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1. Introduction

-A stochastic process [z(t), €], or z for short, has associated with it a probability
measure P, defined on suitable subsets of the space of sample functions on I. The
problems of determining when measures P, and P, associated with processes z and y
are mutually absolutely continuous and of computing the Radon-Nikodym derivative
dP,/dP, have been much investigated in recent years. In particular, a necessary and
sufficient criterion has been given in case xz and y are Gaussian for determining the
mutual absolute continuity of P, and P, [3]. If we take I to be an interval and =z
and y to have zero means and correlation functions R (s, t) and R, (s, ) whose associated
integral operators on L,(dt, I) are compact, then the criterion is that R;*R,R;¥—1
have an extension to a Hilbert-Schmidt operator and under these circumstances
dP,/dP, can be expressed in terms of the eigenfunctions and eigenvalues of this opera-
tor. In parameter estimation, however, where whole families (P,) of measures must
be considered, results of this type (which tend to involve separate calculations for
each pair «; and «,) often involve prohibitive amounts of calculation and also obscure
the role played by the parameter itself.

In [8] we attacked this problem under the assumption that the processes x, were
gotten from each other by the application of a one-parameter group 7, of transfor-
mations acting on the sample functions of the process. Specifically, we assumed given
an algebra F of bounded random variables on which T, operated as a group of auto-
morphisms (intuitively (7.f)(x) = f(T,x)) such that the derivative DT, f(x)=T.f(z)/0x
existed and was uniformly bounded in « and z. It was shown there that the existence
of a random variable ¢ satisfying [ @fdP,= [ DfdP, for all f in F implied the existence

of a strongly continuous one-parameter group [V(a)|x>0] of contractions on L,(P,)

(1) Operated with support from the U.S. Army, Navy, and Air Force.
1— 642906 Acta mathematica 112. Imprimé le 11 septembre 1964,
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given for f in F by (V(a)f)(z) = Q. () (T-.f) (x) and that, under further assumptions,
the P, were mutually absolutely continuous and Q,=dP, /dP,.

The above setup is not restricted to Gaussian processes and is sufficiently general
to handle, for example, the mean value problem, (T'.z)(t)=x(t) +am(t). The require-
ment that DT,f(x) be bounded, however, rules out many other cases of interest(!)
and section 2 of this paper is devoted to replacing it with the requirement that DT,f
be continuous in L,(P,) and O(e*!) in L,(P,) norm. This is not, strictly speaking,
less restrictive than the previous set of requirements but seems to be much more
practical in applications. All the examples used in [8] and [9] will be easily seen to
apply to the new situation.

Section 3 carries over some results of [8] and all the results of [9] to this new

context and ends with two new theorems expressing the effect of an inequality of

f || dP<Ce
[z | lg@I=N]

on the distribution of log(dP,/dP) and on the amount of information in P, about P.
The results of sections 2 and 3 are applied in section 4 to the Gaussian case and

the form

section 5 consists of Gaussian examples. Section 5 as a whole is intended to show
the wide range of parameter estimation problems which are associated with groups
of transformations on the sample functions, but it is hoped that some of the examples
(especially numbers 2 and 5) may be of interest in applications and that at least

example 4 will be of interest in its own right.

2. The Semigroups V, (a) and V_(a)

Let P be a probability measure defined on a o-algebra S of subsets of a set X,
F an algebra of bounded S-measurable functions dense in L,(P) and containing the
constant functions, and 7, a one-parameter group of automorphisms of F which pre-

serve bounds. We shall make the following assumptions throughout this section:

(A1) For every f in F,
lim ——T"; ~i_ py

>0

exists in L,(P), DT,f is continuous and || DT,f|l,=0(*'") for some K in-
dependent of {,

() Example 1 of [8] does not satisfy this requirement and should not have been included there.
It appears here as example 1 of section 5.
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and
(A2) There is a ¢ in L,(P) satisfying [@fdP= [DfdP for every f in F.
Throughout this section lim will mean limit in L,(P) norm unless otherwise
specified and ||f], will mean the L,(P) norm of ;. We note that F, the uniform

closure of F, contains f A ¢ =min (f,g) and f Vg =max (f,g) whenever it contains f and ¢

and that, since

_flelg Ifn(x) _fm(x)I <Tufn_Tafm<§’1:£ Ifn(x) ’fm(x)l,

(T.fs) is a uniformly convergent sequence whenever (f,) is, from which it follows that
T, can be extended to F by setting 7T, (lim f,) =lim 7,(f,).

LemMma 2.1. D has an extension (which we also call D) to a domain A of bounded
functions satisfying
(i) §@fdP= [ DfAP for all f in A,
(i) If f is in F and g is in A, then fg is in A and D(fg)=fDg+gDf,
(i) If (f,) is a sequence from A converging boundedly almost everywhere to some f,
and if Df, is L, (P) convergent to g, then { is in A and Df=g.

Proof. If f and g are in F, then

>0 & >0

Dify) =tim TDED 10 _ iy [Tefg* lirg—g)+1 ngg_ g Tei— f] ,

and

Tl =Fipg—g)
&

T.f-
' ( Lo Df) T.g-9) “1+ 1@n T.g -9l

<
1

<2gll.] ﬂi;f—pfljl+f|pfl|ng—gldP.

The first term in the inequality goes to 0 as & goes to 0 while for some subse-
quence k &, chosen so that Teig converges to g almost everywhere, the second term
goes to 0 as § goes to oo by the dominated convergence theorem. Thus D(fg)=fDg+
gDf. Now consider the set of domains A, which contain only bounded functions, and
onto which D can be extended so as to satisfy (i) and (ii) partially ordered by in-
clusion. If A, <A, and D, and D, are the corresponding extensions of D, then, for
any f in F and ¢ in A,, [{D,gdP = [ ¢fgdP— [gDfdP = | {D,gdP and since we can
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find a sequence from F to converge boundedly and almost everywhere to any bounded
measurable function, this implies that D,g=D,g, i.e., that D, is an extension of D;.
Thus the union of a linearly ordered set of such domains is again a domain onto
which D can be properly extended so, by Zorn’s lemma, there is a maximal such
domain A. If (f,) is a sequence from A converging boundedly almost everywhere to
0 and Df, is L,(P) convergent to g, then for any A in F,

f hgdP =lim f hDf,dP =lim (fqnf,. hdP — f anth) =0

by dominated convergence so ¢g=0. Thus D can be extended to the set A’ of all g
which are bounded, almost everywhere limits of sequences (g,) from A such that Dg,
is L,(P) convergent. For such ¢, and g it is clear that (fg,), which is in A by (ii),
converges boundedly almost everywhere to fg and D(fg,)={fDg,+g,Df converges in
L,(P) to f(lim Dg,)+gDf so that (ii) holds for the extension of D to A’. Since, as is
easily seen, (i) also holds for this extension, we must have A=A’ so that A satisfies
all the requirements of the lemma.

Since T'_sf is L,(P) continuous, [3T_pfdf exists as an L,(P) integral for every
>0 and has L,(P) derivative equal to T_,f. [$DT_gfdp also exists as an L,(P)
integral and has L,(P) derivative equal to DT_,f, from which it follows that
JsDT _pfdB=f—T_f. For f and g in F and «>0 we define

o

Vi(a) (9) = exp (f T—ﬂfdﬂ) T .g.

0
LemMa 22. [ T_sfdf isin A and D [*T_sfdp=[2DT sfdB=f—T_.f. V;()(g)
is in A and D(V(@) (@)= (f = T-af) V(@) (9) + (Vs(@) (1)) DT—og.

Proof. For any f in F we can find numbers v, 8, and N, for which 3" 7T _ g
.converges boundedly almost everywhere to {57 _sfdf and 3N o DT _ gf converges in
L,(P) to [5DT_gfdf as n goes to co. Thus [T _sfdf is in A and D [§T _sfdf=
fsDT_sfdB which proves the first assertion. A straightforward induction argument
shows that (f2T_sfdf)" is in A and that D(J5T_sfdB)" =n(§2T_stdB)"~*(f — T—of).

Finally,
N 1 4 n
> L([rosias) 7ug

n=0 0

<converges boundedly almost everywhere to V,(«)(g) and
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2251 Jomorae) -]

converges in L, (P) to (f—T_,f) V() (9) + Vs(x) (1) DT_,g from which the last asser-

tion follows.

LeMma 23. Vi(«)(g) has L (P) derivative T _,fV;(e)(g)— Vi(e) (1) DT_,g, and

o f Vite) (g) 4P = f<f ~9) V(@) (g) dP.
Proof.

Vi +e)(9) — Vila) (9)
€

xt+e

—exp (faT—ﬂfdﬂ) {eXp (f i_ﬂfdﬂ) - (T-o-eg — T-o9)

0
ote
exp (f T,,gfdﬂ) -1
« T—a—e _T—a
T—ag+ __q______g}

€ &€

The first term in the brackets is dominated by

exp (J‘:”Tﬁfdﬂ) -1

&

2”g"°° _T-‘a/ +"f”°°|T—u—sg_T-¢g|

which goes to 0, the second term differs from 7_,fT_,g by less than

1 %+ 1
"g”w;f IT—a—vf_ T—af|d7+ "g"w c (eeumw"‘(‘?"f"w_ 1)

which goes to 0, and the third term goes to —DT_,¢ so the first assertion is proved.
We have, by Lemma 2.2,

f(/ —@)V(a)(g)dP= f[f Vila) (9) — D(Vy() (9))]dP

- f (T2 /)V; (@) (@)~ V(@) (1) DT _og)dP

and by the above argument this is

7}
p fV,(oc) gdP.
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Lemma 24. If (f,) is a sequence from F converging in L,(P) to ¢ AN and (f,)
ts bounded above, then Vi, (x)(g9) converges in L,(P) to a limit Vy(a)(g). The limit is
independent of the sequence used. The Vy(x) have unique extenstons fo positivity pre-
serving contractions on L,(P) which satisfy Vy(x)(fg)=(Vy(2)(9)) T-of for all f in F
and g in L(P), and ||Vy(a)(@) ]l <e|lgllo for all bounded g. Vy(0)=1I and the Vy(c)

are strongly continuous in a.

