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I. Introduction 

1. Let  U be the upper half plane. A normalized Fuchsian group G is a discontinuous 

group of conformal self-mappings of U with limit points at  0, 1, and ~o. All Fuehsian groups 

in this paper  are normalized. G is of the first (second) kind if its limit set is dense (nowhere 

dense) on the real axis. 

Let  / be a normalized quasieonformal self-mapping of U. (Throughout this paper, a 

normalized mapping is one tha t  leaves 0, 1, and co fixed.) / is compatible with the group 

G if/oAo] -1 is conformal for all A in G. The set of mappings compatible with G is denoted 

by Z(G). 

Each / in Z(G) induces an isomorphism of G onto / o G o / - 1 .  The mappings [ and 9 

induce the same isomorphism if [oAo/-l=goAog -1 for all A in G. This is an equivalence 

relation on Z(G). The set of equivalence classes is denoted by  S(G). 

I t  is easy to see tha t  [ and g are equivalent if and only if [ =g  on the limit set of G. 

Hence, for groups of the first kind, S(G) equals the space T(G) defined in I I I .  I f  G is of the 

second kind, however, T(G) and S(G) are unequal. Thus, T(G) and S(G) are different 

generalizations of the notion of Teichmiiller space to groups of the second kind. Following 

the terminology of Bers in [4], we shall call T(G) the Teiehmiiller space of G. Our purpose 

here is to s tudy the space S(G). 

Bers [4] has recently proved that  T(G) always carries a complex analytic structure. 

By contrast, if G is of the second kind, the natural  structure on S(G) is real analytic. 

Indeed, the region of discontinuity D of G is symmetric about the real axis. I f  one represents 
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DIG in the form U/H for some group H of the first kind, the symmetry of D induces a 

symmetry in H. Roughly speaking, one expects S(G) to correspond to a symmetric part  

of S(H) = T(H). 

This idea is developed here in a precise way. In the following section we record the 

necessary facts about the universal Teichmiiller space T. In I I  and I I I  the symmetric 

parts of T and T(G) are defined and shown to have real analytic structures. In IV the 

space S(G) of a group of the second kind is mapped on the symmetric part of a suitable 

T(H). This mapping induces a natural real analytic structure on S(G). 

2. Let T be the set of mappings h : R-->R which are boundary values of normalized 

quasiconformal self-mappings of U. T is the universal Teichmiiller space of Bers. 

There is a natural map of the open unit ball M in L~(U) onto T. For each/x in M let 

]~ be the unique normalized self-mapping of U which satisfies the Beltrami equation 

l~ =~h. (1) 

We map M onto T by sending/x to the boundary mapping of/~. T is given the quotient 

topology induced by the L~ topology on M. The right translations, of the form h--+hoho, 

are homeomorphisms of T. 

We next  associate to each/x in M a function r holomorphic in the lower half plane 

U*. For each/~, let w ~ be the unique normalized quasiconformal mapping of the plane onto 

itself which is conformal in U* and satisfies (1) in U. r is the Schwarzian derivative 

{w ", z} of w ~ in U*. By Nehari [6], r belongs to the complex Banach space B of holo- 

morphic functions ~ on U* which satisfy 

II ,ll =sup I < oo. 

I t  is easy to see that  ~ =r if and only if ~' = F  on R. A much deeper theorem of Bers 

[4] states that  the mapping ~u-~r ~ is open and continuous. T may therefore be mapped 

homeomorphically on the image of M in B. We shah identify T with its image under this 

mapping. (Ahlfors [1] gave the first proof tha t  T is an open subset of B. Formula (13) of 

[1] implies tha t  the map/z-->r ~ is open.) 

