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Introduction 

One of the main difficulties in the theory of duahty for coherent sheaves on schemes, 

or on analytic spaces, is the problem of joining locally defined objects of the derived cate- 

gory of the category of sheaves to a global object. Grothendieck presented a solution in 

the algebraic case (Hartshorne [4]) by showing that  there is a category of complexes of 

sheaves, the injective Cousin complexes, which is equivalent to a subcategory of the 

derived category. I t  is then possible to join together locally defined objects of this sub- 

category. 

The Cousin complexes are characterized in (Hartshorne [4]) by means of local 

eohomology. However, the procedure is not subiect to immediate generalization, since it 

depends strongly on the special topological properties of the underlying space of a 

locally noetherian scheme. The purpose of this paper is to investigate the problem 

without restrictive hypotheses concerning the underlying space. 

In section 1 we study localization in a category, in the sense of Gabriel [1], and its 

relation to local cohomology. For convenience we consider only categories of sheaves and 

localizing subcategories defined by subsets, though categories with injeetive envelopes 

may be treated in the same manner. In  section 2 the results are extended to the category 

of complexes of sheaves. Also, Cousin complexes with respect to a filtration of the space are 

defined and some of their general properties are studied. 

In section 3 we introduce a class of filtrations of the space, the admissible filtrations. 

The main result is Theorem 3.9, which shows that  a subcategory of the category of 

Cousin complexes with respect to an admissible filtration is equivalent to a subcategory 

of the derived category. 

In  particular, when applied to locally noetherian schemes and filtrations defined by a 

codimension function (Hartshome [4], V w 7), Theorem 3.9 implies tha t  the category of all 

Cousin complexes is equivalent to a subcategory of. the derived category. 
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For information concerning the derived category and the derived functors we refer 

to (Hartshorne [4]). 

Finally, I wish to express my gratitude to Suomen Kulttuurirahasto for its financial 

support. 

w 1. Z.ptu:e And Z-closefl Modules 

Let (X, Ox) be a ringed space, Z a subset of X (not necessarily closed or locally closed). 

The category of Ox-Modules is denoted by C(X); those O~-Modules whose support is 

contained in Z form a full subcategory Cz(X ) of C(X). We recall tha t  the support of a sheaf 

of abelian groups :~ on X, written Supp (:~), is the set of points x E X  such that  :~ ~=0; it is 

not necessarily closed in X. 

PROPOSITIO~ 1.1. I /  0 ~  ~'-+ : ~  :~" ~ 0  is an exact sequence o/ Ox-Modules, then 

is in Cz(X ) i /and  only i/ ~', ~ are in Cz(X ). 

In  fact, Supp (:~) is the union of Supp (:~') and Supp (:~). 

I t  follows from Proposition 1.1 that  Ker (u), Im (u), and Coker (u) are in Cz(X) 

whenever u is a morphism of Cz(X). Hence Cz(X) is an abelian category, and the natural 

embedding functor Cz(X)~C(X  ) is exact. 

PBOPOSITIO~ 1.2. I /  :~ is an Ox-Module, there is a largest member I'z(:~ ) in the/amily 

o/sub-Modules ~ o/ ~ such that Supp ( E ) c Z .  

Proo/. Let  E be a sub-Module of :~ such that  Supp (~)=Z.  For each open subset 

U of X, _F(U, ~) is contained in the family Fznv(U, ~1 U) of sections / e F ( U ,  :~) 

having the property Supp (Ov . f ) cZN U. I t  is easy to see, however, that  the mapping 

U-~Fznv(U, ~[ U) is a sub-Module of :~ with support in Z. 

If :~ is an object of Cz(X), each morphism :~-~ ~ factors throughFz(~).  Hence :~F->Fx(:~) 

is a functor from C(X) to Cz(X); in fact, it is the right adjoint of the embedding functor 

Cz(X)-~C(X). Clearly, / 'z(:~)=:~ if and only if :~ is an object of Cz(X). 

The functor Fz is left exact; its right derived funetors are denoted by ~4~ for i >0,  

?H~ . More generally, for each subset Z' of Z, we write Fz/z,(:~)=Fz(:~)/l'z,(~) and 

denote by ~tz/z, (i >~ O) the right derived functors of Fz/z,. In particular, we have the functor 

Fx/z(:~) = :~/Fz(:~) and its right derived functors ~l~x/z (i >~ 0); also, :Hizi, = ~z  for each i ~> O. 