Proof. The proof is exactly the same as the proof of the corresponding parts of
Lemma 2.2 of [8] except for the relation involving L. norms. This relation is easily
established for g in F and then can be extended to all bounded g by an approxima-

tion argument.

LEMMA 2.5. Vy(a) 48 a strongly continuous semigroup whose generator Ay contains
A in its domain and is defined there by:

Axf=(pAN)f-Df.

Proof. By wusing Riemann approximations to the integrals involved we can
show that

B8 at+f
V(@) (_,, f T-yfdy)=V~(a)(g) f T, fdy

-4

for any bounded g. Repeating this argument we get, for ¢ in F,
8 n z+f n
V(@) (( fo T«yfdy) T~ﬁg)=V~<a)(1)( f T-yfdy) T.. 59

a+8

and hence V(o) Vi(B) () = Viy{a) (1) exp (j T_,,fdy) T .39

o

If (f,) is a sequence from F converging to ¢ A N and if f,<2N for all », we have

|V (@) (Va(B) (@)~ Vale+B) @ |
= Iim ||V () (V1. (B) (9)) — Vil B) (@)

a+f
Vy(a)(1) exp (f T—yfnd'}’) T-upg—Vrlxtp) @) ”

o

= lim
n—»o0

X
28N

Va@ ) —esp ([ 71ty | -o.

0

< lim sup || g]| e
n—>00
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Again by using a straightforward Riemann approximation argument we can show
that if f and g are in F and A>||f].+ K then [ e ™V, («x)(g)dx is in A and

D (J;) e V(@) (9) dot) = fo e {(f—T-of) Vo() (9) + V(o) (1) DT g} dar.
It is easy to verify that e ™V («)(g) has L,(P) derivative
1Y (@) )+ 2 V(@) )
= = 2e 7V (a) (g) + e (T-of V(@) (9) ~ V(@) (1) DT 9)
and, since this is L,(P) continuous and integrable, that
fmﬁ(ﬁ*v () (9)) doc = lim fnﬁ(e‘hv (@) (9)) d = lim (e ™V, (n) (9) —9) = —
o oot sla) g e, 2 sl \g o Mg —g ‘9-
Thus
6=1+D) [V, 0@
0

- f {16V, (@) (g)— € T—o fV,(2) (9) + V(o) (1) DT g} dex

= - f aﬁ (e7*V, (2) (9)) d =g.

o o

Now choosing a sequence (f,) from F converging to @ A N and bounded above by 2N
and taking A>2N+ K, we have [ e *Vj, (x)(g)da uniformly bounded and

which goes to 0 since the integrand is dominated by e

f T Vi (o) (9) dac — f ) e V(%) (g) dex
1] 0

< f e ||V, (@) (@) — Vi (@) (@) | dex
1

2| g|l and goes to O every-

where. Hence there is some subsequence (which we also call (f,)) for which
f eV, (@) (9) d
0
converges boundedly almost everywhere to

f " V(@) (g) da
0

and it is easily seen that
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D ( f eV, (@) (9) da)
0

converges to g+ (py—A) fw eV (a) (9) da
0
in L,(P). Thus fwe“" V(@) (g) da
]
is in A and (A— (qu—D))f e *Vy(x) (g)dx=g.
0

It follows now for every ¢ in L,(P) by a simple continuity argument that
fo e V(o) (9) da

is in the domain of the closure By of the operator By defined on A by By(f)=
(p AN)f—Df and that

(A— By) fo e Vy(a)(g)da=g
for all A>2N + K. The lemma follows from this [2; Cor. 16, p. 627].

THEOREM 2.1. For any a>0, Vy(e) converges strongly to a limit V(x). The V(x)
form a strongly continuous semigroup satisfying

M 7li<1, |

@) V(@ (fg)=V(@)(NT-ag if g is in F,

(3) V(o) preserves positivity,
and

(4) the generator A of [V(a)|a>0] contains A in its domain and is defined there

by the equation Af=@f— Df.

Proof. The proof is exactly the same as the proof of Theorem 2.1 of [8] except
for the size of the domain of A. It will be sufficient to show that

Via) (f)=f+ f V() (4 ap

for f in A since then we will have

lim ﬂf%"—L fim feV(ﬂ) (AfydB = Aj.
&0 JO

&2
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However,

V(o) (f)— f— f Vi) df “

— Tim || V(o) () —f— f V() (4) dﬂ“
N—ooe JO 1
- lim ‘ f (V{B) (A1) ~ Vi (B) (Ax) dB |

<tim sup | [ AV@) A~ Vg apldg+ [ NVitp) 47 - Aup ),

and the first integrand is dominated by 2| Af||; and goes to 0 everywhere while the
second integral is dominated by [§||Af— Axfll,dB=a || Af — Axfll, which goes to 0.

We can also construct the ‘backward’ semigroups [Vy(—a)|a>0]and [V(—«)|a>0]
(called V_(«) in [8]) by replacing T,, D, and ¢ by T_,, —D, and —¢. With this
extended definition of V(a); (1), (2), and (3) of Theorem 2.1 are now satisfied for all
o and (4) is supplemented by:

(4') the genenerator of [V(—a)|a=>0] contains the operator — A defined on A by
—Af=—of + Df.

Examples given in [8] show that V(—«) need not be [V(x)]"! and that, in fact, V(a)
may not have an inverse.

THEOREM 2.2. V(~—a)(V(x)(f)) (x) =e.(z) f{x) for all o where e,=V(—a) (V(e)(1)).
e, s Ly continuous, nondecreasing for a <0 and nonincreasing for >0, 0<e,<ey=1.
For «>20,

ja V(—=B) ([(p A N)— @] Vy(B) (1)) dB increases to e, — 1 and
)

fa VigY(lg— (¢ vV =N Vy(—P) (1)) dB increases to e_,— 1 as N goes to oo,
0

If e,=1 for some o=+0, then V(x) is a group.
Proof. By (2) of Theorem 2.1, if f is in F, then
V(= (V@) (N =V(=a) (V) (D) T-of) = V(—a) (V(2) (1)) f

from which the first assertion follows. Clearly, e,=1 and e, >0 and since [ e.f]| <[],
we also have e,<1. Assume now that «>0. From Lemma 2.3, V («)(1) is in A and
this coupled with Lemma 2.2 shows that V(—a)(V,(«)(1)) has an L, (P) derivative and
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éa; V(—a) (Vi(a) (1) = V(=) (A(Vs (@) 1)) + V(= a) (T-afV,(2) (1)
=V(=a)(f— @) V() (1)).

Since this derivative is L, (P) continuous,

V(~a) (V () (1)) =1+ f: V(=B (=) V(B) (1)) dB.

Choosing a sequence (f,) from F which converges to ¢ A N almost everywhere and
in L;{(P) norm and satisfies f, <2N, and letting » go to oo yields;

V(—a} (Vu( (1)) =1+ J: V(=B (llp A N) =gl Vx(B) (1)) d

from which the limit relation for e,—1 follows. If 0 <x <y, then

14
&~ ex= lim f V(=B) (A N) =@l Vu(B) (1) dB <O.

The corresponding facts for e_, are similarly proved and then the remainder of the

theorem is proved in the same way as Theorem 2.2 of [8] is.

THEOREM 2.3. If V(x) ts a group, then all the V(a) are isometries and there are
probability measures P, on S satisfying [ fdP.={ TfdP for all { in F. The P, are
mutually absolutely continuous and V() (1) =dP,/dP.

Proof. Since both V() and [V(a)]™' = V(— ) are contractions, V(«) is an isometry.
If (f,) is a sequence from F decreasing to 0 everywhere, then [ T, f,dP— V(@) (Tefn)dP =
fV(x)(1){,dP and this decreases to 0 by the dominated convergence theorem. Hence
the linear functionals l,(f)= [ T.fdP defined on the lattice F can be extended to
Daniell integrals I, {7, chap. III] and we define P, to be the associated measures.
For any f in F, [fdP,=[T.fdP=fV(x)(T.f)dP=[V(x)(1)fdP from which it easily
follows that the P, are mutually absolutely continuous, that they are defined on the
same field § and that V(a)(l)=dP,/dP.

We can define mappings V? () of F into L, (P) by setting V?(a) (f) = [V () (1)]"* T-of
and each of these clearly has a unique extension to a positivity preserving contrac-

tion operator on L,(P).

LemMma 2.6. For all nonnegative f in L,(P), V°(a)(f)=[V () (f)]"".

Proof: We will only prove this for >0 since the other case is essentially the

same. For any nonnagative f in F we can find a set of polynomials ¢, such that
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@Q.(f) converges uniformly to f’ and hence also T_,Q,(f) = @.(T-.f) converges uniformly
to (T'_.f)’. Then

V(@) (°) = Iim Vie) (@u(f) = lim V(@) (1) T (@ (H) = Vi) (1) (T—af)” = [V () (NI

If (f,) is a sequence from F converging in L,(P) to a nonnegative f, then

72 (@) (/) = lim 72(a) () = lim [V() (],

but  lim f [[V(e) ()T — [ V(o) ()] |? dP <lim f |V(e) (f2) ~ V(@) (f°)|dP =0

so the lemma is proved.

