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l .  Introduct ion  

�9 A stochastic process [x(t), t E I], or x for short, has associated with it a probability 

measure Px defined on suitable subsets of the space of sample functions on I.  The 

problems of determining when measures Px and P~ associated with processes x and y 

are mutually absolutely continuous and of computing the Radon-Nikodym derivative 

dPx/dPy have been much investigated in recent years. In particular, a necessary and 

sufficient criterion has been given in case x and y are Gaussian for determining the 

mutual absolute continuity of Px and Py [3]. If  we take I to be an interval and x 

and y to have zero means and correlation functions R~(s, t) and R~(s, t) whose associated 

integral operators on L~(dt, I) are compact, then the criterion is that  R;�89 � 8 9  
have an extension to a Hilbert--Schmidt operator and under these circumstances 

dPx/dPy can be expressed in terms of the eigenfunctions and eigenvalues of this opera- 

tor. In  parameter estimation, however, where whole families (P~) of measures must 

be considered, results of this type (which tend to involve separate calculations for 

each pair 61 and as) often involve prohibitive amounts of calculation and also obscure 

the role played by the parameter itself. 

In  [8] we attacked this problem under the assumption that the processes x~ were 

gotten from each other by the application of a one-parameter group T~ of transfor- 

mations acting on the sample functions of the process. Specifically, we assumed given 

an algebra F of bounded random variables on which T~ operated as a group of auto- 

morphisms (intuitively (T~/)(x)=/(T~x)) such that  the derivative DT~/(x)=~Tj(x)/~o~ 
existed and was uniformly bounded in ~ and x. I t  was shown there that  the existence 

of a random variable ~ satisfying j" q~/dP~ = S D/dPz for all / in F implied the existence 

of a strongly continuous one-parameter group [V(~)[~>0]  of contractions on LI(P~) 

(1) Operated with support from the U. S. Army, Navy, and Air Force. 

1 -  642906 Acta mathematica 112. Irnprim6 le 11 septerabre 1964. 
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given for [ in F by (V(zc)/)(x)=Q~(x)(T_~/)(x) and that,  under further assumptions, 

the Px~ were mutually absolutely continuous and Q~=dPxJdP~. 
The above setup is not restricted to Gaussian processes and is sufficiently general 

to handle, for example, the mean value problem, (T~x)(t)=x(t)+am(t). The require- 

ment that  DT~/(x) be bounded, however, rules out many other cases of interest(i) 

and section 2 of this paper is devoted to replacing it with the requirement that  DT~/ 
be continuous in LI(P~) and O(e KI~I) in LI(Px) norm. This is not, strictly speaking, 

less restrictive than the previous set of requirements but seems to be much more 

practical in applications. All the examples used in [8] and [9] will be easily seen to 

apply to the new situation. 

Section 3 carries over some results of [8] and all the results of [9] to this new 

context and ends with two new theorems expressing the effect of an inequality of 

the form 

on the distribution of log (dP~/dP) and on the amount of information in P~ about P. 

The results of sections 2 and 3 are applied in section 4 to the Gaussian case and 

section 5 consists of Gaussian examples. Section 5 as a whole is intended to show 

the wide range of parameter estimation problems which are associated with groups 

of transformations on the sample functions, but it is hoped that  some of the examples 

(especially numbers 2 and 5) may be of interest in applications and that  at least 

example 4 will be of interest in its own right. 

2. The Semigroups V+(cz)and V_(a) 

Let P be a probability measure defined on a a-algebra S of subsets of a set X, 
F an algebra of bounded S-measurable functions dense in LI(P ) and containing the 

constant functions, and T~ a one-parameter group of automorphisms of F which pre- 

serve bounds. We shall make the following assumptions throughout this section: 

(A1) For every / in F, 

lim T J - /  D/ 

exists in LI(P), DT~/ is continuous and IIDT~/III=O(e ~'~1) for some K in- 

dependent of /, 

(1) Example 1 of [8] does not satisfy this requirement and should not have been included there. 
It appears here as example 1 of section 5. 
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and 

(A2) There is a ~ in LI(P ) satisfying Srf/dP = SD/dP for every  / in F .  

Throughout  t h i s  section lim will mean  limit in LI(P ) norm unless o the rwi~  

specified and II/llq will mean  the  Lq(P) norm of /. We note t h a t  F ,  the uniform 

closure of F ,  contains / A g = rain (/, g) and / V g = max  (/, g) whenever  it contains / and g 

and  that ,  since 

- sup [/n (x) - /m  (x) l ~ T~/,~ - T~/,n ~ sup [/~ (x) - / m  (X) I, 
x e X  x e X  

(T~/,) is a uniformly convergent  sequence whenever (/~) is, f rom which it follows t h a t  

T~ can be extended to  F by  sett ing T~(lim/~)=limT~(/~). 

LEM~A 2.1. D has an extension (which we also call D) to a domain A o/ bounded 

/unctions satis/ying 

(i) f q~/dP= f D/dP /or all / in A, 

(ii) I /  / is in F and g is in A, then /g is in A and D(/g)=/Dg+gD/,  

(iii) I /  (/n) is a sequence /rom A converging boundedly almost everywhere to some/~ 

and i/ D/~ is L I ( P  ) convergent to g, then / is in A and 1)/=g. 

and 

Proo/. I f  / and g are in F , - t h e n  

D(/g) = lime_.o (Te/) (Teg) - / g -  lim [Te/e- / (Teg - g) + / T~g - g § g ~ ]  e~o E 

T J - /  

The first term in the inequal i ty  goes to 0 as e goes to 0 while for some subse- 

quence ej, chosen so tha t  T~jg converges to g almost  everywhere,  the second t e rm 

goes to 0 as ?" goes to  co by  the dominated convergence theorem. Thus D(/g)=/Dg + 

gD/. Now consider the set of domains A, which contain only bounded functions, and 

onto which D can be extended so as to satisfy (i) and (ii) part ial ly ordered by  in- 

clusion. I f  A 1 = A  2 and D 1 and D 2 are the corresponding extensions of D, then, for  

any  / in F and g in A1, f / D l g d P =  Sc f /gdP-SgD/dP= f/D2gdP and since we can 
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find a sequence from F to converge boundedly and almost everywhere to any  bounded 

measurable function, this implies tha t  Dlg=D2g, i.e., tha t  D~ is an extension of Dx. 

Thus the union of a linearly ordered set of such domains is again a domain onto 

which D can be properly extended so, by  Zorn's lemma, there is a maximal  such 

domain A. I f  (/~) is a sequence from A converging boundedly almost everywhere to 

0 and Din is LI(P ) convergent to g, then for any h in F, 

f dP=limf D/.dP=lim(f /. P-f/ D dP)=O 
by  dominated convergence so g = 0. Thus D can be extended to the set A' of all g 

which are bounded, almost everywhere limits of sequences (g=) from A such that: Dg,~ 
is L I ( P  ) convergent. For such g= and g it  is clear tha t  (/g~), which is in A by  (ii), 

converges boundedly almost everywhere to /g and D(/g,~) =/Dg,, + gaD/ converges in 

Lx(P ) to /( l im Dgn)+ 9D/ so tha t  (ii) holds for the extension of D to A'. Since, as is 

easily seen, (i) also holds for this extension, we must  have A = A' so tha t  A satisfies 

.all the requirements of the lemma. 

Since T_S/ is L I ( P  ) continuous, ~ T _ H d  fl exists as an L I ( P  ) integral for every 

.a>~0 and has L I ( P  ) derivative equal to T_~,/. S~DT_p/dfl also exists as an .LI(P ) 
~ntegral and has LI(P ) derivative equal to DT_~,f, from which it follows tha t  

S~DT-~/d~=/ -T_~/ .  For / and g in F and ~>~0 we define 

VI(:r ) (g )=exp  T-eld  T ~g. 

L~MMA 2.2. S~ T_~/dfl is in A and D So T_~/dfl = So DT_~/dfl = / -  T_~/. Vf(:r (g) 
-is in A and n(vf(o~) (g)) = ( / -  T_~/) VI(:r ) (g) + (Vi(o~) (1)) DT_~g. 

Proo/. For any / in F we can find numbers ~ ,  fin, and Nn for which ~ 2 l v ~ T ~ /  

.converges boundedly almost everywhere to S~ T_~/dfl and ~N2lv~DT~/  converges in 

LI(P ) to S~DV_~/dfl as n goes to co. Thus S~T_~/dfl is in A and DS~T_~/dfl= 
S~DT_~/dfl which proves the first assertion. A straightforward induction argument  

~shows tha t  (S~ T-~/dfl) n is in A and tha t  D(S ~ T_~/dfl) n = n ( ~  T_~/dfl)n-l(/- T_~/). 
Finally, 

(f0 ; 
converges boundedly almost everywhere to Vr(a ) (g) and 
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converges in Lx(P ) to ([-T_~/)VI(e)(g)+ VI(~)(1)DT_~g from which the last asser- 

tion follows. 

LEM~A 2.3. gr (e) (g  ) has LI(P ) derivative T_=IVI(o~)(g)-VI(~)(1)DT_=g, and; 

~-~ vA=) (g) 

Proo[. 

v r ( ~  + e) (g) - v~(~) (g) 

= exp 

dP= f ([-  ep) Vr(a ) (g) dP. 

+ 

1 

(T_=_~g- T_~g) 

exp (ff+~T-b[dfl) - I 
T_=g-~ 

The first term in the brackets is dominated by 

2 1 1 g  ~ - § 

which goes to O, the second term differs from T_=/T_~g by less than 

1 ~=+~ Ilgll=Ej= IT-=-,/- T-=tldr+ llgll= ~ (~'"rl~=--~ll/llo. -1) 

which goes to O, and the third term goes to - DT_= g so the first assertion is proved. 

We have, by  Lemma 2.2, 

fEtv,(=) (g)- (g))l 

= f[(T-d)vA~)(a) Vr(a)(1)DT-=g]dP 

and by the above argument  this is 

of o-~ vA=) gep. 
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LEMMA 2.4. I /  (/~) is a sequence [rom F converging in LI(P ) to q~ A N and (/,) 

is bounded above, then Vs,(~c)(g) converges in LI (P  ) to a limit VN(g)(g). The limit is 

independent o/ the sequence used. The VN(o~) have unique extensions to positivity pre- 

serving contractions on LI (P  ) which satisJy VN(a)(/g) = (VN(oQ(g))T_~/ /or all / in F 

and g in Ls(P), and HVN(ae)(g)Ilcc<~e~NIIgllor /or all bounded g. VN(O)=I and the VN(:r 

are strongly continuous in ~. 

