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1. Introduction

The Loewner Conjecture was motivated by the study of umbilic points on surfaces
and by various other geometrical investigations concerning the qualitative theory of dif-
ferential and integral operators (see especially Loewner [8]). Let « be a real analytic function
on the disk D, 22 +y2<1; with .29, =0, +149,, think of the iterates 3; u of &; on acting u as
vector fields on D.

LoEwNER CONJECTURE (about 1950).
If the vector field 6;74, #€C?(D, R), n=1, has an isolated zero at the origin, then the index

of 6211, at the origin is not greater than n.

For n=1 this conjecture follows directly from standard techniques in differential
equations (see Lefschetz [6]). For n=2 it is the key lemma required for a proof of the
Caratheodory Conjecture (see Hamburger [3, 4], Bol [1], Klotz [5]).

CARATHEODORY CONJECTURE. Every convex real analyiic imbedding of 82 in E2
has at least two umbilic points.

With a proof of the Loewner Conjecture for »=2 the work of Hamburger together
with standard more recent work in differential geometry will show that every real analytic
immersion of 52 in E? has at least two umbilic points so that the convexity condition is in
fact irrelevant.

The main difficulty in the proof of these conjectures occurs because the multiplicity of
the zero of the vector field may be arbitrarily large; with standard conditions of genericity

imposed the proofs of the Loewner Conjecture become relatively trivial. However, possibly
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with n=1 excepted, present day methods using approximation from the generic cases are
nowhere near adequate. In fact a proof including the non-generic cases describes con-
straints on the limits of the generic cases. Thus, for example with n=1, a proof of the
Loewner Conjecture implies that if the gradient Y has an isolated zero at the origin and
% is the limit of Morse functions » then the sum of the indices at the zeros of the vector
fields Vv which approach the origin must be less than or equal to 1.

Geometrically, for n>>3, the Loewner Conjecture is related to generalizations of the
Caratheodory Conjecture concerning the existence of higher order singularities on surfaces
immersed in higher dimensional Euclidean spaces (Little [7]).

Because of the complexity of previous methods for n=2 (and even n=1) and because
other substantial difficulties occur for n>>3 a very different approach seemed required. In
this paper in the early part, the first six sections, we make a thorough qualitative study
of ordinary differential operators with constant coefficients (which is closely related to the
action of 6; on homogeneous polynomials); in the later part we develop a perturbation
theory which extends the qualitative study to the partial differential operators involved
in the Loewner Conjecture. It is however the detailed geometric study in the early part
that makes the perturbation extension tractable.

We will prove the Loewner Conjecture in a sharpened form involving the linear fac-
tors of the first “consequential” homogeneous polynomial in the expansion of u; this
sharpened form apparently gives new information even when n=1.

For u€C¢(D, R) let w=u,+... +u,+... be the expansion into forms (=homogeneous
polynomials) %, of degree . We may assume that none of the forms #, is anihilated by the
operator 6;. Let Lyu, be the number of real linear factors of u, of multiplicity at least k.
(note that Lkﬁ,,>Lk+lup).

The principal results of this paper are contained in the following pair of theorems.

THEOREM. Given w€C%(D, R) so that the vector field 8;u has an isolated zero at the
origin choose the form u, in the expansion of u with lowest degree such that 6; u, =0 and then
the index, Qoag u, of the vector field at the origin satisfies the inequality:

(a) for n<p<2n-—1, ‘

Qooiu<n—(Lyuy+ ...+ Ly-ns1ty) + (Lnsr Uy + ... + Lyuy),
(b) for 2n<p,

Qoo u<n— (Lyuy+ ... + Lywy) + (Lnsrty + ...+ Lyyuy).

Since u is real, d,% is the complex conjugate of &;u and one has the equivalent
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DuaAL THEOREM. Given u€C«(D, R) so that the vector field &3u has an isolated zero at
the origin, choose the form w, in the expansion of u with lowest degree such that d%u,=+0.
Then the index, Q,0%u, of the vector field at the origin satisfies the inequality:

(a) form<p<2n-—1,
Qouz ~n+ (Lyu,+ ...+ Ly_pirty) — (Lnsrty+ ... + Lyyuy),
(b) for 2n<p,
Qouz —n+ (Lyu,+ ...+ Lyw,) = (Lparty + ..+ Ly, uy).

Under the same hypotheses one also has, by simple degree considerations, that

|Qe82u|<p—mn,
and [Qoiu|<p—mn.
When p<2nr these imply the Loewner Conjecture and with p <2n—1, the inequalities
(a) are independent of these inequalities. When p >2n the inequalities (a) imply these
in equalities.

Before proceeding a few examples may be helpful.

Example 1. Let u=(zZ)" so that « has no real linear factors (i.e., of the form az+az)

and then 8gu =n! 2" which has index Q,=mn.
Ezxample 2. Let u=(z+%)" so that Lyu=...=L,u=n and L, ,u=0 and then 8;u=n!

which has index Q,=0.

Ezample 3. Let u=(z+Z)*"+(higher order terms) and then L u,=...=L,,u,=1 so

that by the theorem
908;u<n—n+n=n.

Ezxample 4. Let u=(z+%)*"(12—14Z)"(2Z)" + (higher order terms) and then L u,=...=
L,u,=2, L, u,=...=Ly,u,=1 so that by the Theorem
.Qoa;—'u<n—2n=n=0.

In the following we will actually prove the Dual Theorem since the inequalities

involved in the proof tend to take a more intuitive form.

2. Preliminary notation and definitions

All mappings, manifolds and structures are real analytic. The theory is built on the
oriented Euclidean plane E which will often be identified with the complex line C. Let D
be the closed unit disk in E about the origin and S* the naturally oriented circle that bounds
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D. Let P be the real projective line thought of as the bundle of non-oriented lines through
the origin of E, where E induces the orientation and real analytic structure on P; thus P is
parameterized by the angle measured from a fixed line and taken modulo 7.

One of the most useful technical devices involved is called the projective winding
number of a mapping in Cv(S*, E). First we define the mapping *: E— {0} P, v~>v*, where
v* is the line through » and the origin. For [ €C%(8%, E) define the multiplicity function
& S >Z, 0> pug(6) (or simply u(6) when the dependence on { is clear), where ug(0) is
the order of the first non-vanishing derivative of { at 6. So u¢(0) is simply the multiplicity
of the zero of ¢ at § and we have ((#)(6) 3-0. Next, define [*: S1 =P, 01— [L#(0)]*; the map-
ping [* is seen to be real analytic. Finally, the projective winding number of ¢ about the
origin is defined as one half the topological degree of the mapping {*: 8'—P; it is denoted
by wg¢. Note that w3 is defined whether or not ¢ passes through the origin, that it takes
half integer values and that, when ¢ is never zero, it is the usual winding number.

The following explicit formulas for w*( are not difficult to derive from standard
sources and will be taken as known. The derivative of ¢ =arg {* with respect to 0 is

1 C('")/\ C('“H)

*y .
(argZ ) ”+1 "4.(/‘)"2 H

here and throughout this paper » A w denotes the signed area det (v, w).
From differential degree theory (see e.g. Milnor [8]), for any v that is a regular value
of Z* (i.e. {*(§) =v* only if (arg {*)'(6) =0 or {* does not hit v*) one has

il =} {sgn [(arg £*)'(6)1]£*(60) = v*}.

Similar to the Cauchy formula for the usual winding number, one has

* 1 2” ’
otz [ rg

(]

3. The group G and the semigroup §

We will define a group G and a semigroup § and two actions of the group which are
central to the entire approach. The “algebraic’ action is defined in section 4; it describes
the geometry of the Euclidean algorithm and of the Sturm theory for separating pairs of
polynomials. The “differential” action is defined in section 5 and includes the action of
V" on forms as a special case.

