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Introduction

One of the main difficulties in the theory of duality for coherent sheaves on schemes,
or on analytic spaces, is the problem of joining locally defined objects of the derived cate-
gory of the category of sheaves to a global object. Grothendieck presented a solution in
the algebraic case (Hartshorne [4]) by showing that there is a category of complexes of
sheaves, the injective Cousin complexes, which is equivalent to a subcategory of the
derived category. It is then possible to join together locally defined objects of this sub-
category.

The Cousin complexes are characterized in (Hartshorne [4]) by means of local
cohomology. However, the procedure is not subject to immediate generalization, since it
depends strongly on the special topological properties of the underlying space of a
locally noetherian scheme. The purpose of this paper is to investigate the problem
without restrictive hypotheses concerning the underlying space.

In section 1 we study localization in a category, in the sense of Gabriel [1], and its
relation to local cohomology. For convenience we consider only categories of sheaves and
localizing subcategories defined by subsets, though categories with injective envelopes
may be treated in the same manner. In section 2 the results are extended to the category
of complexes of sheaves. Also, Cousin complexes with respect to a filtration of the space are
defined and some of their general properties are studied.

In section 3 we introduce a class of filtrations of the space, the admissible filtrations.
The main result is Theorem 3.9, which shows that a subcategory of the category of
Cousin complexes with respect to an admissible filtration is equivalent to a subcategory
of the derived category. ‘

‘ In particular, when applied to locally noetherian schemes and filtrations defined by a
codimension function (Hartshorne [4], V § 7), Theorem 3.9 implies that the category of all
Cousin complexes is equivalent to a subcategory of the derived category.
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For information concerning the derived category and the derived functors we refer
to (Hartshorne [4]).

Finally, I wish to express my gratitude to Suomen Kulttuurirahasto for its financial
support.

§ 1. Z-pure and Z-closed Modules

Let (X, Ox) be a ringed space, Z a subset of X (not necessarily closed or locally closed).
The category of Ox-Modules is denoted by C(X); those Ox-Modules whose support is
contained in Z form a full subcategory C,(X) of C(X). We recall that the support of a sheaf
of abelian groups F on X, written Supp (F), is the set of points € X such that F,=0; it is

not necessarily closed in X.

ProrosiTioN 1.1. If 0> F > F—>F" >0 is an exact sequence of Ox-Modules, then F
is in Cy(X) if and only if F, F" are in Cx(X).

In fact, Supp (F) is the union of Supp (F') and Supp (F").

It follows from Proposition 1.1 that Ker (), Im (u), and Coker (u) are in C5(X)
whenever u is a morphism of C,(X). Hence C,(X) is an abelian category, and the natural
embedding functor C(X)—C(X) is exact.

ProrosiTioN 1.2. If Fis an Ox-Module, there is a largest member I';(F) in the family
of sub-Modules £ of F such that Supp (E)<Z.

Proof. Let € be a sub-Module of F such that Supp (§)<Z. For each open subset
U of X, I'U, &) is contained in the family I'zny(U, F|U) of sections fEI(U, F)
having the property Supp (Oy-f)=ZNU. It is easy to see, however, that the mapping
U—~Tz04(U, F|U) is a sub-Module of F with support in Z.

If Fis an object of C5(X), each morphism F— Gfactors through I';(G). Hence F—I"g(F)
is a functor from C(X) to C,(X); in fact, it is the right adjoint of the embedding functor
Cz(X)—C(X). Clearly, I';(F)=F if and only if F is an object of Cz(X).

The functor I'; is left exact; its right derived functors are denoted by H; for i>0,
H%=T;. More generally, for each subset Z' of Z, we write Iy, (F)=Iy(F)/ 2 (F) and
denote by HY,, (¢>>0) the right derived functors of I';,,.. In particular, we have the functor
I'y;2(F)=F/2(F) and its right derived functors Hy,; (i >0); also, s, =W for each ¢>0.

