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1. Introduction

The concept of K-functional was introduced and studied by Peetre ([10], [11]).
If Ay and 4, are normed linear spaces, both contained in a topological vector space A,
then the K-functional is defined by

K(do, A1, f; ) = mf{|| foll g+ A Aol 4yt f=FotSrs o€ Aoy L€ AL} 6]

Let Ay=C,,=space of all 2n-periodic continuous functions with | fl|c=
MaX,cp_n -1 |f(*)] and A4,=Cj,=space of all 2n-periodic functions vanishing at 0
and with derivatives in C,, with | fllc-=maX,c[_, »; |/ (x)|. Peetre obtained ([12])
an explicit expression for the-K-functional in this case as follows.

K(C21n CZ/n af; t) = % Cl)*(f; Zt) (2)

where @* is the least concave majorant of the modulus of continuity of £, It is well-
known that this majorant is equivalent to (of the same order of magnitude as) the
modulus of continuity of the function. (See, for example, [8]). Such an equivalence
can also be obtained between the modulus of continuity of 7 order and the K-func-
tional between C,, and the space of all 2n-periodic r-times differentiable functions
vanishing at 0 along with the first (r —1) derivatives. ([13], [2]). The relation between
the K-functionals and the trigonometric approximation is now evident.

For weighted approximation on the whole real line by polynomials, we have
obtained in [7], the direct and converse theorems entirely in terms of the K-functionals.
Earlier, Freud had introduced a first order modulus of continuity in L?(R) and proved
that this is equivalent to a suitable K-functional ([5]). He considers weights of the form
wo(x)=exp (—Q(x)) where Q(x) is an even, convex, C2(0, =) function with
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Q'(x)—>c> as x-<o. Define, for wy f€L?(R),

(L7, o, £, 0) = e wo(x+h) f(x+h)—wo(X) S,

h

+6 ||min (6%, |Q' (D)) wo () S (D], (3)
'QI(LP’ W, f; 5) = /]‘relfl; COI(LP, Wg, f_A’ 5) (4)
Ky(L?, wy, £, 8) = inf {{lwg fill , + Sl wo 2l o} 5

where inf is over all £; and f; with f=f, +/2, wo i€ LP(R) f; is an integral of a locally
integrable functon f; such that wgqfy €LP(R). (We say that f; is differentiable).
Freud’s theorem then states that under the condition

0"(x)
CCa ©

there exist positive constants Cy and C, depending on Q and p only such that

lim sup

CIQI(LP> WQaf; 5) = Kl (Lp’ wQa f; 5) = C2QI(LP7 WQ’ f; 5) (7)

In the following paper, we reverse this order of thoughts. We shall evaluate the
order of magnitude of the second order K-functional which plays the role of Zygmund
modulus of smoothness in our paper ([7]). It is then natural to call the resulting ex-
pression as the second order modulus of continuity in weighted approximation.
During the proof, we shall also show that with a slight modification in the definitions
(3) and (4), the same method also gives the result (7) of Freud. All our results are valid
for arbitrary rearrangement invariant Banach function spaces on R; thus giving an
extension of (7) even for the first order modulus of continuity. A discussion of these
spaces as well as the version of Calderdn’s interpolation theorem which we shall be
using is given in ([1]).

Acknowledgement. The second author wishes to thank, on behalf of both of us,
Professor Jaak Peetre for his careful examination of the manuscript and suggestions
for improving the presentation in this paper.

2. Main results

Let X be a rearrangement invariant Banach function space on R. (an r.i. space).

We denote | g by || |I. Let w be a weight function and wfcX. Define, for r=1,
(r integer)

K.(X, w, 1, 6) = inf {{whill + 6w/} ®
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where inf is over all ; and f, such that f=f;+f,, wA€X, f; is r-times differentiable
i.e. f; Is an r-times iterated integral of a locally integrable function fg(') such that
wfcX. K, is the r order K-functional.

We consider weight functions of the form wy(x)=exp (—Q(x)) where Q satis-
fies:

(™) Q is even, convex, C*(0, «) function with Q’(x)~>< as x-co. Let

1
Q; = min {61, (1+0"%)%} ©)
Define, for wg feX

(X, wg, f, ) = sup lwo(x+h) f(x+h)—wo(x) f +1Q5waf]  (10)
Q (X, wp, f,0) = 2?{‘”1(%’ wg, f—a, d) 11

Tf(x) =fG+h), 4f@) =fx+h)—f(x), 4 =474, (12)
(X, wo, f, 0) = Sup 45w/l +9 sup, 1Q54u(wo ) +0%I05%wa fI - (13)

D%, wo, £,9) = inf @u(X, wg, f~a—bx, 9) (14)

We call ©, and @, the first and second order modulus of continuity respectively.