PROPOSlTIO~ 1.3. Let Z, Z', Z ~ be subsets o/ X such that ZDZ'DZ" .  For each 

Ox-Module ~ there is a long exact sequence 
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o ~ ~ o  (:7) ~ ~ . ( : 7 )  ... ~ , ~ , ( : 7 )  

- +  ~1,1~. (:7) -~ ~ l z .  (:7) ~ ~ Z I Z "  " - >  �9 �9 �9 

/unctorial in ~. In particular, there is a/unctorial exact sequence 

Qxiz(:7) 
0 -~ F~ (:7) -~ ~ "W~z (:7) -~ 741(:7) ~ 0 

and a/amily o/isomorphisms o//unctors 

W'~(:7)-~ ~'(:7) ,  i~> 1. 

Indeed, the long exact sequence is defined by the exact sequence of functors 

0 ~ F z,/z,, (:7) - ~ / ~ / z -  (:7) -* T'~/z, (:7) -* 0. 

A homomorphism /: ~ - +  7/ of Ox-Modules is called a Z-isomorphism if Ker (/) and 

Coker (/) are in Cz(X); this means that /x: ~x-+~x  is bijective for each x 6 X - Z .  By 

Proposition 1.3 the canonical homomorphism Qx/z(:7): :T~4Oxzz(:~) is a Z-isomorphism for 

each Ox-Module :7. 

LEMMA 1.4. For each Ox-Module :7 we have Fz(:/4~ I /  :7 is in Cz(X), 

then 740~z(:7) = ~t~(:7) =0.  

Proo/. Since any Ox-Module :7 may be embedded into an injective Ox-Module Y, 

in which case ~4~ (:7) is a sub-Module of t~Oiz (Y), it is sufficient to prove the first asser- 

tion for an injective Module. If :7 is injective, ~Ox/z: :7-* t~x/z (:7) is an epimorphism, so that 

= (exzz) -z (Fz(~~ is an extension of Fz(~~ by Fz(:7). Then ~ is in Cz(X) 

by Proposition 1.1, so ~ =Fz(:7) and therefore I'z(74Oxlz(:7))=0. 

If Supp (:7) c Z ,  then/'z(:T)-* :7 is an isomorphism, so that ~z/z(:7)-~ ~1z(:7) is bijective 

by Proposition 1.3. As ~ ( : 7 )  is in Cz(X), we must have "~x~z(:~)=lT'z(~lz(:7))=O. 

THEOREM 1.5. For each Ox-Module :7 the/ollowing conditions are equivalent: 

(a) Qx/z(~): :7-~~ is a monomorphism (an isomorphism). 

(a') / 'z(:7)=0 (and the(:7)=0). 

(b) For each object E o/ Cz(X), Homo x (E, :7)=0 (and Extolx (E, :7)=0). 

(c) For each Z-isomorphism/: ~ -~  7t o/ Ox-Modules the map 

Homox (/, :7): Homo x (~, :7)-+Itomox ( ~ ,  :7) 
is injective (bijective). 
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Proo[. The equivalence of (a) and (a') is an immediate consequence of 1.3. To prove 

that  (a) and (a') imply (b), let E be an object of Cz(X). Each homomorphism E-+~ factors 

through Fz(:~), so Homox (~, :~)=0 whenever Fz(:~)=0. For the second part, let ~ be an 

extension of E by :~. Then ~/0/z(:~)-~ ~//~ is an isomorphism, since ~xlz (E)=0  by 

Lemma 1.4. If ~-~H~ is bijective, ~ -+O-~x /z (O)  is an isomorphism, so the exten- 

sion splits. 

Next we prove that  (c) follows from (b). Le t / :  ~ -+ ~ be a Z-isomorphism of Ox-Mod- 

ules. If HHomox(E , :~)=0 for each object E of Cz(X), the kernel of the map tIomox(], :~) 
is I-Iomox (Coker (/), ~:) =0. If, in addition, [ is an epimorphism, the cokernel of ttOmox ([, :~) 
is a sub-Module of Homox(Ker ([), :~) =0, so that  Homox([, ~) is bijective. Hence, it is 

enough to show that  I'iomoz(/, :~) is bijeetive if ] is a monomorphism and HIomo~ (~, :~) = 

Extl~ (~, :~)=0 for each object ~ of Cz(X). But this follows from the long exact sequence 

of the functor Ext. 