ProrosiTioN 1.3. Let Z, Z', Z" be subsets of X such that Z>Z'>2Z". For each
Ox-Module F there is a long exact sequence
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0— #%'/Z”(J) - #%/z” (F)~ y%/z' (&F
"’ylz'/z' (F)—~ "HIZ/Z’(J) - 7‘1212' >

functorial in F. In particular, there is a functorial exact sequence

F
0~ I'z(F)~ J—Qﬁz_(_)’_ %12(F) ~ H(F -0

and a family of isomorphisms of functors
Hoz(F) > W (F), i>1

Indeed, the long exact sequence is defined by the exact sequence of functors
0T 247:(F) = Iz (F) > I'z12.(F) ~ 0.

A homomorphism f: M-+ M of Ox-Modules is called a Z-isomorphism if Ker (f) and
Coker (f) are in C(X); this means that f,: M,— H, is bijective for each z€X —Z. By

Proposition 1.3 the canonical homomorphism /;(F): F—>H%/z(F) is a Z-isomorphism for
each Ox-Module F.

LemMA 14. For each Ox-Module F we have I'y(Hxz(F)=0. If F is in Cy(X),
then Wy (F)=N5(F)=0.

Proof. Since any Ox-Module F may be embedded into an injective Ox-Module J,
in which case HY,;(F) is a sub-Module of %,;(J), it is sufficient to prove the first asser-
tion for an injective Module. If F is injective, px,z: F— H%iz(F) is an epimorphism, so that
G=(x2)" (Iz(Hiz(F)) is an extension of I';(Hxz(F)) by I',(F). Then G is in Cy(X)
by Proposition 1.1, so G=1I,(F) and therefore I';(H%z(F))=0.

If Supp (F)<=Z, then I';(F)— F is an isomorphism, so that H,z(F)—> HE(F) is bijective
by Proposition 1.3. As H3(F) is in Cx(X), we must have H%z(F) =T H%z(F))=0.

THEOREM 1.5. For each Ox-Module F the following conditions are equivalent:
@) oxF): F>W%z(F) is a monomorphism (an isomorphism).

(@) I'z(3)=0 (and H;(F)=0).

(b) For each object € of Cy(X), Hom, (&, F)=0 (and Ext} (€, F)=0).

(c) For each Z-isomorphism f: M—N of Ox-Modules the map

Homox (f’ 3): Homox (n, :;) _>H0m0x (m: ;)
is tnjective (bijective).
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Proof. The equivalence of (a) and (a’) is an immediate consequence of 1.3. To prove
that (a) and (a’) imply (b), let £ be an object of Cz(X). Each homomorphism £+ F factors
through I'(F), so Hom,_ (€, F)=0 whenever I';(F)=0. For the second part, let G be an
extension of & by F. Then H%z(F) > H%2(G) is an isomorphism, since Hy,z(E)=0 by
Lemma 1.4. If F->H%,;(F) is bijective, F> G~ H%z(§) is an isomorphism, so the exten-
sion splits.

Next we prove that (c) follows from (b). Let f: 1 - N be a Z-isomorphism of Ox-Mod-
ules. If Hom, (&, F)=0 for each object £ of C;(X), the kernel of the map Hom,_(f, F)
is Hom, _(Coker (f), F)=0. If, in addition, fis an epimorphism, the cokernel of Hom, f, ¥
is a sub-Module of Hom, (Ker (f), ) =0, so that Hom, (f, &) is bijective. Hence, it is
enough to show that Hom, (f, F) is bijective if f is a monomorphism and Hom, (&, F=
Extg, (€, F)=0 for each object &€ of C,(X). But this follows from the long exact sequence
of the functor Ext.

It remains to show that (c) implies (a'). Applying (c) to the trivial Z-isomorphism
0->I"5(F) we find that Hom,_(I;(F), F)=0, whence I;(F)=0. Furthermore, if the map
Hom, (H%2(F), F)—~Hom, (F, F) is surjective, the extension

0->F~ gr/z(g)—’ }(3)—)0

splits. But, by Lemma 1.4, }%,2(F) has no nontrivial direct factor with support in Z, so
that HL(F)=0.