Let, as usual, R[z] be the ring of real polynomials and E[x] the (free) R[z]-module
spanned by a positive basis, e, ¢, in E; thus E[z] = {ae, +fe,|a, fER[z]}. We will often
think of E[z] and R[] as subsets of the spaces of mappings C¢(R, E) and C¢(R).
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On' R[z] xE we define («, v) =(8, w) if and only if there exist real a-and b, note both
zero, so that av=bw and b2 =a?B, (i.e., b?a(x) =a®f(z)). It follows with a little computation
that this is an equivalence relation and we note

(0,0)=(B, w)y=p=0 or w=0,
and, for o0 and » 30,

{(B, w)| (B, w)= (a, v)}={(a2a,£v) |a€ R,a#O}.

Let G(v) be the set {(«, v)| 2 €R[x]} together with the binary relation

B, v)(a, v) = (x+,v),

both definitions making sense for equivalence classes. Each (j(v) is then an abelian group
with the identity represented by (0, 0)=(0, v) and inverse by (e, v)"1=(—«, v). Note, with
v %0, w0, that G(v)=G(w) if and only if v and w are dependent over R(<v Aw=0).

The group § itself is defined as the (finite) free product of the abelian groups G(v)
and thus, for every G€ G —{I} there is a unique sequence of groups G(v;) and elements in
the G(v,) represented by (e;, v;) so that G is the (reduced) product

G = (oty, v,) ... (0, v;) where o;0 and v, Av;=0.

The number of factors in the (reduced) product is called the length of G.

There is a “constant coefficient”” subgroup G, < G which is important. It is defined in
the same way but we begin with the equivalence relation on R x E instead of Rz]x E.
Thus each element in G, —{I} is represented by the (Peduced product)

G =(a,, v,) ... (@;,v,) where a,ER, a;+0, v,,; Av;==0.

The semigroup S G is simply the set containing the identity I=(0, 0) and the
reduced products

8 =(ay, v,) ... (g, ;) where o;>0, a;=+0, v,; Av;+0.

This too makes sense for equivalence classes since « >0, « +0 and («, v} =(8, w) imply that
£>0 and §+0.

We also have the important “‘constant coefficient’ semigroup §,=9§ N §, which con-
tains the identity and the reduced products

8 = (ay, v,) ... (ay, ), a;€R, ,>0, v, ., Av;+0.

ProrosiTION 1. §N §~1={I} and SyNn S5 ={I}.
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Proof. If (oty, vy) -.. (&, 93) =(Bn, Wy) ... (By, w,) Where m>1 and all §,<0 and «;, >0,
then m=n and 0<a, =8, <0 a contradiction. This proof works for both semigroups §
and $,.

ProrosiTioN 2. The group G is generated by S and S; the same is true for Gyand S,.

Proof. Consider G =(a,, v,) ... (g, v;) € G of length n (s0 @,+0 and v, Av;+0). If an

oy, changes sign write
(0> 1) = (0 — ot + 2, 0) (— ok + 205, — 2, 9y),

where then the left factor is in § and the other is in §-1. If &, does not change sign, leave

the factor (o, v,) unchanged.

4. Algebraic action of G on E[x]

Given an («, ), in the abelian group G(v), define the operator («, v): E[z]—>E[x],
{> (e, v)¢, by
[(e, v){)(2) = L) +2ax(®) (v A L)) w5

or, in less explicit notation,
(o, 0)& =L +zafv A ).

This makes sense for the equivalence classes and is easily seen to be an action of the abe-
lian group G(v) on E[x] wherein (0, 0){ ={ for all { and (B, v)[(«, v){]1=(x+8, {) for all £.
We have then defined, by composition, the action of the whole group G on E[z] and,
analogously, the actions of §, G, ar'xd So-

ProrosiTiON 3. (4 geomelric form of the Euclidean algorithm.) For any [ €E[x];
() there exists a G€ (G, a monic polynomial ay€R[x) and a vector v,€E such that { =Gayv,;
(b) G, ay and v, are uniquely determined; (c) o, is the monic polynomial of highest degree
that divides {.

Proof. Given { choose a positive basis e;, ¢, so that { =P, e, +P,e, with P,€R[z] and
deg P, <deg P,=deg {. By the Euclidean algorithm we have the existence of @, and P,
such that

P;=Q;Pyy —Pyp, j=1,...p,

with deg P;,; <deg P, and P, ;=0 (the minus sign for the remainder is & useful conven-

tion). We write this in the form
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()-8 7o) o) (%)

Choose o€ R[z] and @, €R so that @, _x.1=x,+a, k=1,...,p, and let y=P,.,; we

have then
(Pl)_(xcxp-l—a,, —1) (xacl-hal —1)(ao>
P, 1 o)\ 1 o/\o
o TIT 7o) ) (5 7o) (3)
0 1./\1 o/."\o 1 /\1 o/\o/
Let T(a,) be the linear transformation represented by

(T 7o)

{ = (0 1) T(dp) e (0, €1) T'(ay) ey

Then we have from the above

Before proceeding further, we need thé following identity for linear transformations 7

with det 7'=1; namely,
(a, Tv) = T(a, v) T

To derive the identity we compute
(@, T) = +a(Tv A Tv=+a(TvATT2L) To
={tawAT)Tv =TT +alv A T1{)v]
=T(a, v)T1¢.
Let T,=T(a,) ... T(a) and we rewrite { in the form
= (0ps €1) Tp(otp1, €1) Tp ... Ta(oty, €1) T2 Ty oxgey,
which, using the identity just derived, gives
= (o e1)(0p1, Tey) .. (0115 Tooy) ot Ty

This completes the proof of part (a); the proofs for parts (b) and (c¢) are omitted since they
follow directly form this form and the Euclidean algorithm.
Next we take as known the notion of the Cauchy Index of a polynomial w€C[z]; it is

defined as }(#+ —#"), where #+[#~] is the number of roots in the open upper flower] complex
4 — 732906 Acta mathematica 131. Imprimé le 18 Octobre 1973
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half plane. Write w=P, +iP,, P,ER[z] and, using the @, as defined in the proof of Propo-
sition 3, define SGN @, to be equal to +1 if deg @, is odd and sgn @,(+ o) =+ 1 and to be
equal to 0 if deg @, is even. The following result is known (see e.g. [2], pages 205-208).

ProPOSITION 4. The Cauchy Index of w€C[z] is given by

F—#) = Hegn @y +... +5gn Q).

We note next that for w€C[z] we can write, with e,, e, a positive basis, P, +iPy,=w,
P,€R[z], and then { =P, e, +P,e,. If we think of { as a mapping from R to E (P,ER[z])
it follows directly that wj¢ is the Cauchy Index of w. Also, with the polynomials o asin
the proof of Proposition 3, we define sgn o, =SGN @, (whence sgn &, is equal to +1 if
deg oy is even and sgn a,(+ o) = +1 and sgn o, =0 if deg o, is odd). Let R, be the 1 point
compactification of B which is naturally isomorphic to P and, for {€E[x], define wyt as
the topological degree of the mappings *: R,,—P. Also analogous to the formulae at the
end of section 2,

att=g [ temmer.

Putting these facts and Proposition 4 together we have

PrOPOSITION 5. Given [ €E[z], [ =P, e,+Pye, and { =, v,) ... (03, ;) %V, One has
(a) = —}sgn oy +...+sgnoy), with
(b) w =P, +iP,.

The Cauchy Index of w=3}# —#)=wy¢.

Classically, with P,€R[x], one says that P, separates P, positively [negatively] if
deg P, =1-+deg P,, the roots of P, and P, are all real and simple, the roots of P, separate
(interlace) the roots of P;, and the product of the highest coefficients is positive [negative].
To have a more geometric definition we define, for £ €E[x]: { is positively [negatively] se-
parating if there exists a positive basis e,, e, of E so that, with { =P, e; +P,w,, P, separates

P, positively [negatively]. We can now state the principal properties of the algebraic
action of §, on E[x].

ProrosiTIiON 6. (Characterization of the algebraic action of S,). The following con-
ditions on { €E[x] are equivalent:
(a) ¢ is positively [negatively] separating;

(b) there exists an S€S$[Sy], v,€EE such that {=8v, (i.e. 3 a,;€R o;>0[r;<0] and
3‘vl-kl /\v,=|=03§=(ac,,, V) .- (o, ”1)“0”0);
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(¢) w*¢=—}degl [§degl];

(d) there is a positive basis e,, e, of E so that with { =P, e, +P,e,, P,ER[x], the polynomial
w=0P, +iP, has all of its roots in the open lower [upper] half plane.

