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Summary 

An open subset D of  R d, d=>2, is called Poissonian iffevery bounded harmonic 
function on the set is a Poisson integral of  a bounded function on its boundary. 
We show that the intersection of  two Poissonian open sets is itself Poissoniarl and 
give a sufficient condition for the union of  two Poissonian open sets to be Poissonian. 
Some necessary and sufficient conditions for an open set to be Poissonian are also 
given. In particular, we give a necessary and sufficient condition for a Greenian D 
to be Poissonian in terms of  its Martin boundary. 

1. Introduction 

Let D be an open subset of R J, d=>2. A problem of long interest has been to 
characterize the functions harmonic on D that are in some special collection of  
harmonic functions on D. One collection that has attracted much attention is the 
collection of  bounded harmonic functions on D. 

Suppose D is an open ball. The classical Poisson integral representation then 
solves this problem in a very satisfactory manner. Every bounded harmonic func- 
tion on D is the Poisson integral of  a bounded measurable function on its geometric 
boundary 0D. I f  we identify functions on 0D that differ only on sets of  harmonic 
measure 0 then this representation is unique. It is natural to inquire to what extent 
this result on the ball carries over to other open sets. 

Let D be an open subset of  R d, d>=2, and let ~D be the boundary of  D. For  
each x~D let no(x, dy) be the harmonic measure of  D at x. I f  D is unbounded 
let ~k (x) be the harmonic measure of  D at x on the set {~o}. 

* Supported by NSF DMS86.-.01800. 
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Definition 1. A bounded harmonic function f on D is representable if there is 
a bounded Borel function q~ on 0D and a constant ~ such that 

(1.I) f (x)  = noq~(x)+~(x). 

An open set D is Poissonian iff every bounded harmonic function is representable. 

Remark. I f  D is bounded then ~ ( x ) = 0  in the above definition. (See Fact I 
below.) I f f  is representable then its representation is unique provided we identify 
functions on 0D that differ only on sets of  harmonic measure 0. (See Fact 3.) 

Let/~d be the space R a compactified by adding the point ~.  View D as a subset 
of/~d, so if D is unbounded its boundary now contains 0% and let (0D)* denote the 
boundary of  D in/~e. The harmonic measure n~ of (0D)* is n~(x, A)=rto(x,  A)+  
r  ). Note that (I.1) is the same as f(x)=n*otp*(x), where (p* (x) = q~ (x), 
x~OD and tp*(oo)=~. 

Not  every open set is Poissonian. For  example, as shown in [4] the set D that 
is the open disk punctured by a line segment from the origin to a point on the bound- 
ary is not Poissonian. Observe that this set is star shaped about the origin. In [4] 

an open set D was called strongly star shaped about the origin iff rD C=D for all 
0 < r < l .  It was shown in [4] that a strongly star shaped open set is Poissonian. 

Let D be an open set. If D c is a polar set then every bounded harmonic func- 
tion on D is a constant so D is Poissonian. Suppose that D c is not polar. Then D 
is Greenian and therefore it has a Martin boundary A. (For D not connected we 
take the Martin boundary of  D to be the union of  the Martin boundaries of  its 
components.) The Martin representation shows that every bounded harmonic func- 
tion on D is a Poisson integral of  a bounded measurable function on  A. That is, if 
fro(x, �9 ) is the harmonic measure at x on A then every bounded harmonic function 
f on D is of  the form f(x)=poq~(x ) for (p a bounded measurable function on A. 
This representation is unique provided we identify functions on A differing only 
on sets of  harmonic measure 0. 

I f  D is Poissonian we have the exact analog of  the classical result on the ball. 
�9 integrable functions on (OD)* There is a 1-1 correspondence between bounded ~t D 

and the bounded harmonic functions on D. This provides a very simple understanding 
o f  what the bounded harmonic functions are like on D. Also, in view of  Fact 3, 
if  we are willing to go along Brownian motion paths to (OD)*, every bounded har- 
monic function has boundary values along such paths with the boundary function 
being the representing function ~o*. I f D  is not Poissonian the structure of  the bounded 
harmonic functions is more complicated and for a n  adequate understanding of  
these functions we must replace (OD)* with the Martin boundary A. Now, in gen- 
eral, the Martin boundary is rather complicated, and often not exactly known, so 
it is somewhat unclear what exactly the representation in terms of  the Martin bound- 
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ary tells us about the bounded harmonic functions on D. Additional nice properties 
valid for all bounded harmonic functions on a Poissonian D but not valid on an 
arbitrary D will be given in Theorems 5 and 6. 

Suppose the Martin boundary A and the geometric boundary (0/9)* are the 
same (i.e. are homeomorphic), then D is Poissonian. On the other hand it is certainly 
not necessary for A and (0/9)* to be the same for D to be Poissonian. For  example 
take D the region inside the unit disk but exterior to the disk of center (1/2, 0) and 
radius 1/2. Here the Martin and geometric boundaries are different but our Theo- 
rem 1 shows D is a Poissonian open set. 

In this example the Martin and geometric boundaries are not very different. 
Our next example will be much more extreme. 

Example 1. Let /" be a Jordan curve in R ~ and let Dz and D2 be the simply 
connected domains complementary to F. Assume Dz is conformally equivalent to 
the interior of  the unit circle and D2 is conformally equivalent to the exterior of  
this circle. Then D1 and D2 are Poissonian. The Martin boundary of  D=DzwD~ 
consists exactly of  two copies of  F. Call these F1 and E,. Thus here the Martin bound- 
ary A=FxuF 2 and the geometric boundary are topologically very different. Every 
point on the geometric boundary corresponds to exactly two minimal Martin bound- 
ary points. However D may or may not be Poissonian. 

In [2] it is shown that the harmonic measures HD, and Ho, are mutually singular 
iff the set of  tangent points of  F has 0 linear measure. Thus, if F is twisty enough, 
these measures are singular. Clearly D is Poissonian iff these measures are singular 
so it is possible to have D Poissonian. This example can be modified to have D 
connected by replacing a Jordan curve with a Jordan arc. 

The above shows that it is possible to have D Poissonian but yet the Martin 
and geometric boundary are topologically quite different. It also shows that such 
conditions as having the set of  points on 019 that correspond to multiple points on 
A having harmonic measure 0 are not necessary. 

