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Introduction 

Throughout this paper  S shall denote a discrete Abelian semi-group with an ir- 

reducible unit, denoted 0, and with a law of cancellation. Spelled out explicitly the 

two last conditions read: 

Xl-{-X2=0 =~ •1=X2=0, (1) 

x l  + y = x2 + y =- x 1 =  x ~, (2) 

for elements xl, x 2, y belonging to S. A semigroup of this kind possesses a natural  

partial  ordering where x 1 ~< x2 means tha t  y E S exists such tha t  x 1 + y = x~. Since y 

is unique the notat ion x ~ - x  1 stands for an element in S well defined whenever 

x 1 <~x~, 

On S we postulate the existence of a positive function co(x), satisfying the fol- 

lowing two conditions: 

y ~< 2 x ~ co(y) ~< 2 co(x), (3) 

e -~'~(~) -<< 1, (4) 

where ~0 is a positive constant. In  (4) as in all series in the sequel the summation 

is extended ower x E S if no other indication is given. The two previous conditions 

imply tha t  

N(x, S) -= ~ 1 < e ~'~(~). (5) 

The counting function N(x, S) being finite expresses an intrinsic proper ty  of S not 

shared by  all semigroups and particularly not by  " h a l f  planes" of lattice points con- 

sidered by  Helson and Lowdenslager (of. [3], [4]). 
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To S and to we associate a locally convex topological space of functions A = A(S, to) 
defined as follows: A contains all numeric functions /(x) on S such tha t  for some 

> 0, varying with /, 
iiii1 =    if( )l oo. 

Bounded subsets of A are of the form 

= ( ]  I II]II  < 

where 2 and m are positive constants. A sequence {/n}F converges in A if it is 

contained in a bounded set and converges pointwise, or equivalently expressed, if for 

some fixed ~, {/n} is a Cauchy sequence in the b-norm. 

Each continuous linear functional on A has the form 

(f, q) = Y/(x)  q(x), 

where ~ is a function on S such tha t  for all 2 > 0, 

(6) 

The topology of the dual space A '  is determined by the family of norms defined by  (6). 

By  g~, we shall denote all characters on S belonging to A', i.e. functions ~(x) 

satisfying (6) and the equations 

~(0)=1,  ~ ( x + y ) = ~ ( x ) ' ~ ( y ) ,  x, y e S .  

The character which equals 1 a t  x = 0 and vanishes elsewhere on S does always belong 

to X~, and shall be denoted e. The Laplace transform of an / E A  is defined by the 

relation 
](~) = (t, ~) = 7. t(x) ~(x), ~ e zA.. 

The shift operators T~, T ES, and their adjoints T_~ are defined as follows: 

~ < x  
T~:/(x) = /(x07:)i ~ x  

T _ , l ( x ) = l ( x + ~ ) ,  x , ~ S .  

I f  ]]/ll~ is finite it  follows by (3) tha t  IIT~/]]~a<~]]/]l~ for all YES, so the set of shift 

operators is uniformly bounded in ,4. We should also notice tha t  the transform of 

T,[ equals ~(~)f($). 

After these preliminaries our main problem can be stated. Let  A r denote the 

closed linear subset of A spanned by  the set { T . / [ v  E S}. I f  I vanishes a t  a point 
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~EZA,, then the same is true of the transform of each gi lA  I. Hence, A r # A  since 

e cannot belong to AI, the transform ~ being everywhere equal to 1. The condition 

]=~ 0 is thus necessary for Af being the whole of A. If  this condition is also suffi- 

cient we shall say that  the closure theorem holds in A. 

The first and most important  result in this general field is Wiener's theorem on 

the translates in the space L 1 (R) which subsequently gave rise to the theory of Banach 

algebras. Without being precise we recall tha t  the closure theorem is known to be 

true in a variety of Banach spaces provided the topology forces f(x) to tend suffi- 

ciently fast to 0 at infinity. This study originates in the belief that  the closure 

theorem would be true again in certain topological spaces on semigroups if the topology 

admits /(x) to increase sufficiently fast. This conjecture is supported by  results in 

some specific cases. In a previous paper [2] the closure theorem was shown to be 

false in the Hilbert space A = L  2 (S) on S = Z  + (the additive semigroup of integers 

>~0) with norm 

II/11 = I I (x )  

However, the necessary and sufficient condition given in [2] and implying the pro- 

perty ~I I=  A, permit us  to derive the following conclusion: If  w(n) = n ~, 0 < ~ < 1, 

then the closure theorem in A(Z +, co) is false if ~< l / s  and true if ~>1/~. 