II. The symmetric parts of T and B 

3. The symmetric part  of B is the real Banach space B' consisting of the v/ in B 

which are real on the y-axis. Let  J be the reflection in the y-axis; tha t  is, Jz = -z*.  Then 

~EB '  if and only if ~ E B  and v/(Jz ) =y~(z)*. By elementary properties of the Schwarzian 

derivative, {w, z}EB' if and only if woJow -1 is the conjugate of a linear transformation 

in w(U*). 
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The symmetric part  of T, denoted by T' ,  is the set of boundary mappings h in T 

which are odd functions of x. We shall identify T '  with its image in B. 

THEOREM 1. T ' = T N B ' .  

Proo/. First, suppose r  N B'.  Let w = w  ~, D=w(U),  and D*=w(U*). Let Q be the 

anticonformal involution of the plane which agrees with w o J o w  -1 in D*. Evidently Qow = 

woJ  on the real axis. 

We must  prove tha t  /= ]~  is an odd function of x, Since g =wo/-1 maps U conformally 

on D, the function g-loQog is an anticonformal involution of U. Since g and Q leave 0 

and oo fixed, g- loQog=J in the closure of U. Therefore, / commutes with J on the real 

axis, as required. 

Conversely, suppose r T' .  Then f is an odd function on the real axis. According 

to Ahlfors and Beulling ([2], formula (14)), there is a quasiconformal m a p p i n g / "  of U on 

itself which agrees with f on R and commutes with J in U. 

Let w = w  ~. Since g=wo(f~) -1 is conformal in U, woJow -1 =go Jog -1 is anticonformal 

in w(U). Therefore woJow -1 is anticonformal in the entire plane, and its conjugate is a 

linear transformation. Hence {w, z} E B' ,  and the theorem is proved. 

4. Let M' be the set of # in M such t h a t / ~  commutes with J .  I t  is easy to prove: 

THEOREM 2. The image o / M '  under the map #-->r ~ is T'. Moreover,/~EM' i] and only 

i/ /~eM and 
#(Jz) =~(z)*. (2) 

Proo/. We observed in the proof of Theorem 1 that  each r in T '  has the form r where 

]~ commutes with J .  This proves the first par t  of the theorem. As for the rest, it is clear 

that  each # in M' satisfies (2). Conversely, if ju in M satisfies (2), then /~oJo( /~)  -1 is a n  

anticonformal involution of U leaving 0 and co fixed. Therefore /"  commutes with J and 

/~ E M'.  This completes the proof. 

III. T(G) and its symmetric part 

5. Let  G be a Fuchsian group. We deDote by M(G) the set of/z in M such tha t  f '  is 

compatible with G. # EM(G) if and only if ~u EM and 

#(Az) =/~(z)A'(z)/A'(z)* for all A in G. (3) 

The Teichmiiller space T(G) is the image of M(G) under the natural  map/~->r of M onto T. 

B(G), the space of quadratic differentials, is the set of yJ in B such tha t  (yjoA)(A') 2 =,p 
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for all A in G. H/~  is compatible with G, then w~oAo(w~) -1 is a linear transformation for 

every A in G. Therefore T(G) is a subset of B(G). 

Let M'(G) =M(G) N M'. The symmetric part  of T(G), denoted by T'(G), is the image 

of M'(G) in T under the natural map. Since the image of M' is T', T'(G) is contained in 

the real Banaeh space B'(G) = B' N B(G). Our purpose is to prove: 

THEORE~ 3. T'(G) is an open subset o/ B'(G). 

6. Let A(G)=B'(G)N T=B(G)fi T'. The function r  {w, z} in T'  belongs to A(G) 

if and only if for each A in G, the restriction of w o A o w -1 to w(U*) is a linear transformation. 

L~MMA 1. A(G) is open in B'(G). T'(G)~ A(G). I1CE B'(G) and I[r <2,  thenCE T'(G). 

Proo/. Since T is open in B, A(G) is open in B'(G). I t  is obvious that  T'(G)cA(G). 

Finally, it is well-known ([1], pp. 297-299) that  every r in B with ]]r <2  has the form 

r for 
/ ~ ( z )  = �89  - z * ) ~ r  

By (2) and (3), if r EB'(G), thenju EM'(G) and r E T'(G) as required. This proves the lemma. 