Theorem 1: Let Q satisfy (*). Suppose any one of the following conditions holds:

. Q7(x) .
111;1_’50101p 007 o <1 (6bis)
. 0'(2x)
hglwsgp e < oo (15

Then there exist positive constants Cy and C, depending only on X and Q such that
Sor every f with wgfEX,

Cs (X, wo, [, 0) = Ky (X, wo, £, 0) = Ci (X, wy,£,0), 0=d6=1 (16)

Theorem 2(a): Suppose Q satisfies (*). In addition, let
i) Q" be continuous at 0

I O (x+u)

RSl i (”)
v 1 0" (x) 1

lll) IIIP—»SEP—QT(_)T)E- - "2— (18)
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Then there exist positive constants C and Cg depending only on X and Q such that for
each f with wg feX,

Cs82(X, wo, £, 0) = Ky (X, g, f, 89) = Ce (X, W, £,6), 0<6=1 (19)

(b) Suppose Q satisfies (* ), (ii) and (iii) above. Then there exists a function Q satis-
Sfying (*), (i), (i), (iii) above such that

Crexp (—Q(x)) = exp (-0 () = Cyexp (—Q (%)) (20)

for some positive constants Cy and Cq and for all x. We can choose Q(x)=Q(x) if
|x|=a, for some a=0 depending upon Q.

Remarks: (1) The operator T, defined in (12) is an isometry on L'(R) and on
L7 (R). Thus by the version of Calderdn’s theorem given in {1}, it is also an isometry
on X; i.e. every r.i. space is also translation invariant. So, formulae (10) and (13)
are meaningful. It can be shown that under the condition (*), x"wy(x)€L*(R)
N L= R)cX. (See [4] for the first relation and [1] for the second.) Thus, formulae (11)
and (14) are meaningful.

(2) Itis easy to construct examples where w, f€X but w,T, /¢ X. Thus, we have
to consider 4,(wqf) and A,?(wa) in (10) and (13) instead of wy 4, f and wQAff,
which perhaps, would have been more natural.

(3) It is clear that the order of magnitude of the K-functionals is unaltered if we
replace w by an equivalent weight function. Hence, in view of Theorem 2(b), we can
evaluate the order of magnitude of K,(¥, wg, f; 6) even if Q” is not continuous at 0;
simply by considering Q,(X, wy, f; d) in such cases.

(4) All conditions on Q are satisfied if Q(x)=|x|*, a=2. If 1<a<2, then Q"
is not continuous at 0, but all other conditions are satisfied. The K-functional is then
evaluated as we remarked above.

3. Preliminary lemmas

In what follows, we assume that Q is even, convex, C2(0, «) and Q’(x)—~<> as
x—oo, By A<«<B we mean that 4=c¢B for some constant ¢>0 depending only on
X and Q.

Lemma 1: (a) Suppose for some r=1

Q') _g_p 1
T =" b <= 1)

liﬂrl sup
Then |Q'(x)fe=2™ <« 1.
(b) If (15) holds then

0 re-2® < e 2 <1 foran s 22)
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Proof: (a)

_;)E (Q/(x)'e‘Q(x)) = rQ/(xy+le—2® [ Q" (x) 1]

o ki
Hence Q’(x)Ye2™ is eventually decreasing and then the claim follows for x=0 by
boundedness of Q’ near zero and then for all x¢R by evenness of Q.

(b) Let lim supx_mQQ#(zx)?-< K. Choose M=1 such that x=M implies
0'(2x)<KQ’(x). We have, for x=2M and an integer r,

~om+e (%) = 2P ¥, QW

Q') e
0@-50 (5
=rle 72(3) =rlexp {(1—%() Q’(x)\‘l =r! if x=max(2M, 2K).
If 0=x=max (2M, 2K), the claim is clear by boundedness of Q" and and continuity

of Q. The result is now proved since Q is even. ||

Remark: In view of the fact that Q’(x)—~< as x—<o, an application of Lemma
1 to a number s slightly larger than r yields that

@ X)fe 2™ >0 as |x| »oe.

Lemma 2: Suppose (21) holds, and Q" is bounded on compact sets in [0, ).
- Then, we have

(@ 07+ Q0"<1+Q" (23)
(b) There exists K such that xz=K implies
1+0%(x)=<Q(x)— 0" (x) 29
Proof: (a)
0*+0' @ = @ [1+ 2 D] = (1+0)000 = L+ 1+ 0)
oGyl = TWERE
if x=K where K is so chosen that x=K= Q"(x) 0,.

oG

For x=K, the claim follows by the boundedness of Q” on compact sets.