In this paper we aim to show that  the validity of the closure theorem in spaces 

A(S, ~) depends on a certain critical rate of growth of o .  To characterize tha t  rate 

of growth shall be our main goal. 

A necessary condition 

THeOReM I. 1] the closure theorem holds in A(S, co) then the series 

~o(n x) 
~ 1  n ~/~ (7 )  

diverges /or each x E S, x # O. 

Under the assumption tha t  (7) converges for an x0~=0 we shall form a counter- 

example showing that  [ 4 0  does not imply A r =A .  Let  f0 (z)be the analytic function 

( - l + z ~ = ~ a n z ~  , Iz] < 1, 
f 0 ( x ) = e x p \  l - z ]  o 

and define ](x) on S by the conditions 

I a n ,  X ~ U X  o 

/(x)=[o, ~r 
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where Sxo denotes the subsemigroup {nx  o, n = 0, 1 . . . .  ). This ] does certainly belong 

to ,4 because ]o (z) is bounded in the unit disk, and consequently an is bounded. For  

each ~eX~., we have ~(x0)=z, I z J < l .  Hence ~(nxo)=z '~ and 

/(~) = Y.a. ~"=/0(z)*0 .  
O 

In  order to prove tha t  A I * A  i t  is now sufficient to exhibit an element cpfiA', 

~0 z~ 0, such tha t  for all ~ q S 

o = ( T , I ,  q) = ~, ICr) co (x + 3). (8) 

We choose ~0 vanishing outside SXo and equal to c, a t  x =  n x o, where the c~ shall be 

determined later. The relation (8) is automatical ly satisfied for ~$Sx~ because each 

term in the series will vanish. I f  ~ E A ' ,  then the series 

q0(z) = ~ ~(v) o z" (9) 

converges absolutely for t zl >~ 1 and condition (6) takes the following form for 

~'-=nXo, n>~O, 

0 = a . c . + ,  = ~ [o (et~ ~o (el~ et"~ dO. (10) 
v=0  

where h o (e i~ =/o  (e~~ ~o (ei~ is a bounded function continuous for 0 # 0 (mod 2 n). I f  

therefore (8) is satisfied, then the Fourier coefficients of ho(e ~~ vanishes for negative 
indices and ho(e ~~ represents the boundary values of a function ho(z ) analytic in 

]z I < 1, bounded there, continuous for I z I = 1, z + 1, and vanishing a t  z = 0. This 

implies tha t  qo 0 (z) can be continued analytically into the function h o (z)//o(Z) across 

each point ~= 1 on I zl = 1. Hence, ~v o (z) is regular in the region z # 1. We now recall 

this classical theorem by Wigert: The series (9) represents a function ~0 o (z)regular for 

z + 1 and vanishing a t  z = 0, ff and only if there exists an entire function ~(w) with 

the properties: 
O ( v )  = c , ,  v = 0 ,  1 . . . . .  

log I+(w)l=o(Iwl), (ll) 

Wigert 's  theorem gives us good guidance concerning the choice of the c,, but  our 

particular problem needs the following additional result. I f  (11) is strengthened to 

log I r l <lwl +co t 
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and if Z [r < ~ (13) 
0 

then ~o(z) will satisfy the inequality 

I l_~1+ql I~I<:. (:4) I~o(=)l < coast exp ~8 1 - : / I '  

The proof is elementary. The transformation 

f ~ ( s )  = e -w qJ(sw) dw 

takes (I) into an entire function ~ satisfying log I~p(s)]~<lsl/4+const. The inversion 

formula 

r  = 2 ~ / f ,  s, : r  ~P(s)eW'Sd--ss 

holds for all finite w and for r > 0. If the integral representation of c~ = (I)(v) is in- 

troduced in (9) and the order of integration and summation is reversed we obtain 

the formula 

z f l  ~(s)ds 
(Po (z) = ~ 81 : ,  (z - e 1'~) s '  

valid for z outside the contour described by e :/', Is I= r. The estimate on ~p(s) together 

with an appropriate choice of r yield the inequality 

(I exp I z - 1 (I5) 
I~o (~)l < eonst I ~ -  1 I 

By virtue of (13), ~0(z) is uniformly bounded for I z { = l ,  z 4 1 ,  and (14)now follows 

from (15) by an application of the Phragmen-Lindel6f principle to the function 

( : :• 
~0 0(z) exp 8 l - z /  in [ z [ < l .  