There is really not much of a connection between the topology of  (OD)* and 
that of  A that is implied by D being Poissonian. For  the problem of  characterizing 
a Poissonian open set D in terms of  its Martin boundary is really a measure theo- 
retic one. 

Let the measurable subsets of  (0D)* be its Borel sets completed by the sets of  
harmonic measure 0 and let the measurable subsets of  A be its Borel sets completed 
by the sets of  harmonic measure 0. In Theorem 9 we will show that D is Poissonian 
iffthere is a measurable mapping ~o of  (OD)*~A such that I.to(x, A)=rr~(x, tp-a(A)). 

Now for any open Greenian D there is always a measurable mapping 
qs: A~(OD)* such that rt*o(x,B)=l~o(x,~p-~(B)). (See w 9.) Using this fact and 
the result of  Theorem 9 we will show in Theorem 10 that D is Poissonian iff (OD)* 
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and d are related as follows. There is a set B ~(OD)* having zero harmonic measure 
and there is a set Al~zl that contains the non-minimal points of A and has 0 har- 
monic measure and there is a mapping rp: OD\B-~A\Ax such that ~p is 1-I, onto, 
bimeasurable, and nv(x, B)=po(x, q~(B)), po(x, A)=n*D(x, ~p-~(A)). In other words 
D is Poissonian iff (OD)* and A are equivalent as measure spaces. 

Example 1. (Continued.) Assume HDI and Ha, are singular. Let B be a set 
=CF such that Hol(x,B)--I on D1 and Ho,(x,B~)-I on D~. Let B1 and Ba the 
copies of B on Fx and Fa. Then #D(x, B1) = 1 on D~ and tto(x, B~)= 1 on D2. Here 
At=B~uB2 . Let x ~ ( ~ t , ~ ) ~ F / .  Then ~p(x)=~, xEB and q~(x)=~2, x~B ~ 
yields the mapping in Theorem 10. 

Except for Theorems 9 and 10 our main concern in this paper will be to give 
conditions for D to be Poissonian that do not involve the Martin boundary of D. 
Our results are purely analytical. However, the methods used are purely proba- 
bilistic and fully involve the connection between classical potential theory and the 
theory of Brownian motion. The full story of this connection can be found in [4]. 
The proofs of our results will constantly use certain facts of probabilistic potential 
theory. Some of these facts cannot be found in the standard references in exactly 
the form required (but are easy consequences of facts that are in [4]). For this reason 
we will gather together in w 2 those facts that we shall need. One of our concerns in 
this paper will be to determine when an open set D that is put together from other 
open sets that are known to be Poissonian is itself Poissonian, e.g. intersections and 
unions. In Theorem 1 we will show rather remarkably that the intersection of two 
Poissonian sets is always itself Poissonian. This in turn will show (see Theorem 4) 
that Poissonianess of D is actually a local property of OD, a fact which is not ob- 
vious from either the definition or the characterization in terms of the Martin 
boundary. 

There is an interesting strengthening of the result of Theorem 10 in terms of 
Brownian motion. Let the Brownian motion start at x~D and let To be the first 
time it leaves D (with To= oo if it never leaves D). Let Px(" ) be the law ofa Brownian 
motion starting at x. Let Xr~" be the place where the Brownian motion first hits 
(OD)* (so X r =  oo on [To= ~o]). Let Z be the place the Brownian motion first 
hits A. Then po(x, -) is the distribution of Z and n~(x, .) is the distribution of 
Xr, ,. In theorem 9 we actually show that if D is Poissonian then Z=q)(XTD) a.e. 
P~ for all x~D, and in Theorem 10 we show that also XrD=q~-a(Z) a.e. Px for 
all x~ D. 

Suppose D is Poissonian. Then if we identify functions on (OD)* that only differ 
on sets of n~(x, -) measure 0 there is a 1-1 correspondence between bounded 
measurable functions on (OD)* and bounded harmonic functions on D. One can 
recapture the function q~* on the boundary by taking limits along Brownian motion 
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paths. (See Fact 3.) That is, starting from any x~D, limttr~ ' f (Xt)=q)*(Xro) with 
probability one. This suggests that in some sense a Brownian motion can only hit 
(OD)* in a unique way. But that is exactly what Px(Z=~o(Xro))=--1 on D tells us. 
The various approaches to a point on (3D)* are represented by the Martin boundary 
points that correspond to that point. Thus starting from any xED the Brownian 
motion hits (OD)* at Xr, ' only along the route that corresponds to the minimal 
Martin boundary point ~o(Xr~,). 

Let D be an open set. The point ~ as a boundary point in (OD)* plays a dis- 
tinguished role. It is the only point that can have positive harmonic measure. Now 
a Brownian motion starting at xED can only go to ~ in a unique way. To see 
this intuitively suppose first that D = R  d. Then that is certainly the case; for we 
are just following the entire path. Now, for any D, as we follow this path either at 
some finite time the path hits OD, in which case the path does not go to infinity, or 
it never hits OD, in which case it ignores OD. Suppose that D is Greenian. In general, 
there can be many minimal Martin boundary points that correspond to ~,. The 
consideration of Brownian motion above suggests that on the set A0 that corresponds 
to ~,  either /~D(x, A0)=0 or there is exactly one point ~6A0 such that /tD(x, {4})>0 
for some x and I~o(X, A0\{~})-0.  We will show in Theorem 11 that that is indeed 
the case. 

Statement o f  results 

Theorem 1. Suppose D1 and D~ are Poissonian open sets. Then D~nD2 is a 
Poissonian open set. 

Theorem 2. Let D be an open subset o f  R d and let {r,} be a sequence o f  positite 
integers such that r. ~ oo as n ~ ~.  Let  Br be the open ball o f  center 0 and radius r 
and let D,=Dc~B, . I f  each o f  the Dn are Poissonian open sets, then so is D. Con- 
versely i f  D is Poissonian then so are all the D, .  

Unlike the intersection, the union of two Poissonian open sets need not be 
Poissonian. For example let A~ be the rectangle with vertices (0, 0), (2, 0), (0, 1), 
(2, 1), A2 the rectangle with vertices (0, 1), (0, 2), (1, 0), (1, 2) and Aa the rectangle 
with vertices (1, 0), (1, 2), (2, 0), (2, 2). Let D1 be the L-shaped domain that is 
AlwA2 and let D2=AIwA 3. Then D1, D2 are Poissonian domains but their union 
is the square with vertices (0, 0), (2, 0), (0, 2), (2, 2) with the line segment connecting 
(1, 2) to (i,  1) removed, which is not a Poissonian domain. 