THEOREM 24. VP(x), =0 and V?(x), a <0 are strongly continuous semigroups

of operators on L,(P) for every 1<p< oo,

Proof. The strong continuity of V?(x) follows from the fact that, for nonnegative
fin L,(P);

flV”(at) H—=v*B)(HIParP= fI[V(a) (P> = V(B (PP dP < flV(ot) ()= V(B (")|dP

and the semigroup property from the fact that (again for nonnegative f in L,(P));

V2 (o) (V2 (B) (1) = [V (@) ([V(B) fIP)T® = [V (o) (V(B) (F)T
=[V(a+B) (PN = V2 (a+ B) ()

3. ¢’s of exponential bound and the smoothing of P, with respect to a
Gaussian kernel

The first theorem of this section is simply a restatement of Theorem 3.4 of [8]

for this case.

TrEOREM 3.1. If (A1) and (A2) hold and either

f gdP<Ce™™ if N=N,
[Z{p(x)=N]

or ~f pdP<Ce* if N=N,
Ele@<-N

for some positive numbers C, ¢, and N,, then V(x) is a group of isomelries.
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Proof. Under the first assumption we have, for a<e,
Jeu= 1]l im “ fo V() ((px— ) V(B (1)) ]|
<tim aup fo lign—) V(B (V)| 48

< lim sup CJ eMeNedp=0,

No>oo o

and by Theorem 2.2 this is sufficient. The other case is similar.
The next result is a generalization of Theorem 4.2 of [8]. We assume that X, S,

P, F, and T, are given as in section 2 and satisfy both (A1) of that section and

(A3) There exist probability measures P, satisfying
fT,fdP=ffdP,

(A3) is equivalent to several other assumptions, for example, that 7,f, decreases to

for all f in F.

0 everywhere whenever f, does but is generally the easiest one to verify in practice.

Let K,(«) for positive ¢ be given by K,(x)=(2n0) *exp (— «*/20) and I, be the
linear functional on F given by I(f)= %% Ko(a) (| TofdP)da. I;(f) exists because
{T.fdP is continuous and bounded in o« and I, is clearly order preserving in F. If
(f.) is a sequence from F converging monotonely to 0, then |7T,f,dP=[f,dP, is
bounded by |/f)]lo and converges to O so I,(f,) converges to 0 and it follows that
there is a probability measure P’ satisfying

f fdpP° = f :K,,(a) [ f T, fdP] dat

for all f in F. We will write
p

111 tor [[ireare]” ana Wl tor [[1irar]”.

THEOREM 3.2. If X, 8, P, F and T, satisfy (A1) and (A3), then X, S. P°, F and
T, satisfy (A1) for every positive o. There is a ¢" in L (P°) satisfying | ¢°fdP°=
I D°fdP° for every f in F and

f |g°|dP" < ViNe-W-l”.
%> ¥ 7o
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For every real o and positive o there is a probability measure P3 satisfying [ fdPg—=
fT.fdP° for f in F and these measures are mutually absolutely continuous. If there is
a @ in L, (P) satisfying (A2), then each P, is absolutely continuous with respect to each

dP, . _1/2¢
ﬂdpz_lldp“gl/fnwul‘

Pg and we have

Proof. We first have to show that T,f has an L, (P°) continuous derivative
D°T,f and that [|[D°T,f||{=0""™). If f is in F

|

= f:Ko(y) mi(ﬁ"mf ~T,/) —% Tpert—T01) i dP] dy

1 1
“;(Taf—f)‘B(Tﬁf‘f)

o o 8
= f_wKo(V) [J‘iifo (DTs.yf— DT, f) da—%fo (DT5+;,I~DTyf)d5'dP:| dy

> 1 (= 1 8
<|” & |2 [0 i-01, 110845 [ 197001~ 11 08) 0.

The integrand above is dominated by CK,(y}e™™! and goes to 0 as « and 8 do so

the limit D°f exists. Moreover,

R o0 1 &
" D"Tmf—-D"Tﬂf"‘l’zh_xilJv Ks(p) {f‘;j (DT yiprsf—DTgiprsf) déldp}dy
& -- 00 0
) o 1 &
<lim Supf Ks(y) - [J‘ ”DT1+V+6f_ DTﬂ+y+5f"1 dé] dy
&0 —o0 & o

= fKa(V) "DTHyf - DTﬁ+Vf”1d7

because of the L,(P) continuity and exponential bound of DT,f. Again the integrand
is bounded by CK,(y)eX"”! and goes to 0 as « goes to § and the L,(P°) continuity
of D°T, follows from this by the dominated convergence theorem. A similar calcula-

tion shows that
| DT £l =f K, (y) [f|DTa+yf| dP] dy<Af K, (y) eflet7t dy=0(eK"").

We can show as in Lemma 4.4 of [8] that a ¢, exists in L, (P°) satisfying [ ¢°fdP° =
{D°fdP for every f in F and
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NP ()28 < |

|¢°|dP’ < §P(|¢°| > N)+2K,(B)
le?|>N o

for every positive N and B. Setting B equal to o(N —1) gives

2
ol > <V_ —o(N-1)?
Plg =M<l —e

and using the same B again

J( |¢°|dP < (N — l)l/i g oVt 4 ——2_ g oV - 2 N tod-12,
6% >N no 2n0 no
The existence of the measures P2 now follows from Theorems 3.1 and 2.3 and the
remainder of the theorem is proved exactly as in [8].
We are now in a position to generalize the theorems of [9]. The next four theo-

rems are restatements of Theorems 1 through 4 of that paper.

TreEorEM 33. If X, 8, P, T,, and F satisfy (A1) and (A 3) and the P, are mutu-
ally absolutely continuous, then T, can be extended to all finite S-measurable [unctions
and the mappings U(a) of L,(P) defined by U(a)(f)=(dP./dP)T_.f form a strongly

continuous group of isometries. The extension of T, is linear and positive and satisfies

(1) If f. converges to O almost everywhere, so does T,f,,

@) Tullg) =T () T (g),

(3) Tu(Ts)) = Turs,
dPj\ _dPj..

@) T (dP;) ~ap;

and
(8) If either side of the equation [T, hdP§= [hdPj.. exists, so does the other side

and they are equal.
Proof. This theorem is proved in exactly the same way as is Theorem 1 of [9].

TueoreEM 34. If X, 8, P, T,, F, and ¢ satisfy (A1), (A2), and (A3), then the
generator A of [U(x)| > 0] contains F in its domain and is defined there by: Af = q@f — Df.
U(x) () 1s almost always integrable on every finite interval and the equation dP,/dP =
1+ §5U(B) (p) dB defines a continuous version of the stochastic process dP,/dP.

Proof. The only difficulty in applying the proof of Theorem 2 of [9] here arises
from the fact that Dj is not necessarily bounded. That proof can still be used, how-
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ever, to show that A(1)=¢ since D(1)=0. For any f in F we can find a sequence

; going to O such that 7', f—f converges to 0 almest everywhere and we have then

” Ue)(H—~1
&;

(¢f — Df) ’[i(U(“i)(l)_l)"—(p] (T-of =

<
1 1

T—o:if *f
i*‘a—“)f

i

+ (T o, = Pl +

_|_
1

1
l[;i (Ule) (1)~ 1)—90] f”l-

The first and fourth terms are dominated by 2| /|l ||ai? (U(a) (1) — 1) — |, which
goes to 0, the second term goes to 0 by the dominated convergence theorem and the
third term also goes to 0. Thus a subsequence of (U(a)f—f)/o« converges to ¢f —Df
and this implies that A(f)=¢f— Df [4; Theorem 10.5.4, p. 318]. The rest of the proof
is exactly the same as the proof of Theorem 2 of [9].

If (A1) and (A2) hold for X, S, P, T,, and F, then ¢ is uniquely determined
in L,(P) but not in L,(P°). As in [9] we call ¢ a normalized solution of (A2) if ¢
vanishes almost everywhere with respect to P° on the set where dP/dP° vanishes.
Since the P; are mutually absolutely continuous, the transformations 7', can be ex-

tended to all finite S-measurable functions, and, in particular, to ¢.

THEOREM 3.5. Let @ be a normalized solution of (A2). If, for some y=>0 (or
6<0), T_go is integrable on [0,y] (or [8, 0]) almost everywhere with respect to P°, then
the P, are mutually absolutely continuous, T_g@ is almost always integrable on every
finite interval, and log (dP,/dP)= (3T _s@dp.

Proof. The proof is the same as the proof of Theorem 3 of [9].

THEOREM 3.6. Suppose that X, S, P, T,, F, ¢, and P, satisfy (Al), (A2), and
(A3), that @ is in Ly(P) and that the P, are mutually absolutely continuous. If e is
any random variable with [;[fe*dP,)*da< oo for some interval J containing the origin,
and if we define the bias b(a) of the estimate e by: o+ b(a)=[edP,, then at almost
every pownt of J, b(x) has a derivative and

db
do

f(p2dP ’

If, in addition, Tge is continuous in L,(P) on J, then b(a) has a continuous derivative

1+

f (e—a)dP, >

and satisfies the inequality at every point.