In order to determine q)(w) we set k n =m ax  (eo(~xo) for ~ < 2 n .  By (3)we have 

kn ~< 2 co (n x0) so the series ~ n-V' k~ will converge. Since k~ is increasing with n there 

exists on (0, ~ )  a monotonic increasing function y(u) such that  y(n)/k, tends to oo 

with n while 

- - ~  au < oo. 

We now recall another well-known property of entire functions. If y(u) is in- 
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creasing and (16) satisfied, then there exists even entire functions F(w) with the 

properties: E(0) = 1, 
log I ~(w) I < lw I + co~t,  

[ F(u) [ ~< const e -r(u'), u real. 

We choose such a function F(w) and define (I)(w)=F(~w). 

satisfies (12). Moreover, 

[(I) (~) [ ~ coast e -r(') <~ eonst e -~ ~(~'), 

where ~ tends to oo as v - > ~ .  The choice c~ =(I)(v) therefore yields a function 

E A' and the condition (10) is certainly satisfied since the product q~o(z)]o (z) is a 

bounded analytic function in ] z ] < l ,  vanishing at  z=O. Hence, A/ :~A .  

(17) 

(18) 

Then (I)(w) is entire and 

Multipliers 

Assume ] , g E A ,  I ] ]Ha<~,  I lgl]a,<~,  then the pointwise product ] .g  belongs to 

A and IIt'gll,+~.< IIlll~llgll~.. The convolution ] * g  is defined by the formula 

/ ~ g (x) = ~ /(xl) g (x~) = ~ / ( y )  g (x - y). 
Xl +Xz~X y ~ :  

By virtue of (3), I/(y)f(x-y)[<~[[/l[~Hq[[s. e2(~+~')'~(x) , 

which together with (5) implies 

II1 * aliA,.-< II111~ Ila I1~, 

for ; t"~>2(2+2'+~0). Both pointwise multiplication and convolution are therefore 

continuous mappings of A x A into A. 

Of particular interest is the properties of A considered as a convolution algebra. 

By J(/) we shall denote the ideal generated by /: 

g(/) = {/~e gig EA}, 

and by J( / )  the closure of J(/). Since each linear combination of the elements T j ,  

E S, equals a convolution / * k  where k has finite support, it follows that  A r = J ( ]  ). 

We now introduce the fol lo~ng notion: a ]unction ~ E A shall be called a converting 

multiplier i] /or each / E A  with ]:~O it holds that e . l i E J ( / )  whenever /1E j ( / ) .  

The collection M of converting multipliers is obviously a closed linear subset of 

A with the property that  Q1, ~2 E M implies QI"~2 E M. This notion is connected with 

our main problem as follows: The closure theorem holds in A i/  and only i /  M = A .  
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The proof is trivial. I f  the closure theorem holds, then for each [ with [~:0 

and for each ~EA we have ~ . [1E A =J ( ] )  and the conclusion QEM follows. If, on 

the other hand M = A ,  then M contains the unit  e of the convolution algebra, and 

~ : 0  implies e ,[EJ([) .  But  e .[=e . / (O)  and [(O)=[(e)~=O, so J ( [ )  contains e and is 

therefore equal to the whole of A. 

The notion of converting multiplier is thus trivial whenever the closure theorem 

holds in the space. This is however not the case with a subset M 0 of M defined as 

follows: An element ~ E A is a proper converting multiplier and shall belong to M o i/ 

/or each [ E A with ~ # 0 and /or each g E A the relation ~. (/~+ g) = [ -)6 k is saris/led 

by some element k E A. 

The closure M 0 of M 0 is contained in M, and M 0 contains finite products of its 

elements. The question whether always M 0 = M has not been resolved in this paper. 

The set M o derives its importance from the fact  tha t  it contains subsets which 

can be derived by  a simple algebraic method, as will be shown in the following section. 

Polynomials  on S 

By H =  H(S) we shall denote the set of all additive (and finite) functions O(x) 

on S. Each mapping x--->O(x) is thus an homomorphism of S into an additive 

semigroup of complex numbers. A function p(x) shall be called a polynomial on S 

if it has a representation 

p(x) =p(0)  + ~ YI Ore., (X), (19) 
rt m 

where the Om.n belong to H and where series and products are finite. In  (19), p(0) 

stands for the function equal to the constant p(0) everywhere on S. 

