)>~O if 0 < t < T .  
R(z)--*O R(x>-~O 

Hence, if 
L w - w t > 0  for x e ~ ,  0 < R ( x ) < e ,  0 < t < T ,  (9.4) 

then the maximum principle can be applied; it yields the assertion (9.3). Now, the left-hand 

side of (9.4) can be expressed by (3.19) with ? =v. Since, by  (C'), B/R> -C,  it is clear that  

if ~ is sufficiently large, then the first term on the right-hand side (with ? = ~) dominates 

the negative contribution of each of the remaining terms. Thus (9.4) holds. 

Similarly one can prove that, when (9.2) and the condition (C) hold, 

N exp { - t  (log R(,))z } (N > 0 , ,  >0) (9.5) G(x, t, ~) >~ 

provided x e E, 0 < t < T, ~ e ~ ,  R(~) < e. We can thus state: 

TH~OREVi 9.1. Let (A), (Bs) , (C'), (3.4) and (9.2) hold. Let E be any compact subset o/~.  
Then, /or any T > 0  and /or any ~ > 0  suf/iciently small, there are positive constants N, ~, 
such that (9.3) holds q ~eE, xe~ ,  R(x) <e, 0 < t < T .  I] the condition (C')/8 replaz~ by the 
condition (C), then (9.5) holds/or xEE, ~e~,  R(~) <~, 0 < t < T .  

If the condition (9.2) is replaced by 'the weaker condition 

~atj(x)R~,Rx~ >1 ccR ~+i (~ >O,p > 1) (9.6) 

for all x in some ~-neighborhood of ~ ,  then we can establish, instead of (9.3), (9.5), the 

inequalities 

G(x, t, ~) >~ N exp { -  ~ (R,x) )~-'} , 

respectively (for x, t, ~ in the same sets as before). 
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Finally, lower bounds at  c~, supplementary to the upper bounds derived in section 4, 

can also be obtained using the above comparison function w(x) with R(x)= Ix I, or, more 

generally, with R(x) = I~x[  where ~l  is an affine matrix. 

10. The s problem 

Consider the Cauchy problem 

L u - u t = O  if x e R  ", t>0 ,  (10.1) 

u(x, O)=/(x) if xeR ' ,  

where t(x) is a bounded Borel measurable function. We define the solution of this problem 

to be the function 
u(x,  t) = Ex/(~(t)).  (10.2) 

When the matrix (a~j(x)) is positive definite and fix) is continuous, the function 

u(x, t) is a classical solution of the Cauchy problem (see section 5). 

The purpose of this section is to investigate the continuity of u(x, t) when (a~j(x)) is 

degenerate and / is continuous or just measurable. 

THEOREM 10.1. Let a~, bt be uni/ormly I.,ipschitz continuous in comTar2 subsets o / R  ~ 

and/et  (5.2), (5.3) hold. I / / (x)  is bounded continuous/unction, then u(x, t) is continuous in 

(x, t )eR"  • [0, oo), and u(x, 0) =/(x). 

Proof. I t  is well known [8] that  

(10.3) 

where ~(t) is the solution ~(t) of (5.4) with ~z(0)=z. Hence, by the Lebesgue bounded 

convergence theorem, 
E/(~(t))~E/(~x(s)) if x~y ,  t~s .  

This proves the continuity of u(y,t) at (x,s); xER'*,s>~O. Notice that  u(x, 0)= 

Ej(~(0)) =/(x). 
We now consider the more general case where ](x) is Betel measurable. When (a~j) 

is uniformly positive definite and a fundamental solution F(x, t, ~) can be constructed by 

the parametrix method [3], the solution of the Cauchy problem can be written in the 

form 
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one can then show (using continuity properties of F) that  this solution is continuous in 

(x, t) in R n • (0, co). We shall prove here a similar result in ease (atj) is degenerate. 

L~.M~A 10.2. Let a~s , b~ be uni/ormly Lipschitz continuous in compact subsets o /Rn and 

let (5.2), (5.3) hold. l e t  A be a bounded domain with 5 a boundary and suppose that P~(~(s) EOA) 

= 0/or some x E R' ,  s > O. Then the/unction 

(y, t)-+P~(~(t) EA) 

is continuous at the point (y, t) = (x, s). 

Proof. From (10.3) it follows tha t  

lira P~(~(t(EA)<~P~(~(s)EA~) for any (~>0, 
y--)X, $-->$ 

where A~ is a ~-neighborhood of A. Taking (~-~0, we get 

run PAd(t) CA) >~PA~(s) eA  O aA) = P~(~(s) CA). 
Y'-')~r t*-~$ 

Similarly, 
lira P~(~(t CA) >/P~(~(s) CA) 

y'-)4'. $"->$ 

and the proof is complete. 

TH~.OREM 10.3. Let/(x) be a bounded Barel measurable/unction in Rn, and let (4.6) 

and the assumptions o/ Theorem 8.1 hold. Then the solution u(x, t) is continuous in 

(x, t)eRn • (0, co). 