Proof. We prove (a)<=(b), (b)<(c) and (c)<>(d); the proofs are given only for positive
separation since the other case is completely analogous.

First, (a)=(b). There is a positive basis e;, ¢, of E so that, with (=P e, +P,e,y, P,
separates P, positively. We write
P, =Q,P,—P,

and will show next that Py separates P, positively. For, since deg P, =1 +deg P,, we have
@, =ax+a with «, a€R and «>0. Let ¢; be the roots of P,, ¢,_,>...>c¢; and let b,, b,, b,
be the leading coefficients of P,, P,, P,. Then

sgn Py(c;) = —sgn Py(c;) = (—1)'sgn by = (—1)' sgn b,,
and so
sgn Py(c,) = (—1)"*" sgn by,

This shows that P, has n —2 simple roots interlacing those of P, and that b,b, >0 so that
P, separates P, positively. The proof can now be completed by induction. For using the
notation as before, we have {=(a,, v,) ... (&, ;) %9, and have shown that «,€R, «,>0,
and that («,_;, v,_4) ... (%, #;) is separating. Continuing we have that all the «,€R, «;>0
and thus {=8v, with S€S§,.

Second, (b)=(a). Write {=(at,, v,) ... (&, v;)v, With «,€ER, a;>0. As in the previous
paragraph we have P, =@, P,—P, and note that the identities there also establish that if
P, separates P, positively, then P, separates P, positively. Again the proof is completed
directly by induction on the degree of £.

Third, (b) =(c). From Proposition 5(a) we have that w*, = — }(sgn «, +... +sgn a,,), but
all of the a, €R and thus have even degree and, since every a;,>0;, wgl = —} deg {.

Fourth, (c) =(b). Given { we write by Proposition 3, { = (o, v,) ... (¢t;, v1) %y, 0t ER[2].
But from Proposition 5(a) and our hypothesis we have
—wgl=tdeg{ =}(sgn oy +... +sgn ),

which, since deg oy + ... +deg o, + p=deg {, implies deg ;=0 for all j (thus «,ER) and
sgn o;>0 and thus that { =8v, with S€S§,,.

Fifth, (c)<>(d). From Proposition 5(b) we have w*=3(#+—#"). So, since (b)<=(c),
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3(#+—#-)=—} deg {. But of course #++# <deg( and since #*+# < —#++# i and
only if #+=0 and #-=deg {, the proof of Proposition 6 is complete.

5. Differential action of G on C*(SL,E)

There are interesting actions of the group ¢ on many spaces but four our purposes
here we need only the action of the “constant coefficient” subgroup ro‘g on the épace
0v(81, E) of real analytic mappings from the circle to the plane.

Given (a, v)€ G, (so a €R, v€E) define the operator

(@, v): C=(8%, E) > Co(8", E), {r>(a, v){,

d¢

by (@,v){=C+alwnl)w, C'=d79;

note that this operator makes sense for our equivalénce classes since (a, v){=(b, w)é" for
all £ if and only if (a, v) =(b, w). It follows directly that we have defined an action of the
abelian group G,(v) on C«(8t, E) for clearly (0, v){ = (0, 0){={ for all { and also
(b, v)(a, V) =C+awAL)v+bwAL)v+ba(v AL") (v Av)v
=f4+(a+b)(wALYv=(a+b,v){
for all £. And, since G, is the free product of the abelian groups Gy(v), we have. in fact de-

fined an action of the whole group G, simply by composition of the actions of the abelian

groups Go(v)-
Recalling the definition of the multiplicity function u in section 2, we state the first
of the four properties of the action of G,.

ProrosiTION 7. (Effectiveness of the action.) If G€ Gy and G ={ for all { €C«(SL, E),
then G=1.

Proof. Choose { such that (u)(0,) =n= length of G; now if n>1, {(0,) =0 and, with a
short computation,
(GD)(Bo) = @y 01 (V5 AVy_y) - (VA 1)E(Bg) +0,

which contradicts the assumption that G{=_. So n=0 and G=1I.

ProrosiTioN 8. (Concerning the multiplicities of zeros.) Given G'€ Go, G=(a,, v,)...
(a1,%,), of length n>1 and given { €C«(S', E) and 6 €S* such that {*(0) +v*, then

(a) (u0)(0) =m=>n=(uGl)(O) =m—n,
(b)- (u8)(0) =m<n—1=(uG) ) <n—m—1L.
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Proof. For part (a) suppose first that the length of @ is 1 and so
G ={=ay(v, AL )y,
and by hypophesis (1) (0) =m>1; thus we have at é,
(GL)m=1(0) = - 1"(0) +a, (0, AL™(0))oy = ay(vy A L(B)) vy

Further, v; A {'™(0) =0 since {*(0) +v, and so the above implies that (4G{)(0) <m —1.
But (G)*(0) =0 for k<m—2 and so (uG¢)(0) =m—1 as we needed to show. We have also
shown that (G{)*(0) =v] and since v} +v} for G of length >2 the proof of part (a) follows
by induction on the length of G.

For part (b) we proceed directly for any given n>1. Let G=(a,, v,) ... (a;, v;) be of
length » and define G, =(ay, vy) ... (a,, v;). We are given (ul)(6)=m<n—1 and {*(6) +v*
so, by part (a), '

(uGnl)(6) =m—m =0, (ie. (G,0)(A) =0),
and also (GR0)* (0)=10}, (Fvh.y).
Using the fact that
(Gns28)(0) = (Gnl) (6) + @11 (Vs A Gl (0)) s,
we see that (G,,,{)(0) +0 and thus that (uG,,,,¢)(0)=0.

We need at this point the following lemma: If (uf)(f)=p and G has length 1 (no

restriction on £*(6)), then (uG¢)(6) <p+1. Assuming this for the moment we have by using

it over and over,
(4G 120) (6) <1

a3 we needed to show.
To prove the lemma, we consider the following cases:
(@) £%(0) #v*;
(i) £*(6) = v*, and (GL)™(6) +0;
(iii) £*(6) = v*, and (G)®(6) = 0.

For (i), ifyp)l, part (a) implies (uG{)(0)=p—1; if p=0, then {(0) =0, {(6) Av=0
and thus (G¢)(6) =¢(6) +a(v A {'(0))v +0; so in either case (uG¢)(6) <p. For (ii), we have of
course that (uG¢)(0) <p immediately. For (iii) we have {®(0) 0, v A (0)=0 and

(GL)(0) = () +a(v A LP+1 ()0 =0,
when v A {®P+1(6) +=0. Thus, from
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(GO=+0) = £P+06) +alo A L))

we see that (GE)P+V(0)+0 which means that (uG{)(f)<p+1. The proof of the lemma
and therefore of Proposition 8 is complete.

PrOPOSITION 9. (Alignment at 2¢r0s.) If G'=(@n, v,) ... (@, 1) has length n>1 and if
6 €8 and £ €C9(SY, E) are such that £*(6) +v*, (ul)(0) =n, then

(GO)*(6) = v&.

Proof. (By induction on the length n.) For n=1, we have G{={ +a,(v, ALYy, (ul)(0)=

m =1 and v, A {"(6) =i=0; 80
(GLY*(6) =0, k<m—2,

and (GE)™-1(6) = ay(vy A L™(6)) vy +0.
So (G¢)*(0) =vT as we needed to show and further, since v} o3 =... v and since (uG{)(0)>
(#£)(0) —1 (by Proposition 8(a)) the proof can be completed by induction.

In the next proposition a special property of the differential action of the semigroup
S, is studied. Let #4 denote the number of elements in the set 4.

Prorositron 10. (Monotonicity of w* under the action of §,.)
Given SE S, of length 1, i.e. S=(a, v) with a>0 and v +0; given { €C(S!, E), then

wy SC=wd &+ 3 #{0|(uSE) ()= (ud) (0) — 1} + 3 #{6] (uSC) (0) = (uL) (6) + 1}.