We shall first derive some properties valid, irrespective of the topology, for all 

functions [(x) which are finite on S. Since the number  N(x, S) of elements y ~ x  is 

finite, it follows tha t  the convolution [ r g is always well defined. We shall write 

h *~ for the n-fold convolution of h with itseff, defined as e for n=-O. The value of 

h *~ at  a point x does not change if h is replaced by  the function h 0 (y) which equals 

h(y) for y-<<x and vanishes elsewhere on S. For h o we have the familiar inequality 

Y I (u)[ < (5  I ho (u)I}". 

Consequently I h*" = I < { Y I h(y) I}". 
y<~x 

I f  therefore h(x) is finite on S, the series 
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h *~ (x) /(x) = (20) 
o n !  

will always converge absolutely. We should also notice that  if h(0)=0,  then for fixed 

x, h*n(x) will vanish for all n sufficiently large. This follows from the fact tha t  the 
n x equation ~1 , = x ,  x , # 0 ,  has no solution if n >  (N(x, S) - 1) 8. 

In order to avoid any confusion we denote by $' the set of all finite numeric 

functions on S, by E the set of functions representable by the series (20) with h fi $', 

and by P the set of polynomials on S. The following lemma will play an important 

role in this study: 

LEMMA I. Assume p E P ,  / E E  and g e F .  Then the relation 

p . ( /  ~ g ) = / - ~  k (21) 

is always saris/led by some element k E F. 

If  0 E H, then the value of 0. (9 ~-h) at a point x can be written 

Y {o (y) g (y) h ( x -  y) + g (y) 0 ( x -  y) h ( x -  y)}. 
y ~ x  

Consequently 0" (q ~+ h) = (0- g) ~ h + g ~ (0. h). (22) 

By iteration of this formula we obtain 

O. h *n = nh  *~-1 ~ (0. h). (23) 

I t  therefore (20) is multiplied by 0 if follows that  

nh*n-1 
0" / = ~ n--~--. ~ (0. h) = / ~ (0. h). (24) 

n = 0  

Another application of (22) yields the more general formula 

o- ( / ~  a) = / ~ {0 .  g + g ~ (0. h)}. (25) 

For h and / fixed we denote by U0 the linear operator: 9 -+ 0 .9  + g ~- (0. h). If  {0~}1 q is 

a finite sequence E H, then the relation 

o 

1-[ 0,. ( / ~  g) = / ~ k (26) 
1 

is satisfied by k=Uo, Uo, ... Uo, gEF.  Therefore (21) has a solution k = p ( O ) g + ~ k n ,  

where the k~ satisfy equations of the form (26). 
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We now return to the space A and denote by  P~ the subset of polynomials 

generated by  functions 0 E H N A. An / E A possessing a representation (20) with h E A 

shall be called exponential. As a consequence of this definition we shall have 

h ~ )  = o~ ~(~) - e ~(~), - ~ . v -  ~ E g A , ,  

so f~=O is a prerequisite for / being exponential. 

Since A is an algebra both under multiplication and convolution, the operators 

denoted U0 are bounded in A whenever h and 0 belong to A, and Lemma I thus 

asserts tha t  p .  ( /~-g) belongs to J(f) if / is exponential and p E PA. 

We can now summarize: I f  f=~O implies tha t  / is exponential then all polynomials 

E PA are p r o p e r  converting multipliers and the closure theorem holds in A if e is 

contained in the closure of PA. The original problem has herewith branched out into 

two separate questions. 

Exponential elements in A 

Conclusive results on our main problem requires further information about  S and 

0). This should be obvious already by the fact  tha t  the conditions introduced so far 

do not imply tha t  X,. contains any other character than  ~ = e. In  order to remedy 

this situation we observe tha t  the topology of A remains unchanged if 0)is replaced 

by  a function 0)1 which is equivalent with w in the sense tha t  

k_ 1 ~< 0) 1 (x) ~< k (27) ~(x) 

for some constant k > 1, Of particular significance for our problem is the subset H + 

of H consisting of real valued additive functions vq(x) tending to + co as x--> cr in S. 

Such a function is obviously strictly positive for x~=O. Our new condition reads: H+ 

contains an element vg(x) such that 0)(x) is equivalent with a/unction o / the /orm ~p(~ (x)), 

where v2(r ) is positive and increasing /or r >~ 0 with growth limited by the inequalities 

c 1 log r<~y~(r)=o(r), r - - ~ .  (28) 

The first inequality implies vq E A, and the second together with (4) imply tha t  

the character e -8~(x) belongs to ZA, if s is a complex number  with positive real part .  