I t  remains to show that  (c) implies (a'). Applying (c) to the trivial Z-isomorphism 

O~I'z(~) we find that  Homoz (Fz(:~), :~)=0, whence Fz(~)=0. Furthermore, if the map 

Homo~ (~~ :~) ~Homoz (:~, :~) is surjeetive, the extension 

0-~  :r - ,  ? / o  (:r) -~ 7 /~  (:~) - ,  0 

sphts. But, by Lemma 1.4, ~~ has no nontrivial direct factor with support in Z, so 

that  ~/~ (~t) = 0. 

Definition 1.6. An Ox-Module :~ is Z-pure (Z-closed) ff the equivalent conditions 

(a), (a'), (b), (c) of Theorem 1.5 are satisfied. 

PROPOSITIO~r 1.7. For each Ox-Module :~,TH~ is Z-pure; i/ ~ is Z.pure, ~~ ) 
is Z-closed. 

Proo]. The first assertion has already been proved (Lemma 1.4). If ~ is Z-pure, the 

monomorphism Ox/z(~t): ~-~ ~HOxlz (:~) = ~ defines an isomorphism 

since ~x/z (~41(:~)) =0. Thus it is enough to show that  s ~/z(s As ~ 1 z ( ~ )  

is Z-pure, it suffices to note, by 1.5 (c), that  they induce the same homomorphism from 

:~to 0 

In virtue of Proposition 1.7 we can associate with each OH-Module :~ functorially a 

Z-closed Module ~l~~176 I t  is called the Z-closure of :~ and denoted by Clxlz(:~ ). 
Composing the homomorphisms Qx/z(:~) and qx/z(~/z(:~)) we obtain a natural transfer- 
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mation/~x/z from the identity functor to the functor Clx/z. The homomorphism gx/z(:~): 

:~-+Clz/z(~) is a Z-isomorphism for each Ox-Module :~; if ~ is Z-closed, #x/z(~) is an 

isomorphism. 

The following proposition gives a direct characterization of the funetor Clx/z. 

PROPOSITION 1.8. Each homomorphism /rom an Ox-Module :~ to a Z-closed Ox-Module 

has a unique/actorization 

:~ ~ C l ~  (:~) -~ O. 

This is an immediate consequence of 1.5 (c), since ~Ux/z(:~) is a Z-isomorphism. 

If the full subcategory of C(X) formed by Z-closed Ox-Modules is denoted by 

Cx/z(X), Proposition 1.8 means that  Cl,~/z is the left adjoint of the natural embedding 

funetor Cx/z(X)~C(X). 

COROLLARY 1.9. I /  /: :~-+ :~' is a Z-isomorphism o/ Ox-Modules, 

Cl~lz(l): Clxlz( ~) ~ Clx/z(T) 
is an isomorphism. 

Indeed, / induces an isomorphism 

Homo1 (~', q)  ~ Homo x (~, 0) 

of funetors of Z-closed Modules ~. 

I t  follows from 1.9 that  a Z-isomorphism of Z-closed Modules is an isomorphism. 

Remark. The functor Clx/z is the localization funetor of Gabriel [1]. Similar results are 

obtained if Cz(X) is replaced by any localizing subcategory of C(X). More generally, the 

construction of the localization funetor applies in any category with injective envelopes. 

The connection of localization with local eohomology has also been studied in [2] 

(IV, 5.9) in the case of a locally noetherian scheme. Additional information concerning local 

eohomology is given in [3], [4], [5]. 

w 2. Cousin complexes 

Let (X, Ox) be a ringed space, Z ' =  (ZV)r~z a family of subsets of X such that  Zv~Z p+I 

for each pEZ, and Z ' = X  for some pEZ. In other words, Z" is a strictly exhaustive 

decreasing filtration of X. 

By a complex :7" we shall always mean a complex of Ox-Modules. The category 

whose objects are complexes, and whose morphisms are homotopy equivalence classes of 

morphisms of complexes, is denoted by K(X). 
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Definition 2.1. A complex :~" has supports in Z', or is a complex with supports in Z', 

i f  Supp ( : ~ ) ~ Z  ~ for each pEZ.  

The complexes with supports in Z" form a full subcategory Kz.(X ) of K(X). 

PROPOSlTIO~ 2.2. Each complex E," has a subcomplex ~" with supports in Z" such that 

each morphism /rom a complex with supports in Z" to I~" factors through :~'. 

A complex :~" having the desired property is given by ~P' = Ker (Fz~ (s ~Fz/x~-I (s 

for p E Z. I t  is necessarily unique, and functorial in s we denote it by/ 'z"  (s I t  is easy to 

see that  the functor F z. preserves homotopy classes of morphisms of complexes; hence it 

defines a functor from K(X) to Kz. (X), which is also denoted by Fz.. This is the right 

adjoint of the embedding functor Kz. (X)~K(X) .  