Proof. To siniplify notation let S¢ =E , u&=p and /uZ‘= u. We first show that the circle
is the disjoint union of three sets 4, B, and C, where

A ={0|mO0)=n®)—1},ie., multiplicity of zero decreased by 1,
B = {6| u(6) =u(6) +1}, i.e., multiplicity of zero increased by 1,
C = {{0| u(0)=p(0)}, i.e., multiplicity invariant.

That 4, B, and C are pairwise disjoint is obvious; that their union S! is seen as follows.

Let u(6) =m, and since .

Fo = pto 4 gy A EU+D) p,
it follows that -

@) =0 fork<m—2

and thus that (6)>m —1. To complete the argument all we need to show is that u(6) <
m+1; we show, if 4(6) >m +1 then g(6)=m +1. With j(8) >m+1 we have

0 =Em(9) = L™(0) +a(v A L™+(B))v.

Thus, since {™(6) +0, it follows that {("+1(0) -0 and then that u(0) <m +1.
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We define two more sets, the inverse images of ¢* under {* and f*, respectively:
W ={6]2°6) ="} (={8]cw(@) nv=0}),
W={0]20) =} (={0|P6) nv=0)).
The idea of the proof is to compare the two sums
w*t=13 sgn [org T (0)
"=} Zogn forg &' (6)

on the intersection of W and W with the sets 4, B and C.

First we establish three facts; that 4 n W and Bn W are empty and that Cn W=
onw.

A N Wisempty. We have u(0) =u(0) —1 so that, with m =u(6),{"™(0) +-0and Z‘"’“”(G)#O;
we also have, since § € W, that [(™(6) A v=0. Thus,

{om-0(5) = £=D(6) +afw AL™(B)0 = 0
which shows that u(6) >m contradicting the assumption that 6 € 4.

BN W is empty. We have @(0) =u(0) +1 so that, with u(0)=m, Emg) =0, £™() +0;
we also have that m+1(G) A v=0. Thus

0 =Zm(B) =L™(0) +a(v AL™I(B))o,
which implies that v A {™+1(§) 0. But from the equation
Fma () = pm(G) = g v A L)y
we obtain .
v AEmD(6) = v A L),
and thus that v A f m+1)(9) =0 which contradicts the assumption that 6 € W.

CNW=0nW. We have #(0) = p(6) =m. From

£m() = L™ (B) +a(v A LHV(6))

we obtain

v AEM(B) =v A LM(G),

which shows, for §€C, that 0 € W if and only if € W.
The above three facts show that
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‘wi-w=} 3 sgnfarg [T ()~} 3 sgn(arg {7 (6)

ANW

+3 3 {sgn[arg {*) (6)—sgnlarg£*) (O)}.

cnw=caw
We proceed by estimating these three sums.
Sum on AN W. We have u(@)=m>1, () =m—1 and ;™) Av=0. So
0 +£m-1(9) = L™-1(0) +a(v A L™(B) v = alv A L™(B))v
implies v A £™(@) +0. Thus
Em-19) A L™ (B) =[a(v A L™ (8)) 0] A [L™(6) +a(ul™(6)) v]
=a[v AL™(0)]2 >0,
and then [arg £*7(6) > 0.

The sum on A (| W is therefore computed and we have

> sgnlarg I*T (0)=#(4n W).

AW

Sum on BN W. We have u(0)=m >0, u(6)=m+1 and ("™ (6) Av=0. Since Z“m’(ﬂ)%O

we have

0 = {m(g) A ime() = £m(6) A L™(6) +alv A L™V (6)]?
and also 0 = £im(g) = £™(B) +afv A L™D(G)].

This last equation, since {™(6) 40, implies that v A {"+1()+0 and then, with the first

equation, that
L™(O) A L) = —afo AL <O,

which means that [arg £*)'(6) <O.

So the sum on BN W is also computed and we have

> sgn[arg £*) (0)= —#(Bn W).

BNwW
Sum on CNW=CnW. We have u(6) =u(6) =m >0, ™(0) Av=0 and [™(9) Av=0.
First we compute
£em () A L) = [L0™(6) +afv A L)) A [LHD(0) +afo A L™H2(6))v]
= L™(6) A L) +a[ ALHI(O)]?
= [£™(0) +a(v A LTH(G)) 0] ALHD(6).
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Since {"™)(0) Av=0 this shows that Z"""(O) A Z“'”+1’(0)=0 if and only if ™+V(f) Av=0, and
this if and only if £™(0) A {™+D(0)=0. We write C as the disjoint union of C, and C, and
have then the two cases to consider:
Cy = {0] larg £*T'(6) +0, [axg *]'(6) +0}

and C, = {0][arg £*Y(60) = [arg £*1'(6) = 0}.

Sum on C,N W=C,NW. We have £™() AL™1(0) +0 and [™(B) AT™1(0) +0. A
few lines above we obtained

Eim9) A Eimn(@) = £m(0) A L™ +1(0) +af A LB

which implies that
sgn [arg {*]'(0) >sgn [arg £*7(6).

Thus C%ngn [arg C*]' (0) — sgn farg 2*1 (6)=0.

1

Sum on CoN W=0CyN W. We have as on C, that u(6) =ﬁ(0) =m >0, Z™(B) Av=0 and
£™(8) Av=0; but here we also have ™() A L™H1(§) =™(6) A £m+1(9) =0. In this case a
more delicate Jocal study is required. To facilitate this we will make use of the following

which is a simple extension of the sum formula which allows for non-regular values.
LeMmMma: Define

0 if [ularg (*)]1(0) s even and positive

8‘(0)={il if [u(arg *)1(6) s odd and sgn [arg {*]#(6)= % 1.

Then w't=} 3 &),

R
Next, supposing 0€C, N W to be § =0 we write { locally in the form
L0 =(agh™+ ...y o+ (b,0° + .. )w, vAw=1,

where, since ("™(0)Av=("H)(@)Av=0, it follows taking ayb,+0 that p>=m+2. We

compute
(E ALY (O)=agby(p—m)m+-1+

(WA L) (0) =by67 +...
(v AL')(0) = pby6°—1+...
(oALYO) =p(p—1)67-2+...

and (€ AL)OY=(EAL)O)+afv AL OV —afv ALO)][v AL B)]
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Zagby(p—m) 0™P 1+ |+ BEp0?P .. (**)

Thus, since m+p—1<2p—2 (we have p =m+2), the local behavior of { and Z are the

same in the sense of the lemma; i.e.,
e;(ﬂ)vr—sz(ﬂ) for 0EC,NW.

So if we interpret this part of the sum formulas in the extended sense of the lemma we
have

S e (6)— e2(6)] =0.

ciAw
We have shown, adding up the inequalities obtained, that
@'l ZHANW) HHBO W),

which completes the proof of Proposition 10.

ProrosiTION 11. Given S€ S, of length n, S=(a,, v,) ... (a1, v,), and given [ € C2(SY, E)
such that {(6) =0 only if £*(0) +vT, then

@*8¢ >0* +§Z{min[n, (uL) (0)]|2(0) = 0} +F{(1SL) (0] (SL) = 0, (uL)(B) <m—1}.

Proof. If we take note of two facts, the proof can then be given by induction on the
length of 8. First we note (using assumption that {(0) =0 ={*(0) +v7) that

AOW={0|C(0)¥0 and (*(0) =0},

as is seen in the proof of Proposition 10 concerned with the sum on 4 N W. Second, because
of Proposition 9, we have that (a,, v,){ satisfies the hypothesis of this Proposition; so we
can induct until the number of factors is equal to either n or the multiplicity of ¢ at 0.
Using Proposition 8, we see that if (uS¢)(0)=p and (uf)(0) <n—1, then there had to be
at least p steps of the type

‘ (@, vg) .. (a/p ”1)4.'_>(ak+1’ Viey1) - (g, %)C:
where 0 isin BN W.

COROLLARY. Given (€S, of length n, S=(a,, v,) ... (ay, vy), and given L €C«(SL, E) of
the form {=fv,, fEC(SL, R), v €E, v, A v, +0, then

@*SL >4 {min [n, (uf) (0)|£6) = O} + £E{(1Sfvo) 6) | (Sfv) 6) =0, (uf) (6) <m—1}.