L ] ~ M A  II .  Let S and 0) satis/y the previously stated conditions. Then e a c h / ~ A  

with non-vanishing trans/orm is exponential, 
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Le t  us f irst  show t h a t  there  exist  constants  k 1 and  k 2 such t h a t  for  x, y E S. 

to(Y) -< kt v~(y) 
to(x) "~ ~ + k~. (29) 

B y  vi r tue  of (27) the  inequal i ty  is satisfied for vq(y)<vq(x) if k 2 ~> k 2. I f  vq(y)>vq(x) 

we set  v~(y)=r,  v~(x)=r  o and  define n~>l  so t h a t  2=-~ro<r<~2"ro . Consequent ly  

to(y) ~< k2 ~0(2" r0) 
to(x) ~p(ro) " 

B y  (3) we have  to(2~x)~<2"to(x). Hence,  ~p(2nro)/v2(ro)<k22 ~, and (29) is satisfied if 

we choose k I >~ 2 k 4. 

Le t  G be the  minimal  extension of S to a group and  let G be the  compac t  Abelian 

group which is the  dual  of G. B y  f l=f l (x)  we denote  characters  on G of modulus  1, 

and  b y  dfi H a a r ' s  measure  on G normalized b y  the  condit ion j" dfl = 1. We shall use 

the  no ta t ion  
/8 (x) = e-'~(x)/(x).  

Each  mapp ing  [-+Is takes  A into the  space LI(S ) with norm I[/llz,=~l/(x)l.  For  

the  n-fold convolut ion of [s we have  

/ , n  ( x )  = e - ~ o ( ~ ) / * n  ( x ) .  (30) 

Withou t  loss of genera l i ty  we m a y  a s s u m e / ( 0 )  = 1 and  write [ = e + g, with g(0) = 0. 

Le t  a o be so large t h a t  IIg, llL,~�89 for  s = a + i t ,  a~>a  0. Then 

l(e - '~  fl) = 1 + y. as (~) fl (z) = 1 + ~ (fl), 

where [g~ (fl)[~< �89 for each ft. The logar i thm of this function is now uniquely  deter-  

mined  on (~ b y  the  formula  

o0 

log t ( e - ' " f l )  = ~ ( - 1)"+~ - -  ~," (fl), ~/> ~o,  ( 3 1 )  
1 Tr 

An * n  X X where g, (fl) = ~ g~ ( ) fl ( ) .  

Since g(O)= 0 we know t h a t  g*"(x)= 0 for x fixed if n is sufficiently large. 

t ion It(x) is therefore  well defined on S b y  the  relat ion 

A func- 

( - I)"§ g*" (x) - e  -'"(~) ~ ( - I)"§ - -  - g*"  ( x )  = e -*"(~> h ( x ) ,  
1 n 1 ~, 

(32) 
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The lef t -hand side of (31) is a continuous funct ion on G, depending on 

On defining 

we obta in  by  vir tue of (4) 

or equivalent ly t h a t  

log I f ( e -~ f l ) [< (~ t+) .o )m ~ . 

Hence,  for all a > 0, ] h (x) I ~< 2 (~ + 20) m ~ . 

In  this relat ion we choose a = k 1 (~ + ~0)r176 where k 1 is the  constant  occurring 

in (29). ' W e  want  to show tha t  this choice yields 

[h(x)[ < c~ d '  ~'~' 

with c 1 independent  of x and with ~1 = kl (~+ 20)+ 1. We have thus  to  show tha t  

for  x, y e S. 

2 (A + 2o,~ [ ~ - kl~(Y)o(x)c~ ~ co (y)} ~< cl e~(~), 

1 5 -  642907 Acta  mathematlca 112. Imprim6 lo 2 dGeembro 1964. 

and h (0) = O. 
a parameter  s, with an absolutely convergent  Fourier  series: 

log f (e -s8 fl) = ~ e -8~(~) h(x)  fl (x), a >1 a o, (33) 
xeG 

where h is defined = 0 outside S. Hence 

f log a>~a  o. (34) e - ~8(~) h (x) = 

Since f # 0  in Za, the logari thm has a unique analytic  extension to  the  whole right 

half  plane and the formula (34) holds there  by  analytic  continuation.  In  part icular ,  

since h (0) = 0, 

J~ log f (r ~)dfl. (35) 0 

Hence,  e -"a(x) Ih (x ) l  < 2  max  log If( -osfl)l, . > o .  (36) 

Le t  ;l he so large t h a t  ][/11~-< 1. Then  

If (e-o8 -< Y ~ § 

m(~) = sup ( - et~Cy) + co(y)) 
y e s  
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o)(y) ~<. v~(y) c 1 e ~(~ 

and this inequality i s  satisfied by virtue of (29) if c 1 is chosen properly. We have 

thus shown that  h E A. 