Theorem 3. Let D1 and Dz be a Poissonian open set and let D = D I u D 2 .  I f  
no(x, ODlnOD2)--O on D then D is Poissonian. 
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Let D be open and let B(a, r) be the open ball of  center a and radius r. Theo- 
rem 1 shows that if D is Poissonian then so is Dc~B(a, r) for all aEOD and all r. 
John Garnett proposed that a converse should also be true. That this is the case is 
our next result. 

Theorem 4. In order for D to be Poissonian it is necessary and sufficient that 
there exist a finite or coutably infinite family o f  open balls {B(al, ri)} such that 
(a) 01) c=Ui B(a i, ri) and (b) B(ai, ri)c~D is Poissonian for each i. 

Definition 1. Let f be defined on /9, the closure of  D. We say f is essentially 
continuous on /~  iff it is continuous at all points o f /9  except perhaps for those in a 
polar subset of  OD. 

Theorem 5. Let  D be a connected open subset o f  R a. Let  tp be bounded on 019 
and let r be a constant. If(1.1) holds, then there is a sequence {f,} of  bounded har- 
monic functions on D such that (a)f ,  is essentially continuous on D, (b) supn II f.[l*. <-n ,  
and (c) f , - - f  uniformly on compact subsets o f  D. Com ersely, i f  f is a bounded har- 
monic function on D such that there is a sequence {f,} of  bounded harmonic func- 
tions on D satisfying (a)--(c) then there is a bounded q~ and a constant ct such that 
(1.1) holds. 

An immediate consequence of  Theorem 5 is the following. 

Corollary 1. Let D be a connected open set. Then D is Poissonian iff erery bounded 
harmonic function on D is the limit o f  a sequence {f,} bounded harmonic functions 
satisfying (a)--(c) of  Theorem 5. 

Using a recent result of  Ancona [I] it is possible to improve the continuity part 
of  Theorem 5. 

Theorem 6. Let  D be a connected open set and let q~ be bounded on 01). Set 

f = n o ~ .  There is then a sequence {f,} of  bounded harmonic functions on D that are 
continuous on D such that (b) and (c) of  Theorem 5 hoM. 

Theorem 7, Let D be Greenian. In order for D to be Poissonian it is necessary 
andsufficient that there be a measurable mapping q~: (OD)*~A such that llo(x, A)= 
n~(x, q~-l(A)). I f D is Poissonian we can choose q9 such that Z=cP(XrD) a.e. P~ , xE D. 

Theorem 8. Let D be Greenian. In order for D to be Poissonian it is necessary 
and sufficient that the following holds. There are measurable sets Bc=(OD) * and 
AxC=A such that n*o(x, B)--O, A1 contains all the non-minimal points o f  A and 
liD(x, A1)=O, and a mapping tp: O D \ D ~ A \ A 1  such that q~ is 1-1, onto, bimeas- 

�9 (&D)* and t~D urable and measure preserving in both directions with measure n o on 
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on A. In that case q~ can be chosen so that Z=q~(XrD ) and XrD=q~-I(Z ) a.e. P,, 
for all x. 

Theorem 9. Let D be a Greenian open set with Martin boundary A and harmonic 
measure liD(x, .) on A. There is a measurable mapping ~: A-+(aD)* such that 
~k(Z)=X r P~ a.e. for all xCD. Let A0=~-l({~}) .  Then po(x, Ao)=P,(TD=~). 
Either po(x, Ao)-O or there isauniquepoint {E Ao such that pD(x, {{})=pD(x, Ao). 

We view the set A0 as the points in the Martin boundary that correspond to oo. 
The mapping ~, is not unique but another such mapping ~1 must satisfy 
P,(~(Z)=~,I(Z))=I for all xCD. Let Al=t~-l({oo}). Then it must be that 

ItD(X, AI AAo) =-- O. 

Let ~1 be the point picked out by ~/1 in A1 having positive measure. Suppose ~ r  
Then 41 and ~ cannot be in AlC~Ao nor can they be in AIAAo, which is impossible. 
Thus ~-----4. Hence all maps ~/pick out the same point in A as the only point having 
positive measure corresponding to ~o. 

Example 2. Den joy Domains. Let K be a closed subset of a hyperplane in R J. 
Its complement D in R ~ is called a Denjoy domain. Such a domain may or may not 
be Poissonian. For example in R 2 if K is the x-axis then D is not Poissonian while 
for K a polar set D is Poissonian. It is of  some interest to determine necessary and 
sufficient conditions on K for D to be Poissonian and when D is not Poissonian 
to give necessary and sufficient conditions on a bounded harmonic function f to be 
representable. 

It is not difficult to show by direct example that if K has positive hyperplane 
Lebesgue measure then D is not Poissonian and then for f to be representable it is 
necessary that it be symmetric with respect to reflection across the hyperplane. It 
turns out that K having positive hyperplane Lebesgue measure is in fact necessary 
and sufficient for D to be non-Poissonian and the symmetry of f is sufficient as well 
as necessary for it to be representable. Originally, we proved these facts some three 
years ago by purely probabilistic arguments which did however use some refined 
properties of Brownian motion. Since then a purely analytic proof has been produced 
by Bishop and will appear in his paper on Poisson Domains [3]. For that reason 
we will omit our proofs here. 

Some Remarks. The only previous results on conditions for D be the Pois- 
sonian that we know are in [2] and [4]. The result in [2], discussed in Example 1, 
and the result in [4] that a strongly star shaped domain is Poissonian, are proved 
by classical (non-probabilistic) methods. The results here on the other hand are 
obtained by probabilistic arguments. The probabilistic approach seems to us to 
be the more natural method for the problems addressed in this paper. 
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After seeing the first version of this paper, C. J. Bishop [3] obtained by purely 
analytic methods a necessary and sufficient condition for D to be Poissonian. This 
condition can be used to give analytic proofs of some of our results. In turn 
Bishop's results can be proved by our methods. See section 10. 

Acknowledgements. We wish to thank Ted Gamelin and John Garnett for 
several useful discussions. In particular it was Ted Gamelin who suggested Theo- 
rem 5 and John Garnett who told us of Anconas' theorem and its relevance to 
Theorem 6. 