Proo/. The proof is exactly the same as the proof of the corresponding parts of 

Lemma 2.2 of [8] except for the relation involving Loo norms. This relation is easily 

established for g in F and then can be extended to all bounded g by an approxima- 

Zion argument. 

LE~MA 2.5. VN(:r is a strongly continuous semigroup whose generator AN contains 

A in its domain and is de/ined there by: 

AN/= (cp A ~V) l -- DI. 

Proo/. 

show that  

By using Riemann approximations to the integrals involved we can 

VN(~) (g ; T - ~ / d y ) =  VN(~)(g) ; + ~ T - ~ / d 7  

~or any bounded g. Repeating this argument we get, for g in F,  

and  hence 

I f  (In) is a sequence from F converging to ~A N and if /n~<2N for all n, we have 

[[ VN (~) (VN (~) (g)) -- VN (a + ~) (g) [I 

= a i m  II VN(~)(V,~ (~) (g) ) -  V,.(~+B)(g)It 

= l i m  VN(cc)(1)exp(J~, T_~/nd~)T_~_ .g -Vf . (~+~) (g)  I 
< lim sup [[gl[oo e 2#N VN(:r (1) - exp T_v/nd v O. 

n - - ~  oo  
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Again b y  using a s t ra ight forward  R iemann  approx imat ion  a rgumen t  we can show 

t h a t  if / and  g are in F and  ]t>ll/II=c+g then  .I~e-a~'Vr(o:)(g)do: is in A and 

d D ( f :  e-~V'(o:,(g, o : ) = f o  e-~{(/-T-'/ 'V'(o:'(g'+V'(o:)(l 'DT-'g}do:" 

I t  is easy  to  ver i fy  t h a t  e-~Vr(o:)(g) has  L:(P) der iva t ive  

(g) + e - ~  V~(o:)(g) 

= - ;t e - ~  V I (o:) (g) + e - ~  (T_~ / V I (o:) (9) - VI (o:) (1) DT_o~ g) 

and, since this is L:(P) continuous and  integrable,  t h a t  

fo ~(e-~'VI(o:) (g))do:= l im (e-~'Vf(o:)(g))do: = l im (e-n~vl-(n)(g)-g)= -g.  
n.--> oo  n---->oo 

Thus  

(,~ - ] + D) Jo e-~Vi(o:) (g) do: 

= f ~  {2e-~:'Vr(0:) (g) - e-~'T_~/Vr(o:)(g) + e-~:'Vi(o:) (1) DT_~g} do: 

= _ ~(e-~Vr(o:)(g))do:=g. 

Now choosing a sequence ([n) f rom F converging to ~ A N and  bounded  above b y  2N 

and tak ing  ~ . > 2 N + K ,  we have  S~ e-a~Vr~( ~ uniformly  bounded  and  

f : e-~V~. (o:) (g) do: -- f o e-~*VN(o:) (g) do: l < f : e-~" ll Vr. (o:) (g) -- VN(o:) (g) Hl do: 

which goes to 0 since the  in tegrand  is domina ted  b y  e ~N~ H glloo ~nd  goes to 0 every-  

where.  Hence  there  is some subsequenee (which we also call (/~)) for  which 

f oe-~'Vr. (o:) (g) do: 

converges boundedly  a lmost  everywhere  to  

f oe-~' VN (o:) (g) do: 

and  it  is easily seen t h a t  
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f:~ g + (~N- 4) e- ~ VN (~) (g) d~ 

: e -~  VN (~) (g) da 

fo (4 - (q~N - D)) e-~VN (~) (g) do~ = g. 

I t  follows now for every g in L I (P  ) by a simple continuity argument tha t  

f o e  -~= (oO(g) V~ dar 

is in the domain of the closure ]~N of the operator BN defined on A by B~([)= 

(q) A N) / - 1)/ and that  

(4 - BN) j ) e - ~  Vz~(a) (g) dar = g 

for all )l > 2N + K. The lemma follows from this [2; Cor. 16, p. 627]. 

THEORE~ 2.1. l~'or any a~O,  V~(~) converges strongly to a limit V(a). The V(a) 

/orm a strongly continuous semigroup satis/ying 

(1) II v( )II < 1, 
(2) V(a)(/g) = V(o 0 (1) T_~g il g is in _F, 

(3) V(a) preserves positivity, 
and 

(4) the generator A o/ [V(a) la~>0 ] contains A in its domain and is defined there 

by the equation A /=q~/ - i ) [ .  

Proo/. The proof is exactly the same as the proof of Theorem 2.1 of [8] except 

for the size of the domain of A. I t  will be sufficient to show that  

V(a) (/) = [ + f ~  V(fl) (A/) dfl 

for [ in A since then we will have 

lim,_~ V(e) e (j) - [ -  lim,__,0 f~  V(fl) (A[) dfl = A/. 
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However, 

= lim (/) - I  - V(~) (A) d 

= lim f ] ( v ( f l ) ( A / ) -  VN(fl)(A~r/))dfll 
N--* ~ 1 

['] ~ -'I'll V(fl) (A/) - VN(~) (Af) H1 d~ -~- [*gI II VN(~) ( A ] -  A N/) II1 dfl[, ~ tim Sup 
N-ooo ( J  0 j 0  J 

and the first integrand is dominated by 211A/H 1 and goes to 0 everywhere while the 

second integral is dominated by  S~ I ]A/ -  AN/]]ldfl =o~ ]]A[-A~r which goes to 0. 

We can also construct the 'backward' semigroups [Vu( - a) la ~> 0] and [V( - a)]~ ~> 0] 

(called V_(a) in [8]) by replacing T , ,  D, and q0 by T_~, - D ,  and - ~ .  With this 

extended definition of V(a); (1), (2), and (3) of Theorem 2.1 are now satisfied for all 

and (4) is supplemented by: 

(4') the genenerator o/ [V( -~) I~>~0  ] contains the operator - A  de/ined on A by 

- A] = - q~/ + D/. 

Examples given in [8] show that  V( - a) need not be  [V(a)] -x and that,  in fact, V(~) 

may not have an inverse. 

THEOREM 2.2. V( - a) (V(a) (/)) (x) = e~(x)/(x) /or all o~ where e~ = V( - o~) (V(a) (1)). 

e~ is L 1 continuous, nondecreasing /or a <<. 0 and nonincreasing /or a >>- O, 0 <~ e~ <~ e o = 1. 

For a >~ O, 

~ V( - fl) ([(~0 A N ) ,  ~o] VN (/~) (1)) dfl increases to e~ - 1 and 

f ~ V (fl) ([~-(~0 V - N ) ]  VN(-  fl)(1))dfl increases to e_~ - 1  as N goes to oo . 

I /  e ~ = l  /or some a*O,  then V(a) is a group. 

Proo/. By (2) of Theorem 2.1, if ] is in F,  then 

v ( - . )  ( V(~) (/)) = v (  - ~) ( v(~)  (1) T_~/)  = V( - a) ( V(~) (1)) l 

from which the first assertion follows. Clearly, % = 1  and e~>~0 and since Iie=/ll<ll/ll, 

we also have e,~<l. Assume now that  a>~0. From Lemma 2.3, Vi(a)(1) is in A and 

this coupled with Lemma 2.2 shows that  V ( -  a)(Vt(a)(1))  has an LI (P  ) derivative and 
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V( - ~) ( Vf(=) (1)) = V( - ~) (A(Vr(a) (1))) + V( - :~) (T-=IVr(a) (1)) 

= v ( -  ~ ) ( ( l - ~ )  vr(~)(1)). 

Since this derivative is L I ( P  ) continuous, 

v(-~)(v~(~/(1)l=l+ v(-~l(( / -~l  vgc~l(1))~fl. 

Choosing a sequence (f.) from F which converges to ~0 A N almost everywhere and 

in LI(P ) norm and satisfies fn ~ 2N, and letting n go to ~ yields; 

V ( - ~ )  (V~(~)(1))= 1 + f ~ V ( - f l )  ([(~A 2 i ) - ~ ]  Vn(fl) (1)) dfl 

from which the limit relation for e , - 1  follows. I f  0 ~< a ~<y, then 

er -e~= lim IVV( - f l )  ([(~A N ) - ~ ]  V~(fl)(1))dfl<~O. 
N--~oO . 

The corresponding facts for e_~ are similarly proved and then the remainder of the 

theorem is proved in the same way as Theorem 2.2 of [8] is. 

TH~.OREM 2.3. I f  V(a) is a group, then all the V(a) are isometries and there are 

probability measures P ,  on S satisfying ~ /dP~= ~ T~/dP for all / in F. T)te P~ are 

mutually absolutely continuous and V ( oQ (1) = dP~/ d P. 

Proof. Since both V(a) and [V(a)] - 1 =  V ( -  a) are contractions,. V(~) is an isometry. 

I f  (/n) is a sequence from F decreasing to 0 everywhere, then ~ T~ f,  dP = ~ V(~) (T~ f,) dP = 

]V(~) (1)fndP and this decreases to 0 by  the dominated convergence theorem. Hence 

the linear functionals /~(f)= ]T~ /dP  defined on the lattice P can be extended to 

Daniell integrals Z~ [7, chap. I I I ]  and we define P~ to be the associated measures. 

For any ] in F ,  ~ / d P ~ =  ~ T~ fdP= ~V(~)(T~f)dP= ~V(:r from which it  easily 

follows tha t  the P~ are mutual ly  absolutely continuous, tha t  they are defined on the 

same field S and tha t  V(~)(1)=dP, /dP.  

We can define mappings V~(a) of F into Lp(P) by setting VP(a) ([) = [V(cr (1)]11PT_~f 

and each of these clearly has a unique extension to a positivity preserving contrac- 

tion operator on L~(P). 

LEMMA 2.6. For all nonnegative f in L,(P), VP(o~)(/)=[V(o~)(fP)] alp. 