PROPOSITION 2.3. There is an isomorphism 

~ ( F z . ( s  z~ Im (~n'(Fz,(s ~ ://J'(Fz,-~ (s 

o//unctors ol s /or each p E Z. 

and 

Hence the kernel of 

Proof. I t  follows immediately from the definition of Fz . ( s  ~:" that  

g'(:~')  = ~ ' (Fz , ( s  

B~'(7 ") = B"(/'z~-~(s n E~(_r'z,(s 

~: ~ ( ~ . )  ~ ~(T'~.-~(s 

is B~(~'), so ~ ( ~ ' )  is isomorphic to 

Im r/= Im (~tP (/'z~(s ~ ~/~ (/'zp-1 (s 

Definition 2.4. A complex ~" is Z'-closed, if the Module :~ is z~+a-closed for each p EZ. 

The full subcategory of K(X) formed by Z'-closed complexes is denoted by Kx/z" (X). 

THEOREM 2.5. For each complex s there is a Z'.closed complex :~" and a morphism 

/: I~'-~ :~" such that each morphism g ]rom I:" to a Z'-closed complex 6" has a unique factori- 

zation 

c. 

Moreover, the homotopy class o/ u depends only on the homotopy class of g. 

Proof. We define the complex :~" and the morphism ] by induction. As the filtration 

Z" is strictly exhaustive, we must set ~P =0  for p small enough. After defining :~p-1, 

/P--l: s and dP-2: ~P--2--~P--1, we write 
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EP = Coker (d r-s) | :~-1 s 

:~P=C1x/z~+l(Ev), and define the homomorphisms F, dp-1 by composing s  p, and 

~p-l_~ ~r, with ~ - ~  3t v. 

I f  u is a morphism of :~" into a Z'-elosed complex ~ ' ,  and g = u o / ,  then u ~-1 induces 

homomorphism Coker (dr-S)-+ ~v such tha t  the diagram 

commutes. 

faetorization 

and 

l ? 
Coker (d p-2) , 0  ~ 

Hence there is a unique homomorphism vV: ~ r _ ~ p  such tha t  gV has the 

V p 

1 1 
commutes. As ~P is ZP+Lelosed, v p has a unique faetorization 

U ~ E~--~ y~ - - .  q~. 

This proves that  the morphism u is uniquely defined by  g = u o / .  The same procedure also 

gives an inductive construction of u for any morphism g: s  ~ ' .  

For the last assertion it is sufficient to show tha t  u is null homotopic whenever u o ]  

is null homotopic. 

Let  k =  (kV), kV: ~:~-+ ~v-1, be a family of homomorphisms such that  

u~o/p = d ~ - l o k  ~ +kv+lod ~ 

for each p EZ. We define inductively homomorphisms hP: ~P-+ ~p-1 satisfying the conditions 

kv = hV o /v, and 
u ~, = dV- loh ~, +hv+Xod v 

for each p f i Z .  We recall that  ~v=O for p small enough. 

After defining h v we have 

uVodP-1 = dV-louV-1 _~ dr - loh%dV-1  

so that  u ~ - d P - l o h "  has a faetorization 

3 -  732905 Acta  mathematica 131. Imprim6 Ir 18 Octobrv 1973 
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Then the diagram 

1 p 
:~ --~ Coker (d ~-~) --* 0 u. 

V 
:~ /~ , (7 . )  , ~ ,  

commutes, showing the existence of a homomorphism mr+l: ~p+l._~Ol~ such that 

u p -d ' -~oh  ~ and k ~+~ have the faetorizations 

As ~P is ZP+l-closed, and so Z~+S-elosed, m ~+1 factors through :~r+l defining a homomorphism 

hr+l: ~p+l_~ ~ with the desired properties. This completes the proof. 

I t  follows from Theorem 2.5 that the embedding functor of the category of Z'-elosed 

complexes and morphisms of complexes into the category of complexes has a left adjoint 

E'~->:~'. The complex :~" is called the Z'-elosure of s and denoted by Clx/z.(s The last 

assertion of 2.5 shows, in addition, that Clx/z. defines a funetor from K(X) to Kx/z.(X ). 

PROPOSITION 2.6. Let s be a complex, ~" =Clx/z.(l~'), and f: F~'~ ~" the canonical 

morphism. Then 

Supp (Ker (~F(f))) c Z~+ 1, Supp (Coker (~r(f))) c Zp+~ 
/or each p EZ. 