2. Preliminary facts 

In order to prove Theorems 1--10 we will need some preliminary facts. These 
all may be found in [4] or are simple consequences of facts in [4]. 

Let X t be the Brownian motion process on R d. Let To=inf {t>0: XtCD}(= ~o 
if XtED for all t>0) be the first exist time from D and let HD(x, dy)= 
P~(XrD~dy , To< ~o) where P~(. ) is the law of the process Xt when Xo=x. Let E~ 
be expectation with respect to Px. 

Fact 1. HD(x, dy)=no(x, dy), xED, and ~b(x)=P~(To=oo). If D is bounded 
e~(TD<oo)=l, so ~(x)=0.  

Fact2. Let f be a bounded harmonic function on D. Then for xED, 
P;,(limt, ro f(X,) exists)= I, and calling the limit ~, f (x )=E~,  xED. If D is Greenian 
with Martin boundary A, and # represents f on A, then P~(~=@(Z))=I for 
all xE D. 

Fact 3. If f(x)=Ho~o(x)+~P~(To=oo) for ~ a constant and ~p bounded, then 
f i s  a bounded harmonic function on D, and for xED 

Iim f(X,) = tp (Xro) ltro<., 1 + ctltr~,.** ~ 
I |T  D 

a.s. Px. 

Fact 4. Ifqh and 92 are bounded and HDq~x=HDq~z on D, then a.s. P~ for xED 

~(-Vro)=,p~(xr,,) on [To<~,]. 

Fact 5. For any x 

Ho~p(Xro)=tP(Xro) a.s. P~ on [To<o o]. 

Fact 6. IfDz and Da are open sets and Dx ~Dz then HoHDt(x, dy)=Ho,(x, dy) 
for xEDx. 

Fact 7. If f is a bounded harmonic function on D then there is a bounded har- 
monic function h on D such that Ih(x)I~_KP,(T~< oo) for xED, where K is a 
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constant, and for some constant a, 

f(x) = h (x) + ~tP~(To = oo) on D. 

Fact 8. The complement, D c, o l d  is called recurrent iff P~(TD< oo)= 1. 
wise it is called transient. If D is bounded then D" is recurrent. 

Fact 9. If f is a bounded harmonic function on D and 

f(x) = Hocp(x)+aP~(To = oo) 

then a=O if [f(x)l<=Ke~(To<o~) for some constant K. 

Fact 10. Let xED. If D is transient then 

limPx,(TD=oo)=O, a.s. P~, on [To<o o]. 
tIT D 

Using Fact 1 the representation (1.1) of  f can be written as 

(2.1) f(x) = Ho~(x)+uP~(TD --~), xs 

It is this representation that we shall use throughout the proofs. 

115 

Other- 

3. Proof of Theorem 1 

Let D~ and D2 be Poissonian and let D=DanDt. If D = ~  there is nothing 
to prove. Assume that D # 0  and let f be a bounded harmonic function on D. 
Using Fact 7 it suffices to prove the theorem for those f that satisfy the condition 
[f(x)[<_KPx(To< o~) for some constant K. We henceforth assume f is of this type. 

The main problem is to use the fact that all bounded harmonic functions on 
the De are representable to conclude that this is true for those on D=DtnDs. 
Though analytically it is not clear how to proceed the basic Fact 2 suggests an 
approach. Consider a Brownian path starting at xEDt that first exits Dl by eventually 
first entering D~nD2 and then first exiting De via ~D~Dz.  The limit of f (har- 
monic on D) along such a path till the exit time from De makes sense and calling 
the limit ~ should be that Ex~ is a harmonic function on Dl whose boundary values 
on ODn#D~ should be those for f .  The actual details are a bit more complicated 
but this is the essential idea on how to obtain a harmonic function on D~ whose 
boundary values yield those for f on ~Dn~D~. 

The proof will proceed via seven lemmas. The first, of a technical nature, estab- 
lishes needed measurability. Lemmas 2--5 show the boundary of De can be decom- 
posed into a "good part" and a "bad part", and the bad parts are not relevant. The 
next two lemmas show the limits o f f  along Brownian paths that first exit from the 
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good parts exist and the expectation of  these limits yield harmonic functions on D~. 
The final lemma shows that the boundary values of  these harmonic functions yield 
thn~e for f so f is representable. 

For  a Borel set B let ~ = i n f { t > 0 :  XtCB}(=~o if Xt~B for all t>0 )  be 
the hitting time of B. Observe that To= ~'D~" 

Lemma 3.1. Let WI ==WI ==W2==... be an increasing sequence o f  open subsets o f  
Dt with union D~. Let T,=Tw . Then a.s. Ix, x~D1, T, tTo . Let 

r = 1-~ [XtED~]. 
tl TDI 

Let ~ = ~ r ,  and let ~ be the a-field generated by the {~}. Then F~,~. 

Proof. The first assertion is obvious. As to the second note that 

F = ~ .  U,.>.[~--D~r < TmoOr. = T.,] 

and the event [~5~oOr<T.,lC,~m==.~. 

Lemma 3.2. Let 

Ft = [~o: ~ [X,(a~)ED~, rD~(c9) < ~]].  
tT T Da (ta) 

Then there is a partition K1 and G~ of  OD1 such that for all x~D1 

 adc r ) = o, (3.1) 

and 

(3.2) 

Proof. Let h(x)=P~(F~). The function h is harmonic on D1. To see this let 
B,(x) be the open ball of  radius r and center x and let T, = TB,(x ). Then HB,(x)(x, dy)= 

a,(dy), the uniform distribution on OB,(x). Choose r > 0  so that B,(x)==DI. Then 
the strong Markov property shows 

h(x) = Px(Fx) = f a,(dy) Pr(F1) = f a,(dy) h(y). 

Thus h is harmonic. 
Let W,, ~ ,  and ~- be as in Lemma 3.1. That lemma shows F~ is ~- measurable. 

Consequently a.s. P~ for xED, 

(3.3) lim h(Xr,)  = lim Exr" lr~ = Iim E[ l r~ [~ ]  = lrl .  