Definition 1.6. An Ox-Module F is Z-pure (Z-closed) if the ecquivalent conditions
(a), (&’), (b), (¢) of Theorem 1.5 are satisfied.

ProPOSITION 1.7. For each Ox-Module F, ¥y z(F) is Z-pure; if F is Z-pure, Hy1z(F)
is Z-closed.

Proof. The first assertion has already been proved (Lemma 1.4). If F is Z-pure, the

monomorphism oy,,(F): F-> U z(F)=G defines an isomorphism

yg{/z(emz(g))-' ?‘gr/z(g) - ygr/z(g),

since HY,z (H5(F))=0. Thus it is enough to show that px,,(G) = Hxz(0x/z(F)). As H}iz(G)
is Z-pure, it suffices to note, by 1.5 (c), that they induce the same homomorphism from
F to HxizG)-

In virtue of Proposition 1.7 we can associate with each Ox-Module J functorially a
Z-closed Module HY%,z (H%z(F)). It is called the Z-closure of F and denoted by Clx,z(F).
Composing the homomorphisms gy,,(F) and gx/z(H%z(F)) we obtain a natural transfor-
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mation gy, from the identity functor to the functor Cly,,. The homomorphism g/ ,(F):
F>C0lz,(F) is a Z-isomorphism for each Ox-Module F; if F is Z-closed, ux(F) is an
isomorphism.

The following proposition gives a direct characterization of the functor Cly,,.

ProrosiTION 1.8. Bach homomorphism from an Ox-Module F to a Z-closed O x-Module

G has a unique factorization
#xtz(g)

F——0Clgz(F) > G-
This is an immediate consequence of 1.5 (c), since pg;(F) is a Z-isomorphism.
If the full subcategory of C(X) formed by Z-closed Ox-Modules is denoted by
Cyx/7(X), Proposition 1.8 means that Cly,, is the left adjoint of the natural embedding
functor Oy, (X)—C(X).

CoroLLARY 1.9. If f: F—>F is a Z-isomorphism of Ox-Modules,

. Clx;2(f): Clg;z(F) = Cly;a(F)
is an tsomorphism.

Indeed, f induces an isomorphism

Hom,, (¥, §) - Hom,_(3,G)

of functors of Z-closed Modules §.
It follows from 1.9 that a Z-isomorphism of Z-closed Modules is an isomorphism.

Remark. The functor Cly,, is the localization functor of Gabriel [1]. Similar results are
obtained if C(X) is replaced by any localizing subcategory of C(X). More generally, the
construction of the localization functor applies in any category with injective envelopes.

The connection of localization with local cohomology has also been studied in [2]
(IV, 5.9) in the case of a locally noetherian scheme. Additional information concerning local
cohomology is given in [3], [4], [5]).

§ 2. Cousin complexes

Let (X, Oy) be a ringed space, Z" =(Z?),; a family of subsets of X such that Z?>Z?+
for each p€Z, and Z?=X for some p€Z. In other words, Z* is a strictly exhaustive
decreasing filtration of X.

By a complex F we shall always mean a complex of Ox-Modules. The category
whose objects are complexes, and whose morphisms are homotopy equivalence classes of
morphisms of complexes, is denoted by K(X).
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Definition 2.1. A complex F has supports in Z*, or is a complex with supports in Z',
if Supp (F)<2Z? for each p€Z.
The complexes with supports in Z° form a full subcategory K,.(X) of K(X).

Prorosition 2.2. Each complex L has a subcomplex F* with supports in Z° such that
each morphism from a complex with supports in Z' to L' factors through F .

A complex F having the desired property is given by F° = Ker (I, (L?) > 1y xo-1{ L))
for p€Z. Tt is necessarily unique, and functorial in £'; we denote it by I';-(L’). It is easy to
see that the functor I', preserves homotopy classes of morphisms of complexes; hence it
defines a functor from K(X) to K, (X), which is also denoted by I',.. This is the right
adjoint of the embedding functor K,.(X)—K(X).