Proof. We win only prove this for g >/0 since the other case is essentially the 

same. For any nonnagative [ in _~ we can find a set of polynomials Qn such tha t  
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Q~(/) converges uni formly  t o / ~  and  hence also T_~Q~(/)= Q,(T_~/) converges uni formly  

to (T_~/) p. Then  

V(a) (/~) = l im V(a) (Qn(/)) = lira V(a)(1) T_~ (Qn(/)) = V(:r (T_~/) p = [VP(g)(/)]P. 
n-->~ n-->oo 

I f  (/~) is a sequence f rom _F converging in Lp(P) to a nonnegat ive  /, then  

V p (~)([) = l im V~(:r = lim [V(~) (/~)]i~, 

bu t  l im f [[r(a) (/:)]l/P-[V(oO (/P)]l/']P dP<~lim f lr(a) ( / : ) -  V(a) (/P)[dP=O 

so the l emma  is proved.  

TH~.O~EM 2.4. VP(zr :r and V~(a), ~ 0  are strongly continuous semigroups 

o/ operators on L~(P) /or every 1 <p < oo. 

Proo/. The s trong con t inu i ty  of V p (a) follows f rom the fact  tha t ,  for  nonnegat ive  

] in L~(P); 

fl v( ) (t')J"'- 
and  the semigroup p rope r ty  f rom the fact  t h a t  (again for nonnega t ive  ] in L~(P)); 

V" (a ) (V ~(fl) (1)) = [V(a)([  V'(fl)/],)]i/p = [V(a)(V(fl)(ff))]i/" 

= [ V ( a  + fl) (F)]  ~" = v"  (a + fl) (1). 

3. ~'s  of exponential bound and the smoothing of  P,, with respect to a 
Gaussian kernel 

The first  theorem of this section is s imply  a r e s t a t emen t  of Theorem 3.4 of [8] 

for  this case. 

T ~ , o R ] ~ M  3.1. I /  (A1) and (A2) hold and either 

[xl~(x)>~N]CfdP~Ce-~N i/ N ~  N o 

- ~ ~dP ~ C e -eN if N >~ N o o r  
J[  xl~(x)<~-N] 

]or some positive numbers C, e, and No, then V(o 0 is a group o/ isometries. 
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Proo/. Under the first assumption we have, for ~<  e, 

1[[ (1)) dflll 

lim sup [~ll (90N- 9 ~ VN(fl)(1)II dfl 
N--~oo J 0 

~< lim sup C [~e N~ e -N* dfl = O, 
N--~oO jo 

and by Theorem 2.2 this is sufficient. The other ease is similar. 

The next result is a generalization of Theorem 4.2 of [8]. We assume that  X, S, 

P, F,  and T~ are given as in section 2 and satisfy both (A 1) of that  section and 

(A3) There exist probability measures P~ satisfying 

f T./dP= f /dP. 
for all / in F.  

(A3) is equivalent to several other assumptions, for example, that  T~/n decreases to 

0 everywhere whenever /n does but is generally the easiest one to verify in practice. 

Let Ka(a) for positive a be given by K,(~)= (2~a) -�89 e x p ( - a 2 / 2 a )  and I, be the 

linear functional on F given by lo([)=STccKo(oO(yT~/dP)do~, lo([) exists because 

S T~/dP is continuous and bounded in :~ and lo is clearly order preserving in _F. If  

([n) is a sequence from _~ converging monotonely to 0, then S T~/ndP= S[ndP~ is 

bounded by H/01[oo and converges to 0 so lo([,) converges to 0 and it follows that  

there is a probability measure po satisfying 

for all / in F .  We will write 

Itfll  for tJlll'd ] and Ilfll, for I l l 'de  . 

T~IEOe~M 32. 1I X, S, P, F and T~ ~ t i4y  (A1) and (A3), then X, S, P ,  $' and 

T~ 8atis/y (A1) /or every positive a. There is a q)~ in L~(P") satislying [. q)~/dP= 
I DO/dP~ /or every [ in .F and 
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For every real ~ and positive ~ there is a probability measure P~ satis]ying ~ /dP~ = 
T~/dP ~ /or / in F and these measures are mutually absolutely continuous. I/ there is 

a q~ in L I ( P  ) satis/ying (A2), then each P~ is absolutely continuous with respect to each 
P~ and we have 

f l dP= 1 dP: <~ [ / ~  IdP-~= - - -Z II~l[. 

Proo/. We first have to show tha t  T~/ has an LI (P  ~) continuous derivative 

D"T~/ and tha t  ]]D~ If  / is in F 

I (T~/- / ) -~(Tz/- / ) I I :  

= f~ Ko(7) [ft~(T~+,/-T,])-~(T~+,/- T,/)IdP] dr 

= ~ K.(Y) [ f  U l ; (DTo+,/-  DTy/)d~-; / (DT~+,/ -  DTr/)dSI dP] d7 

<~ ~ Ko(7) [1 ;liDT~+,/_ DT,/lld~+~ /,,DTo+,/- DT,/lld~] d 7. 

The integrand above is dominated by  CKo(7)e KE~I and goes to 0 as ~ and fl do so 

the limit D~ exists. Moreover, 

 li+zuP aY 

= fKo<r)liDT:+,/-DT +rlIIld7 

because of the LI(P ) continuity and exponential bound of DTj.  Again the integrand 

is bounded by CK.(7)e KIrl and goes to 0 as :r goes to fl and the L I ( P  ~) continuity 

of D"T~ follows from this by the dominated convergence theorem. A similar calcula- 

tion shows tha t  

HD"T~/II = f_TKo(r) [f lDT~+,/IdP] dT<A /~ K,(7)e~'~+" dT=O(eK"') �9 
We can show as in Lemma 4.4 of [8] tha t  a ~.  exists in L I ( P  ~) satisfying ]cf"/dP ~= 
]D~ for every ] in F and 
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NP~(I+"] ~N) < fi IwandP~< B--PdqJaI>~N)+2Ko(B ) 
+-I~>N C; 

for every positive N and B. Setting B equal to a(N-l) gives 

p(Icfal >~ N) <~ r  e -ta<N-1)' 

and using the same B again 

r  1V e -�89 Jl 'c/;'dP < ( N - 1 ) ] /  2-e-�89176 1 ) ' ' 3 c ~ 2  e-�89 ~- 
V ~  - ~ ' ;  " 

The existence of the measures Pg now follows from Theorems 3.1 and 2.3 and the 

remainder of the theorem is proved exactly as in [8]. 

We are now in a position to generalize the theorems of [9]. The next  four theo- 

rems are restatements of Theorems 1 through 4 of tha t  paper. 

T~EOREM 3.3. 1/ X, S, P, T~, and F satis/y (A1) and (A3) and the P~ are mutu- 

ally absolutely continuous, then T,  can be extended to all finite S-measurable /unctions 

and the mappings U(a) o/ LI(P ) defined by U(a)(/)=(dP~/dP)T_~/ /orm a strongly 

continuous group o/ isometries. The exteusion o/ T~ is linear and positive and satis/ies 

(1) I/  /n converges to 0 almost everywhere, so does T~/n, 

(2) T~(/g)=T~(/)T~(g), 

(3) T~,(Tfl) = T~+#f, 

and 

/dP~% dP~_~, <4) 

(5) I/  either side o/ the equation S T~hdP~=f hdP~+~ exists, so does the other side 

and they are equal. 

Proo/. This theorem is proved in exactly the same way as is Theorem 1 of [9]. 

THEOREM 3.4. I/  X, S, P, T~, F, and 9~ satis/y (A1), (A2), and (A3), then the 

generator A o/[U(~) I a i> 0] contains F in its domain and is defined there by: A /=  q)/- 19/. 

U(:r (99) is almost always integrable on every finite interval and the equation dP~/dP= 

1 + So U(fl)(q~)d~ defines a continuous version o~ the stochastic process dP~/dP. 

Proo/. The only difficulty in applying the proof of Theorem 2 of [9] here arises 

from the fact  tha t  D/ is not necessarily bounded. That  proof can still be used, how- 
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ever, to show that  A ( 1 ) = q  since D(1)=0.  For any / in F we can find a sequence 

~ going to 0 such that  T _ ~ J - /  converges to 0 almost everywhere and we have then 

I, U(~)(j)-f~ (q~f - D/) i <~ [ I  (u(a,) (1) - I ) - q~I (T_~J - /) I1 

T _ ~ J - /  1 q~]/ll"  DII,+ 
The first and fourth terms a r e  dominated by 2 Illll  II ( 1 ) -  1) Ih which 
goes to 0, t h e  second term goes to 0 by the dominated convergence theorem and the 

third term also goes to 0. Thus a subsequence of (U(a)/-])/:r  converges to q~f-D/  

and this implies tha t  A ( f ) = ~ / - D f  [4; Theorem 10.5.4, p. 318]. The rest of the proof 

is exactly the same as the proof of Theorem 2 of [9]. 

If (A1) and (A2) hold for X, S, P, T~, and F,  then ~ is uniquely determined 

in LI(P ) but not  in LI(P~): As in [9] we call ~ a normalized solution of (A2) if 

vanishes almost everywhere with respect to P" on the set where dP/dP ~ vanishes. 

Since the P~ are mutually absolutely continuous, the transformations T~ can be ex- 

tended to all finite S-measurable functions, and, in particular, to ~. 

THEOREM 3.5. Let q~ be a normalized solution o/ (A2). If, /or some ~ > 0  (or 

(~ < 0), T_~q) is intcgrable on [0, ~] (or [~, 0]) almost everywhere with respect to Pa, then 

the P~ are mutually absolutely continuous, T_~q~ is almost always integrable on every 

finite interval, and log (dP~/dP) = S~ T_~ q~d~. 

Proof. The proof is the same as the proof of Theorem 3 of [9]. 

THEOREM 3.6. Suppose that X,  S, P, T~, F, q~, and P~ satisfy (A1), (A2), and 

(A3), that qJ is in L2(P ) and that the P~ are mutually absolutely continuous. I /  e is 

any random variable with SJ[] e~dP~] �89 c~ /or some interval J containing the origin, 

and i/ we define the bias b(:r o/ the estimate e by: ~+b(g)=~edP~,  then at almost 

every point o/ J, b(:r has a derivative and 

db 
1 + - -  

I/, in addition, T~e is continuous in L2(P ) on J, then b(~) has a continuous derivative 

and satisfies the inequality at every point. 