Proof. Bince f is real and v, A v, +0 the hypotheses of Proposition 11 are satisfied.
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6. Relation between the actions of §, and &7

Next we study the relation between the action of @7 on real forms (=homogeneous
polynomials) u,€C»(D, R) and the differential action of the semigroup §, on {€C%(S,, E)
where {=f,v, with f,(0) =u,(cos 0, sin §) and »,€E.

In this and later sections the dependence of the various symbols on the order » of the
differential operator 7 will often be suppressed since » may be considered as fixed through-
out. Also we will often make the formal identification between E and C by choosing a
positive basis e,, ¢, and identifying (e,, ;) with (1, ¢); e.g., we will write, for c€C, v€EE,
simply ¢=v (C=E) meaning, with v=ae, + be,, that Re ¢ =a and Im ¢=b.

Let o, 6 be polar coordinates on €, z=x+iy =ge'? =¢” we have the standard operator
identities

0, =20, = }(a +1y) (0, —10,) = }(e0p — 10p).

One establishes by induction the operator identity
2 =[0,— (n—1)]...[0,—1]&,, n>=L (1)
The action of 8, on a form u, is giveﬁ by
DUy = 3(qu, —W0guy)

and thus thé action is that of an ordinary differential operator in d/d6 with constant coef-
ficients.

With 0%,(6) =u. o cos 0, g sin 6) and &=d/df we compute directly from (1)

n-1
z"@;‘ua=2‘"9°611 [(g—20)—idlf,. (2)
Define the operator L, by
L@)=2"111g~20)~id]. @)

Then (2) may be written .
2"z ug=0"Lyf,.
Note that L,, as a polynomial in C{&], has all of its roots in the open lower half plane
when ¢22n—1. When n<¢<2n—2 it turns out, as we shall see, that some roots appear
as conjugate pairs and all the rest are in the open lower half plane. This indicates that the

actions of L, on f, is, with C=E, closely connected to'the action of an S€§, on f,v,, vEE.

To make this connection precise we first show

Prorosition 12. The operator L, factors, Ly=N,A,, where 1, is an operator with real
coefficients, in the.following way. (we always suppose q=n):
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(a) for q<2n—2 and q even,

Nq(a)‘s(_i)zn_q_l“ﬁ_:[(q'—zo)—ia]_, of order q—n—}—l,r
@) =0 nI:f [(q—2o)2+3’], of order 2m—q—1;
o=}@+2) o -
(b) for q<2n—2 and q odd,

N @)=2-"(- i)z”'“'lﬁ[(q _20)—id], of order g—n+1,

n-1
A0=0 [l [g—20)*+*], of order 2n—gq+1;
o=§a+D
(e) for 2n—1<gq

n-1 '
N (@)=2"% Q’[(q—2a) — 0] =L,(0), of order n,
A4(@)=1, of order 0.
Proof. The proof is a straightforward computation and is omitted.

At this point a few more definitions will be useful. Given 8= (a,, v,,) ... (a;, ¥,) € §, with
length m (=v; A v,,; +0) and a wEE call § initially independent of w if v] =w* (=vy Aw=+0)
and call S terminally independent of w if v} +w*. Given a polynomial ¢ in C[z] (or E[x])
define {*(o) to be the line

*
*(o0)= lim [ bz) ] .

zeR |C(x)|

|z|—>00

ProrosiTioN 13. Given L,, as in (3), there exists a unique pair, S,€ S, and w,,GE,

such that, with Ly=N A, as in Proposition 12,
(a) for algebraic action (L, N,€C[3], 2, €R[?], S,w, €E[7]), and C=E,

(ay) Ly = N g4, = 8,4, w,, length of 8;=min [g—n+1, n], |

(ag) 8, is initially indepemient of w,

(ag) S, s tefminally dependent on Ly(o);
{(b) for differential action on f€C(S', R) and C=E,

Lif = Nodof = BylAqf)we, for all .

Proof. Part (a,) follows immediately from Proposition 6 and this together with the
definition of the differential action of §, gives part (b). Write S, in (reduced) form, S,=
(@, vy) ... (@4, v,) Where v;Av;,, 40, and then, a,gaili by Proposition 6, we have
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deg N, =deg S,A,w, = deg S w,+deg 4,.
But if 8, were initially dependent on w, we would have, since then (a,, v;) 4,=1,, that
deg S 4, w, <deg N,

a contradiction. Part (a,) is proved.

Part (a;) follows immediately from part'(a,) and the proof of Proposition 13 is com-
plete. .
At this point, note that the action of 87 on w€C«(D, R) can be written, C=E,

hu= 2 "Gu,= 3: 0 Lyf,= 3 0" NoAofy= § 0" SqAg oW,
q=p ) a=p ¢=p q=p
This is to say that alg action of the N, on C[2] is equivalent to algebraic action of S on
E[¢]. They are not! One can find polynomials w€C[o], { €E[¢] with w=C(C=E) and an N,
such that
N,wé¢ Sl.

The point is that N, operates on real polynomials in the same way as §, operating on real
polynomials times a fixed vector. It is now seen, that in this sense, the proof of the Theo-

rem is reduced to the study of perturbations of this form since

Qi u=1lim w* 3 0%S,A,f,w,.
! o0 a=p

7. Preparation for perturbation

Prorosirion 14'. (A simple reduction of multiplicities). Given L, and f, and 6 €81,
it follows that
(uLqf) () <q —n. )

Proof. The proof is given using the fact that Ou,=p°L,f, and that each real linear
factor (of form az +az) of &u, corresponds to zeros of L,f, at some 6 and 0 +n: Let

[}
Uy = Zoc,,z"i"“’, ¢, €C,
=

where ¢, ;= ¢, (so that u, is real). Then

2 & —nsa-
z"a;'uq=1? olegz” "2

=7

and so z"0"u, can have no more than ¢—n real linear factors which shows in particular
that, for every 0, (uL,f,)(6) <q—n.
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ProrosiTIiON 147,

Given (ufy) 0) > then (uLqfo) (6) = (ufe) 6) — n.

Proof. As above suppose a linear factor of u,, corresponding to 0, 0 +z for f,, is az +az.

Then, with (uf,)(0)=m
Uy = (az +dz)™, deg v =q —m.

A direct computation of 2"d%u,(=L,f,) gives the proof.
ProrositioN 15. (Alignment at zeros.)
If (uf,) (0) >min [g —n+1, n] then, with C=E,
[(Lafo) O)F = [(Selefewa) O)F = [(—9)"]*

for all g(=n).

Proof. We know from Proposition 13 (a;) and Proposition 9 that alignment for all ¢
is with L} (c0); and Lj (c0) =[ —4"]*.

The next result describes a very special and important property of the form of the
perturbations, as displayed just before Proposition 14; the ones we must study.

ProPOSITION 16. (Monotonicity properties of the projective derivative.)
For 0€8* and (uf,) (0)=m=n,
o) — n(q_ nil_)
farg (Lofo)*Y O) =" — =)

Thus the value of the projective derivative (¢=>n, m>n) is always positive, depends only
on the order # in 8%, the multiplicity of the zero at 8, m, and on the (homogeneous) degree

of the form u,. As a sequence it is strictly increasing in ¢ and strictly decreasing in m.

Proof. First we note, directly from the definition, that the projective derivative of a
curve ¢ €C«(8Y, E) is invariant if the curve is multiplied by any real functions g€ C«(S*, R).
Next we normalize by choosing 8 =0 and write f near 6 =0 as f(6) =0"g(6) where g(0) +0;
then, near §=0,

2L/ = 11 [lg—20)~ 6167

= (=i [ + (— " g —nt+ 1) (07917 + ..

m! . m!
(m—n)!e g(0)+.(m—n+ !

=<—i)"[ om-n+ig’ (0)+o(0'"“"+‘)]

+ (=) ln(g—n+1) [0™ *1g(0)+ o(6™ 1))

= (= e 07 ([l — e+ ) GO 0+ [(m =+ 1) g(0) +'(0)6)3-+ 67 *h(@))
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we have after factoring out by
(—1)*lm! gm-n
(m—n+1)!

the form,
£(0) = [n(g —n+ 1)g(0)]0 + [(m —n+1)g(0) +4'(0) 0] +02R(6).