Proof. The proof is the same as the proof of Theorem 4 of [9].
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For the remaining theorems of this section we will assume that X, 8, P, T,, F,

and @ satisfy (Al), (A2), and

(A4) There exist positive numbers C, &, and N, such that

f |(p| dP<Ce "
] @)= N1

for all ¥=N,.

We will write ey(a) for Vy(—a) (Vy(x)(1)). Clearly, 0<ey(x) <e(ax)<1l.
Lemma 3.1. 0<{(1 —ey(@))dP<(C/Nye € 1*V¥ for qll N> N,

Proof. We will do the case >0 and the other will follow from the symmetry
of the problem. As in the proof of Theorem 2.2 we can show that

1=Vy(—a)Vu(e)(1)= _f:VN(-ﬂ) [pAN+(—prNVN(B()dE

0 j(l—eN(a))dP<f f|(p/\N+(—<p/\N)|VN(ﬁ)(l)deﬂ
0
" N c —(e—a)N
<| e |@p|dPdB < e €=,
o Jigl>¥ N
LevmwmA 3.2. If the sequence (h,) from F converges in L. (P) to ¢, then

eN(cz)=limexp(f Tﬂ(lhn|/\N—N)dﬂ) if az0
n—>o0 1}

and ey{a)= lim exp(f Tﬂ(|hn|/\N—N)dﬂ) if a<O.
n-—>0 0

Prooj. We can find sequences (f,) and (g,) in F to satisfy ||fo—hsA N|ew<1/n
and ||gn— (bn V — N)||oo<1/m. (f,) converges in L (P) to ¢ A N and (g,) to —(p V —N)
so, if >0,

ex(e)=lm Vy(—ce) Vi, () (1)) = lim Vy(—a) (1) exp (f“Tﬂfndﬁ)

n—00 n—>00 1]

e {exp (JzTﬂ(f,ﬁgn) dﬂ) n (Vzv( — &) (1) — exp (fangndﬁ)) exp (Tpfn'iﬁ)}

n—00 0 0
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but the second term in the brackets is bounded in norm by

eoc(N+1/n)

Vy(—a) (1) — exp (fo Tﬁgndﬁ)

1

which goes to 0 since [§Tsg,df= [3T__pg,dB and (g,) converges to —(pV —N)=

(—@A N), and the first term converges to lim exp ({27 (|h,| A N — N)dp). The proof
n—o00

for ¢ <0 is similar.

LeMmma 3.3.

dpP, dpP,
log ——— (log 715) A alN< —logey(— ).

Proof. We take sequences (f,) and (k,) as in Lemma 3.2 and then refine them so
that [§7_sf,dB converges almost everywhere to log Vy(a)(1) and | e Tg(hn—h, A N)dB
converges almost everywhere to —logey(—o) (x being taken positive). We will still
write (f,) and (h,) for the new sequences. Since [;7Tsf,df <ol +e, where &, goes to

0 as n goes to oo,

a 0
(log (fi_II):) A alN = (log Vy(e) (1)) A N > lim f T _gfndf= lim f Tg(h, A N)dB.
n—o0 0 n—c0 —a
Hence, for any positive M,

0
log Viya () (1) — (1 dP“)

LT A oN < lim Tg(hy—hy A N)df= —logex(— ).

n—00 -
The proof now follows from Theorem 3.1 on letting M go to o~. The proof for a <0
is similar.

Turorem 3.9. If X, S, P, T., F, and ¢ satisfy (Al), (A2), and (A4), then

P (log %< M) <0, e @lH-DA-D

if la|<e and M >|a| Ny+1, and

P (IOg %%< - M) <D, o~ Gllal-2) (M -1

if la|<}e and M>|a|Ny+1. For any p, l<p<oo, [|dP,/dP|?dP is bounded in
any interval |a|<ay<e/(p+1).
2 — 642906 Acta mathematica 112, Imprimé le 11 septembre 1964.
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Proof. By Lemma 3.3,

[log(f;; (lg‘fil;))/\aN]/\l<[—logeN(—oc)]/\1 if N=N,.

Using this inequality, Lemma 3.1, and the fact that
[—logex(—a)]AL1<(1—en(—a)/(1—e7")

gives
daP,
dP
P (log iP > ) a))
c 1 c 1
< il —(e—]ul)N=_____ il —(e/|a|-1)(aN).
1-e'N° 1-¢'N°

Settin O=L~l- and M =alN+1

g 1 1—¢'N,

yields the first formula of the theorem.
By Theorem 3.3

(log dl; M ) =P (log ;;:a )

P_
=P(T (logd;;)>M) P_z(logddp )

If  is the characteristic function of the set where log (dP_,/dP)> M, then

ing aP_,
_ —a M+k+1
P(log 1p < M) Jf dP <k§08 P( g 5 )

o0
Z e M+k+1 ‘(sflatl DM+E+1) __ Dle~<s;[al—2)(M—1)
k=

which is the second formula of the theorem.
Finally, if |a|<ay<e/(p+1),

dP\? ot dP \
« P(la|No+1) P(a| No k+2) ol
f(dp) dP<e +3e P(log o Iaz|N0+Ic+1)

oo
<Ap+ z ev([a]N0+k+2)Cl e"(sllal—l)(uN.+k)

k=0

(=3

—(e~ - - k

— 4P+Bep([u|1v,+2)e (e~ |a]}Ny Z e (&/fjx]~(p+1))
k=0

N o0
SA,,-I—B,,e"'“"'M e~ &Iz Ne z e @l - (P +1DK
k=0

where 4, and B, are independent of « and this completes the proof.
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The information contained in a probability measure P about a probability meas-
ure @, written I(P, @) is given by:

I(P, Q)= flog Z—gdP+ flog QdQ

TaporeM 38, If X, 8, P, T,, F, and p satisfy (A1), (A2), and (A4), then for any
« B, and y, I(Pa, Pg)=I1(Py.,, Pssy). I(Py, Pg) is finite whenever {a—pB|<te and
I(P,, Pg)=O((— B)%) as a converges to f.

Proof. From Theorem 3.3

n k n
T.(¢"y=lim T, (z L) =lim (T“f)k=e71’

<k T o S k!

for any measurable f so exp (T logg)=T.g9=-exp (logT.g), i-e., T,logg=1logT,g for

any measurable g. Hencs,

dP, dP,
I(Pysy, Pyiy) = flog APy, + flog dPﬂﬂ, dP,.,
+y

oty

=fT Iogj?”"d}’ﬂ%-fﬂ’ logjgﬁwdl’
at+y

dP
= f log g%; dP;+ f log d—P" dP,=I1(P,, Py).

Now, by Theorem 3.7, if |«|<oy<}e, then

fpmp; ip= jw = U; 14dpf(dp)dp}*=0< co.

Since the L;(P) norm is dominated by the L,(P) norm, T_p¢ is integrable on [0, a]
and by Theorem 3.5, |log (dPa/dP)l—lj‘oT-ﬂtpd‘B] < J2|T_sp|dB. (dP,/dP)T_, ¢ is also

1ntegrable on [0, «] so, almost everywhere

P, | | (*dP, “dP,
aP 1= o apP T—y¢d7,<f0 de T_qu?ldy.
3 . dP
Hence, 0<I(P,P,) < T_s\pldp T_,,|<p|d'y P

= L ap fo dyf(T-ﬂw lgD |pldP<Ca’.
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4. The Gaussian case

Let (X,8,P) be a set, a o-algebra of subsets and a probability measure, and
Jet L be a linear set of real-valued S-measurable random variables whose joint distri-
butions with respect to P are Gaussian. We will write H for the L,-closure of L.
All limit operations in this section will be with respect to the L,(P) norm unless
otherwise specified. Let T, be a one-parameter group of linear transformations of L

into itself. We make the following assumptions:

(i) 1 (the constant function) is in L and T,1=1 for all «.

(ii) H is separable.

(iii) For every x in L, Dx=lim, o (T,x—x)/e exists and DT.x is L, continu-
ous in a.

(iv) There exists a y in L,(P) satisfying | yxydP = | (xDy +yDx) dP for all 2 and
y in L.

Lemma 4.1, If xy=1,2,,2,,... is a complete orthonormal set in L, then
n
p=1lm 3 ( (x; Dx;+ 2, Dxy) dP)x,x,-{— > (fx,Dx,dP) (xF—1)
i=1

n—o00 O<i<ign
xl, caey xn)

exists and satisfies [ pxydP = | (xDy+yDx)dP for every x and y in L. @ is independent
of the particular sequence x, ... .

N~—>00 i=0

Proof. The random variables z;x; —d,; are orthogonal and the first expression for
@ is just the Fourier expansion for y with respect to this orthogonal set which guar-
antees its L, convergence. The equality of the two expressions is proved by com.
puting the Fourier coefficients of the second with respect to this orthogonal set noting
that E(x;2;|x,, ..., 2,) =0if i<n<j. If i <j, then clearly | px;2;dP = | (x; Dx; + 2;Dx;)dP

and

2 _
tdP = | paf—1)dP=V2 @V ip_y z, Dx,dP
@ 2 ? /s

s0 [ gzwdP = | (zDw+ wDz)dP holds for z and w which are finite linear combinations

of the z;, By the same argument any other complete orthonormal set y,=1,y4,,...
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in L gives rise to a ¢’ which is the expansion of y over the orthogonal set y;y, —Jd;;
and satisfies the desired equation for z and w which are finite linear combinations.
of the y,. However, if Si_jay%, converges to y; then, since all the random variables.
involved are Gaussian (J%_; ayay) (D=1 @u%;) converges to y;y; so the spaces spanned
by the z;2;,— 9, and the y;y,—0d; are the same and ¢ =¢’. It now follows, on applying:
the Gram-Schmidt procedure to the sequence 1,z,w,x,,z,, ... and forming @ with
respect, to the resulting complete orthonormal sequence that | gzwdP = { (zDw + wDz)dP
for all z and w in L.