Proof. We use the notation of the proof of Theorem 2.5. For each p EZ, ~/~(]) is a 

restriction of the homomorphism 

s 1 6 3  ") ~ ~ / B ' ( 7 " )  

induced by fP. This has the factorization 

U I:P/Bn (1: ") ---* Coke r  (~-1_...~ ~p) ~ :~p/~p(~.) 

where u is bijeetive. 

As Im ( : ~ - 1 _ ~ )  is mapped onto Br(:~') by the homomorphism ~n_~:~, Ker (v) 

is a quotient of Ker (~r-~ ~ )  and therefore Supp (Ker (~r(f)))=Supp (Ker (v))cZ p+I. 

On the other hand, Coker (~/~(/)) is 

Ker (T'IB"(:~') ~ Y:'+~)ITm (Z'(s T'IB~'(:~ ")). 
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I t  follows from the definition of ~P+I that  the sequence 

Z,(s :~,/B,(:~-) _~ s 

is exact. Hence Coker (:Hv(/)) is isomorphic to a sub-Module of Ker (EV+l-~:~V+l), whose 

support is in Z v+2. 

Definition 2.7. A complex of Ox-Modules is a Cousin complex with respect to the 

filtration Z" if it is Z'-closed and has supports in Z" (cf. Hartshorne [4], p. 241). 

The category of Cousin complexes and morphisms of complexes is denoted by  

Coz (Z'; X). I t  is a full subcategory of K(X),  since any two homotopic morphisms form a 

complex with supports in Z" to a Z'-closed complex a re  equal. 

PROPOSITION 2.8. Let 5", ~" be Cousin complexes. I /  /: :~'-+~" is a morphism o/ 

complexes satis/yin 9 the conditions 

Supp (Ker (~/v(/))) c ZV+X, Supp (Coker (~/v(/))) c Zv+2 

/or each p fiZ, then / is an isomorphism. 

Proo]. We prove by induction that  / ' :  : ~ - ~  is bijective, and /r+l induces an 

isomorphism of Bp+I(:~.) onto BP+i(~'), for each p EZ. This is trivially true if Z~=X.  

Let us consider the diagram 

0 ~ B~(~ ") ~ ~ ( J ' )  -~ ~P(~')  -~ 0 

o - ~  ~ ' ( 0 )  ~ ~'(0")  -* ~ ( 0 " )  ~ o. 

By the induction assumption/"  is bijective. Hence Ker (/') is isomorphic to Ker (~/~(/)), 

so Ker  (/') =0, as EV(:~') is ZP+l-pure. Furthermore, the support of Coker (/') is in Z p+2. 

On the other hand, the diagram 

o -~ Z , ( J  ") -~ J , - *  ~ + 1  (:~.) _~ o 

0 -~ ~ (0") -~ O " -~  i P + l  ( O )  -~ 0 

defines an exact sequence 

0 -+ Ker (]~) -+ Ker (/") --* Coker (/') -+ Coker (jr) _~ Coker (/") ~ O. 
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As :~v is ZV+l-pure, and Supp (Ker (/"))~Z ~+1, we have Ker (/P)=0. Then Ker (/") is 

isomorphic to a sub-Module of Coker (/'), whose support is in Z~+2; so Ker (/~)=0, as 

BV+l(:~.) is ZP+2-pure. Moreover, the support of Coker (]"), and therefore the support of 

Coker (/v), is in Zv+L As :~v is ZV+l-closed, Coker (/v) is a direct factor of the Zv+l-pure 

Module ~ .  Hence Coker (F)=0 ,  and so Coker (/")=0. 

Remark. ~ ( / ) = 0  for each pEZ  does not i m p l y / = 0  even i f / :  : ~ ' ~ "  is a morphism 

of Cousin complexes. 

PROPOSITION 2.9. (i) I] F~" is a Z'.closed Ccomplex, I'z.(E" ) is a Cousin complex. 

(ii) I /  s is a complex with supports in Z', Clx/z.(s is a Cousin complex. 

Proof. Let s be a Z'-elosed complex. Then : ~ = K e r  (Fzp(s163 is 

Z'+l-pure, and its support is in Z ~ for each p EZ. To prove that  :~r is ZP+l-closed, let us 

consider a short exact sequence of Ox-Modules 

where Supp ( ~ ) c Z  ~+1. As l: ~ is Z~+l-closed, the inclusion :~-~s may be extended to a 

homomorphism g from ~ to l: p. As Supp ( ~ ) a Z  ~, g factors through Fzp(s Then 

Im (g)c :~v, since Fzp(s p is ZP+l-pure, so E is a direct factor of 6 '  This proves (i). 