By assumption Dt is Poissonian. Thus by Fact 9 there is a bounded function ~Pl 
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such that h=Hol ~ on D1. By Fact 3, a.s. P~, xED1, 

lira h (X,) = ~ (XrD~) 1 tro~ < ~ J" 
ttTD I 

But the LHS is a.s. P~ equal to lira, h ( X r  ) which by (3.3) is l r .  Thus a.s. P~, 
xED1, 

(3.4) ~(Xro~) ltro~ <.*~ = lrl. 

Let A = {xE 0D1: ff (x) = 0 or ~k (x) = 1 }. It follows from (3.4) that lid (X, ODI\A) -----0 
on D1. Taking KI=  {yEOD~: ~k(y)=l} now yields the desired partition. 

Lemma 3.3. Let 

r2 = [co: 1 ~  [X,E D~, T~, ~ o~]]. 
ttTDt 

Then there is a partition on K2 and Gz of  OD2 such that for all xED2, 

P~(Xro, E K,,nF~) = P~(Xro, E K2, TD, < o~) 
and 

~(XTv EG~nr2) = 0. 

Proof. Interchange the roles of D1 and D2 in Lemma 4.2. 

Lemma 3.4. Let D=D~nD2. For all xED, HD(x, K~uK,,)=0. 

Proof. By Lemma 3.2 for any xED~ (so in particular for xED), 

~([xTo ~ K d ~ U  ) = 0. 
Thus for xED 

K([XTo E Kdn[ro~ ~- To j)  = 0. 

Since 7"o>=7"o we see that 

Px([XT ~K1]~[TD1 ~ rl)]) = 0. Dx 

Hence for xED, P~(XrEKO=O. Similarly using Lemma 3.3 we find P~(XT~,EK~):0. 

l_emma 3.5. Let D=DxnD2 and let f be a bounded harmonic function on D 
such that [f(x)I<=KP~(TD< co) for some constant K. Then for all xEDi a.s. P, 

(3.5) lim f(Xt) : r on A i ~- [co: XTD EGi, TD, < ~ ] .  
tITD I 

Proof. By Fact 2 we know that for all xED limt~rD f(Xt) exists a.s. P~,. 
By definition of  G~, a.s. Px, there is a rational q(og) such that on A~ 

Xqc,~)ED and TD, = q+To, oOq. 
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Thus 
P=([ limf(Xt) does not exist]taA,) 

r 

~- z~,~eP~(XtED and lim X, does not exist). 
slt+ TD, OOt 

But 
P=(XtED and lim f(Xs) does not exist) 

~t+TD, oOt 

= J g(Um f(x . )  does not exist) @ = O. 
o [ 2=t ) ~To, 

Thus (3.5) holds. 

Lemma 3.6. Let f be as in Lemma 3.5. Define 

gl(x) = Ex [ lim f(Xt); Xro EG,, To, < oo]. 
tITD, 

Then gi is a bounded harmonic function on Dl and there is a bounded function ~l on 
OD~ such that 

(3.6) g,(x) = Ho,~p,(x), x6D~. 

Proof. That g is harmonic on Di follows by same kind of argument used in the 
proof of Lemma 3.2. The representation 3.6 follows by Fact 9 and the fact that D~ 
is a Poissonian open set. 

Lemma 3.7. Let f ,  cpx, ~Pa be as in Lemma 3.6. Fix xED. Then a.s. P= 

(3.7) limf(X:)=cp~(Xro) on [XroEGI]. tiT~ 

ln parttcular, a.s. Ix, r ) on [Xro6Gxc~Ga]. 

Proof. Fact2 shows limttrof(Xt)=~ exists a.s. P= and that ~=0 a.s. P= on 
[Toe*o]. From Lemma 4.6 and Fact 3 we find a.s. Px that 

(3.8) limf(X~) = q~a(XrD,) on [XroEGI]. ttTD, 

By definition of G~ a.s. P=, [XroEG~] c=[Xro, EGi, To=To,]. Thus (3.8) implies (3.7). 

Proof of Theorem 1. Define ~p (x) = ~pl(x) on G1 and ~p (x) = cp2 (x) on G2. Since 
Ho(x, K1uK=)=O it follows from Lemma 3.7 that limttr~ ' f(Xt)=q~(Xro) a.s. P= on 
[To<~o 1. Thus 

f (x)  = Hotp(x), xED. 
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4. Proof of Theorem 2 

Let D, Dn, B, be as in the statement of  Theorem 1. Assume each D, is a bounded 
Poissonian open set. Thus there is a bounded function q~, such that 

f(x) = Ho.q~n(x). xED,. 

Define r on 0D as follows. 

(4.1a) q~(x) = qh(x) on ODc~Dx 

and 

(4.1b) ~p(x) = q~,(x) on [~Dc~OD,]\[OD~OD,_x], n > 1. 

Lemma 4.1. For xED, 

q~(Xro) = ~0,(Xro) a.s. P~ on [To, EODnOD,]. 

Proof. Let s>r. Then for xED, 

Ho, q~,(x) = f ( x )  = Ho, cps(x). 

By Fact6 ,  Hoq~,(x)=HoHo, q~s(x), xED, so by Fac t4 .  for xED, 

cP,(Xro) = Ho,~Ps(Xro) a.s. P~. 
By Fact 5 for xED, 

Ho.r = 9 , (Xro )  a.s. P~ on [XroEOD~OD,]. 

Thus for xED, 

q~,(Xro) = ~0~(xro) a.s. ~ on [XroCODc~OD,]. 
Hence for xED 

r = ~p(Xro) a.s. P~ on 

Lemma 4.2. Suppose for some constant K, 
given by (4.1) f(x)=Hoq~(x ) on D. 

Proof. Using Lemma 4.1 we find for xED, 

(4.2) f(x) = Ho cp,(x) = Ex[~P(XrD); To <= TB,]+Ex[tP,(Xrn,); TB,. < To]. 

I f  yEOB, nD then limx..rf(x)=f(y). By F a c t 2  

lira f(X~) = ~p(Xro) a.s. P~. xEO,. ttTon 
Thus on the event 

[Xro EOB,.nO] = [Tn,, < To] ~P,(Xrn, .) = f ( X r , , )  a.s. P~. 

[Xro, EODn0D,]. 

If(x)l~KP~(T~<~). Then for ~p 
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Hence by (4.2) 

(4.3) f(x)  = E~ [~0 (XrD); TD < TB,] + Ex [f(XrB, .); TB,. < To]. 