Lemma 4.2. If @ is in L, | DT 2| =0(*%) jor K=V3 |¢],
Proof. If f(a)=[(T,x)*dP, then
fly=2 (T, ) DT, xdP= | (T x)?dP <3 YK ([ (T, x)*dP)}.
Writing m and o for the mean and variance of 7T,z,

|7 ()| <3 ¥ K (36°+60m® + m*)t < K(c +m?) = Kf(a).

Hence f(T“x)zdP< (fxzdP) ekl

and
2

DTz | = lim ” T, (Zﬂ)
e—>0 &

£->0

a2
<lim sup f (——m “’) dPeX'™ = || D || X!,
&

Lemma 4.3. There exist independent normalized Gaussian random variables y, in.
H and numbers A, and p, for which ¢=7233_1 2 (ya— 1)+ 25 1 ftnYn

Proof. We may write ¢=@,+@, where @,= icicja,tiz;+ o21a(xf—1) and
@ =2721b,4;. For any Gaussian random variable z, ([ 2*dP) <3%(f2*dP)} so

i : i i
| [rosvar| <hodl ([#72P)' <l ([xtar)* ([ar)' < kIl I
1

if + and y are in H. Thus the equation [ (Tx)ydP = |g@,2ydP Jefines a bounded
self-adjoint operator on H. Also, for any complete orthonormal set (w;),

Eo (f(Txi)x,dP)z= 2;1 (f¢0xixjdp)z+ § f%(x?— 1)dP <2 g, |2
i,j= <, i=1

so T is a Hilbert—-Schmidt operator and hence is completely continuous. Let (y,) be
the eigenvectors and (21,) the corresponding eigenvalues of 7. Ey the same argu-
ment used in Lemma 4.1, the random variables y,4;—d;; span the subspace of L,(P)

containing ¢, so we have
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< (yn—1) ) yn—1_ % 2
= AP} y,y; ——dP) == 3 i)
7= 2 (f%y:y, ) Yyt 2 (ﬁpo Vs Vs 2 halgn=1)

Since ¢, can be expanded over any complete orthonormal set, the lemma is proved.

Lewvma 4.4. There exist positive numbers ¢, C, and N, such that [iysn|@|dP<

Ce Y whenever N=N,.

Proof. It will be sufficient to show that [e’¥/dP < oo for some o >0 since then

f |@|dP < Ne®¥ f WP < ( f e"“‘"dP) e 40N
] fo@>N1 (2} fe(zi =M

for large enough N. Also, since €’¥'<e’®+e7%, it will be sufficient to show that

€* is integrable for small |6|. Writing ¢ =@, +¢, as in the preceeding lemma,

Je"”dP = fe"""’*“" dP< fe"“" dP + fe“"" dP

and the second term on the right is finite because ¢, is Gaussian so it only remains
to show that €’ is integrable. Taking |6|<inf }1;', we have

N N N
fexp (621 i — 1)) dP= I;I1 fexp (6 (yf—1))dP =;'H=1 (1—204,)* exp (—04,).

The infinite product converges to a finite limit because
|1—(1—262) exp (—04)|=0(6%4}) and i_zlmkwllzpll%

so, taking a subsequence N, for which > A,(37 —1) converges almost everywhere
to ¢, and applying Fatou’s lemma,
Nk
fe"“’°dP< lim [T (1—264)% exp (—84;) < oo.
k—oe j=1
Let F be the set of random variables of the form f(z,, ..., z,) where f is a bounded,

real-valued function of » real variables with bounded first and second derivatives and
the x; belong to L.

Levwma 4.5. T, is well-defined on F by: Tof(2y, ..., %) = (T oy, ..., Toxs). Writing
fi for the partial derivative of f with respect to the ith appearing variable, we have
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Df=1lim Taf=f_ S fiay, ..., &) Day.
a—>0 o i=1

DT.f is continuous in L,(P) and hence in L,(P) and | DT.f|, <||DT.f|ly=O(*™).
Proof. We have to show that if f(z,,...,2,)=¢(¥y, .-, Ym), then
1Ty, oo, Tox,) =g(Tayys oo, T Ym)-

After eliminating those variables on which f or g has only a constant dependence,
the remaining sets of variables (x,,...,%,) and (y,, ..., ¥n) must clearly span the same
subspace of L. Hence each y; can be written as a linear combination of the z; and

the first assertion of the lemma follows from this. By Taylor’s theorem

T.f—f z z ITazk_‘xklz
" El fil@y, .., 2) Dy} < 15{221; {7l 121 -

and this goes to zero in L,(P) since the x, are Gaussian. A similar argument proves
the L, continuity of DT.f. Finally,

1 DTefll, <sup [|fille 2 | DTts| = O(e™*).

Lemma 4.6. If f is in F, then | @fdP= | DfdP.

Proof. We can assume, after making the appropriate linear change of variables,
that f=f(x,,...,x,) where zy=1, x,,...,%, are the first n+1 terms in a complete
orthonormal set. If Dz; =331 apax+ By, then

n
E (ijxj—fz,Dx,»dPlxl,...,x,,)= 2> awxay— o+ fix; i f<n.
k=1

We have

ff(de= ff E (i (x;Dx, - fx,Dx,-dP) |2, ..y x,,) dpP
i1

= (275)7”J‘f (5, .., az) ; (kZ O Qs — Oty T+ ﬂfai)eXP (—

=1

N | -
X
A

Using

(zl O A Ay — oc;y—-l—ﬂ,-a,) exp (— %a?) = — 3%, [(él Oy Oy + ﬂ,) exp (— %“12)]

and integrating by parts leads to the desired equation.
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THEOREM 4.1. If (i) through (iv) are salisfied, then the measures P, are mutually
absolutely continuous and T, can be extended to all S-measurable functions. T_,p(x) is
integrable on every finite interval for almost every x and log (dP,/dP)= [§T_pgedB. For
some & and N,, the results of Theorem 3.7 hold for log (dP,/dP).

Proof. The lemmas of this section prove that the hypothesis of Theorems 3.1
and 3.7 hold for X,S,P,F,T,, and ¢. For ¢ as in Lemma 4.4 and |«|<1e, Theo-
rem 3.7 implies that [ (dP,/dP)*dP<(%< oo, s0 [ Ty|p|dP = [|p| (dP,/dP)dP<C | ¢p||,.
Hence [, [T,|p|dadP<%eC| p|l,< oo, which proves that 7_,¢ is almost always
integrable on [ —¢/3, ¢/3]. The remainder of the theorem now follows from Theorem 3.5.

TueorEM 4.2, If (i) through (iv) are satisfied and the sequence (p,) converges to
@ i Ly(P), then T_pp, ts almost always integrable on [0, «] and [5T_s@,dp converges
in L (P) to log (dP,/dP) for almost all « in some mondegenerate interval [— oy, otg].
For some subsequence (n;), {571 _g@n;df converges to log (dP,/dP) almost everywhere with
respect to dPdo. In particular if, for some complete orthonormal sequence xy=1, x,, ...

from L, 37 1 (x; Dx;— | x; Dx;dP) is L,-convergent, then

n

Z (% xz2 - % (T;ax,-)z — & fxi DxidP)
i=1

converges in L, (P) to log (dP,/dP) for « in [— oy «y) and for some subsequence (ny),

nj
> (% 25— 3 (T_ 2) — aJ‘xi Dz, dP)

i=1

converges to log (dP,/dP) almost everywhere with respect to dPde.

Proof. For |«|<e/3.

J

which proves the almost everywhere integrability of 7_s¢, on [—¢&/3, /3] and the
L,(dPdx) convergence of (§7T_s@,df to [§T_pepdf for « in this interval. For some

subsequence (n;), [§7_s@n;dB converges almost everywhere dPdx on the interval and

a dP_
f —s(p— ¢n)dﬂldP<f (flqv @n| ﬂdP)dﬂ<0||¢ @nllo

thus, because the P, are all equivalent,

Nea N-1 o
f T-ppndf= > T~kaf T pondf
0 k=0 0
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converges almost everywhere to [§*7T_s@df with respect to dPde. The remainder of
the theorem will be proved if we show that [§7_s(xDx)df =} 2®— 3} (T_,x)® for z in L.
For some sequence (e;) converging to 0, (7', x— T 5 x)/e, converges almost every-
where to DT_gx and (7. z—x) /€, converges almost everywhere to Dx but then, since
P_; is equivalent to P, T_ﬁ(Tenx—x)/s,, converges almost everywhere to T_gDzx so
T .gDx= DT _gx. Thus the integrand T_sz(xDx)= (T _gx) (DT_sx) is L, continuous and
[T _s(@Dx)dB has (T_,z)(DT_,x) as L, derivative. The L, derivative of }a%—
3(T_,2)* is given by

— _ 2
lim — 3 [(T -0 2)?— (T, )*] =lim [— T, (T‘“”‘ T‘“”) - (T‘“” T‘“”) ]

£—>0 £->0 & €

= (T..2) (DT _, %)

(using again the fact that the random variables are Gaussian) and this proves the
validity of the desired equation since both sides vanish for x=0. Example 4 of the
next section shows that 2221 (x; Dx; — [ x; Dx;dP) need not converge to ¢.