For the proof of (ii) let us consider a complex s with supports in Z'. The natural 

morphism from s to CIx/z. (s factors through :~" =Fz. (Clx/z. (s which is a Cousin 

complex by (i). But then it is seen by the universal property of Clx/z.(s that  the 

inclusion :~" ~Clx/z.(E') is bijective. 

1)ROPOSITION 2.10. Let •" be a complex with supports in Z', 6" a Cousin complex, and 

g: F~'~ 6" a morphism o/complexes. I /  

Supp (Ker (Mr(g))) c Z~+I, Supp (Coker (~/~(g))) c Zp+ 2 

/or each pEZ, then 6" is isomorphic to Clx/z.(s 

In  fact, g has a factorization 

s u Clxiz. (s ~ ~' ,  

where / satisfies the same conditions as g by Proposition 2.6. I t  follows that  Proposition 

2.8 may be applied to u. 
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w 3. Admissible filtrations 

Let (X, Ox) be a ringed space, Z ' =  (ZP)~z a strictly exhaustive decreasing filtration 

of X. 

De/inition 3.1. Let  :~ bea n Ox-Module, Z a subset of X. Then :~ is called Z.acyclic 

if ~z ( :~ )=0  for each integer i > 0 .  I f  :~ is ZP-acyclic for each pEZ, :~ is called Z'-aeyclie. 

Let Z, Z' be subsets of X such tha t  ZD Z' .  If  :~ is a Z-acyclic and Z'-acyclic Module, then 

o F ~zlz.(:~) = z/z.(:~) and ~4~z,z.(:~)=O for i > 0  by Proposition 1.3. In  particular, if :~ is 

Z-aeyclie, ~~ (:~) = I"x/z(~) and ~ / z  (:~) = 0 for i > 0. 

Example. A flabby Ox-Module is Z-acyclic for each subset Z of X. 

To prove this, it suffices to show tha t  if 

is an exact sequence of Ox-Modnles where :~' is flabby, then I'z(:~)~I'z(:~") is surjective. 

In  fact, let s be a section of/"z(:~") over an open subset U of X, so there is an open subset 

V of U such that  U-V c Z and the restriction s] V = 0. We may  assume tha t  s comes from 

a section t of :~ over U. Then t I V is a section of :~', and if t'ET'(U, :~') is an extension of 

t I V, then t - t '  is a section of Fx(:~), which is mapped onto s. 

PROPOSITION 3.2. Let 0-~ ~' ~ ~ ~" ~ 0  be an exact sequence o/ Ox-Modules. I /  J '  

is Z'-acyelic, then ~ is Z'-acyclic i /and  only i/ ~" is. 

This is recorded only for reference. 

De/inition 3.3. A filtration Z" =(Zr)~'ez of X is admissible, if I'zp(Y) is Z'-acychc for 

each p EZ and for each injective Ox-Module Y. 

Examples. I f  Z is a closed subset of X, Fz{~) is f labby for each f labby Ox-Module 3:. 

Hence any filtration of X by closed subsets is admissible. 

Let  us assume, for the moment,  tha t  X is a locally noetherian space and tha t  each 

closed irreducible subset of X has a generic point. I f  Z is a subset of X stable under 

specialization, then Fz(Y) is f labby for each flabby Ox-Modnle ~. To prove this, we may  

assume X noetherian. I f  / is a section of Fz(~  ) over an open subset U of X, Y =Supp  ( O r " / )  

has a finite number  of irreducible components Y,(1 ~<i ~<n) closed in U. Since a generic 

point of Y, is contained in U N Yt = Y~ c Z, it follows by assumption tha t  Y, c Z for 

1 ~< i ~< n. But  then Z '  = Y1 O... u Y ,  is a closed subset of Z, and / is a section of the f labby 

sub-Module I'z,(:~) of l"z(:~). 
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I t  follows, in particular, that  if X is a locally noetherian scheme, then any filtration 

of X by subsets stable under specialization is admissible. 

PROPOSITION 3.4. I /  Z" is an admissible filtration o/ X and if :~ is a Z'-acyclic 

Ox-Module, then /~zp(~) and /'x/zp(:~) are Z-acyclic /or cach peZ.  Moreover,/'zplz~(~) is 

Z'-acyclic /or p <~q. 

Proo]. By proposition 3.2 it is enough to show that  Fz~ (:~) is Z'-acyclic for each p EZ. 