To simplify notation we write {(0) = A6 +[B+C6)i+62R(6) and then compute the projec-
tive derivative of £ at §# =0. In complex form the projective derivative is

[arg Y —Im |C|2
v« [AB—(B+C0)i+062R1[4—COi+6R,]
So larg £*) =Im (462 + (B+ CO)

which at 0= 0 establishes Proposition 16:

g—n+1

4
[arg £*]'(0) =5 =n 12—

8. Localization and perturbation

In this section we will often make use of the hypotheses of the Dual Theorem: that o7«
has an isolated singular point at the origin and that w, is the lowest order form such that
" u, +0.

Define &, and E, by
E,=2"0u, B,=L,f,
so that (C=E),

E,=2"Fu+ 2 0°L.f, = Z 0" 8qAofew, = 2 QqEq- (1)
a=p d=p a=r

The integral formula for the projective winding number of the curves (g, —) and the
definition of the index of the vector field £, at the origin gives

Q2" u=QE, =1lim wy 20 =)= hm— f [arg Ex(o, —)]'- (2)
g0

g—-)O

At each 0 with E,_(0) =0 define the functional V4 by

. . 1 9+h ,
Vo€, =lim lim f [arg €20, =T, 3)
iy e e

and we have by a straightforward limit computation that

QE,=>{VoE,|E,(0) =0} + w’E,. (4)
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The results of sections 6 and 7 give inequalities on wg E,; in this section we will derive,
inequalities on the perturbation term 2{V, E,| E,(6) =0}.
For E,(6,)=0 let x=0—0, and define

Fi(z)=E 0, + ),
% " (8)
Fh(o, ) qupgqlﬂé @) =E.(0, 0;+ ).
Formula (4) now takes the form

Q€. =3 {VoF4|E,(6,) =0} + 0} B, (6)

In most of the following 6, may be thought of as a fixed zero of E, and, for notational
simplicity, the dependence of the various terms on 8, will often be suppressed.

From here on we suppose some familiarity with the elementary theory of algebraic
curves, especially properties of the Newton Polygon (=NP); see, e.g., (10]. Consider the
expansion of a real analytic function g(p, z) about o =2 =0 with terms az®p? and let {(«, 8)},
be the set of all the integer points («, 8) that occur as exponents except for (0, 0). The
Newton Polygon of the function g, NP of g, consists of the finite sequence of lines £ and
the subset {(e,, 8,)} < {(«, B)}, such that

each line in £ contains at least two points of {(é, B)}er (7a)

each line in L separates the origin (0, 0) from the points in {(a, 8)},, not on that line, (7b)

with the equation of the k™ line, g,a +8 =7, & >0, r, >0, the lines in £ are ordered

so that the sequence {g} is increasing (and thus that {r,} is increasing). (Te)
Thus the lines in £ and the pointé {{ay, B4)} in the NP satisfy:

go,+f,=r for o=1,..,¢. 8)

..............

&ty tfy =1, for o=t,,, ...t
where
0<g <..<g, n<..<r,<g, (8)

o >..>a,>0, PSP <. <P,

The reason for ordering the lines in C as in (7e) is that the NP will be used to study the
functional ¥, which involves an iterated limit with ¢—0 before A->0.

There exist rotations on € (which leave 'Iii'ojeéfit?e winding numbers as well as 7,
invariant) so that for sufficiently small ¢ >0 we have using (5) that
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the imaginary axis (=i*) is a regular value of (¥.)*(o, —); (9a)
with {(«,, ,)}, the points in the NP of the function g=Re ¥, (9b)

Re F}_(x) = [a, + o(x)] 2%, a,+0,
Im Fj_(2) =[bya¥s+ o(z"°)] 2", by %0, y,>0;
this means a choice of line, (¢*) after rotation, so that
(F5 )*(0) +i*.

The following is a simple extension of the sum formula for w; as in section 2 where
R, =R U {0} is the natural one point compactification of R so that R, is real analytically
diffeomorphic to S. The proof is omitted.

ProrosiTioN 17'. Let H(y) be a polynomial curve, H: R—C, and v* a regular value
of H*, then

(a) #f v*=H*(c0),

woH =13 {sgn [arg H*Y (y)| H*(y) = v*, y €Rco};
(b) ¢f v*=+H*(o0),
wo H =% {sgn [arg H*]' (y) | H* (y) = v*, y€R}.

ProrositioN 17”. With J= 7., let v* be a regular value of F* (o, — ) for sufficiently
small o >0, then,

Voin= }Lm?, lim § 2 {sgn [arg F*(o, =)' ()| F* (0, 2)=v*, |x| <h}.
—0 o—

(h>0)

Proof. Using the Theorem of Rouché there exists a truncation of 7 giving a poly-
nomial ¥ so that ¥y # = V, . From Proposition 17,

w3 ¥ (e, —) =43 {sen [arg F* (o, —)) (@)| F* (e, z)=v*, z€R..}. (10)
From the definition of V,,
Vodh=Vod =lm F(e. =)~ 0} 50, =),
which together with (10) completes the proof.
Define G, and G, with (o, 8,) chosen as in (9), by

Gy, )= (a,+ ib, x7°) x“"gﬂ", o=1,...,1t.
5—732906 Acta mathematica 131. Imprimé le 19 Octobre 1973
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gk= zk: Gd(@a Z), ng= g

o=tp_}

ProrositioN 18. With {(ay, f,) the set of points in the NP of Re J, =0 and with a
rotation chosen as in (9)

t, s
Vo yn = Voozl G, = Vokz,l G

Proof. By (9a) the imaginary axis is a regular value of (#,)*. Using Proposition 17"

we need only to show that

[VoFa]=lim lim} 5 {sgn [arg G* (0. =) (x)| Re Glo. ) =0, |z| <A},  (1la)
—0 o>
(h>0)
where Re Glp, )= iaax%gﬂo, (11b)
6=0
ts is
sgn [arg G* (0, — )] (¥)= ‘-Sgﬂ(élctaaax“"_leﬂ") (Ef’aﬂ”"’m"eﬂ")- (11¢)

But the standard majorizing properties of the NP show that on the real zero branches of

Za,x*99#s =0 the signs involved in the sum above are exactly the signs of

, 4
farg (9271 = — (2 Re 74) (1m 72
on the zero branches of Re #,=0.
Now, let x=yp* and define the polynomial curves H, by

tx

127
o *Hilo, )= D Golo,7)= D (ay+ibya’s) 2%
o=tg_1 o=t

=ig—1

where we have used the equations #, ay+ f,=r, from the NP for Re #,=0. We have
established using this and Proposition 18 that

s s 7%
VoIn=Vo 2 orH,=V, 2 2 G (12)
k=1 k=10=1p—3

ProrosiTionN 19. With the H, as above,
Vo= 2 {lim wiH, (e, )~ 4 sgn [arg Hi(e, —)) ()}.
33 g

Proof. Apply Proposition 17" to the polynomial curves
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s iy
Z Q”‘Hk_ Z Ga= g’
k=1 ag=1
where we are concerned with the real zero branches of
is
Re G = 2 a,a% g% =0;
o=1
the branches of lowest inijtial degree in p are of the form
2}
z=yo"+0(0®) where Re H,(y)= > a,y%=0, y€R.
o=1

But the real zero branches of the next lowest initial degree are of the form
r=yp"+o0(p*) where ReH,(y)=0, y€ER;

and continuing this process we obtain the lowest terms of all the real zero branches; i.e.,
they are given by

r=yo*+o(g*), k=1,...,s, (13a)
ix
where : " ReH,(y)= 2 a,y*=0, y€ER. (13b)
O=tp—1

From Proposition 17" we have, for sufficiently small ¢ >0,
wyHylo, —) =13 {sgn [arg Hi(e, — )] ()| Re H(y) =0, yER.}
=} > {sgn[arg Hi(e, —))' ()| Re H(y)=0, yER}
+ 4 sgn [arg Hi(g, —)] (°);

from the process in (13) we have for sufficiently small o >0

VoFh= 33 {sgn larg Hi(e, =)V )| R Hy(y) =0, yER}.