Before going to the next section we wish to discuss assumptions (i) through (iv)
made at the beginning of this one. (i) which is simply a normalization and (iii) which
expresses the continuity of T“‘seem necessary in this context but (ii), the separability
of H, could have been avoided. We have not thought it worth-while to make the
minor changes in proofs and notation required for the nonseparable case since it is
of infrequent occurrence in applications. Assumption (iv) is rather awkward as stated.
In practice one generally chooses a complete orthonormal set z,=1,x,,%,, ... from I;
computes @ = >{%ox; Dx;, which satisfies the desired equation when x and y are finite
linear combinations of the x;’s; and then shows by a continuity argument that the.
equation is satisfied for all * and y in L. The following example shows that this
continuity is not automatic.

Let x,, x,,... be an orthonormal set and define y,= A4, >%. 1k ", where 4, is

chosen to make ||y,||=1. The z’s and y,’s are linearly independent since
N M
z=2 o+ 2 Biy=0
i=1 i=1

implies that B, =limy_, . n [ 22,dP=0, B,=lim,_,, n* [ 22,dP=0, etc. L is to be all
finite linear combinations of x,=1, the x;’s, and the y’s, and T, is defined by:

Tuxn=xn+0n (ea""‘— l)yn and Ta?/n=ea”°‘yn,

This gives Dr,=a,C,y, and DT, y,=a,e**y,. Choosing C,=0 gives
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¢= 2 x;Dr;=0 but f(xk Dy, +y, Dxy) dP=a,,kay,,dP=a,, A, k“"=|=0=f<pxkyndP.
=1

This example can be patched up by cutting down the size of L but the following
% giving @ =22 2 Dry= 2214y
which is L, convergent but cannot satisfy (iv) because | DT, y,|l,=ne™ =+ O(e5!™)

one can’t. This time we take a,==» and C,=n"

contradicting Lemma 4.2.

It would be very interesting to have a converse to Theorem 4.1, that is, a theo-
rem asserting that if (i), (ii), and (iii) hold and if mutually absolutely continuous
measures P, satisfying {T,xdP= [ zdP, exist, then a y satisfying (iv) must exist.
Under these assumptions Theorem 3.3 implies that V(a)f=(dP,/dP)T..f is a strongly
continuous group with generator 4 and the desired theorem is easily seen to be
equivalent to the assertion that the constant function 1 is in the domain of A4 and
A(1) is in Ly(P).

Finally, it should be pointed out that the relation between ¢ and T, is not one
to one. This shows up even in the finite dimensional case as the following example
shows. Let y, and y, be independent normalized Gaussian random variables and let

L be all finite linear combinations of y,=1, y,, and y, For each real » let D, be

Yo Yo
D, |y, |=| Lty
Y — vyt Ay,

and let T be the group given by 7 =e*’». Then y, and y, are the variables whose

the transformation given by:

existence is proved in Lemma 4.3 and ¢, =y, D,y, — | v, D,y,dP +y, Dy, — | y, Dy, dP =
A (¥i—1)+2;(¥5—1) which is independent of ».

5. Gaussian examples

Example 1. Translation of a random entire function.
Let (a,) be a sequence of independent normalized (mean O and variance 1) Gauss-
ian random variables and ({,) a sequence of real numbers satisfying > 520 (Cni1/En)? < 0.
For each ¢, — oo <t< oo and k=0,1,... the series ™ (£) = >0 ({nsx @nix/n!) " con-
verges with probability 1 because the independent random variables
_ Crik@nik

oo
Y= 20" satisfy > |yidP login< oo
n! n=0
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([1], Theorem 4.2, p. 157) and applying this result to an unbounded sequence ¢, shows
that the defining series for each ™ has infinite radius of convergence with proba-
bility 1. It is also easy to see that 2™ (f) is the L,(P)-limit of > _o (Cn+x Gnir/n!) "
for each k and ¢&. We take L to be all finite linear combinations of the constant

function and the random variables 2 (f) for — oo <t< oo and k=0,1,... and define
T, by:
T 2™ (8) =2 (¢ + ).

The set * (0)/¢,=a, is orthonormal and dense in L so H is separable.

(k) R 2
Now f lT—“x (—“a—~” ®) _ qaerv L gp
_ 3 Cnaks1 @nirst (t+ a)n+1_tn+1_(n+1)tn 2dP
nco  (n+1)! o
_ (Cn+k+l)2 ' (t+°‘)n+1_tn+l ?
T (1)) P N

so Dx® () =2%**V(#). The continuity of DT,z™ () =z**" (t+ a) is guaranteed by the
fact that it has L, derivative " (t+ a).

The assumption on the (,’s implies the L,(P) convergence of

_ 3 220 (x"" (0))= 2 Lest (x“” (0)) (x"‘*” (0))
=27z Uz )& U ) U )

From its definition ¢ satisfies [pyzdP = [ (yDz+2Dy)dP for all y and 2z which are
finite linear combinations of the 2™ (0). For arbitrary s and ¢

. . N (m+4) N (n+5
fwx(” (8) 2 (£)dP =1lim f(p (Z x—»ﬁ s"‘) (Z z '(O) t”) apP
oo m=—0 m! n=0 N
. N x(m+1) (O) " N x("+1+l)(0) o
- [1(2 500 ) ()

N (% x(_!n+i+l) (0) Sm) ( N x(n+l) (0) tn)] dP

m=0 m' n=0 'n'

™M

= f [2® (8) &+ (8) + 2P () 2 (£)]dP

so ¢ satisfies condition (iv) of section 4 and the theorems of that section are appli-
cable here.
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THEOREM 5.1. Under the stated assumplions the measures P, associated with the
stochastic processes x,(t)=z(t+ )= Du-0(Cn@s/n!) (t+ )" are mutually absolutely con-
tinuous. Some subsequence of } X 1o [(x™ (0)/Ln): — (™ (@)/Lr)?] converges almost every-
where (dPd«) to log (dP,/dP).

Example 2. The Doppler shift.

Let z(t) be a complex Gaussian process on an interval I with mean value f in
L, (dt) and correlation function R(s,t) in L,(dsxdf). The integral operator R on L, (di)
associatéd with the kernel R(s,#) is completely continuous, hence has a complete set
(&) of eigenvectors with corresponding eigenvalues (4;). The A, are nonmnegative and
satisfy >%.q /2 < oo. We further assume that all the 1. are strictly positive and that

the real-valued, Gaussian random variables a;, and y, given by:

Ty + iy = l/% fz(z & —16) gk(t)dt

are independent of each other and of all the other x, and y,. For a bounded func-
tion a(f) on I and a real a the transformation z(t) — ¢**®z(f) is called the Doppler shift
of z by « [6].

We take L to be the set of all finite linear combinations of the constant func-
tion and the real-valued random variables %, and v, given by u,+1iv,= [;z(f)g(t)dt
for ¢’s in L,(dt), and define T, by the equation 7, (g + W) = U aa, + 10 T, is well

e*ag*

defined since

/7 o /7 .
gmigVEUEnw—ﬁ%%aﬂ&i;VzU@mw+4mwﬁ@

and the 7T, obviously form a group. We have

“ f () (emm_ 1 —a(t)) g(t)dt
1 &
ea_l
=£lR* ((8 . —a)g) (t)
<of
1

ea(t) 1
f - ~M®mn

which goes to 0 by the dominated convergence theorem as & goes to 0 so Du,=1u,,

2

: S S b
dt -+ [f f(®) ( P a(t)) g(t) dt]
1

2
dt

and Dv,=v,,. It now follows from the fact that DT, u, = Uy e, and DT v, = Ve, have
L,(P) derivatives that they are L,(P) continuous.

The set comprising 1, the a;’s, and the y.’s is a complete orthonormal subset of
L. Elementary but tedious ealeulations yield the following equations in which R (¢} and

J(c) stand for the real and imaginary parts of c.
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f(xk Dz;+ ;D) dP = f(ykDyl + 9 Dyx)dP
—R(V“f &0 E( m+V f n&maMM)lth
[ @Dy yDagar- U(qufaUﬁAQ& dt— VL.f 0508 0),
kaka dP = fykDyde: 2f R(a(t)|&(t) |2 dt,
fDnﬂ%=V%R(fﬂnMn&mmy
[pwar=)/ Z3([ roewima).

THEOREM 5.2. If

< oo

am&n&mw+/kfam&maum

kll

and 2 (O F () &) dt

then the conclusions of Theorem 4.1 hold for this case. In particular, the measures P,

xa(t)

associated with the processes ¢**z(t) are mutually absolutely continuous.

Proof. The hypotheses of the theorem and the computations immediately pre-

ceeding the theorem imply the existence of

- [(fper) e )]

+ 2., [(f(kax, +x;Dxy,) dP) a0, + f((ykDy, +y; Dyy) dP) Yj yk]
1<i<

+2§1 [(ijDzde) @ —1)+ (fy,Dy,dP) 3 —1)]

0 o
+2
j=1 k=1

in Ly(P). We can show, exactly as in Lemma 4.6, that
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ftpwl wy,dP = f(wl Dw,+w, Dw,)dP

if the w; are finite linear combinations of the constant function and the x’s and y’s.
If (g,) is any sequence in L,(dt) converging to g, then [;(z—f) (¢) gn(t)dt is L,(P) con-
vergent to [;(z—f) (f)g(t)dt. Hence for g and k in L,(dt) if we set o= [,g(t)&(¢)dt
and By = [;h(t)&(t)dt we have

LARYIN
[rumir=pm [o[R(Z V% atariv + [ rog0a)]

x [R (,Zl l/z—z" Br (2 + 1Y) + f /(t)h(t)dt] dpP

= jR (fz(s)g(s) ds) R (fz(t)a(t)h(t)dt) dP
I
+f72 (fz(s)a(s)g(s)ds) R(fz(t)h(t)dt) dP
4 1

= f(u‘,Duh + uhDu,,) dP.