Proo/. If A is as in Lemma 10.2 then, by Theorem 8.1, 

fo K(z,t, )d =O (t>0). 

Thus, by Lemma 10.2, the function 

(x, t)~Px(~(t)EA) is continuous in R n x (0, co). (10.4) 

Consider now the special case where / has compact support. For any e > 0, let g(x) be a 

simple function such that  
sup Igl +sup I/I ,  

g(x) --~1 (at constant) if xEA,  (1 ~<i ~<l), A, N A n--O if i ~:j, UJ-1A, contains the support of 

/, each A, is bounded, g(x) =0 if xr  I9~.~A, and I/(x) -g(x)] <e almost everywhere. Let B, 

be bounded domains with C 1 boundary such that  Bt DA~ and the Lebesgue measure of 

LJ~=I(B~\At) is less than e. 

Then, for all (x, t), (x', t'), 
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Further,  if (x', t ' )~  (x, t), t >0, 

<(l +supl/l){~m f K(x',t',$)d,+ fEK(x,t,')a' 
by (10,4), where E =  I.Jl_x(Bt\A~). From the proof of Lemma 10.2, 

where Ea is any 8-neighborhood of E. 

Putt ing these estimates together, we conclude that  if (x', t ' )~(x,  t), t>O, then 

lim lu(x', t') - u(u, t) I <<- 2e + 2(1 + sup I/I) fE~ K(x, t, ~) de. 

Since e and 8 are arbitrary, the left-hand side can be made arbitrarily small. Consequently 

u is continuous at  (x, t). 
Consider now the general case where/m is a bounded measurable function. Let  

fro(Z} = {/:) ~Ixl<m, 
ifl l> . 

Denote the solution of the Cauchy problem corresponding to ]m by u~. By what we have 

already proved, each u~ is continuous. By Corollary 4.2, um~u uniformly on compact 

subsets. Consequently, u is continuous. 

Consider next  the case of two-sided obstacle, where only a generalized fundamental 

solution exists. We first take 
](x) =gA(x), (10.5) 

the characteristic function of a set A. We assume: 

(E). A is a bounded domain with Ca boundary, and it  intersects precisely one of the 

sets ~G~; further, ko+l<~i<~k and the intersection aA naG~ is a C a (n-2)-dimensional  

hypersurface. 

THEOREM 10.4. Let the assumptions o/ Theorem 7.1 and (10.5), (E) ho/d. Then the 
8olution u(x, t) is continuous in (x, t) e R  ~ x (0, cr 
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Proo/. I t  is enough to prove the continuity of u(y, t) at  yEO~. In  view of Lemma 10.2, 

it suffices to prove tha t  

P~(~(t)E~A)=O if yEaGj, t>0 .  (10.6) 

In  view of Theorem 6.1, the left-hand side of (10.6) vanishes if j=ki. I f  j=i ,  then, by  Theo- 

rems 6.1, 7.1, 
P~(~(t) EaA) = P~(~(t) E (aA r]G,)} 

= ~ R,(~, t, ~)ds~= o. 
,Io A f l G  I 

Thus the proof is complete. 

Remark 1. If  A contains in its interior the point z~ and does not  intersect the other 

sets Gj, ~ ' . i ,  then the assertion of Theorem 10.4 is again valid. 

Remark 2. Theorem 10.4 extends to any measurable function/(x) which can be approxi- 

mated uniformly on compact subsets of R" by  simple functions of the form Z cjgA j, provided 

each set Aj is a bounded closed domain, and either Aj N af~ = O, or Aj satisfied the condition 

(E), or Aj contains in its interior one point z~ but does not intersect the remaining sets 

G1, l~=i. In  particular, Theorem 10.4 remains valid for any  bounded Borel measurable 

function/(x) which is continuous at  all the points of ~ .  

Remark 3. The assertion of Theorem 10.4 is clearly false if 8.4 N ~G~ contains a set of 

positive surface area, or if A consists of one point z~, 1 ~<i ~<k 0. 

Remark 4. I f  / is a bounded continuous function in R ~, then u(x, t) is continuous (by 

Theorem 10.1). Let  
~l(x) if x *  z,, 
1 
t/, if x=z ,  ( / , . l ( z , ) )  

for some i, 1 ~< i ~< k 0. Denote by ~2 the solution corresponding to [. Then a(x, t) = u(x, t) if 

x 4z~, but  
~(z,, t) =It . l (z , )  =u(z,, t). 

Consequently, u(x, t) is discontinuous at  the points (z~, t), t >~0. 

Remark 5. I t  is easily seen tha t  Theorems 10.1, 10.3 and remark 2 extend to the case 

where/(x)  is assumed to have a polynomial growth. 

Remark 6. I f  S is as in remark 5 at  the end of section 8, so tha t  (8.12) holds, then 

Theorem 10.1 remains valid even if one changes the definition of/(x), in an arbi trary manner,  

on the set S. Further,  the solution u(x, t )( t>0) does not  change when one changes the 

definition of / on S. 
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