Since P~(TB, t ~ ) = l  for xED, the first term on the RHS of  (3.3) converges to 
Hop(x) as n ~ o .  The second term on the RHS of  (3.3) is dominated by 

KE~,[Pxrn, (TD < oo); TB," < TD] = KP~(Ts,, < To < co), 

and therefore this term converges to 0 as n~o~. Thus f(x)=Hoq3(x), xED. 

Proof of Theorem2. By Fac t7  we can find a bounded harmonic function h 
on D satisfying the requirements of  Lemma 3.2, and a constant ~ such that 
f=h+~P.  ( T o = ~ )  on D. By Lemma 3.2 h=Hoq~ for some bounded function tp. 
By Fact  1 P. (T o = ~ ) =  ~O on D. The converse statement follows at once from Theo- 
rem 1. 

5. Proof  of Theorem 3 

Let D1, Dz, and D be as in Theorem 3 and let xED. By Fact 7 f (x)=h(x)+ 
ctp~,(TD= ~o) where ~ is a constant and h is a bounded harmonic function on D 
such that Ih(x)l<=KPx(To<oo). By assumption, there are bounded functions ~o~ 
such that h(x)=Ho,~oi(x)+cqP~(To,= oo) for constants ~i. By Fact 9 and the fact that 
Px(To<~)<=Px(Tn<~) for xED~ we find ~i=0. Fact 2 shows that limtwDh(Xt)=~ 
exists a.s. Px, xED and as in the proof  of  Lemma 4.7, 4 = 0  a.s. P~ on [To= r 
Let Q be the rationals on (0, ~).  Then 

P~[XroEOD,n(~D~n~D.z)% To < oo; ~ # cp,(XrD)] 

-Px(UtEe [XtEDi and lim h(X~) # (~i(Xt+TD,r To, < ~])  
s~t+ TDt o 0 t 

<- Zt~Q f o (2rct)-~/2e-lr-xl'm PY ( lira h(X~) # q~i(Xro), To, < ~)  dy = O. 
l StTD t 

Thus a.s. P~, ~=~0i(XrD ) on 

[XrDEODin(ODantgDz) % T o < co]. 

Let q~=~o/ on (c3D~nOD)n(OD~nOD2)L Since HD(X, OD x, nODz)=0 on D it fol- 
lows that 

h(x) = E ~  = E~,[~; T o < oo] = E x ~ ( X T D ) .  
Thus 

f (x)  = E~ q~ (XrD + ~P~ (T o = oo)). 



Representations of bounded harmonic functions 121 

6. Proof of Theorem 4 

Sufficiency. By Fact  7 it suffices to consider bounded harmonic functions f 
that satisfy If(x)l<=KPx(TD< oo) for some constant K. We assume henceforth that 
fsatisfies this condition. Pick a point x 1 in thej - th  component of  D and set H(dy)= 
z~j 2-JHo(xj, dy). Let D~ and B(ai, ri) be as in the statement of  the theorem. 
Since H is a finite measure, only countably many bB(a~, ri)nOD for r<-ri can 
have positive measure. Using Theorem 1 we can replace the r i by slightly smaller 
values if necessary to obtain balls that satisfy (a) and (b) and also satisfy (c) 
H(OB(ai, ri)nOD)=0. We henceforth assume that we originally choose the r~ to 
satisfy this last condition (c). 

For  each i there is a bounded function r on OD~ such that f(y)= HD, opt(y), yED~. 
Let P ( . ) = Z j 2 - J P x j ( . ) .  By Fac ts2  and 9 a.s. P ~=lim,trDf(Xt) exists and 

= 0  on [To= oo]. By the same kind of  argument used in the proof  of  Theorem 3 
we can conclude that r ) a.s. P on [XrDEODc~ODi, TD< oo]. In particular, 
~p~,(XrD=cpi,(Xr) . . . .  a.s. P on [Xrr~E~Dn~Din~Dic~ .... To<~ ]. (There may 
be finitely many or countably infinitely many ij .) Thus we can find a function cp on 

0i) such that Ilcpll**<_-IIfll** such that for H(dy) a.e. y, ~pi(y)=cp(y) on ODc~ODy 
and r  ) a.s. P on [TD<oo ]. Now for any xED, Ho(x, dy)<<H(dy). Thus 
for Ho(x, dy) a.e. y, ~pj(y)=q~(y) on ODc~ODj. Arguing as before we can now 
conclude a.s. P~ that limttr~,f(Xt)=q~(Xrz,) on [T~<~] .  By Facts 2 and 9 f i x ) =  
HDq~(x). 

Necessity. This follows at once from Theorem 1. 

7. Proofs of Theorems 5 and 6 

Throughout  this section we assume D is connected. 

Lemma 7.1. Suppose cp is bounded on 01) and let f=HDcp + ~P. (TD= ~o) for ~ a 
constant. Then there is a sequence {fn} of bounded harmonic functions on D satisfying 
(a)--(c) of Theorem 5. 

Proof. Since D is connected the maximum principle shows the measures 
Ho(x, dy) are equivalent for all xED. Fix xoED. An easy argument using Har- 
nack's inequality shows there is a version K(x, y) of  the Radon- -Nykodym deriv- 
ative of  Ho(x, dy) with respect to HD(x o, dy) such that for any compact sub- 
set BC:D. 

(7.1) sup sup K(x, y) = F < ~. 
xEByEOD 
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We can find a sequence {~p.} of  continuous functions on ~D such that II~0.[[.. 
[l(pll.. and Htj(xo, dy)l~p~(y)-q~(y)[-~O as n ~ .  Let f.=Ho~p.+~P(TD=~). 
Using (6.1) it follows that {HD~p.} satisfy (a)~(c)  of  Theorem 5 with f=HoqJ. 
Since P(Ta= 0o) is essentially continuous on 01) the {.f.} has the required prop- 
erties. 

Lennna 7.2. Suppose f is a bounded and harmonic on D and there is a sequence 
{f.} of  bounded harmonic functions on D such that (a)~(c)  of  Theorem 5 hold. Then 
there is a bounded r on 01) and a constant ot such that 

(7.2) f =  HD(p+~tp(TD =co) on D. 

Proof. Since f .  is essentially continuous on /~ it is a solution to the modified 
Dirichlet problem on D. with boundary function .f.. By Theorem 2.10 of  [2] there 
are bounded functions ~p. on 01) and constants a. such that 

L = nD~.o.+~,V(r~, = ~ )  on D. 