If y" is an injective resolution of :~, then I~" =Fz~(Y') is a resolution of Fzp(:~) by Z'- 

acyclic Modules, so that  ~tz~(Fzp(~)) is the ith cohomology Module of Fzq(s for each 

qeZ and for each integer i >~ 0. But Fz~(s = Fz,(Y'), where r = sup (p, q), so it is cohomo- 

logically trivial. 

COROLLARY 3.5. With the hypotheses o/Proposition 3.4, Clx/zp(~)=Fx/zp(~) /or each 

pEZ. 

In fact, ~/zp(:~)=Fx/zp(~) is ZP-pure and ZP-aeyclic, hence Z~-closed. 

We denote by D(X) the derived category of C(X). Its objects are complexes of 

Ox-Modules. Those complexes which are bounded below form a full subcategory D+(X) 

of D(X). We recall that  each additive functor F: C(X)~C(X) has a right derived functor 

R + F :  D+(X)~D+(X), as C(X) has enough injective objects (Hartshorne [4], I, 5.3). 

If Z, Z' are subsets of X such that  Z ~Z' ,  we denote by ~z/z.(E') the ith cohomology 

Module of R+Fz/z.(s ") for each object s of D+(X) and for each fEZ. We note that,  for 

example, ~4~lzq(s163 for integers i ,p, q such that  p<~q, if E" is a complex 

of Z'-acyclic Modules. 

In the rest o/ this section we shall assume that Z" is an admissible strictly exhaustive 

filtration o / X .  All complexes are understood to be bounded below. 

PROPOSITIO~ 3.6. Let s be a complex o/Z'-acyclic Modules. The/ollowing conditions 

are equivalent: 

(a) Fz. (F~') is a complex o/Z'-acyclic Modules and the canonical morphi~n Fz. (s -~ s is a 

quasi-isomorphism. 

(b) ~ / z , ( s  /or i, pEZ, i>~p. 

(b')~z,~z,+~(s /or i, pEZ, i>p.  

Proo/. If :~" =Fz.(s is a complex of Z'-acyclic Modules and if :~'-~s is a quasi- 

isomorphism, then ~xlz~(l:')=~(Fx/zp(~'))=O for i>~p, as Fx/zp(~t)=0. Hence (a) 

implies (b), 

By Proposition 1.3 (b') is a consequence of (b). Conversely, it  follows from (b') by 
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induction that  :H~zp-,/:(l:')=0 for i~p ,  r>0 .  But Z~-~=X for r large enough, so (b') 

implies (b). 

Finally, let us assume (b) and (b'). Then ~H~p(C')-~t(s ") is surjeetive for i=p  and 

bijective for i >p; so ~'--> s is a quasi-isomorphism by Proposition 2.3. Further, we note 

that, by (b'), 
FZplZ "+1 ( C ~) ~ FZp/z,+ l (C Ip+l) ---~ ... 

is a resolution of :P/F:+I(U) by Z'-aeyelie Modules, and it follows that  :P/F:+~(U) 

is Z'-aeyelic. Then :~v is Z'-acyelie for each pEZ by Proposition 3.2, so (a) holds. 

PI~OPOSITIOlq 3.7. Let s be a complex o/Z'-acyclic Modules. The/ollowing conditions 

are equivalent: 

(a) Clx/z.(C') is a complex el Z'-acyclic Modules and the canonical morphism 

C'~Clx/z.(C') is a quasi-isomorphism. 

(b) ~ p ( s  /or i, pEZ, i<p .  

(b') v-1 �9 ~z ,  ( C ) = 0  /or pEZ; 

Moreover, i/these conditions are satisfied, s is an epimorphism o/complexes. 

Proo/. If ~" =Clx/z.(C) is a complex of Z'-acyclie Modules and if s is a quasi- 

isomorphism, then :H~p(C')= :Ht(F:(:~'))=0 for i <p,  as F : ( ~  ~) =0. Hence (a) implies (b), 

and (b') is a trivial consequence of (b). 

I t  remains to show that  (b') implies (a). The notations being as in the proof of 

Theorem 2.5, let bY-l: ~ v - l _ ~  be the canonical homomorphism, and let d:  ~ - ~ l :  ~+1 

denote the unique homomorphism such that  dobV-l=0 and d~: E~_~ ~+1 has the factori- 

zafion 

s  E~+i, 

for each p6Z.  We prove by induction that  ~v-~, E n are Z'-acyclic, and that  the natural 

morphism from s into the complex ~v): 

b ~ - 1 cp 
... _.__, 3~- 2 __._~ 3~,- i _____. s C, ,+ I  .__~ C ~ + 2  ._ , .  , , .  

is a surjeetive quasi-isomorphism for each p EZ. This is true for p small enough, as s is 

bounded below. 