PROPOSITION 2.3. There is an isomorphism
W (I (L)) > Im (W (Ip(L)) > W (I'p-1(L)))
of functors of L' for each p€Z.
Proof. Tt follows immediately from the definition of I';-(C')=F" that
22(F)=2Z°I'»(L))
and B (F)=B*(['»(L) N Z°(T'»(L)).

Hence the kernel of

n: Z2(F) > W (-1 (L))
is B?(F), so H?(F') is isomorphic to
Im #=1Im (WP (Ige (L)) = W (L go-1(L)))-

Definition 2.4. A complex F is Z'-closed, if the Module F* is Z*+1.closed for each p€Z.
The full subeategory of K(X) formed by Z'-closed complexes is denoted by K ,5-(X).

THEOREM 2.5. For each complex L' there is a Z'-closed complex F and a morphism
f: £—>F such that each morphism g from L to a Z'-closed complex G has a unique factori-
zation
f U
Moreover, the homotopy class of u depends only on the homotopy class of g.
Proof. We define the complex F and the morphism f by induction. As the filtration

Z" is strictly exhaustive, we must set J*=0 for p small enough. After defining F7-1,
fr1: £21-F9-1) and dP-%: JP-2> JP-1, we write
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&P = Coker (d?~2) @ -1 L7,

F=Clg/p+1(EP), and define the homomorphisms f#, d”-! by composing L?->£?, and
F-1-> €2, with £ F7. '

If u is a morphism of F' into a Z'-closed complex §', and g=wuof, then u?~! induces
homomorphism Coker (d?-2)— G? such that the diagram

o

|l

Coker (d°~%)—— @7

commutes. Hence there is a unique homomorphism o”: £°-> G” such that ¢g” has the

factorization
v?
Lr— Er— (P

g g

and J lw

G — g

commutes. As G? is Z?*-closed, v” has a unique factorization

g3l

This proves that the morphism w is uniquely defined by g =uof. The same procedure also
gives an inductive construction of u for any morphism ¢: L'~ §G".

For the last assertion it is sufficient to show that % is null homotopic whenever uof
is null homotopic.

Let k=(k?), k*: LP— G*-1, be a family of homomorphisms such that

wPof? = dP-lok? +kP+lod?
for each p €Z. We define inductively homomorphisms 47: F*— 7~ satisfying the conditions

& =h?of?, and
u? = dP-Lok? + h*+lod?

for each p€Z. We recall that F*=0 for p small enough.
After defining A” we have

wPodP-1 = dP-loyP-1 = dr-1g}PodP-1

80 that u? —d?-1loh” has a factorization
3—-1732906 Acta mathematica 131. Imprimé le 18 Octobre 1973
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i
J®— Coker (d”1)— G°.
Then the diagram

o

| e

»
>/Br (J) —G?
commutes, showing the existence of a homomorphism m?*!: €21 > G® such that
u? —d” loh? and k**! have the factorizations

Jr— Ertl __"ﬂl_, gﬂ’ Lrtl ., gl _m_p: gp_
As G?is Z-closed, and so ZP+2-closed, mP+! factors through J*+! defining a homomorphism
hP+1: Fr+l GP with the desired properties. This completes the proof.

It follows from Theorem 2.5 that the embedding functor of the category of Z'-closed
complexes and morphisms of complexes into the category of complexes has a left adjoint
L'+ F. The complex F is called the Z -closure of £ and denoted by Cly,;.(L’). The last
assertion of 2.5 shows, in addition, that Cly,. defines a functor from K(X) to K,,.(X).

ProprosiTioN 2.6. Let L be a complex, F =Cly,, (L), and f: C'—F the canonical
morphism. Then

Supp (Ker (#(f))) < Z7+1, Supp (Coker (F*(f))) < Z7+*
for each p€Z.