Proof. The proof is the same as the proof of Thcorem 4 of [9]. 
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For the remaining theorems of this section we will assume tha t  X, S, P, T~ ,F ,  

and ~0 satisfy (A1), (A2), and 

(A4) There exist positive numbers C, e, and N O such tha t  

ft~l I~(x)l>-m I~] dP ~ C e -~N 

for all N >~ N 0. 

We will write eu(a) for Vu( - ~) (Vu(a) (1)). Clearly, 0 ~< eN(a) ~< e (~) ~< 1. 

LEM•A 3.1. O<~ y (1-eN(~))dP<.(C/N)e  -(~-I't)u /or all N>>- N o. 

Proo[. We will do the case ~ ~> 0 and the other will follow from the symmetry  

of the problem. As in the proof of Theorem 2.2 we can show tha t  

V N ( - ~ )  VN(~)(1)= -- f~VN(--fl)[q~A N + ( - ~ A  1 N)] VN(fl) (1) dfl 

o~ C -(e-~)hr 

dO dlcPl>N 

LEMMA 3.2. I /  the sequence (h~) /tom F converges in LI (P  ) to q), then 

( ; )  eN(g)= lim exp Te(lh.I A N - N ) d f l  i/ o~>>.0 
n--->oo 

( f o )  aml eN(a)=limexp T~(lh.IAN-N)dfl i/ ~<0.  

Proo]. We can find sequences ([~) and (g~) in F to satisfy H/~--hnAN]]~<~l/n 

and Ilgn-(hn V -N)H~<~I /n .  (/n) converges in L i ( P  ) to q0A N and (gn) to -(q~ 7 - N )  

so, if a ~> 0, 

eN(~) = lim VN( - o~) Vf, (a)(1)) = lim VN( -- ~) (1) exp /nd 

{ qo ) (  (fo )) ( )} =2ina exp Tr + V N ( - e ) ( 1 ) - e x p  T~g, dfl exp T~/,dfl 
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but  the second term in the brackets is bounded in norm by 

e ~(N+l/n) VN(-a)(1)-exp(f~T~g~dfl)  1 

which goes to 0 since ]~T~g~dfl=]~T_(_~)gndfl and (gn) converges to -(~0 V - N ) =  

(-~0A N), and the first term converges to lim exp (~oT~(Ihnl 5, N-N)dfl) .  The proof 
n---> r162 

for a ~ 0 is similar. 

LEMMA 3.3. 
dP~ / dP~X 

l o g   ll~ / PI A - l o g  ( - 

Proo/. We take sequences (/n) and (h~) as in Lemma 3.2 and then refine them so 

that  S~T_~/ndfl converges almost everywhere to log V~(a)(1) and S~ A N) dfl 
converges almost everywhere to - l o g  eN(-  ~) (~ being taken positive). We will still 

~T write (/n) and (hn) for the new sequences. Since S0 t~ /~d~<a~§  where en goes to 

0 as n goes to c~, 

log dP] A ~N~> (log VN(~) (1)) A ~N>~ lim T_~/ndfl= lim T~(hnA N)dfl. 

Hence, for any positive M, 

/ dP~\ f ~  log VN+M(Zt)(1) - (log ~ )  A :cN ~ lim ,T~(h"- h"A N)dfl= -l~ 

The proof now follows from Theorem 3.1 on letting M go to ~ .  The proof for :r ~< 0 

is similar. 

THEOREM 3.7. I/ X, S, P, T~, F, and q~ satis/y (A1), (A2), and (A4), then 

P l o g ~ <  M ~< C1 e-('l~l-1)(M-1) 

i/ I~1 <e and i ~ [ ~ l N o  +1, and 

P ~log [ dP~dp < -- M )  ~ D 1 e -(e/la1-2)(M-l) 

i/ ]~1 <�89 and M>~I~]N o+l. For any p, l<p<c~,  SldP~/dP[pdp is bounded in 
any interval ]a I ~ ~o < e/(p + 1). 

2 -  642906 Acta mathematica 112. Imprim~ le 11 septembre 1964. 
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Proo/. By Lemma 3.3, 

[log dP'~ff - (log dP"~-ff] A a N ] A l ~ < [ - l o g e N ( - a c ) ] A 1  i/ N>~N o . 

Using this inequality, Lemma 3.1, and the fact that  

[ - log eN ( - a)] A 1 ~< ( 1 - e~ ( - a) )/(1 - e- l) 
gives 

C 1 C 1 <~4~1- I)(~N) 
~ l - - e  -1Ne-(~-I~I)N= --e_ 1 - -  1 , V  ~ " 

C 1 
Setting C1 - 1 - e-1 No and M = 0oN + 1 

yields the first formula of the theorem. 

By Theorem 3.3 

P l O g - d ~ < - M  = P  l o g - - > M  dP~ 

P d P ,  P= l o g ~ > M ) .  

If / is the eharaeteristic function of the set where log (dP=~/dP)> M, then 

flog/ dP=~< _ M ) =  f / ~ d P ~  P 

C 1 Z e M+k+l e-(e/l~[-1)(M+k+l) ~ D 1 e -(el[cel-2)(M-1) 
k=O 

which is the second formula of the theorem. 

Finally, if lal ~<~o<e/(p+ 1), 

-dP dP<~eP<I~IN~ ~ eP(l~l~'+k+2)P l~ 
k=O 

<~ A p + ~ e ~(lalN~ k + 2) C 1 e- (~t]~l -1) (aNe + k) 
k-O 

= i p  + B e p(I~IN*+2) e -(e-lal)N" ~ e -(e/lal-(p+l))k 
k=O 

Ap  + B p e  pI~~176 e -(~:lad)/% ~ e -(~/l~~ 
k=O 

where Ap and Bp are independent of a and this completes the proof. 
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The information contained in a probability measure P about a probability meas- 

ure Q, written I(P,  Q) is given by: 

l(P,Q)=flog dQ flog dP dp dP + ~-Q dQ. 

THEOREM 3.8. 1I 2;, 8, P, T=, F, and ~ ,atis/y (A1), (A2), and (A4), then/or any 
r fl, and ~, I(P~,Pp)=I(P~+r,P#~_v). I(P~,Pa) is [inite whenever Io~-f l l<ie and 
I(P~, Pa)=O((x-fl) 2) as ~ converges to ft. 

Proo/. From Theorem 3.3 

T~ (e r) = l im T~ = l i m  - 

for any measurable [ so exp (T: log g) = T:q = exp (log T:g), i.e., T: log g = log T:g for 

any measurable g. Hence,  

I(P,+,+,P,+r)= f log dP:+~'d~+rdP,+v+ f logdPa+~'dP:+~, 

= f T, dP:+r f T, dP~+y log ~ dP~ + log ~ dR= 

= flog dP: dP~ ~ dP~ ~/~ + J log  ~ d P : = I ( P : , P ~ ) .  

Now, by Theorem 3.7, if I~l~<~0<~e, then 

dP: f lT:C:dp= f ,c _~dp<{flC,de f mp=X' I, 
Since the Lx(P ) norm is dominated by the L2(P ) norm, T _ ~  is integrable on [0, a] 

and by Theorem 3.5, I log (dP:/dP)[ = I S~ T_~ q~dfll 4 S~IT-~ q~ldfl. (dP:/dP) T_rV is also 

integrable on [07 a] so, almost everywhere, 

Hence 

aP= =l f=dP  

o f{f:=_, 1+1 {f: T~dP: T_: '•l a ,}dP 

r:fof = dfl d r (T_p+,lfl)l+ldP<C~=. 
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4. The  G a u ~ i a n  case  

Let  (X, S, P) be a set, a a-algebra of subsets and a probability measure, and 

~et L be a linear set of real-valued S-measurable random variables whose joint distri- 

butions with respect to P are Gaussian. We will write H for the L2-closure of L. 

All limit operations in this section will be with respect to the L~(P) norm unless 

otherwise specified. Let T~ be a one-parameter group of linear transformations of L 

into itself. We make the following assumptions: 

(i) 1 (the constant function) is in L and T~ 1 = 1 for all ~. 

(ii) H is separable. 

(iii) For every x in L, Dx=lim~__~(T~x-x)/e exists and DT~x is L~ continu- 

ous in ~. 

(iv) There exists a ~0 in L~(P)satisfying ~v2xydP= ~ (xDy+yDx)dP for all x and 

y i n L .  

LEMMA 4.1. I /  X0= 1,Xl, X ~ . . . .  is a complete orthonormal set in L, then 

Dx,-fx, Dx, dP)lx, ..... xn) 

exists and satis/ies S q~xydP = ~ (xDy + yDx) dP /or every x and y in L. ~v is independent 

o/ the particular sequence x 1 . . . . .  

Proo/. The random variables x~xj-5~j are orthogonal and the first expression for 

~0 is just the Fourier expansion for ~ with respect to this orthogonal set which guar- 

antees its L 2 convergence. The equality of the two expressions is proved by com- 

puting the Fourier coefficients of the second with respect to this orthogonal set noting 

that  E (x~xjlx I . . . . .  x,) = 0 if i ~< n < j. If i < j, then clearly ~ epx~xjdP = S (x~Dxj + xsDx~)dP 

and 

fr Dx, aP 

so ~ q~zwdP= ~ (zDw+ wDz)dP holds for z and w which are finite linear combinations 

of the x~. By the same argument any other complete orthonormal set yo = 1, y 1, ... 
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in L gives rise to a ~0' which is the expansion of ~o over the orth,)gonal set y~yj-6i f  

and satisfies the desired equation for z and w which are finite linear combinationr~ 

of the y~. However, if ~.~=1 a~x~ converges to y~ then, since all the random variablee~ 

involved are Gaussian (~=ia~xk)(~=la~x~)  converges to y~yj so lhe spaces spanned 

by the x~x~ - r and the y~yj - r are the same and ~0 = ~0'. I t  now fi)llows, on applying: 

the Gram-Schmidt  procedure to the sequence 1, z, w, x~,x~, ... and forming r with 

respect to the resulting complete orthonormal sequence tha t  ~ q)zwdP= ~ (zDw + wDz)dt > 

for all z and w in L. 