Fix xoED. By Fact 3, a.s. Px0, 

I~p.(Xro) l t r , ,<**j+~ ltro=**jI = lim If.(X,)l ~- M. 
t IT  D 

Thus a.s. P~,, Icp.(Xr~,)l~_M on [To<~]  and la.I~_M. Thus esssup~p.~_M 
(with respect to the measure Ho(xo, dy)). Consequently, we can find a subsequence 
{~p.a} of  {~p.} and {~.)  o f  {~.} such that ~.~ ~ ~ and for every H~(xo, dy) integ- 
rable function ~, 

f HD(Xo, dy)~k(y)cp.,(y) -- f H,(xo, dy)~(y)q~(y). 

Taking ~/(y)--K(x,y) where K is as in (6.1) we find HDep.j(x)--Ho~o(x ). Thus 
for xED 

L ~ ( x )  -~ nDq , (x )+~t"~(ro  = ~). 

Hence (7.2) holds. 

Proof of  Theorem 5. Immediate from Lemmas 6.1 and 6.2. 

Lemma 7.3. Let D be a bounded connected open set. Suppose f=HDr where ~p 
in bounded. Then there is a sequence {f.}, n =  > 1 of bounded harmonic functions on D 
that are continuous on D such that sup. IIf.ll.~_ll~pll. and f . ~ f  uniformly on com- 
pact subsets of  D. 

Proof. Let B be an open ball that contains/~. Let K=DCc~B. By a theorem of  
Ancona [1] we can find compact subsets K. of  K such that all points of  K. are regular 
for K. and the capacity C ( K \ K . )  <- 1/n. Let D.=K~c~B. Let DI., D2. . . . .  be 
the components of  D. .  Since T~,~_TD, P~(T~=O)~_P~(T~,=O). Since all points 
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of  D~ are regular and xEOD.t iff xEOD. it follows that all points of  OD.l are 
regular for D.~t. Now as D is connected D must be contained in some component 
of  D. .  Consequently we can assume that the D. are themselves connected and all 
points on ODn are regular for D~. We can also assume that DxDD~D .... Now 
C(D.\D)<=I/n so D . \ D  decreases to a set of  capacity 0 and thus a polar set. 
Hence for each xED 

lid (x, D.ND) --: O. 

Let r on ODc~OD. and let r on ODc~D.. Then for x~D 

(7.3) IH~. q~.(x)-HDq~(x)I ~- II~011**gD(x, ODc~D.). 

Fix xoED and let 8>0.  There is then a sequence {~k.} of  bounded continuous 

functions on OD such that sup. II r <-II~oll*. and 

(7.4) f Ho.(Xo, dz)lO,(z)-q~.(z)l ~- 8. 

Let f . = H o  ~ . .  Then sup. II LII ~- l~oll... Let K(x, y) be the version of  the Radon- -  
Nikodym derivative of  Hv(x,  dz) with respect to HD(xo, dz) that satisfies (7.1). 
Then for C a compact subset of  D 

sup Ifn (x)--f(x)l ~-- F8 + II ~o n.. Ho (Xo, ODnOD,). 
xEC 

Thus f , ~ f  uniformly on compacts. Since all points of  OD, are regular for D~, f" 
is continuous on ~ , .  

Proof of Theorem 6. Suppose f=HD~o with r bounded. Let  D, be the inter- 
section of  D with the open ball of  center 0 and radius r. Then by Fact  6 

f(x) = HD,HDq~, xED,. 

By Lemma 7.3 there is a sequence {f.,}, n =  1, 2 . . . .  o f  bounded harmonic func- 
tions on D. .  The sequence {f.,}, n = l ,  2 . . . . .  r=l, 2, ... then has the required 
properties. 

8. Proof of Theorems 7 and 8 

The measurable sets of  (OD)* are the Borel sets completed with sets of  n~ meas- 
ure 0. The measurable sets of  A are the Borel sets completed with sets of  PD meas- 
ure 0. Statements such as for Px a.e. will be understood to mean for all xED. 

Let f be a bounded harmonic function on D. The limit random variable ~ in 
F a c t 2  can be identified with i f (Z)  where f (x)=pv~(x ). Fac t3  shows that for 
Poissonian D ~=q)*(Xr~,) a.e. P~,, where f(x)=n*oq~*(x ). 
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Lemma 8.1. Suppose D is Poissonian. Then for each measurable A CA there is 
a measurable Bc=(OD) * such that 1B(XTD)= l a ( Z )  a.e. Px. This B is unique modulo 
a set of zt* D measure O. 

Proof. The function po(x, A) is bounded and harmonic on D so there is r 

such that pv(x, A)=z~q~*(x). Hence 1A(Z)----~p*(Xro ) a.e. P~,. Let B =  {y: q~*(y)= 1}. 
Then 1B(XTD)=la(Z ) a.e. Px. I f  also l n , (Xro )= l , t (Z )  a.e. Px, then ln,(Xro)= 
ln(Xr~ ) a.e. P~, so n*o(x, BAB')=_O. 

Lemma 8.2. Let P = Z  cqPx, where each xi is in a different component of D, ~i>0  
and Z , ~ i = l .  For each measurable A%A there is a measurable Bc=(OD) * sat- 
isfying the condition in Lemma 9.1 such that 

P(ZE AIXrD = y ) =  1 for all yE B. 

Proof. By Lemma 8.1 we can find B '  such that ln,(XrD)=la(Z) a .e .P .  Hence 

P(ZEAIXrD) = tn.(XrD) a . e . P .  
That  is 

P(ZEAIXrD = y) = 1 a.e. yEB" 

where a.e. is with respect to the measure ~'/ctin~(xi,  �9 ). Thus we can find BC=B" 
such that  * " * - 7~o(B \B)=~ctinD(Xi, B ~ B ) - O ,  so that P(ZEA[Xr =y)=l for 
all yEB. 