Proof. We use the notation of the proof of Theorem 2.5. For each p€Z, 3(f) is a

restriction of the homomorphism
CB(L) > FB(F)
induced by f*. This has the factorization
£2/B? (L)~ Coker (37~} — £7) = F°| B*(¥F)
where u is bijective.
As Im (F*-1- £7) is mapped onto BP(F) by the homomorphism &°—F?, Ker (v)

is a quotient of Ker (£7— F*) and therefore Supp (Ker (°(f))) =Supp (Ker (v)) = ZP+.
On the other hand, Coker (}¥?(f)) is

Ker (37/B*(F) >~ F7+)/Im (2°(C) > F|B*(F)).
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Tt follows from the definition of £7+! that the sequence
Zp(:-)_, Jp/Bp(g:-) —> £p+1

is exact. Hence Coker (;ll”(f)) is isoniorphic to a sub-Module of Ker (£P+1—> F+1), whose

support is in Z7+2,

Definition 2.7. A complex of Ox-Modules is a Coustn complex with respect to the
filtration Z" if it is Z'-closed and has supports in Z* (cf. Hartshorne [4], p- 241).

The category of Cousin complexes and morphisms of complexes is denoted by
Coz (Z’; X). It is a full subcategory of K(X), since any two homotopic morphisms form a
complex with supports in Z* to a Z'-closed complex are equal.

ProrositioN 2.8. Let F, G be Cousin complexes. If f: F G is a morphism of
complexes satisfying the conditions

Supp (Ker (¥(f))) < Z*+', Supp (Coker (¥*(f))) = Z°+?
for each p€Z, then f is an isomorphism.

Proof. We prove by induction that f*: J*— (G is bijective, and f*+' induces an
isomorphism of B**(F') onto BP+(§’), for each p€Z. This is trivially true if Z?=X.
Let us consider the diagram

0B (F)>Z2(F) > W(F)~>0
l/" ll" l‘#”(l‘)
0 B(G) > Z°(G) > W (G) 0.
By the induction assumption f” is bijective. Hence Ker (f) is isomorphic to Ker (#°(f)),

so Ker (f')=0, as Z?(F') is ZPH.pure. Furthermore, the support of Coker (f') is in Z?+2
On the other hand, the diagram

0->Z°(F)>F =B (F)~>0
pl jfn }f
0->2Z°(G)—~> G~ B (G)~>0

defines an exact sequence

0 — Ker (f*) = Ker (f") = Coker (f') - Coker (f?) - Coker (") = 0.
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As F? is ZP+l.pure, and Supp (Ker (f"))<=Z?+', we have Ker (f°)=0. Then Ker (f") is
isomorphic to a sub-Module of Coker (f'), whose support is in Z?+%; so Ker (f')=0, as
B+ F) is ZP+2.pure. Moreover, the support of Coker (f*), and therefore the support of
Coker (f?), is in Z?+1, As F? is Z*+l-closed, Coker (f?) is a direct factor of the Z#+l-pure
Module G®. Hence Coker (f?) =0, and so Coker (f")=0.

Remark. HP(f)=0 for each p€Z does not imply f=0 even if f: F -G is a morphism

of Cousin complexes.
ProrosiTiON 2.9. (i) If £ s a Z'-closed Ccomplex, I';.(L’) s a Cousin complezx.
(i) If £ is a complex with supports in Z', Clg,;(L’) 18 a Cousin complex.
Proof. Let £ be a Z-closed complex. Then F*=Ker (I'z2(L?)~>1 xzp+1(LP4)) is

Z*+1.pure, and its support is in Z” for each p€Z. To prove that J? is ZP+'-closed, let us

consider a short exact sequence of (O x-Modules

where Supp (€)= ZP+1. As L? is ZP+'-closed, the inclusion J*— L£? may be extended to a
homomorphism g from G to L. As Supp (G)< Z*, g factors through I';»(L?). Then
Im (g)= F*, since I';p(LP)/F? is ZP+1-pure, so £ is a direct factor of G. This proves (i).
For the proof of (ii) let us consider a complex £ with supports in Z'. The natural
morphism from £ to Clg,. (L) factors through F =1I7.(Cly,;.(L)), which is a Cousin
complex by (i). But then it is seen by the universal property of Cly,.(C’) that the

inclusion F —Cly,,.(L') is bijective.