Hence 

and 

LEMMA 4.2. I /  X is in L, IIDT:xll =O(e ~ )  /or K = V 3  Ilwll . 

Proo/. I f  / (~)= ~(T~x)2dP, then 

]'(~) = 2 ~ (T~x)DT~xdP = ~ q~(T~x)~dP <~ 3-�89 (~ (T~x)4dP) �89 

Writing m and a for the mean and variance of T:x, 

I/' (~) I <~ 3 -  + K (3  a 2 + 6 am 2 + m 4) �89 <~ K ( a  + m 2) = K/(o~) .  

2~<lim sup j \ ~ /  dPe ~':l =: IIDxll:e ~': ' .  IDT:xH2: l im  ~ T: :-~o 

LEMMA 4.3. There exist independent normalized Gaussian random variables Yn irr 

H and numbers 2n and ~n /or which ~ = ~ : 1 2 n  2 - ( y n -  1) + 5 n : ! / t , y ,  

Pro(>[. We may  write ~0=~o+~1 where  q~o=51<,<ja~jxtxj+:~1a,(x~-l) and 

~ 0 1 = ~ b ~ x ~ .  For  any  Gaussian random variable x, ( fx4dP) t <~3t(fxWdP) ~ so 

�89 " 4 �88 

if x and y are in B.  Thus the equation S(Tx)yclP=fcyoxydP defines a bounded 

self-adjoint operator on H. Also, for any complete orthonormal se~ (x d, 

(Tz,)x~d = 2 5  q~ox~xj dP + Z q~o(x~- l)dp'-;21I~voll~ 
i, o t<]  \ d  / i = l  

so T is a Hilbert-Sehmidt  operator and hence is completely continuous. Let  (y~) be 

the eigenvectors and (2),n) the corresponding eigenvalues of T. ]:;y the same argu- 

ment  used in Lemma  4,1, the random variables yty j -6i j  span the subspaee of L~(P) 

containing 9o o so we have 
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( ~ 0 =  |<~/. (f~)oYtY' alP) YIYi2t- n=l ~ ( f~o  'y~--l'_l/2 dP)  . . . .  
yn or 

S 2 ~ �9 - ~(y~ - 1) 

Since ~91 can be expanded over any  complete orthonormal set, the lemma is proved. 

L ~ M A  4.4. There exist positive numbers e, C, and N o such that ]I~I~>N [~[dp<~ 

Ce -~N whenever zV ~ N o. 

Proo[. I t  will be sufficient to show tha t  ~ e ~1~1 dP< oo for some ~ > 0  since then 

xi I~(x)l~>N] d ~xi l~(x)t>~/r 

for large enough _h r. Also, since e ~ ~<e~ - ~ ,  i t  will be sufficient to show tha t  

e ~ is integrable for small ]~[. Writing ~0 = ~0 0 + ~01 as in the preceeding lemma, 

and the second term on the right is finite because 9) 1 is Gaussian so it only remains 

to show tha t  e ~~ is integrable. Taking [5[<inf  �89 1, we have 

exp ~ ~12, (y~-1)  d P =  exp(O(y~-l))dP=l'-[,=, (1-2~; t , )  �89 e x p  ( - ~ . j ) .  

The infinite product  converges to a finite limit because 

[1 - ( 1 - 2 ~ . , )  ~ exp (-5~tj)[ =O(e)~Z) and ~ ~ Z  ~< 2o~l lwl [~  t=1 

so, taking a subsequenee Nk for which ~;~r 2 ~-J=l ;t~(yi - 1) converges almost everywhere 

to ~o and applying Fatou 's  lemma, 

e~~ <~ lira 1-I (1 -2&t j )  ~ exp ( -  &~j)< ~o. 
d k ---> r162 ]=1 

Let F be the set of random variables of the fo rm/ (x  I . . . . .  xn) where / is a bounded, 

real-valued function of n real variables with bounded first and second derivatives and 

the x~ belong to L. 

Lv.~tMA 4.5. T~ is weU-de/ined on F by: T~f(x 1 . . . . .  x~) =[(T~x 1 . . . . .  T~xn). Writing 

[~ /or the partial derivative o[ [ with respect to the i th appearing variable, we have 
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D / =  lim T~[ - 1_ ~ li(x I ..... xn) Dx~. 
~.-~0 ~ t=1  

DT~[ is continuous in L~(P) and hence in L~(P) and I[DT,/][~ <~[[DT~[]]~=O(eKI~'). 

Proo[. We have to show that  if /(x 1, .... xn) =g(Yl . . . . .  Ym), then 

/(T,x~ .. . . .  T~xn) =g(T~y~ .... .  T~ y,,). 

After eliminating those variables on which [ or g has only a constant dependence, 

the remaining sets of variables (x 1 . . . . .  x~) and (Yl . . . . .  ym) must clearly span the same 

subspace of L. Hence each y~ can be written as a linear combination of the x~ and 

the first assertion of the lemma follows from this. By Taylor's theorem 

T . / - /  /~(x~ . . . . .  z~)Dx, <<. sup III,,II~ IT. x,l 

and this goes to zero in La(P) since the x k are Gaussian. A similar argument proves 

the La continuity of DT~/. Finally, 

II D T j  113 <~ sup II [~ [I ~ ~ II DT~xj [[ = O(e~l~l). 
i 7=1 

LEMMA 4.6. I[ [ is in F, then f q)/dP=y DfdP. 

Proo[. We can assume, after making the appropriate linear change of variables, 

that  /=/(x 1 ..... xn) where x 0 = l , x  1 . . . . .  Xn are the first n + l  terms in a complete 

orthonormal set. If Dxj = ~=1 ajkxk + flj, then 

E(x, D x , - f x ,  Dx, dPIx 1 ..... Xn)~_t~,~X, Xk--aj,+fl, X , if ] ~ n .  

We have 

"/q~dP= f / E  C=~I (x jDxj-  f xjDxjdP) ]x I ..... xn) dP 

n 1 ~. a~)da 1...dan. =(2~)  �89 1 ... . .  an) ~ (k~lagkaja~--~j~+fljaj)exp ( - -~  
y = l  / = I  

Using 

n 0 fl~) exp ( -  �89 (~=la~kajak--az+fljat) exp ( - - �89 

and integrating by parts leads to the desired equation. 
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THEOREM 4.1. I /  (i) through (iv) are saris/led, then the measures P~ are mutually 

absolutely continuous and T~ can be extended to all S-measurable /unctions. T_~qo(x) is 

integrable on every /inite interval /or almost every x and log (dP~/dP)= ~ T_~qgd~. For 

some ~ and No, the results o/ Theorem 3.7 hold /or log (dP~/dP). 

Proo/. The lemmas of this section prove that  the hypothesis of Theorems 3.1 

and 3.7 hold for X, S, P, F, T~, and ~0. For e as in Lemma 4.4 and I~[~ <l~e, Theo- 

rem 3.7 implies that  S (dP~/ dP) 2 dP < C 2 < oo, so ~ T~ I qol dP = ~ I ~~ (dP~/dP) dP <~ C II q: II 2. 

Hence ] ~ ,  ] T~lqoldo~dP<~ ~eC ]lq0112< oo, which proves that  T__~q0 is almost always 

integrable on [ - e/3, e/3]. The remainder of the theorem now follows from Theorem 3.5. 

THEOREM 4.2. I /  (i) through (iv) are satisfied and the sequence (~o~) converges to 

qo in L2(P), then T_#qon is almost always integrable on [0, o~] and ~T_#qJndfl converges 

in LI(P ) to log (dP~/dP) /or almost all o: in some nondegenerate interval [ -~0,  ~0]. 

For some subsequence (nj), ]~T_aqo~dfl converges to log (dP~/dP) almost everywhere with 

respect to dPdo~. In  particular i/, /or some complete orthonormal sequence x 0 = 1, x 1 . . . .  

/rom L, ~=1 (x, Dxf - ~ x~ Dx, dP) is L2-convergent , then 

i = 1  

converges in L I (P) to log (dP~/dP) /or ~ in [ -~0,  ~0] and /or some subsequence (nj), 

"( f Z 1 2  ~x, - �89 x~Dxid 
i = 1  

converges to log (dP,/dP) almost everywhere with respect to dPd:r 

Proo/. For l al < e/3. 

f f~T_a(~-c fn )d f l  dP<~ f ~  (fl(p-~onl ~ P ~  dP)df l<~Cllr  

which proves the almost everywhere integrability of T-a~n on / - e l 3 ,  e/3] and the 

Ll(dPda ) convergence of S~T_aq~ndfl to S~T_~q~dfl for ~ in this interval. For some 

subsequence (nj), ~T_aq)~jdfl converges almost everywhere dPd~ on the interval and 

thus, because the P~ are all equivalent, 

f: 
~ N - 1  ac 
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N~ converges almost everywhere to S0 T-t~d~ with respect to dPdo:. The remainder of 

the theorem will be proved if we show that  S~)T_~(xDx)d fl-_~.~l ~ 2  ~1 (T_~x)2 for x in L. 

For some sequence (en) converging to 0, (T_~+~,x-T_t~x)/e n converges almost every- 

where to DT_t~x and ( T ~ , x - x ) / ~  converges almost everywhere to Dx but  then, since 

P ~ is equivalent to P, T_~(T~,x-x)/~,, converges almost everywhere to T_~Dx so 

T_t~Dx= DT_~x. Thus the integrand T_~(xDx) = (T_t~x) (DT_t~x) is L 2 continuous and 

S~T_t~(xDx)dfl has (T_o~x)(DT_o~x) as L 2 derivative. The L 2 derivative of �89 2 -  

l(T_=x)2 is given by  

= (T_ o~x) (DT_=x) 

(using again the fact  that  the random variables are Gaussian and this proves the 

validity of the desired equation since both sides vanish for a = 0. Example 4 of the 

next  section shows tha t  ~ l ( X i D x t - S x ~ D x ~ d P )  need not converge to (p. 

Before going to the next section we wish to discuss assumptions (i) through (iv) 

made at  the beginning of this one. (i) which is simply a normalization and (iii)which 

expresses the continuity of T=  seem necessary in this context but  (ii), the separability 

of H, could have been avoided. We have not thought it worth-while to make the 

minor changes in proofs and notation required for the nonseparable case since it  is 

of infrequent occurrence in applications. Assumption (iv) is rather  awkward as stated. 