The proofs that [pu,v,dP = [(u, Dv; + v, Du,) dP and that [ev,v,dP = | (v, Dv, + v, Dv,)dP
are similar. This shows that the hypotheses of Theorem 4.1 are satisfied and thus
proves the theorem.

THEOREM 5.3. If
o0 00 2
2 2 < oo

4
i—1 k21 Ax

fja(t)l% £ (t) dt

2
< 0o

o0

and 5 H [ eoroaon

i=1

then some subsequence of

Y1 -
) {TU 1) @) &) dt
k=1 /g 1

2 2
_zlk U,(e“%”z(t) —fE) &y de| — afZR(a) lsoF dt}

converges almost everywhere (dPde) to log dP,/dP.

Proof. Xt we set Ay=x,Dx,+ Dy, — § (x, Dy + yp Dy) 4P, then we get, after a
lengthy calculation
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2

fAkAde = 6jk 2—'2‘
"7

- 2 2 =
fa(t)f(t)ff(t) dt +61‘kr 2 A
I j 1=1

J;a(t) & &t)de

+ 048

2
fla(t)léj(t)lwt +8fR(a(t>)|§<t)|2dtfma<s»Iek(s)lzds

+ fd (8)&5(5) Ex(s)ds Jd(t) EM&c(dt+ fa(s) &(s)Eu(s)ds fa(t) &) & (tydt.

The hypotheses of the theorem imply the convergence of 22, >%.|[ A;4,dP| so
that || 2L 4;||* which is dominated by 252 352, | [ 4, 4,dP| goes to 0 as I goes to co.
Thus S¥., A, converges to ¢ and Theorem 4.2 applies.

Exzample 3. Rotation of a random periodic function.
We consider the process z(2) for —m<f<x given by

oo
Z(t) = O 6,%, sin nt+ 7,9, cos nt
n=1

where (x,) and (y,) are sets of independent normalized Gaussian random variables which
are independent of each other and (o,) and (z,) are sets of real numbers such that
Sri(oh+15)<co. We take L to be the set of all finite linear combinations of 1 and

the z,’s and y,’s and set
Ty, . On , .
T.x,=(cos na) x,,—-; (sinno)y, and T,y,= - (sin nee) x, + (cos no) y,.
n n

Trivially, Dx,= —n(1./0,)y, and Dy,=n(c,/7,)x, so that both DT,x, and DT,.y,

again have L,(P) derivatives and hence are L,(P) continuous.

o 0n\2
THEOREM 5.4. If Sat | —-2) < oo,
Cn Tn

then the measures P, associated with the processes xz(t+ &) are mutually absolutely con-

tinuous and some subsequence of

S an % Tn O
> 1 (sinfne) (1 ~— | 25+ (sin® na) (1 — =) ¥%— (sin na cos na) (—"——") Zn Yn
n=1 Tn On Cp Ty

converges to log dP,/dP almost everywhere (dPdo).

Proof. The eondition insures the L,(P) convergence of
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< il Tp On
p= 21 (TnDxy+ 9y, Dy )= > n (O_—— —) ZTnYn

n=1 n n

and we can show as in the proof of Lemma 4.6 that | gzwdP = | (:Dw+wDz)dP for
z and w which are finite linear combinations of 1 and the z,’s and y,’s, i.e., for z

and w in L. The theorem now follows from Theorems 4.1 and 4.2 plus the fact that

2
325+ 1 g8~ (T-an) — } (T-aya) = } (sin* n0) (1 —%‘) 7

n

72 Tpn On

n 2 .
Yn —(sinnecosna) [———) z, Yn.
a‘i) Y (0 T)

+ % (sin®na) (1 -
n Tn

Example 4. Linear fractional transformations of random analytic functions.
Let f(z)= > 0c,2" where ¢,=0,2,+ T ¥, (6,) and (7,) are bounded sequences
of positive real numbers, and (x,) and (y,) are sets of independent normalized Gaussian
random variables which are independent of each other. For any z with |z|<1 the

series defining f(z) is almost everywhere convergent since
oc o0
> Izlz"flc,,lzdP log?n<C > |2|* log? n< co
n=0 n=0

[1, Theorem 4.2, p. 157] so f has radius of convergence at least 1 almost always.

_ (cosh «)z+sinh «

If we set L,(z)= (sinh &)z + cosh o’

then, for any fixed 6 the linear fractional transformations 7' ,: T . (2) =€° L, (e %2)
form a one-parameter group each member of which takes the sets [z| |z|<1] and
[z| |z|=1] into themselves. Furthermore, any linear fractional transformation preserv-
ing these sets is of this form. We shall find necessary conditions on the coefficients

o, and 7, for the mutual absolute continuity of the measures associated with the
processes fg,:
fo.a (2) = (T, 2).

We take for L all finite linear combinations of the constant function and random
variables of the form w,(2)=R(f* (2)) and v.(2)=J(f*¥(2)) for k=0,1,... and |z]<1
(we have written R and J for the real and imaginary parts of a number and f* for
the kth derivative of f). 7, is defined, for fixed 6, by:
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d\* d\*
T,,uk(z)=R((d—z) f(TMz)) and T“v"(z)zj((d—z) ]‘(Te_uz)).

T,u,(z) and T,v,(2z) are linear combinations of

uo(Tﬂ,z z): cony Ug (Tﬂ,az): vo(qyﬂ.acz)y veny Vg (Tﬂ.m Z)

with coefficients which are functions of z analytic for |z|<1.
We wish to show that

D(Tyur(2) + T, 0e(2))
= (€% —e72%) (Tours1 (2) + 1T 0k 41 (2))
— 2ke 02 (T yuy (2) + i1, 0, (2)) — k(e—1)e " (Tour 1 (2) + 1T w51 (2))

the last term being replaced by O if k=0. It will follow from this, as in the previous
examples, that DT, u,(z) and DT,v,(z) are themselves in L, hence L,(P) differentiable
in ¢, hence L,(P) continuous in «. We note first that

(810 _ e—iﬂ w2)

f(TG.a:+e w) - f(TO,a w) 1)
o, .
H P AMCLELY) ((sinh &) we "+ cosh «)?
<05 |Tozsew) = (Togw)  (Toxw)" (e®—ePw? P
a1 P ((sinh a) e *®w + cosh «)®

which goes to 0 uniformly for |w|<1. Hence, taking I" to be a circle of sufficiently
small radius r about z,

T'ove (U (2) + 10 (2)) — Ty (2) T 03 (2)) ( d ) ( [P (To,22) (€0 — e 27 )
e ((sinh o) ze™*® + cosh a)?

dz

=ch!_ f (f(To.st)—f(To,aw)_ 1 (T, w) (e‘°—e""w2)) 1
r

27t & ({sinh &) we ™%+ cosh )%/ (w—z)F*! dw”

/(To.ac+sw) — f(TO.azw)
&€

<.’ﬂ%’f_”

=
2n Tk+1 wel’

(eiﬂ _ e—i0w2)
((sinh ) we™*®+ cosh «)?

— f(l) (Tﬂ,azw)

and this goes to 0 as ¢ goes to 0 so

0 i
DT, (w(2) + ivg (2)) = (ﬁ‘l_)k [( [V (To,02) (€ — e 727 ]

dz) |((sinh a)ze "+ cosh «)?

) (diz) [((% f(T"-“z)) (€~ e"°z2)]

from which the desired formula follows.

3 — 642006 Acta mathematica 112. Imprimé le 11 septembre 1964,
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The sets (z,) and (yx) form a complete orthonormal set and are contained in L since

1 1
Xy =¢m u,,(O) and Yie =W Uy (0).

0 o0 2
> > {( f (z; Dy, + 2, Dx;) dP)2 + (f(x,Dyk + y,,Dx,)dP)
7=0 k=0

2 2
+ (f(?/ijk‘kaDy;)dP) + (J(ijyk+ ykDyi)dP) }

Z {cos 0[(7+1)6’“ '%] -‘-smze[(7+1)r’” j—f‘i]

a;j i+1 Jj Tj+1
.9 Oj+1 . T 2 2 Tiv1 . Tj 2
+sin®@ (7+1)———— ——1 +cos®0 |(j+1) ——jF—1| 1.
Tj+1 T Ti+1
THEOREM 5.5. If the four seres,

72 ) o2
5 [dm o i D[RR
j=

Oj+1 Gj Ti+1

2 -] 2
[7+1)";“ f#],and 2[<7+1>”“ "’].
i

Gj+1 i=1 T i+1

s

-

u[\/]g

i

all converge, then the measures associaied with the processes f .

z) are mutually absolutely
continuous, i.e.,

f(z) is equivalent to any process gotten from it by applying a linear
fractional transformation taking |z| <1 into iself and |z|=1 into stself

Proof. For each 6 the function

p=73 {cos 9[(7+1) T _; % ]x;xm+8m 0[—(7+1> Ty fi] &y
j=0 g; Oj+1 O; T

7 i+l

+sin 0 [(?+ 1) — Tre1 7—] Yy -1+ cos [(7 +1) EJ;—I'—7 _“] 3/}?/7+1}

)

is in L,(P) by hypothesis and we can show as in the proof of Lemma 4.6 that

[ gw,w,dP= [ (w, Dw, + w, Dw,)dP for all w, which are finite linear combinations of the
z's and y;’s. It follows from this by straightforward calculations that
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Jpra@ru0waP= [ D@ uwnar,
[nte) w122~ [ Dy 2y vg P ana

f¢ Vp (2) vy (w)dP = fD(”o (z) v (w))dP.