ProprosIiTION 2.10. Let L' be a complex with supports in Z°', G a Cousin complex, and

g: L= G a morphism of complexes. If
Supp (Ker (H?(g))) < Z°**, Supp (Coker (H?(g))) < Z7+2
for each p€Z, then G is isomorphic to Clyg;.(L').

In fact, g has a factorization
i U
c —’Clx/Z'(E) g ’

where f satisfies the same conditions as g by Proposition 2.6. It follows that Proposition

2.8 may be applied to u.
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§ 3. Admissible filtrations

Let (X, Ox) be a ringed space, Z' =(Z”),.; a strictly exhaustive decreasing filtration
of X.

Definition 3.1. Let F bea n Ox-Module, Z a subset of X. Then F is called Z-acyclic
if 2#,(F)=0 for each integer :>0. If F is Z*-acyeclic for each p€Z, F is called Z -acyclic.

Let Z, Z’ be subsets of X such that Z>Z’. If Fis a Z-acyclic and Z'-acyclic Module, then
Wz (F) =Tz (F) and Wbz (F)=0 for i>0 by Proposition 1.3. In particular, if F is
Z-acyclic, Hy,z(F)=T'xz(F) and Hy;z(F)=0 for i>0.

Example. A flabby Ox-Module is Z-acyclic for each subset Z of X.
To prove this, it suffices to show that if

0->-F->F->F -0

is an exact sequence of Ox-Modules where F' is flabby, then I',(F)—=1%(JF") is surjective.
In fact, let s be a section of I,(F") over an open subset U of X, so there is an open subset
V of U such that U~V <Z and the restriction s| ¥ =0. We may assume that s comes from
a section ¢ of F over U. Then ¢V is a section of F, and if ¢ €I(U, F) is an extension of
t|V, then ¢t —1#' is a section of I'y(F), which is mapped onto s.

Prorosition 3.2. Let 0> F —F—F —0 be an exact sequence of Qx-Modules. If F
is Z'-acyclic, then F is Z'-acyclic if and only if F° is.

This is recorded only for reference.

Definition 3.3. A filtration Z' =(ZP),e; of X is admissible, if I';»(J) is Z'-acyclic for
each p€Z and for each injective Ox-Module J.

Examples. If Z is a closed subset of X, I';(F) is flabby for each flabby Ox-Module F.
Hence any filtration of X by closed subsets is admissible.

Let us assume, for the moment, that X is a locally noetherian space and that each
closed irreducible subset of X has a generic point. If Z is a subset of X stable under
specialization, then I'y(F) is flabby for each flabby Ox-Module F. To prove this, we may
assume X noetherian. If f is a section of I';(F) over an open subset U of X, Y =Supp (O f)
has a finite number of irreducible components ¥ ,(1<i<n) closed in U. Since a generic
point of Y, is contained in UNY,=Y,cZ, it follows by assumption that ¥,=Z for
1<i<n. But then Z'=Y,U..UY, is a closed subset of Z, and f is a section of the flabby
sub-Module I';.(F) of I5(F). :
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It follows, in particular, that if X is a locally noetherian scheme, then any filtration
of X by subsets stable under specialization is admissible.

ProrosiTiON 34. If Z' is an admissible filtration of X and if F is a Z -acyclic
Ox-Module, then I'yo(F) and 'y, z»(F) are Z -acyclic for each p€Z. Moreover, I'ypze(F) is
Z -acyclic for p<q.

Proof. By proposition 3.2 it is enough to show that I';»(F) is Z'-acyclic for each p€Z.
If J is an injective resolution of F, then £ =1I#(J") is a resolution of I'»»(JF) by Z'-
acyclic Modules, so that Hbe(I,»(F)) is the ith cohomology Module of I';¢(L’) for each
¢€Z and for each integer ¢>0. But I'ze(L’)=1,(J"), where r=sup (p, ¢), so it is cohomo-
logically trivial.