In practice one generally chooses a complete orthonormal set Xo= 1, x~, x~ . . . .  from L; 

computes el= ~=0 xi Dxi, which satisfies the desired equation when x and y are finite 

linear combinations of the x~'s; and then shows by  a continuity argument  tha t  the .  

equation is satisfied for all x and y in L. The following example shows tha t  this 

continuity is not automatic.  

Let  xl, x 2 . . . .  be an orthonormal set and define y~=A,~ ~~176 b -n z_k=l xk where An is 

chosen to make [[y~ [[ = 1. The x,'s and yj's are linearly independent since 

N M 

z= ~ o~x, § Z fljyj=O 
i - 1  t=1 

implies that  fl~ = limn ~ r162 n S zxn dP = O, fl~ = limn.~ ~ n ~ S zxn dR = O, etc. L is to be all 

finite linear combinations of Xo= 1, the x~'s, and the y~'s, and T~ is defined by: 

T~,x,=x,~+C,~(ea"~'-l)y, and T=y,=ea""y,. 

This gives Dxn=anC,~y,, and DT~,y,~=a,~ea""y,. Choosing Cn=O gives 
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c f = ~ x ,  but  f (x ,~Dyn+ynDxk)dP=anfxkyndP=anAnk- '~:#O=fq~xkyndP.  

This example can be patched up by  cutting down the size of L but  the following 
- -  oo  oo  " - 1  one can't .  This t ime we take an=n and Cn=n -2 giving ~ - ~ = l X j D x i = ~ t = l ~  yix~ 

which is L 2 convergent but  cannot satisfy (iv) because [[DT~ynll~=ne"~#O(e TM) 

contradicting Lemma 4.2. 

I t  would be very interesting to have a converse to Theorem 4.1, tha t  is, a theo- 

rem asserting tha t  if (i), (ii), and (iii) hold and if mutual ly absolutely continuous 

measures P~ satisfying ~ T~xdP= ~ xdP~ exist, then a ~p satisfying (iv) must  exist. 

Under these assumptions Theorem 3.3 implies tha t  V(a ) /=  (dP~/dP)T_~/is a strongly 

continuous g o u p  with generator A and the desired theorem is easily seen to be 

equivalent to the assertion tha t  the constant function 1 is in the domain of A and 

A(1) is in L2(P ). 

Finally, it should be pointed out tha t  the relation between ~0 and T~ is not one 

to one. This shows up even in the finite dimensional case as the following example 

shows. Let  Yl and y~ be independent normalized Gaussian random variables and let 

L be all finite linear combinations of Y0= 1, Yl, and Y2. For each real v let D, be 

the transformation given by: 

Dr, Yl = '~lYl+VY2 
Y2 \ - v Y l  + 2~Y~ / 

and let T(~ ) be the group given by  T(- ")= e ~'D~. Then Yl and y~ are the variables whose 

exist3nee is proved in Lemma 4.3 and q~ = Yl Dr, Yl - ~ Yl n~, Yl dP + y~ Dy 2 - .[ y9 Dy~ dP = 
2 21 (Yl - 1) + ~t 2 (y~ - 1) which is independent of v. 

5. Gaussima examples 

Example 1. Translation of a random entire function. 

Let  (an) be a sequence of independent normalized (mean 0 and variance 1) Gauss- 

Jan random variables and (~n) a sequence of real numbers satisfying ~ = 0  (~+1/$~)2 < oo. 

For each t, - o o  < t <  oo and k = 0 ,  1 . . . .  the series x(k)( t)=~o(~n+kan+~/n!) t"  con- 

verges with probabili ty 1 because the independent random variables 

$n+kan+~ tn satisfy ~ Iy~dP log~n< ~ Y" - n ~  
�9 n = O  �9 
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([1], Theorem 4.2, p. 157) and applying this result  to an unbounded sequence t,  shows 

tha t  the defining series for each x (k) has infinite radius of convergence with proba- 
N bility 1. I t  is also easy to see tha t  x(k)(t) is the L2(P)-limit  of ~.n=o(~,+ean+k/n!)t n 

for each k and t. We take L to be all finite linear combinations of the constant  

funct ion and the random variables x (k) (t) for  - o o  < t < oo and k = 0, 1 . . . .  and define 

T= by: 
T= x (~) (t) = x (~) (t + ~). 

The set x (~) (0)/~k =ak is or thonormal  and dense in L so H is separable. 

] r Now T~x (k> (t)__-- x (k) (t) x (k+l) (t) d P  
6s 

= gin=O" (nT l j  Y = ( n +  

---- "=0 ~ ((n(~n+k+l)2" ( ' ' ~ -  1) !)' .~.. if)n+1 , n + l o ~  -- (n "~- 1)" "--')" O 

SO DZ (k) ( t )  = X (k+l )  ( ' ) .  The cont inui ty  of DT~ x (k) (,) = x (~+1) (t + a) is guaranteed  by  the 

fact t ha t  it  has L 2 derivat ive x (k+2) ( ,+  a). 

The  assumption on the ~n's implies the L2(P  ) convergence of 

F rom its definit ion ~0 satisfies ScfyzdP= S (yDz~-zDy)dP for all y and z which are 

f ini te  linear combinations of the x (k) (0). For  a rb i t ra ry  s and t 

[qjxt ')(s)xtJ),t)dP=lim I~  (m~o x(m+') `0) dP 

r /  N X(~+I)(O) / N X(.+J+I)(O) 
= l i m e  f [ [~__o ~ s")  [~--o ~ t~) 

N x(m+~+l)  

= f [ x  (i) (s) x r (t) + x (~+1) (s) x ~j) (t)] dP 

so 9~ satisfies condit ion (iv) of section 4 and the theorems of t ha t  s e c t i o n  are appli- 

cable here. 
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T~EOREM 5.1. Under the stated assumptions the measures P= associated with the 

stochastic processes x~ (t) = x(t + ~) = ~ = o  (~nan/n !) (t § ~)n are mutually absolutely con- 

tinuous. Some 8ubsequence o/ �89 ~N= o [(X (n) (0)/$n) 2 -  (X (n) (:r converges almost every- 

where (dPd~) to log (dP~/dP). 

Example 2. The Doppler shift. 

Let z(t) be a complex Gaussian process on an interval I with mean value / in 

L 2 (dr) and correlation function R(s, t) in L 2 (ds • dr). The integral operator R on L~ (dr) 

associated with the kernel R(8, t) is completely continuous, hence has a complete set 

(~) of eigenvectors with corresponding eigenvalues (2k). The 2k are nonnegative and 

satisfy ~ = 1 2 ~ <  co. We further assume that  all the ~ are strictly positive and that  

the real-valued, Gaussian random variables x~ and Yk given by: 

are independent of each other and of all the other xz and Yz- For a bounded func- 

tion a(t) on I and a real a the transformation z(t) ---> e ~a(t) z(t) is called the Doppler shift 

of z by ~ [6]. 

We take L to be the set Of all finite linear �9 combinations of the constant func- 

tion and the real-valued random variables ug and v a given by ua§ 

for g's in L2(dt), and define Tg by the equation T= (ug + ivg) = ue=,g § iv~,g. T= is well 

defined since 

and the T= obviously form a group. We have 

f zz(t) (e~ ' t : -  l - a ( t ) )  g(t)dt ' 

1 /e ~"(t) 1 dt] =f, :a)g)(t)rdt+[f/(t) ( - a ( t ) ) ~ )  

2 

which goes to 0 by the dominated convergence theorem as e goes to 0 so Duo =ua~ 

and Dv o = Var I t  now follows from the fact that  DT= u o = u = ,  ~ and DT= v o = va~, ~ have 

L2(P ) derivatives that  they are L~(P) continuous. 

The set comprising 1, the x~'s, and the yk's is a complete orthonormal subset of 

L. Elementary but  tedious calculations yield the following equations in which ~ (c) and 

Y (e) stand for the real and imaginary parts of c. 
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f (xk Dxt + xiDxk) dP= f (ykDyl + y~Dyk)dP 

=~(r dr) 

(~ /~a ( t , , k ( t ) , t ( t ) d t  - J (xk Dyt + y, Dxk) dP= ~J 

f xkDxkdP = f ykDy~dP=2 f ~ (a(t)) l'k(t) l~ dto 

f DxkdP = V~ R (f /(t)a(t)~k(t)dt), 

f Dy~dP= V~ Y (f /(t)a(')'~(t)dt). 

T H E O R E M  5 .2 .  I /  

and 

29 

if k=4=l, 

l /~fza(t)~k(t) ' t( t)dt)  ' 

k=l l=l 

k=l~ 1 Ifa(t)/(t)fe(t)dtl 

then the conclusions o/ Theorem 4.1 hold /or this case. In particular, the measures P~ 
associated with the processes e~a(t)z(t) are mutually absolutely continuous. 

Proo[. The hypotheses of the theorem and the computations immediately pre- 

ceeding the theorem imply the existence of 

( f )  ] § 2 2 xjDxjd (x~ - 1) + yjDy, de  (y~ - 1) 
iffil 

~-1=1 ~ kffil ~ (f (x'Dyk+ykDxt)dP) xtYk 

in L~(P). We can show, exactly as in Lemma 4.6, that  
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epWzW 2 dP = f (w 1 Dw 2 + wz 1)Wx) dP 

if the wj are finite linear combinations of the constant function and the xk's and yk's. 

I f  (gn) is any sequence in L~(dt) converging to g, then S1(z-/)(t)gn(t)dt is L~(P)con- 
vergent to Sz(z-/)(t)g(t)dt. Hence for g and h in L2(dt) if we set o~k=~:g(t)~k(t)dt 
and ~k= ~lh(t)~k(t) dt we have 

f~ur uhdP =liIn f~ [~ (k~= 1 V~ O~k̀xk+iyk)-F fI f(s)g (s)d8)] 

• [R C~l V~ fl~(x~ + iY~) + f /(t)h(t)dt ] 

= f}~ (fzz(s)g(s) ds) R (f z(t)a(t)h(t)dt) dP 

+ ~ ( f z z ( s ) a ( s ) g ( s ) d s ) ~ ( f l z ( t ) h ( t )  dr) 

= f (uaDuh + uhDug) dP. 

dP 

dP 

The proofs that  Sq~u~va dP = ~(u oDva + vhDug) dP and that  ~qJvgvhdP = ~(vgDva + vhDvg) dP 
are similar. This shows that  the hypotheses of Theorem 4.1 are satisfied and thus 

proves the theorem. 