These two facts together with Proposition 17" complete the proof.

9. The semigroupoid action
Let J be the set of polynomial curves H, H: R—C, such that
HeN<deg Re H<1+deg Im H.
We also write H =P+ and

P=pyy?+..py Q=g +...+Dp5 Dogo+0, y<1+6.
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Define the following operators on ; note that some of the operators have domains that

are proper subsets of } but that each operator maps its domain into :
(i)' for a;, a,€R, a,a,>0, define A(a,, a,) by |

A(ay, as)[P+1Q] = a, P +1a,0Q;
(ii) for bER, gy +bpy>0 when y +1 +4, otherwise for arbitrary b, define B(b) by

B(b)[P +iQ] = P +i(bxQ +P);
(iii) for c€R, ¢>0, define C(c) by

C(c)[P+1Q)= (P +icQ’) +1Q;
(iv) for d€Z and d+ (uH)(0) >1, define D(d) by

D(d)[P+1Q] = (P+iQ)y*.

Given a polynomial curve H € } consider the orbit of H consisting of all polynomial curves
TH where T is a finite composition of the operators 4, B, C, D; when an operator Bor D
is involved the polycurve on which it operates must of course be in the appropriate domain

of definition.

ProrosiTION 20. For any HE W and TH in the orbit of H
weTH> woH.

Proof. The proof is given for the operators of each type. For (i), we simply note that
A(a,, a,) is a proper affine transformation on C¢(C=E) and that w* is invariant. For (ii),
we take first a rotation so that the real axis is a regular value of H* (although such a rota-
tion need not leave J invariant it is used only to compute w]), and apply Proposition 17".
With Im H(y)=P(y) =0, y€R, ”

sgn [arg (BH)*)'(y) = sgn P(y)Q'(y) = sgn [arg H*]'(y),
so that none of the signs, with y €R, is changed. But the condition that g4 +bp,>0 and the
fact that [arg H*)'(oo) is invariant under rotations on € show that sgn [arg (BH)*](o)= +1
and 80 w; can only increase under the action of B(b). For (iii), apply Proposition 10 identi-
fying the operator (a, v) there with (c, e,), and then, with e, =1, e,=¢, we have

(c, e1)[Pe, +Qe;) = Pe; +Qe, = cle; AN P'ey, +@Q'ey) ey = (P+cQ') ey +Qey = O(c) [P +1Q).

Finally, for (iv), the proof follows immediately from the fact that the projective derivative
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and therefore the projective winding number are invariant under multiplication by real

polynomials.

ProrosiTioN 21. For certain HEHW any TH in the orbit of H satisfies special in-

equalities:
(8) for H=iQ, wo TH >} #{y| Q(y) =0} >0;
(b) for H=P+1iQ. wyTH> — (1 +deg P).

Proof. For (a), note that w*iQ =0 and apply Proposition 20. For (b), we first show that

wy (P+iQ)> — 3 #{y|Qy) =0, yER} — .

This follows immediately from Proposition 17’ if the imaginary axis is a regular value of
(P+iQ)*; if not, P+iQ can be arbitrarily closely approximated by P+ so that deg P=
deg P, deg @ =deg @, and so that the imaginary axis is a regular value of (P +i@)*.

10. Some special perturbations
Recall Proposition 19,

$ tk s
VoFo=Vo2 2 Fj= 3 {limwgH,(o, —)—}sgnlargHi(e, —)1 (eo)}
k=1 o=t k=1 ¢—0

and also, from the proof, that
Vo, 2 Fh,=limwyH,(e, ~) -} sgnlarg Hi(e, =) (=)
Q——)

so that we have the alternate statement of Proposition 19

ProrosiTION 19'.
s 2 s 2
Vo2 2> F,§6= Z1V° > F’a.
=

k=1 0=tz ={z_1

Now the semigroupoid Propositions of section 9 are especially useful under the special
conditions (14) that follow; using these conditions we will show that the approximations
in (9b) and thus the G, as in Proposition 18 take a very special form.

ProrosiTION 22. Let {(«,,B,)} be the set of points in the NP for Re 3,=0. If

(ufs,) O =n for o=ty ..., 4 (14)
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. t
then Vo > Fj >0.
a=tp—-1
Proof. Under the conditions (14) we know by Proposition 15 after a rotation by
(—1¢)" that
(F3)*0)=1* for o=t;y,..., b, (15)
and by Proposition 16 that

[arg (F,)*1 () ==L 2=, m=(f,) 6)).

But by Proposition 14", o, =m — n, so that we have

(Be—m+1)

larg (F%)*] (0) =~ T 0=l b (16)
o

Referring to the approximation (9) we see that (15) implies that y,>> 1. Furthermore (16)
then implies

Ay 0
n(fe—n+ 1)__ J VKT (O Co 2o yubax‘)’a‘l ___ba"}’tr yo-1l
P [arg (F3,)*] (0)= aEt biza I A

but since the left hand side is never zero we have y,=1 and thus, recalling the definition
of G, for Proposition 18,

Gy (0, x) = (@, + tbyx) 2% 0Po, a,+0,b,+0.
Note also then, by a simple computation, that
faxg (75, (0) = [arg G2 (0)= -5 a7
and also, since &,a5+ f5 =1y, that

nn—F,+1) —ngastnlr—n+l)

18
oo+ 1 e+ 1 ! (18)

for 6=1¢,_,, ..., ;. Gathering together (15, 16,17, 18) we have

)
Vo, 2 Fp,=lim wjHy (o, —)—}sgnfarg Hilo, =)' (o), (19a)
=tr—1 e—>0
23
Where e Hi(e.y)= 2 (301 ibeye™) y* = G, (0, yo*) (19b)
g=tp—3
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by _ —gnastn(n—ntl)
ay ar+1

and

for o=ty ..., k. (19¢)

Note, using a proper affine transformation, it follows that

lim ¥ H, (0, — )= wg Hy (20)
e—0
B tx
where H.(y)= 2 (ar+1bsy)y*t;
o=1x_1

also from the assumption (14) we have

[arg Hi (o, =)' (o) = +14. (21)
The next step in the proof of Proposition 22 is to apply the semigroupoid Proposi-
tions 20 and 21 (a). Let
tk
Qy)=y 2 bsy* (22)
o=tp—1

and define the transformation 7' as in section 9 by T = A(a) B(b) C(c) where, writing

T=rk5 E= &,
a=n{r—n+1),

b —&n
nir—n+1)+en’

c=1.
A straight forward computation shows that
T[iQ] = A(a) B(b)C(c) [1Q] =H,.

Assuming for the moment that @ >0 and that B(b) is defined on C(c)[¢Q] we proceed as
follows. From {22), @ has least one real root and, since w*[¢Q]=0, Proposition 21(a) gives

orH, = ol T[Q)> .
But then (20) and (19a) give

tx

Vo tZ Qﬁ"Ff3¢,= w:Hk— % [arg H:(Q: =)' (0)=0
O=lg—1
so that Proposition 22 is proved provided A(a) and B(b) are allowable operators. To see
this; we first note that (ufg )(6;) <p, since uz_is a form of degree f,. From Proposition 14’,
oty <Py —n; 80
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e = & 0o+ B, Z el +1)+n (23)
and so re—n+1>2(g+1)oa,+1>0

which shows that @>0 and thus A(a) is of correct form. To see that B(b) is defined on
C(c)[#Q] we must show that be(a, +1)+1>0 but, with r=r,, e=¢g,

n(r—n+1)—ena,

be(og+1)+1= nr—n-+1)+en

(ag+1)

which, by (23), Zr—+1)+e

This completes the proof of Proposition 22.
We need to study one more special perturbation.