By the definition of h we have for a 1> 00, 

l ( e -~ ,a )  = exp {E h~ (~),8(~)} 
Xr 

h*~ (x) 
implying Is (x) = 

o n!  

In view of (30) this yields the requested representation 

h*n (x) 
/ (x)  = v 

0 n!  

I t  is well known from the elementary theory of Taylor series that  the sole con- 

dition that  eo is monotonic increasing is not sufficient in order to imply / exponen- 

tial if ]:t=0. Some additional property is required preventing the rate of growth of 

eo to change too erratically. We want to point out that  the lemma remains true 

under the assumption that  there exists a v ~ E H + and a positive constant e such that  

for x outside some finite set, 

0r(x) < ~(x) < ~'-e (x). 

P o l y n o m i a l  approx imat ion  o f  e 

T~EOR~.~ II .  Let S and co satis[y the previously introduced condition, and assume in 

addition that ~v(r) in (28) is a convex /unction o] log r. Then the ]ollowing is true: The 

closure o/the set o/polynomials PA contains the unit e and the closure theorem holds in A i] 

and only i / the  divergence condition o] Theorem I is satisfied. 

If  v ~ r  + then the mapping x--> vq(x) takes S to a discrete set of numbers >~ 0, 

and v~(x) has a positive minimum r o for x~: 0. In  order to prove that  e is contained 

in the closure of PA it is thus sufficient to show the existence of a sequence of 

polynomials Qn(t) assuming the value 1 at  t = 0  and such that  Qn(t)e -v(t) converges 

uniformly to 0 for t>~r o. Then pn(x) defined as Q,(v~(x)) will belong to PA and con- 

verge to e in the space A. The existence of Q, can be considered as a special case 

of Bernstein's classical approximation problem, formulated for the positive real axis 
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R +. Let  C o ( R  +) denote the space of functions continuous for t~>0 and vanishing a t  

oo, and let ~p(t) be a given function continuous on R + and tending so fast  to + oo tha t  

An = sup t ~ e -v(t) < ~ ,  n = 0, 1, 2 . . . .  (37) 
t~>0 

The problem is to decide whether linear combinations of t " e '  ~(t), n = 0 ,  1,2 . . . .  are 

dense in Co(R+).  Bernstein's original results imply tha t  approximation is possible if 

e v(t) has a minorant  for t ~> 0 of the form 

F(t)=Y.c~t ~, co>O, c~>~O, 
0 

and with the proper ty  f ? l o g  F(t) 
t,/, - d t =  ~ .  (38) 

This result applies immediately to the problem at  hand. 

in Theorem I implies 

-? 

The divergence condition 

(39) 

where yJ is the function in condition (28). Moreover, if yJ(t) is a convex function of  

log t, then (39) implies 

lim vd(t)= ~ (401 
t=~ log t 

so (37) is satisfied. In  order to show existence of minorants F ( t ) i t  suffices to choose 

U 
F(t) = 2~ 

o 2 n A n  ' 

where A~ is defined by  (37). Due to the convexity of ~ there exists for each n ~> 0 
n A a number  tn such tha t  e~( tn )= tn /  ~. Hence, log $ '(2t~)>~p(tn)and a simple computa-  

tion shows tha t  (39) implies (38). A sequence Q~(t) with the requested properties. 

does therefore exist since any  continuous function equal to 1 a t  t = 0  and vanishing: 

for t>~ r 0, can be approached uniformly on R + by  functions Q~ (t)e -~(t). This finishes~ 

the proof of Theorem I I  since we already know tha t  convergence in (7)implies that ,  

the closure theorem is false and consequently e not contained in the closure of PA- 

I r  should be pointed out tha t  without the additional convexity condition t h e  

preceding analysis does not imply tha t  the closure theorem is false in A if e CPA- 

This problem remains unsolved even in the case S = Z +. 
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