THEOREM 5.3. 1 /  

and 

then some subsequence o/ 

 Jlf, k 2 1=1 k=l 

J-, y ,  a(t) /( t)$~(t)dt  < 

converges almost everywhere (dPda) to log dP~/dP. 

Proo/. If we set A~=x~Dxk+ykDyk--S(xkDx~+y~Dyk)dP, then we get, after a 

lengthy calculation 
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f A~AjdP = ~m ~ l f la(t)f(t)$t(t) dtr + Oik ~ l~=l L [ f la(t)$i(t)&(t)dt [' 

The hypotheses of the theorem imply the convergence of ~ 1  ZL~I~A, AkdPI so 

tha t  [[ ~'~-z Aj][ 2 which is dominated by 5 ~ i  ~o=~ [~ AjA~dP[ goes to 0 as 1 goes to oa. 

Thus ~ = 1  Ak converges to ~0 and Theorem 4.2 applies. 

Example 3. Rotat ion of a random periodic function. 

We consider the process x(t) for - ~z ~< t < zr given by 

x(t) = ~ a~xn sin nt + vny~ cos nt 
n = l  

where (xn) and (Yn) are sets of independent normalized Gaussian random variables which 

are independent of each other and (a~) and (T~)are sets of real numbers such tha t  

~ = 1  (a 2 . + ~ )  < c~. We take L to be the set of all finite linear combinations of 1 and 

the x~'s and yn's and set 

T~x~= (cos no~)x. -Tn  (sin n~)y~ and T~y~ =a-~ (sin n a ) x ~ + ( c o s  na)yn. 
f in T n  

Trivially, Dx, = - n  (v~/~n) y~ and Dy~ =n(an/v~) xn so tha t  both DT~xn and DT~y~ 

again have L2(P ) derivatives and hence are L~(P) continuous. 

THEOREM 5.4. I /  ~ n 2 (  v" a~l~ - - - - - -  < oo  
\ f i n  T n ]  

then the measures P~ associated with the processes x(t + ~) are mutually absolutely con- 

tinuous and some subsequence o/ 

~=t �89 (sin2na) 1 - ~  x~ + �89 (sin ~ n a) 1 - ~,,] y~ - (sin n~cosn~)  (Za-an) 
\an ~n/ 

xn yn 

converges to log dP~/dP almost everywhere (dPd~). 

Proo/. The condition insures the L2(P ) convergence of 
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~ (Tn an q)= (x~Dxn+ynDyn)= n ~ - - - ) x n y n  n=l 4=1 Tn] 

and we can show as in the proof of Lemma 4.6 tha t  ~ ~ozwdP = ~ (zDw + wDz)dP for 

z and w which are finite hnear combinations of 1 and the xn's and yn's, i.e., for z 

and w in L. The theorem now follows from Theorems 4.1 and 4.2 plus the fact tha t  

�89 x~ + �89 y~ - �89 (T_~x~) 2 -  �89 (T_~yn) 2 = �89 (sin 2 nzr 1 - ~ ]  x~ 

( (on) 
T~] ~ ( s inn~  ~ xnyn. +�89 2n~) 1 - ~ n ]  y n -  cosng)  Vn_~n 

Example 4. Linear fractional transformations of random analytic functions. 

Let [(z)=~n~=oCnZ ~ where C~=anXn§ (an) and (Tn) are bounded sequences 

of positive real numbers, and (xn) and (Yn) are sets of independent normalized Gaussian 

random variables which are independent of each other. For any z with I z [ <  1 the 

series defining /(z) is almost everywhere convergent since 

c. 12dP1og2n<-C Izl2. log2 n <  ~ 
n=O 

[1, Theorem 4.2, p. 157] so [ has radius of convergence at  least 1 almost always. 

I f  we set 
(cosh a) z + sinh ~, 

L~(z) 
(sinh ~) z + eosh 

then, for any fixed 0 the linear fractional transformations Te,~: To,~,(z)=ei~176 

form a one-parameter group each member  of which takes the sets [z I Iz[ < l] and 

[z I I z l=  1] into themselves. Furthermore,  any  linear fractional transformation preserv- 

ing these sets is of this form. We shall find necessary conditions on the coefficients 

an and T~ for the mutual  absolute continuity of the measures associated with the 

processes /0.~ : 
/o.. (z) =/(To.~ z). 

We take for L all finite linear combinations of the constant function and random 

variables of the form uk (z) = R (/(k) (z)) and vk (z) = Y (/(~)(z)) for k = 0, 1 . . . .  and I zl < 1 

(we have written R and Y for the real and imaginary parts  of a number and/(~) for 

the kth derivative of /). T~ is defined, for fixed 0, by: 
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d k 
T~uk(z )=~ ( (d)k / (To,~Z))  and T~vk(z)= :] ( (~z  ) [(To,~z)). 

T~uk(z) and T~,vk(z) are linear combinations of 

u o (To,~ z) . . . . .  uk (To,~ z), v o (To.~ z) . . . . .  v~ (To. ~ z) 

with coefficients which are functions of z analyt ic  for I z l <  1. 

We wish to show tha t  

D(T~uk(z) + iT~vk(z)) 

= (e i~ -- e-~~ 2) (T~Uk+l (z) + iT~vk+l (z)) 

- 2 ke-i~ + iT~,v~.(z)) - k(k - 1) e -t~ (T~uk.-i (z) + iTavk-1 (z)) 

the last t e rm being replaced by  0 if k = 0. I t  will follow from this, as in the previous 

examples, t ha t  DT~uk(z) and DT~,vk(z) are themselves in L, hence L2(P  ) differentiable 

in ~, hence L2(P ) continuous in ~. We note  first  t ha t  

II l (To.:,+~ w) - l(To,~ w) _/(1) (To, ~ w) 
X5 

<c~.=, I (T~ (T~ 

which goes to 0 uniformly for I',,,I ~< 1. 

small radius r about  z, 

II T~+~(uk(z)+ivk(z))-T~(uk(z)+ivk(z)) 

(e t0 - e-~O w 2) [ s 

((sinh a) we-i~247 cosh a) 2 I 
(To.~W)n-1 (elO_ e-iOw2) 2 

Hence,  taking F to be a circle of sufficiently 

(ff  ,<" <,,...> <,,"-,- '":, '> 
\ ~ ~ - ~ o +  oosh a) 2] I 

ii k, r = ~ i j r \  e 

and this goes to 0 as e goes to 0 so 

I (1) (To,,W)(d ~  e-'~ 2) ~ 1 II 
( ~  ~ e ~ ~  ~ co~sh-~)2/ (W--Z) k+l dWll 

(eia-e-iOw2) II 
1(1) ( T0,, w) ( (sinh ~) we -to + cosh ~)3 

= r <, , , ._e-,:==> 

= (~)" [(~ S(To,.~)) (P- ~-'~ 
f rom which the desired formula follows. 

3-- 642906 Acta mathematica 112. Imprim6 le 11 septembre 1964. 
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The sets (xk) and (Yk) form a complete orthonorma] set and are contained in L since 

1 1 
xk = . . ~  uk (0) and y~ = 3~ k~ vk (0). 

We have 

f D x k d P = f D y k d P = O a n d  

,)' (f )' (xjDxk + xkDx,) d + (x, Dy~ + y~Dx,) dP 
,=0 kffiO 

+ ( f  (ysDxk + xkDy,)dP)2+ ( f  (ysDyk + ykDy,)dP) "2} 

= { [ ~  cos ~0 1 a,+__l a, ]2 sin SO [ 1 3s+__1 . a , ]  ~3]+1 _ ( J + )  - i  _ + ( J + )  - ~ - -  
,=0 a, as+lJ a, 

+sin20 [(j+ l) a'+J_j 3 ' ]  2 
3j aj + 1J 

THEOREM 5.5. 1 t t h e  /our series, 

+c0820 [(?.+1 ) 31+~_j 31 ]2 / 
rj 3,+aJ J" 

[ -s+i . ~,13 ~ [(j+l)  m_l_j ~j]3, 
1=0 t=1 

1 - - -  , and  ( j + l )  "r 3, 2. 
S = 1 3 i  S = 1 "gS 3s + 1J 

all converge, then the measures associated with the processes/0,~(z) are mutually absolutely 
continuous, i.e., /(z) is equivalent to any process gotten /tom it by applying a linear 
/ractional trans/ormation taking [z[ < 1 into itsel/ and ]z I = 1 into itsel/. 

Proo/. For each 0 the function 

J=o as ~ xjxj+~+sinO _ ( j + l )  3j+__2+i as as xjyj+l 

[ [ } +s inO ( j + l )  ai+] j yjxj+l+cosO ( j + l )  3J+l-~ YjYj+I 
3j 3 s 

is in L2(P ) by hypothesis and we can show as in the proof of Lemma 4.6 that  

.( Twl w2dP = ~ (w 1 Dw z + w 2 Dwl)dP for all w~ which are finite linear combinations of the 

xk's and ys's. I t  follows from this by straightforward calculations that  
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f epu o (z) u o (w)  d P  = f D(u. (z) uo (w))  dP, 

f q~uo(z) vo(w)dP-  f D(uo(Z) vo(w))dP 

f qPVo(Z)vo(w)dP= f D(vo(z)vo(w))dP. 

and 

Because of the L2(P ) continuity of [(z) and the fact that  all the /(z) are (com- 

plex) Gaussian, we have, for properly chosen contours F 1 and F~ 

f~~ J~oJFt~ ~(zt__z)k+, ) fF ,~ \ (w-w) l+l /dp  

k! l! I" c t" _ / l(z')dz" ~ { / (w' )dw'  
k(w" - w) ~+1/ 

k! l! f" C l / /(z')dz' \ [ (e*~176 ' ) 
(2:7gi) 2 L ,  L2 l ~ ((ZT~-Z~ -+1) ~ ~(W'-- W)l+l(( sinh 0~) we-tO§ cosh 0~) 2 

Z) k+i ((sinh a) ze -*~ + cosh \(w - w)Z+l] ] 

Similar arguments show that  S qme (z) vz (w) dP = ~ (ue (z) Dvl (w) + vt (w) Due (z)) dP and 

[. qove(z) vl (w) dP = I (re (z) Dvz (w) + vl (w) Dvk (z)) dP and this completes t~he proof of the 

theorem. 