Now let v be an arbitrary member of M'(G) and let ~ : T-->T be the right translation 

of T which carries r to zero. We recall from I that  ar is a homeomorphism. Since r belongs 

to T', ~ maps T' on itself. 

Let G 1 =/VoGo(/v)-l. Since f is compatible with G, G 1 is a Fuchsian group. 

LEMMA 2. a ( T ' ( G ) )  = T'(G1). 

Proo/. For each ~ in T, ~r162 where 2 is such t h a t / "  = f o F .  Obviously,/~ com- 

mutes with J if and only if f does. Moreover, ]" is compatible with G if and only if f is 

compatible with G 1. This completes the proof. 

LEM~tA 3. ~(A(G))=A(G1). 

Proo/. I t  is enough to show that  ~ maps A(G) into A(G1) , for by the same token ~-1 

maps A(G1) into A(G). 

Let  / be the quasieonformal extension of/~ to the whole plane by/ (z*)=/(z)* .  Let 

r belong to A(G) and let Ca = ~(r with ~ as in Lemma 2. Since 4x belongs to T' ,  it suf- 

rices to find for each Al~/OAo/-1 in G 1 a linear transformation A ~ which agrees with 

w~oAlo(w~) -1 in w~(U*). 

Let  A ~ be the linear transformation that  agrees with w~oAo(w') -1 in w~(U*). Let  

!/=w~o/o(w") -1. g is quasieonformal and maps w~(U) cop_formally on w~(U). We define 

A~=ffoA~og -1. Then A ~ agrees with w~oAio(w~) -1 in w~(U*). Moreover, A ~ is eon:[ormal 
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in w~(U). Since a quasiconformal map which is conformal almost everywhere is eonformal, 

A ~ is everywhere conformal, and the lemma is proved. 

7. We can now prove the theorem. By Lemma 3, ~ maps A(G) homeomorphieally on 

A(G1). Let  N be the set o f r  in B'(G1) with I1r <2 .  By Lemmas 1 and 2, ~-I(N) is contained 

in T'(G). But  N is open in A(G1) , so ~-I(N) is open in A(G) and hence in B'(G). Therefore 

T'(G) contains a neighborhood of r Since v was arbi trary in M'(G), this completes the proof. 

COROLLARY. T'(G) inherits a real analytic structure/rom B'(G). The mapping o: of 

T'(G) on T'(G1) is real analytic. 

In  fact, ~ is a holomorphic mapping of T on itself (see [4]). 

IV. The real analytic structure of S(G) 

8. Let G be a Fuehsian group of the second kind with the region of discontinuity D. 

We choose a holomorphic ~unction ~ : U--->D which represents U as a regular covering 

surface of D and satisfies ~(Jz)=~(z)*. (By [3], p. 99, there must  be an involution Q of U 

such tha t  ~(Qz)=~(z)*. Replacing ~ by  ~oA if necessary, we can put  the real fixed points 

of Q at  0 and ~o, so tha t  Q =J.) 

Let H be the group of linear transformations A : U--->U such tha t  ~ oA = Co~ for some 

C in G. Let H 0 be the group of A such that  QoA =~. Both H and H 0 are Fuehsian groups of 

the first kind. By [3], p. 99, for each C in G there exists A in H such tha t  ~oA =CoQ. 

The existence of a real analytic structure on S(G) is a consequence of: 

THEOREM 4. The mapping ~ induces a bijection ~, between S(G) and T'(H). 

The proof is again preceded by several lemmas. 

9. Let each/~ in M(G) be extended to D so tha t  #(z*) =l~(Z) *. The function ~./~ in M 

is defined by  
(e "~) (z) =ff(e(z))e'(z)*/e'(z). (4) 

We record the obvious 

LEMMA 4. The map #--->Q.I a is a bijection /rom M(G) to M'(H). 