CoRrROLLARY 3.5. With the hypotheses of Proposition 3.4, Cly;2(F)=Ix;z»(F) for each
pEZ.

In fact, W%, »(F) =Ig;z»(F) is ZP-pure and ZP-acyclic, hence ZP-closed.

We denote by D(X) the derived category of C(X). Its objects are complexes of
Ox-Modules. Those complexes which are bounded below form a full subcategory D*(X)
of D(X). We recall that each additive functor F: 0(X)—C(X) has a right derived functor
R*F: D*(X)—D*(X), as C(X) has enough injective objects (Hartshorne [4], I, 5.3).

If Z, Z' are subsets of X such that Z >Z’, we denote by N,z (L) the ith cohomology
Module of R*I';,,.(L') for each object £ of D*+(X) and for each 1€Z. We note that, for
example, HWip ze (L) =H I s»,2(L’)) for integers i, p, ¢ such that p<gq, if £ is a complex
of Z'-acyclic Modules.

In the rest of this section we shall assume that Z= is an admissible strictly exhaustive
filtration of X. All complexes are understood to be bounded below.

PROPOSITION 3.6. Let L be a complex of Z -acyclic Modules. The following conditions
are equivalent:

(a) I';-(C) is a complex of Z' -acyclic Modules and the canonical morphism I'y- (L)~ L i8a
quast-isomorphism.

(b) ?'PXIZP(C.) = 0 fOT i: Pez, 7’ = p

(b) Wopizo+1(L)=0 for i,p€EZ,i>p.

Proof. If F =I';.(L) is & complex of Z -acyclic Modules and if J'—LC is a quasi-
isomorphism, then W z¢(L)=H{(Txz2(F))=0 for i>p, as [y,»(F)=0. Hence (a)
implies (b).

By Proposition 1.3 (b’) is a consequence of (b). Conversely, it follows from (b’) by
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induction that Hye-rz»(L)=0 for 1>p, r>0. But Z°"=X for r large enough, so (b’)
implies (b).

Finally, let us assume (b) and (b’). Then My (L)~ W' (L) is surjective for i=p and
bijective for ¢ >p; so F — L’ is a quasi-isomorphism by Proposition 2.3. Further, we note

that, by (b’),
I'ppy 41 (LP) —’Fzr'/zl’“(ﬁﬁl) e

is a resolution of F?/I»+1(L?) by Z -acyclic Modules, and it follows that F?/I%»+1(L?)
is Z'-acyclic. Then F* is Z'-acyclic for each p€Z by Proposition 3.2, so (a) holds.

ProPOSITION 3.7. Let L be a complex of Z-acyclic Modules. The following conditions
are equivalent: '

(@) Cly,;z(L) ts a complex of Z'-acyclic Modules and the canonical morphism
L —~Clg.(L) 18 a quasi-isomorphism.

(b) Hyw(L)=0 for i,p€EZ,i<p.

(b") ;1 (L)=0 for pE€Z.

Moreover, if these conditions are satisfied, L —Clg,;.(L') is an epimorphism of complexes.

Proof. If F =0lg,,.(L') is & complex of Z -acyclic Modules and if £ —~F is a quasi-
isomorphism, then Hye(L')=H (T (F)) =0 for ¢ <p, as I';»(F')=0. Hence (a) implies (b),
and (b') is a trivial consequence of (b).