Theorem 4:2 is  not, applicable to this example since 

cos 0 (j+ 1) n % l _ j  o'j i=o (~t ~ xixi+l+sin 0 - ( j + l ) ~ + j a )  , ~aJ xjyj+z 

[ {T.,/+.~ i _ j  ,T/T~I ] [ . ~ ]  +sin  0 0"§ ~J yjxs~l+COSO ( j + l )  v~+i-j y~yj+~ , TJ " 

= 1 - cos 0 (n+  1) o'~+~ x~x~+l + sin 0 (n+ 1) -~-~+~ Xnyn+l 
t fin fin 

- s i n O ( n + l )  g'' l y n x n + i + c o s O ( n + l )  Tn+lynYn+xl ~ Tn Tn I 
, , 

= cos 2 0 (n+ 1) 3 tl ,~,~,/ + ~ - - /  / + s  in2 0 (n+ l) 2 + 
L\ a~ } k Vn ] ) \ Tn I J 
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a n d  in order to  have this go to  0 and the series in the theorem converge, we would 

need  both  

lim ( ) n + l  e'~+~ 0 and  lira n + l  a '+~ n -  = 0  
n .-~ oo O' n n ..~ oo O'n O ' n + l  

which would imply  

lim n ( n +  1 ) = l i m  ((n + 1 )  - - ~ /  = 0 .  

Z I f  we set (Tk=v~=~klr -�89 we get  the process /( )=~k~oQl, lc-�89 ~ whose 

boundary  behavior  has been extensively  studied (see [5] for example). The measure 

associated with this /(z) is rota t ional ly  invar iant  and the conditions of Theorem 5.5 

boil down to the convergence of Z ~ ' o , k ( k + l ) ( e ~ + ~ / e ~ - e J e ~ + l )  ~ in this case. I f  

~k= k ~, the terms in this series converge to 4e  2 so the series diverges unless e = 0 ,  

i.e., the only process of the form / ( z ) = ~ o k - r ( x k + i y k ) z  ~ to  which Theorem 4.1 

~pplies is the one with ~ =  �89 

Example 5. A test  for the independence of processes. 

[x(t)~ defined on an interval  I ,  x(t) and y(t) being Le t  z(t) be a vector  process \y( t )]  

~ndependent Gaussian processes with means mx(t ) and my(t) which are square inte- 

grable  on I and  correlation functions Rz(s, t)  and R~(s,t) which are square integrable 

.on I •  Let  (~k(t)) be the  eigenfunctions of the integral  operator  Rx with kernel 

Rx(s,t)  and (2~) be the associated eigenvalues. Le t  (~k(t)) and  (/~k) be the eigenfunc- 

t ions  and eigenvalues of R~. We assume t h a t  aU ~k and /z~ are str ict ly positive in 

<)rder to avoid some inessential complexities. We want  to compare z(t) with the 

'm i xe d '  process z ~ ( t ) = ( x ( t ) c o s o ~ + y ( t ) s i n : )  
- x(t) sin g + y(t) cos " 

The set Z is to comprise all finite linear combinat ions of 1 and functions of the 

f o r m  xI= $I x(t)/(t)dt and yl = ~i y(t) /( t)dt  for square in tegrab le / .  T~ is defined on L by:  

T~ x r = x I cos g + Yr sin ~ and  T~ Yr = - xs sin ~ + Yl cos :r I t  is evident  t h a t  DT~ x I = 

- x I sin ~ + yf cos :r and DT~yr= - x I cos ~ - Yl sin a and t h a t  these are L~(P) cont inuou 

Jn ~. The random variables 

.and 

if 
y~ = (y - my) (t) y~ (t) dt 

I 
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for k =  1, 2 . . . .  form a complete orthonormal subset of L and the following formulas, 

in which we have written (/,g) for ]i/(t)g(~)dt, are easily verified: 

1 
(1) Dxk = ~ (y, ~k) 

fA/e 

(2) Dy k= --1 (x, ~)  

(3) ( nxkdP= 1-~-(my,~) 

- 1  m (4) j DykdP=~-~(  x,~k) 

THEOREM 5.6. I/  the series, 

_ /~s_ k (Vs, ~k)2 ~ ( m y , ~ j )  ~, ~. 1 (mx, vh)~, and ~ ~ -~k 
i=1 ]~1 t=1 k = l  

all converge, then the measures associated with the vector processes z= are mutually ab- 
solutely continuous and Theorem 4.1 holds /or this example. 

Proo/. As in the previous examples the convergence of the three series implies 

the existence of a ~ in L2(P ) satisfying S q~wlw2dP = ~ (wl Dw2 + w~Dwl)dP for w= which 

are finite linear combinations of 1 and the xk's and yk's. For any / and g in L~(dt), 

N N 

N N 

-t-- 
N )} 
~. ~ (g,~.)x.+(m=,g) dP 

r n f l  

= f(x,  Dxo + x, Dxl) dP. 
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We can show by similar calculations that  f q)xlygdP= f (x1Dyo+ygDxr)and tha t  

~ y l y a d P = ~  (yiDyg+ygDyr)dP. Hence Theorem 4.1 applies and the theorem is 

proved. 

I t  is interesting to note that  the convergence of the first series is equivalent to 

the mutual absolute continuity of the measures associated with the processes x(t)-  

m~(t)+~m~(t) and the convergence of the second series is equivalent to the mutual 

absolute continuity of the measures associated with the processes y(t) - m r (t) + o~m~ (t) [10]. 

Example 6. Adding independent Gaussian processes. 

~x(t)~ where x and y are independent Gaussian Consider the vector process \y(t)] 

processes on an interval I with mean 0 and correlation functions Rx and R~ which 

are square integrable on I •  We wish to compare this process with ~x(t)+o~y(t)). \y(t) 
We define L to be all random variables of the form 

c+xi+yg=c+ f f f ( t ) / ( t )dt  + fp(s)g(s)ds 

for square integrable functions ] and g and real numbers c. T~ is defined by: 

T~(c+xr+yg)=c+xr+ay1+yg, giving Dx1=y r and Dyg=O. If  the integral operator 

Rx has eigenfunetions (~k) and eigenvalues (~tk)and the operator Ry has eigenfunc- 

tions (~) and eigenvalues (/~), then the random variables 

1 1 
1, x k = ~ x ~  k, k = l  . . . .  and Y k = ~ Y , ~ ,  k = l  . . . .  

form a complete orthonormal set. 

THEOREM 5.7. I /  

~s (t) ~k (t) dt < c~ 
k ~ l  

~x(t) + ~y(t)) 
then the measures P~ associated with the vector stochastic processes \y(t) are 

] 

mutually absolutely continuous and some subsequence o[ 

k=l  \ V,~,k 

converges almost everywhere (dPdar to log dP~/dP. 
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Proo/. The convergence of the double series guarantees the convergence of 

= lim ~ = 1  xkDxk since 

1 

= ~ (~J, ~)~, 
J = l  k = n + l  k 

where we have written (z)~, ~k) for Sz~j(t)~k(t)dt. We can show as in Lemma 4.6 that  

Sq~xlxadP= ~ (ylxg +x~yg)dP whenever / and g are finite linear combinations of the 

~k's. xr~ converges to x r and y~ to Yl in L2(P ) whenever /~ converges to [ in L2(dt ) 
and it follows easily that  assumption (iv) is satisfied in this case. 

The theorem now follows from Theorems 4.1 and 4.2 since 

[o~xk 1 ~ ) 

Now i=: ~ (~k, W) 2 = 1 I 
k = l  k = l  k = l  

so the convergence of the double series implies that  the y sample functions are in the 

range of R~ with probability 1, i.e., that  the measures Qy associated with the pro- 

cesses x(t)+y(t) are absolutely continuous with respect to P almost always. The 

expression for the likelihood ratio is exactly dP~/dP (x, y)=dQ~/dP (x) as one would 

expect. Conversely, as was shown in [11], the condition that  the y sample functions 

be in the range of R~ with probability 1 is necessary for the mutual absolute conti- 

nuity of the P~. 

R e f e r e n c e s  

[1]. DOOR, J. L., Stochastic Processes. New York, John Wiley and Sons, 1953. 
[2]. Du~o~D, N. & Se~w~rz ,  J. T., Linear Operators. New York, Interscience Publishers, 

Inc., 1958. 
[3]. FELDMAN, J., Equivalence and perpendicularity of Gaussian processes. Paci]ic J. Math., 

8 (1958), 699-708. 
[4]. HILI~, E. & PHILLIPS, R. S., Functional Analysis and Semigroups. Providence, R. I., 

American Mathematical Society, 1957. 



4 0  T. S. PITCHER 

[5]. HUNT, G. A., R a n d o m  Four ie r  t ransforms.  Trans. Amer. Math. Soc. 71 (1951), 38-69. 
[6]. KELLY, n . ,  REED, I .  S., & ROOT, W. L., The  de tec t ion  of radar  echoes in noise. J. Soc. 

Indust. Appl. Math., 8 (1960), 309-341. 
[7]. LooMIs, L., An Introduction to Abstract Harmonic Analysis. New York,  Van  Nos t rand ,  

1953. 
[8]. PITCHER, T. S., Likel ihood rat ios  for s tochast ic  processes re la ted  by  groups of t rans-  

format ions .  Illinois J .  Math., 7 (1963), 396-414. 
[9]. - -  Likel ihood rat ios  for s tochast ic  processes re la ted by  groups of t ransformat ions ,  I I .  

Illinois J. Math. To appear .  
[10]. - -  Likel ihood rat ios  of Gaussian processes. Ark Mat., 4 (1959), 35-44. 
[11]. - - - -  On the  sample funct ions of processes which can be added  to  a Gaussian process. 

Ann. Math. Statist., 34 (1963), 329-333. 

Received August 8, 1963 