Because of the L,(P) continuity of f(z) and the fact that all the f(z) are (com-

plex) Gaussian, we have, for properly chosen contours I'; and T,

k1LY (z')dz f(w')dw'
Jrucermenr—g i o R (55 z,m)f (2
kYl (z')dz f(w')dw'
“aa |, Lo JoR (550 R (E20) o
_ Ry f)dz | o (€° — e (W) [P ') dw’ )
- (270)? fl J‘n ( "“) ((w'—w)’”((sinh a)we *? + cosh a)?

IR ( , (e"'—e“x’o,(z')z)f(l)'(;’)dZ’ ; ) R ((f(w’)dw’ )} ip

(2’ —2)*" ((sinh a)ze~®+ cosh a)? w —w)'t!

- f {uﬂzwul(w) + (Duy(2)) (w)} dP.

Similar arguments show “that [ gu,(2)v,(w)dP = [ (u(2) Dv,(w) + v;(w) Duy(2))dP and

| o (@) (w)dP = | (v, z)Dv,(w)—l—v,(w)ka(z))dP and this completes the proof of the
theorem.

Theorem 4.2 is not applicable to this example since

a-1

Z cos 0 [(7+ 1) G:I

ng}xjxj+1+sin9[ (,+1)’£¢+7—’] Y

J+1 T

o C ] T . T ‘
+sin 0 [(7 +1) :1 f] Gj] ] Y; i1+ cos 6 [(7—1— 1) 2+ -7 T—Ajl] YiYi+r
7+

7
2

- Zo (%; D+ y; Dy;)
i<

I T
= “—— cos G (n+1) L g 21+ sin O (n+1) 2 2pyniy
Oy Op
2

®neitcos §(n+ 1) Tnl

YnYni1

e 001y [H o] ()

—sin O(n-l—l)' -
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and in order to have this go to 0 and the series in the theorem converge, we would
need both

On+1 On+1 0
—_— _n n

On+1 =0
Gn On+1

lim (n+1)

n-»00 Gy

=0 and lim [(n+1)

which would imply

n—>00 7 —»00 n On+1

lim n(n+1)=1lim ((n+1) %ﬂ) (n In )=O.

If we set o,=1, =0k}, we get the process f(2)=>72o ok ¥ (a;+1b) 7" whose
boundary behavior has been extensively studied (see [5] for example). The measure
associated with this f(z) is rotationally invariant and the conditions of Theorem 5.5
boil down to the convergence of 2i.1k(k+1)(0x+1/0x— 0r/0k+1)? in this case. If
0.=k°, the terms in this series converge to 4& so the series diverges unless £=0,
i.e., the only process of the form f(z)= 2320k " (xx+1y,)2" to which Theorem 4.1
applies is the one with y=1}.

Example 5. A test for the independence of processes.

z(¢)
Let 2(t) be a vector process (
(%) p y(t)

independent Gaussian processes with means m,(t) and m,(f) which are square inte-

) defined on an interval I, x(t) and y(t) being

grable on I and correlation functions R_(s,f) and R,(s,{) which are square integrable
on IxI. Let (&(t) be the eigenfunctions of the integral operator R, with kernel
R;(s,t) and (4,) be the associated eigenvalues. Let (n(t)) and (u) be the eigenfunc-
tions and eigenvalues of R,. We assume that all 1, and u, are strictly positive in
order to avoid some inessential complexities. We want to compare z{(t) with the
“mixed’ process za(t)=( a(t) c.os o+ y(b) sin a).
—x(t) sin o+ y(f) cos o

The set L is to comprise all finite linear combinations of 1 and functions of the
form z,= [, z(t)f(t)dt and y,= [;y(t)f(t)dt for square integrable f. T, is defined on L by:
Tox,=a;c08 a+y,sin o« and T,y,= —x,8in a+y,cos «. It is evident that DT, x,=
~x; sin o+, cos o« and DT, y,= —x, cos o« — y, sin « and that these are L,(P) continuou

in o. The random variables

=y [ @-mawams

1

and Y= 77—
V,uk

f (9 — my) (0 (0) 8
b 4
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for £=1,2,... form a complete orthonormal subset of L and the following formulas,
in which we have written (f,g) for [;f(f)g(f)dt, are easily verified:

(1) D’”"Z_V{“ (9> &)
Ak
1

2) Dyk'—r (=, 'mc)
M

1
3) | DaydP=—=(my, &
3) f VP = om0

) f Dy, dP == (my )

V,uk

(5) J-(kaxl + 2, Dx,)dP = f(ykDyl +y: Dy, )dP=0

A
f(kayl+lexk aP = ( ‘ul_‘/ k) nl’ fk

THEOREM 5.6. If the series,

?1% my, 5}) ) Ei(’”%,’m){ and E ozo: ( ,Ufj__‘/}-k) 7’} 'fk

7 j=1 fj j=1 k=1

all converge, then the measures associated with the vector processes z, are mutually ab-

solutely continuous and Theorem 4.1 holds for this example.

Proof. As in the previous examples the convergence of the three series implies
the existence of a @ in L,(P) satisfying [ pw,w,dP = [ (w, Dw,+ w,Dw,)dP for w; which

are finite linear combinations of 1 and the x,’s and y,’s. For any f and ¢ in L,(dt),
N N —
f‘prxgdp =Nlim f‘P ( z V2'_n (f, Sn) 2, + (m,, f)) ( Z l’}vn (g9, 511) T, + (m’z, g)) apr
-> o0 n=1 m=1
N N
~ Jim. {f( Z VI (& ms ) (2 060m) ap

+[( 20809 (218 08050+ nes0) ]

== f(x, Dxy+ x, D) dP.
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We can show by similar calculations that [ gz,y,dP= [ (x;Dy,+y,Dz,) and that
§ 9y;y,dP = | (y;Dy,+y,Dy,)dP. Hence Theorem 4.1 applies and the theorem is
proved.

It is interesting to note that the convergence of the first series is equivalent to
the mutual absolute continuity of the measures associated with the processes x(f)—
mz(t) +amy,(t) and the convergence of the second series is equivalent to the mutual

absolute continuity of the measures associated with the processes y(t) — m, (¢) + am.(¢) [10].

Example 6. Adding independent Gaussian processes.

x(t)

Consider the vector process ( ) where =z and y are independent Gaussian

y(®)
processes on an interval I with mean 0 and correlation functions R, and R, which
t)+ t
are square integrable on IxI. We wish to compare this process with (:;;((t)) y( )).

We define L to be all random variables of the form

c+x,+y,=c+J‘ x(t)f(t)dt +f y(8)g(s)ds
I I

for square integrable functions f and g and real numbers c¢. 7T, is defined by:
Tolc+z,+y,)=c+a+ ay,+y, giving Dr,=y, and Dy,=0. If the integral operator
R, has eigenfunctions (&) and eigenvalues (4;) and the operator R, has eigenfunc-
tions (n,) and eigenvalues (u,), then the random variables

1 1

1, =, k=1,... and yk=ﬁy,,k,
k

—-— k=1,..
V.

form a complete orthonormal set.

THEOREM 5.7. If

0 o0 2
> z‘i’-[flm(t)ek(t)dt] < oo

k=1 j=1/k

x(t)+ay(t)) are

then the measures P, associated with the wvector stochastic processes (y o

mutually absolutely continuous and some subsequence of

5 (% _lajz)
2 (m Yo" 22, Un

converges almost everywhere (dPda) to log dP,/dP.



PARAMETER ESTIMATION FOR STOCHASTIC PROCESSES 39

Proof. The convergence of the double series guarantees the convergence of

@ =1lim 2%, 2, Dz since

J

m 2
2 %Dz,

k=n+1

iP= S (V_xkyék)zdP

k=n+1

= f j B, (s, 8) &(8) &, (8)dsdt

k= n+1 2-k

o m

—j - ;L:+IA (ni:sk) ’
where we have written (1;, &) for {;9;(t)&c(t)df. We can show as in Lemma 4.6 that
fpxx,dP= [ (y;x,+ 2;y,)dP whenever f and ¢ are finite linear combinations of the
&c’s. x5, converges to x; and y;, to y; in L,(P) whenever f, converges to f in L,(dt)
and it follows easily that assumption (iv) is satisfied in this case.

The theorem now follows from Theorems 4.1 and 4.2 since

1 2 » 1
3 Z ~ (T-ame)* + 4yt — (T-ayie)®) = g ((;? Ys,— 2; ?/ek)
oo oQ ”] 2 oo ]. o I 2
Now z Z - Ek’ ni) = Z e (Ry Ek, gk) = f Z re (?/Ek) dpP
=1 k=1 Ag k=1 lk k=1 Alc

so the convergence of the double series implies that the y sample functions are in the
range of R} with probability 1, i.e., that the measures @, associated with the pro-
cesses x(f)+ y(f) are absolutely continuous with respect to P almost always. The
expression for the likelihood ratio is exactly dP,/dP (x,y)=dQ,/dP (z) as one would
expect. Conversely, as was shown in [11], the condition that the y sample functions
be in the range of R} with probability 1 is necessary for the mutual absolute conti-
nuity of the P,.
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