It remains to show that (b’) implies (a). The notations being as in the proof of
Theorem 2.5, let b7-1; F»-1- £? be thé canonical homomorphism, and let ¢?: £7— LP+!
denote the unique homomorphism such that c?eb*~1=0 and d?: £P— L*+! has the factori-

zation

cD
Lr— & —s L,

for each p€Z. We prove by induction that F*~!, E? are Z'-acyclic, and that the natural
morphism from £ into the complex F,,:

b

¥
NP L . LA R i LB

is a surjective quasi-isomorphism for each p€Z. This is true for p small enough, as £’ is
bounded below. . o »

If . £ is Z'-acyclic, then J° = Cly p+1(EP) =y »+1(EP) is. Z'-acyclic, and EP— F? is
surjective. If £~ £? is also surjective, then
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EPRL = (PP|BA(F)) @ e L7,
so £+l is the quotient of £P+! by the image of
Ker (&—F[B(F)) = Im (b°) +1'p+1(E7),
that is, £7+1 = LPH/cP(I'pp+1(EP)).

By the induction assumption, F, is a complex of Z -acyclic Modules, and £ — F,
is a quasi-isomorphism, so Hge+1(L)=0 is the pth cohomology Module of the complex

Tpo+1(F):
‘ ? a0~ I’zp+1(8”)—>l’zp+1(C”“)—>....

Hence Ker (c?) N I';p+1(£7)=0, and therefore Fp41y is the quotient of J(, by the trivial
complex of Z'-acyclic Modules

R 0—>sz+1(£p)—>c"(rzy+1(£1’)) >0 -

This completes the proof of the induction step.
We note that the final assertion of the proposition is evident from the proof.

Definition 3.8. A complex F of Ox-Modules is called Cohen—Macaulay with respect to
the filtration Z-, if it is bounded below and if

W20 (F)=0 for iz>p,
(F)=0 for i<p.
The full subcategory of D*(X) formed by Cohen-Macaulay complexes is denoted by
D*(X)emz-
We also denote by Acz (Z'; X) the full subcategory of Coz (Z'; X) which consists of

Cousin complexes of Z'-acyclic Modules. By Propositions 3.6 and 3.7 objects of Acz(Z"; X)
are Cohen—Macaulay complexes.

TrrorEM 3.9. Let (X, O) be a ringed space, Z° an admissible strictly exhaustive
filtration of X. Then the natural functor

Q: Acz (Z'; X) ~ D (X)oyezr)
defines an equivalence of categories.

Proof. We have to show that @ is fully faithful and that each Cohen—Macaulay
complex is isomorphic in D*(X) to an object of Acz (Z'; X).

Let J', G' be Cousin complexes of Z-acyclic Modules. If g is a quasi-isomorphism of
@G into an injective complex J', then each morphism « from F to G' in the derived
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category is represented by a morphism of complexes f: F—J. Since F has supports in
Z, f factors through £ =I7%-(J'), and so it defines a morphism f' from F to Clg;-(L').
Likewise, g induces a morphism of complexes G —Cly,,-(L£’), which is a quasi-isomorphism
by Propositions 3.6 and 3.7, hence an isomorphism by Proposition 2.8. Composing its
inverse isomorphism with f* we obtain a morphism of complexes u’: F - (' representing u.
In fact, the difference f—gou’ factors through the kernel £ of the canonical morphism
L'—>C0ly,-(L). But £ is acyclic, hence the inclusion of £ into the injective complex
J is homotopic to zero, and so f is homotopic to gow'.

On the other hand, let us assume that «, u": F — § are morphisms of complexes,
which define the same morphism in D(X). Then the composite morphisms gou, gou’
from F to J are homotopic, and so are the morphisms £, ': F —Cly,;.(L’) induced by
them. But then f=f’, so u=u'. Hence we have shown that the functor @ is fully faithful
in the category Acz (Z'; X).

Finally, to prove that each Cohen-Macaulay complex £ is isomorphic to an object
of Acz (Z'; X), we may assume L' injective. But then I,(L)—L and [%.(C)—=F =
Cly)z.(I'z.(L)) are isomorphisms in the derived category, by Propositions 3.6 and 3.7,
and JF is a Cousin complex of Z'-acyclic Modules.

Remark. The inverse equivalence of categories
E: D¥(X)epzy—~> Acz (Z°; X)

is given by E(F)?=Hop;zo+1(F) (cf. Hartshorne [4], p. 241).
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