I f  En is Z'-acyclic, then ~ =  C/x/:+!(Er) =Fx/:+!(~ n) is Z'-aeychc, and ~n-~ ~v is 

surjective. If EZ -~ E v is also surjective, then 
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g~,+l = (3: , /B, , (y: . ) )  | ~, s 

so ~+1 is the quotient of s by the image of 

Ker (Er-~ :~/]~P(:~')) = Im (b p-*) +Fzp+l(~r), 

that is, ~P+* = s 
By the induction assumption, :~ip) is a complex of Z'-acyclic Modules, and s :~i~) 

is a quasi-isomorphism, so ~p+*(l~')=0 is the pth cohomology Module of the complex 

- r z , + ,  (:~i~)): 
. . .  -~  0 -~ F z , + l  ( g  ~) ~ F z , § 1 6 3  -~ . . . .  

Hence Ker (c ~) N-Fzp+l(~ ) = 0, and therefore :~i~+*) is the quotient of ~('~) by the trivial 

complex of Z'-acyclic Modules 

. . .  - ~  o - ~  F ~ , + , ( s  ~ e ~ ' ( F z , + , ( s  ~ 0--+ -- .  

This completes the proof of the induction step. 

We note that the final assertion of the proposition is evident from the proof. 

Definition 3.8. A complex :~" of Ox-Modules is called Cohen-Macaulay with respect to 

the filtration Z', if it is bounded below and if 

~/zp(:~')=0 /or i>~p, 

~zp(:~')=0 /or i<p.  

The full subeategory of D+(X) formed by Cohen-Macaulay complexes is denoted by 

D+ (X)cM(z.~. 
We also denote by Acz (Z'; X) the full subcategory of Coz (Z'; X) which consists of 

Cousin complexes of Z'-acyclic Modules. By Propositions 3.6 and 3.7 objects of Acz (Z" ; X) 

are Cohen-Macaulay complexes. 

THEOREM 3.9. let  (X, Ox) be a ringed space, Z" an admissible strictly exhaustive 

/iltration o / X .  Then the natural/unctor 

Q: Acz (Z'; X) ~ D+ (X)CM(Z ., 

de/ines an equivalence o/categories. 

Proo]. We have to show that Q is fully faithful and that each Cohen-Macaulay 

complex is isomorphic in D+(X) to an object of Acz (Z'; X). 

Let :~', ~" be Cousin complexes of Z'-acyclic Modules. If g is a quasi-isomorphism of 

~" into an injective complex :7", then each morphism u from :~" to ~" in the derived 
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category is represented by a morphism of complexes/:  3"-~ :7". Since 3" has supports in 

Z', / factors through /:" =/~z'(Y'), and so it defines a morphism ]' from 3" to Clx/z.(F~'). 

Likewise, g induces a morphism of complexes ~"-~Clx/z. (s which is a quasi-isomorphism 

by Propositions 3.6 and 3.7, hence an isomorphism by Proposition 2.8. Composing its 

inverse isomorphism with ]' we obtain a morphism of complexes u': 3"-~ ~" representing u. 

In fact, the d i f f e r e n c e / - g o u '  factors through the kernel ~" of the canonical morphism 

s163 But ~" is acyclic, hence the inclusion of ~" into the injective complex 

y" is homotopic to zero, and so / is homotopic to gou'. 

On the other hand, let us assume that  u, u': 3"-~ ~" are morphisms of complexes, 

which define the same morphism in D(X). Then the composite morphisms gou, gou' 

from 3" to Y" are homotopic, and so are the morphisms /, /': 3"->Clx/z.(s ") induced by 

them. But  t h e n / = / ' ,  so u =u'. Hence we have shown that  the functor Q is fully faithful 

in the category Acz (Z'; X). 

Finally, to prove that  each Cohen-Macaulay complex s is isomorphic to an object 

of Acz (Z'; X), we may assume s injective. But then Fz.(s163 and Fz . ( s  

Clx/z.(Fz.(s are isomorphisms in the derived category, by Propositions 3.6 and 3.7, 

and 3" is a Cousin complex of Z'-acyclic Modules. 

Remark. The inverse equivalence of categories 

E: D+(X)cM(Z.) ---> Acz (Z'; X) 

is given by E(3")~--~/~p/zp+~(:~ ") (cf. Hartshorne [4], p. 241). 
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