I f  / is compatible with G, we extend it to D by/(z*)  =/(z)*. We denote by ~#(/) the 

normalized self-mapping of U such tha t  /oQ o~# (/)-1 is holomorphie. Evidently ~# (/ ') =/Q'~'. 

Therefore, ~# (/) is compatible with H and commutes with the mapping J .  The map ~# is 

injeetive. 

LEMMA 5. I /  Q#(/) commutes with H, then / commutes with G, and/o~=Qo~#(/). 
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Proo/. Let  g : D-->D be defined by go o =OoQ#(/). g is quasiconformal, and g(z*) =g(z)*. 

Moreover, g commutes with G. Therefore, g is a normalized self-mapping of U, and g= / .  

This completes the proof. 

L~.MMA 6. I /  / commutes with G, then ~#(/) commutes with H, and /o~  =~)o~#(/). 

Remark. For a geometric interpretation of Lemma 6 when G contains no elliptic 

transformations, see [5], Theorems 1 and 2. 

Proo/; Since / leaves every limit point of G fixed, it maps each component of D fl R 

onto itself. Hence, for each z in D the line segment joining z to/(z)  is in D, and / is homo- 

topic to the identity. 

By a familiar theorem ([3], p. 99), there exists g : U-->U such t h a t / o ~  =~og and g 

commutes with H 0. Since H 0 is of the first kind, g leaves every real x fixed. Therefore, g 

commutes with H, g is normalized, and g =~g (/). This completes the proof. 

LEMMA 7. / and g are equivalent i / and  only i/Q#(/) and ~#(g) are equivalent. 

Proof. We recall from the introduction that  / and g are equivalent if and only if h = 

/-1 o g commutes with G. If h commutes with G, then h oQ =~o~# (h). Therefore, 

e# (g) =e# (/oh) =~# (/) oe# (h). 

Since ~)# (h) commutes with H, ~# (/) and r (g) are equivalent. The converse is proved simi- 

larly. 

10. The proof of Theorem 4 is immediate. Let ~). map the equivalence class of / on the 

equivalence class of ~# (/). By Lemma 7, ~. is a one-to-one mapping into T(H). By Lemma 4, 

the image is T'(H), and the theorem is proved. 

11. The real analytic structure of T'(H) induces via ~. a real analytic structure on 

S(G) which we call the natural structure. We must show that  this structure does not 

depend on the function Q. 

We may replace Q by a = ~ o A ,  where A is a linear transformation of U onto itself 

such that  o(AJz) =~(Az)*. The map a ,  has the form 0o~,, where 

0 = r  

By (4), (a.tz) (z) = (~.1 ~) (Az) A'(z)*/A'(z). 

Therefore, 0(r (r 2, and 0 is a norm-preserving automorphism of B. We conclude 

tha t  a .  induces the natural structure on S(G). 

12. Finally, suppose/1 is compatible with G. The group G 1 :/lOGO/1-1 is a Fuehsian 

group of the second kind discontinuous o n  D 1 = / I ( D ) .  If / is compatible with G, then/o /71  
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is compatible with G 1. The mapping ]--->]o]~ 1 induces a natural  map of S(G) onto S(G1). I t  

is important  to prove tha t  the natural map is analytic. 

Let  ~#(]1) =]~, and let a = ]1 o~ o (]~)-1. Then ~ represents U as a regular covering surface 

of / )1,  and a(Jz)=a(z)*. Hence, a induces a mapping ~. from S(GI) into T' ,  Let ~ be the 

right translation of T '  which carries r to zero. The natural  map of S(G) on S(G1) is given 

by ~,1o~o~. .  Since ~ is real analytic, we have proved: 

THEOREM 5. S(G) has a natural analytic structure such that the map ~. : S(G)--->T'(H) 

is analytic. This structure depends only on G. I] G 1 =]loGo]~l, where ]1 is compatible with 

G, then the natural map ]rein S(G) to S(G1) is analytic. 
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