ProrosiTioN 23. Given t, t,_, <t <t,, where

() 0)=n, t1<o<t—1, (ufg)(O)<n—1;
t

k
then Vo=V, 2 Gv>_%(l+%—“tk)-

=tg—1

Proof. Using the approximation (9), in the special form as in Proposition 22 when

b1 <o <t—1, we have

23 t-1 t
> Qo= 3 (ay+ibyx)2%gfo+ > (ay+ ibyxTe) x%ogho;
O=ip_3 O=iz._1 6=t

which, in turn, with z=ye®, e =g, r=r,, gives

123

t-1 23
2 Go=¢" 3 (a,+bsg°y) y*o+¢ 2 (as+ibso?*"y77) y'o. (24)
o=tp—) O=tp-1 o=t
We note that if y,£>¢ the term, as in the proof of Proposition 19, can be neglected; we
may therefore assume that

0<y,<1 for t<o<t, (25)

If we multiply (24) by y—a"‘g" and then apply the proper affine transformation that
sends 1+—1 and ¢—>¢7*¢ (both operations leave V, invariant) we obtain

2] t—-1

2]
Vo 2 Go=Vy 3 (5+1ibey) Yo %+ > (@ + tbyp'To VEyYa) ye~ 0,
o=t

a=tp—y o=tp—1
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To simplify notation, let
t-1

A, +iBy= 3 (@o+tbyy)y*o

o=tg—1
te ' :
Ay +iBy= 3 (ag+ibeg 7o eyTo) oo,
. o=

By our choice of ¢ we have, as in Proposition 22, the existence of a semigroupoid operator
T of the form A(a)B(»)C(c) such that

T[iB;] = A, +iB,.

Now the operators T’ thought of as acting on all polynomial curves always have inverses;
thus 7' =C(—c) B(—b)A(1/a), although T-! need not, of course, be in the semigroupoid.

Define
R+iS=T-"1A4,+1B,)
whence
T[R+i(By,+8)] = (4, +4,)+iB, + By).

Because of conditions (25) on the y, and the form of 7', T = A(a) B(b) C(c), it follows directly
that deg R<deg 4,=o, — o, We now apply Proposition 21 (b) to R+4(B,+8) with T
as above and the proof is complete. '

11. Proof of the theorems

Before putting it all together we need one simple inequality which is stated formally so
that Propositions 22, 23, 24 together give the main idea of the method for estimating the
perturbation term.

ProProSITION 24. Given &', 1 <s'<s, then

s ty

(a) Voﬁ;? Vo Z Z G«r“%“t,"
k=10=t5_1 .
(b) Vo‘;”n> —%o0y.

Proof. The proof of these facts follows immediately from the fact that the sequence
{op} is strictly decreasing and that o, =(uE,)(0;).

ProrosiTionN 25.
(@) For (ufp)(0)<n—1, (B1=0p)

Vo,Ea=VoFs> —hay=(uE,) (6);
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(b) for (ufp)(O)=n, 1<o<i,
Vo, En= Vo3>0
(c) for (ufp)(B))=n and t such that (ufg)(0)<n—1,
Vo,En=VoFs> =y min [n, p—n (uf,) (6, — ).
Proof. Part (a) is Proposition 24(b). For part (b) we have from Proposition 22 that

ix

Vo 2 G.=0,

O=tg_1
and thus, using Proposition 19’,

ts s k
Voy’n—; Vo zlGo-= Z Vo Z GU>O.

k=1 tp—1

For part (c) we show first that V%, > —in; from Proposition 8, «,<n—1 and then Pro-
position 23 completes the proof. Second, since {a,} is strictly decreasing and since o, =
(#E,)(0;)<p—n by Proposition 14’, it follows that V,F,> —3(p—n). Third, again since
VoF2> —}a, and since, by Proposition 14", a,=(ukE,)(0,)<(uf,)(8;)—n it follows that

VoFn<(uf,) 6, —n.
Next we simply sum the inequalities in Proposition 25 and obtain directly the complete

estimate of the perturbation term.
ProrosiTioN 26.
SVo,En> — 3 S{(uB,) (9)| E,(0) =0 (uf,) (6;) <n—1}
— 32 {min [p—n, n (uf,) (0;) —n) | E,(6,) =0, (uf,) (6)) >n+ 1}.
Using the definition £, =2"8%u and also (4) in section 8 we have
Qodzu= —~n+ woBy+5{V,E,|E,(6,) =0} (26)

We also have as an estimate on w; E,.

ProPoSITION 27.

wp By >3 2 {min [n, p —n+1 (uf,) 6))]|1,(6,) = 0}
+3>5{uk,) 0,)| E,(6,)=0, (uf,)(0)<n—1}.

Proof. From the fact that E,=L,f,=N,4,f, and that there exists by Proposition 13
an S,€S, and w€E such that L,f,=S§,4,f,w where the length of S, is equal to
min [n, p~n+1] the proof follows directly from the corollary to Proposition 11.
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Now the identity (26) together with the inequalities in Propositions 26 and 27 give
directly’

ProPOSITION 28
Qi u> —n+3Z{min [n, p—n+1, (uf,) 0,)]]f,0;) = 0}
—§Z{min [n, p—n, (uf,) (0)) —n]| B,(8,) =0, (f,)(6;) >n+1}.

Note again that a linear factor of u,(or &;,) of multiplicity 4 means exactly that f,
(or E,) has zero at 6 and 0+ of multiplicity x; thus Proposition 28 is equivalent to the
Dual Theorem and so the proof of both the Theorem and the Dual Theorem is complete.

12. Remarks

1. The isolated singularity condition is not really important since in the non-isolated
case a real analytic function can be factored out of du, u€C®(D, R), and the index €,
remains invariant. The Loewner conjecture in the case that « €C®(D, R) remains open;

here some condition similar to that of an isolated singularity will no doubt be crucial.

2. Let £, be a homogeneous polynomial

L,(2,2)= ozoc,,z"‘” Z°, ¢,€0
and interpret £, as a mapping from the real one dimensional projective space P(R) to it-
self. As such C, has a topological degree 6L,. Let A(x, y) and B(x, y) be real polynbmia.ls
with z=x+4y and choose ¢€C so that L£,(z, Z) =c[A(x, y) +iB(x, y)]. With a little algebra
one can establish that 0C,= —n if and only if C,(z, 2)=II(a,2+b,%) with a,, b,€C and
@Gy —byb,>0, and this if and only if the polynomial B(z, 1) separates A(z, 1) positively.
There is another Loewner Conjecture which states with «€C®(D, R), 6C,= —n and an

isolated singular point that
QO En(azy Ouz —mn.

This conjecture remains unsettled; an affirmative answer even when #€(C%(D, R)
would be of considerable use in various differential geometric conjectures (see Little [7],
Wall [15]).

The results obtained here for the qualitative properties of the differential action of
So should, with slight modifications, be sufficient but the perturbation theory and the

relation between the differential actions of £, and §, apparently present much more seri-
ous difficulties.
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3. The differential action of the semigroups §, allows for considerable generalization.
First, with real polynomials 4, and B,_,, if B,_, separates A4, positively then, with z, ¥,
f€C=(S", R), the differential equation z=A4,[f] has for given z a unique solution f. Thus
the “parametric” function f may be eliminated as in the classical Heavyside Calculus
to obtain operators of the form y= B, ,[4;'[x]]=(B,_,47)[x]. As is well known these
“degenerate” operators effectively approximate, for example, the Hilbert Kernel Operator
y=Hzx where

y(t)=— 51;‘ Df cot (%) 2(t — s) dt.

It can then be shown, see [12], that for any C® immersion of S! in E reiii;esented by
(x, y) where y=Hz, can also be obtained by y=Sx where § comes from a semigroup §
involving real non-negative functions rather than the constant coefficients as for §,. Since
again S is a finite product of generators the theory of certain integral operators is in this
sense combinatorialized.

Second, also see [12], the definition of the semigroup § and its differential action can
be further extended so that it operates on the C° mappings from an oriented manifold M
of dimension n to an oriented manifold of dimension n+1 (replacing S and E respec-
tively). Suppose M is an oriented manifold of dimension n+1 so that 8 =M and call
f: M~ N positively extendable to M if there exists a sensepreserving (roughly, non-nega-
tive Jacobian) extension F': M—N. One has, with the appropriate definitions, that positive
extendability is an invariant under the differential action of such a semigroup.

This generalization has perhaps most of its interest in the fact that the target need
not be a linear space since the operators are in “‘parametric”’ form; i.e., a principle reason
for a linear target is to make the procedure for eliminating the parametric functions
{(mappings) easier to handle.
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