Proof of Theorem 7. Suppose D is Poissonian. We can find countable nested 
partitions / ~ , / ~ 2  . . . . .  of  A such that sup~ diam (A, , )~0 .  Using Lemma 8.2 we 
can thefind a set F having rro measure 0 at x and a partition B~,  B2 . . . . .  o f  (tgD)*\F 
such that P(ZE A~lYr=y)= 1 on B~. Pick ~E/~,~ arbitrarily and let q ~ , ( y ) = ~  
on Bg~. Now q~+m(y)EA~, for m = 0 ,  1,2 . . . .  so it must be that  for each 
yE(OD)*\F, ~p~(y)oq~(y). Define q~(y)=~ for yEF where ~ is any point on A. 
Then tp is measurable and P~(Z=~o(y)lXr=y)=l for all yE(OD)*\F. Hence 

P~(Z=cp(Xr~,))=I. Now P~(Z=~o(Xro) ) is harmonic on D, so Z ~ , P ~ , ( Z =  
qg(Xro))=l  implies P~(Z=tp(XrD))= I. Certainly then po(x, A)=n*o(x, q~-~(A)). 
On the other hand if there is a tp such that  this last equality holds then Z and 

q~ (Xr,) have thesame distribution so D is Poissonian. 

Proof of Theorem 8. Let D be any open set such that D r is not  polar. Then for 
any measurable B on (OD)*Px(XroEB) is a bounded harmonic function on D. 
The same arguments used to establish Theorem 9 can now be applied in reverse 
to show that  there is a measurable mapping of  ~k: A-~(OD)* such that ~k(Z)--Xr~ ' 
a.e. P~. But then, if  D is Poissonian, a.e. P~, ~(~o(Xro))=Xr~ ' and ~p(~(Z) )=Z.  
We can therefore find a set B ~(OD)* having harmonic measure 0 and a set A~ CA 
that  contains all o f  the non-minimal points o f  A that also has harmonic measure 0 

such that  on (OD)*\B q~ is 1-1 and onto A\A~. 
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9. Proof of Theorem 9 

The existence of a function ~ having the stated properties was shown in the 
proof of Theorem 8. Pick a point xi~D i, the i-th component of  D. Let cq>0, 
~ ' e i = l  and set po(.)=~ie~po(Xi,  .). Assume po(A0)>0. Let q~* be bounded 
and measurable on A. Using Facts 2, 3, and 7 we can conclude that ~o*(Z)=e 
a.e. Px on [ T o = ~  ] so rp*(~)=e a.e. (/to) on A0. Suppose A1 and A2 are meas- 
urable, disjoint, and have union A0. Then A~ and A2 cannot both have positive/z D 
measure. For otherwise q3*=ala +b la ,  with a r  would be a non-constant func- 
tion on A0. Since /to(A0)= T is positive, exactly one of these two sets has measure V. 
Let {Ai,} be nested countable partitions of  Ao such that supi diam (.,]~,)~0. For  
each n there is exactly one i, say i., such that 7=pD(A~. ) .  Then ~ .  A~.. has 
exactly one point r and pD({~})=~,. Thus po(Ao\{~})=() so pD(x, Ao\{'~})--O. 

10. Proof of Bishop's Theorem 

In this section we prove using probabilistic methods 

Theorem (Bishop). An open set D is Poissonian i f  and only i f  every pair of  dis- 
joint subdomains D1 and D2 with ODlc~ODz=OD have mutually singular harmonic 
measures. 

The condition give above will be refered to as Bishops condition henceforth. 
Before starting the proof of the above theorem we will require a lemma. 

Lemma 10.1. Let D be a non-Poissonian open set. Then there exists a bounded 
harmonic function f on D taking values in [0, 1] and a starting measure # supported 
on D, such that for Brownian motion {X(t): t->0} 
(i) Pu[lim,_.rDf(X(t))E[O, 1]] = 1 and both of  the possible limits have positive prob- 

ability of  occuring. 
(ii) For HD(P ) almost all y, Pu[limt~r~,f(X(t))=llX(TD)=y]>O. 

Proof. Let 6 x be the unit mass at the point x and let p be the probability meas- 
ure ZT=I 2-Jsq(J~ where {q(j)] is dense in D. By assumption there exists a bounded 
non-representable function g. By fact 2 we know that Pu a.s. limt-.r D g(X(t)) exists. 
Let us denote this random variable by Y. Let K(X r, dy) be the conditional prob- 
ability of  Y given Xr.  By assumption K(x ) is not a unit mass at some point for 
Ho(# ) almost all x. Therefore we can find a number a such that for x ~ F c  
O0(HD(~,, F ) > 0 )  

K(x, (-o% a]) > 0  and K(x , (a ,~) )  > 0 .  

We now take as our harmonic function f the function 

 [lim X(t)F or  r > a]  = 
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As in Lemma 3.2, a.s. the limiting value o f  f (X(t))  as t tends to TD is equal to lv, 
so condition (i) is satisfied. By our choice of  a and F for x~ F. 

Q(x,F)>O and Q(x,F)>O,  where Q ( , )  is a regular conditional prob-  
ability on the space of  paths given X r .  

Proof of  Theorem. We first show that i f  Bishop's condition fails for an open 
set D, then D cannot be Poissonian. 

Let D1 and Dz be two subdomains for which Bishop's condition fails. As before 
Hv,(xt, ) are the respective harmonic measures which by assumption are not mu- 
tually singular. Let  B be the set ODlc~OD 2. For  a Browniau motion {Xt: t-~0}, 
we define 

h(x) = P~[Xr~B,  lim X,~DI]. 
t ~ T  D 

Now (as with Lemma 3.2) the function h is harmonic in D. Also, by Fact  3, i f  h is 
representable by boundary function ~0 we must have 
(i) ~0 = 1 on a subset o f  B with full HD, measure. 

(ii) ~0=0 on a subset o f  B with full HD, measure. 
But these requirements are incompatible with the assumptions that the two harmonic 
measures are not  mutually singular. Hence h is not representable and D is non- 
Poissonian. 

We now show that i f  an open set D is non-Poissonian then Bishop's condition 
must fail. Let ~ be a measure on D of  countable dense support  and l e t f b e  the har- 
monic measure guaranteed by Lemma 10.1. Consider the open sets O1 = 
{x: f(x)>3/4} and O2={x:  f (x)<l/4}.  For  Di any components of  the two open 
sets we must clearly have DiceD2 is empty and 0D1 c~ODz=OD. Furthermore it is 
clear f rom Lemma 10.1 that we may find components with non-mutually singular 
harmonic measure and so Bishop's condition must fail. 
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