(b) Note that Q'(x)>< as x—o. Let x=K imply Q'(x)>1 and
Q"(x)
ot

. For x=K, we have

1+Q( =200 = o5 @@ -0’ I
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Corollary 3: If (21) holds, then

£2®
T+oor™

where K is prescribed in Lemma 2(b).

f :ax(t I HQ7X)]e~™dx  is bounded

Proof. Let max (t, K)=¢ By Lemma 2(b),
ST+ @ @)e 2 dx < [0 (90" (W]e~2 dx = Q/(7)e=20

(By Lemma 1(a))
(1+Q (K)?2e~ 20 if t=K
=1+ @)e-e®  if 1=Kk
This completes the proof. [

Lemma 4: (a) Let f be a differentiable function (i.e. let f be the indefinite inte-
gral of a locally integrable function), f(0)=0 and wgyf’¢L*. Then

1A +2 2 wo fl < waf I (25

(b) Let Q satisfy (21). Let f be a differentiable function (in the above sense),
f0)=0 and (1+Q% 2wy f €L

1A+ wo flly < I(1+Q*) 2 wo Iy (26)

Thus, if Q satisfies (21) and f is twice differentiable (i.e. f'is a twice iterated inte-
gral of a locally integrable function), f(0)=f"(0)=0; and wqyf”€L*, then

IA+@Bwof 1l < Iwaf"lIx @7
Proof. (a) Let Yy=wyf’. We have:
oMy = [l O+ W (—D)}dt (28)

Further, since f(0)=0,
f:eQ('h//(t)dt if x=0

X)) =
7 f"‘ee<t>¢(—t)dt if x=0.

0
Let |y (0)|+ ¥ (—1)l=g(t). We have,
1A+ Q2 wo flla = [ L+Q2 2w (DS @] +1f (=)} dx

= [T+ Q@) wo() f7 2@ g(r)dtdx. 9
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Now, clearly, since @’ is bounded near 0,

/. 0" (1+Q @)V 2wo(x) | ¥ eg(fdtdx < |, f g(ndt (30)

where K is so large that Q'(x)=1[ if x=K
S 1+ 22wy (x) [ e2Og(t)drdx

= f €2Mg (1) (A+Q ) Pwy(x)dxdt

max (¢, K)
< [Tel0e~0®g(i)d: where F=max(t,K)< [ g(ar. (31)
The result follows from (28), (29), (30), (31).

(b) Let Y (@ = (1+072(0)2we () (D).
Then

1A+ 2 wo s = [ (W @1+ (—Dl}dr (32)

IA+Q@Pwoflh = [ 11+ DN wo{| F @I+ / (—0)]} dx

- . 2()
= fO (1 +Q’(x)2) WQ(x) fO _(Tﬁ-_;-'-(_tm g(t) dt (33)
where g = WO+ (=9l
Now, as before,
Q(t
X+ @rwe [ - (er_'é'(z))T)ﬂ—z g(Hdtdx < f;‘ g(®)dt (34)

where we choose K so large that Q’(x)>1 and (24) holds for x=K.

- . . e2®
[ @+ Q@) [} ey 8O ded

il (UM 1+ Q)W dxdi < [~ gydr (3
f (1+Q ODLE fmax(t K)( + Q' (x)*)wy(x)dx t<<f0 g(Hdr (35)
by Corollary 3.
The proof is now complete in view (32), (33), (34), (35). i

Out next task is to obtain the analogue of the above lemma for L=,
The following lemma will play a role similar to that played by Corollary 3in
the proof of Lemma 4.
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Lemma S: (a) Let (21) hold. Then
£2()

N+Q T wo () f; ———— dt
1+ ®
is bounded.
(b) Let (15) hold. Then the conclusion above is valid for all r (r integer, =1).
Proof. (a) Cleartly, it suffices to show the boundedness if x=K for a suitably

0"(x) ,
o )2<01 T and O0’(x)=1. Now,

Q(t
(1 QY Pwo() [ —
1+Q @) *

chosen large K. We choose K so that

by Lemma 1(a), it suffices to show that

is bounded for x=K;

20
hence to show that Q'(x)'wo(x) [ O ———dt is bounded. But

= [* €2 QD)2 0 g0 fx re2® Q”(1)
~fegoT =T = oo e oo
e2(=) o) o9 2
=gt gt = gtk

Thus, the claim is proved since ri<1.

(b) Let limsup;... %%3)—<M. Choose K so large that

x=2K=0Q(X) <0 [%]M and Q' [;] > 1.
Again it suffices to show that

£2®

[T e [* — s
(+Q @) T

is bounded for x=K (in view of Lemma 1(b)). We have for x=K,

gy e fr 0 gy QO gy
[1+Q’(t)2]T
oWt o o) SOy g
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By Lemma 1(b),
2®

Q' (xy emo® f{————d @7
1+ @7 *
is bounded.
Further
L N a—
[L+Q' (14 *
t P\ p— O
< Qf(x)re—Q(x)flx/z in)(r)_l dt = 0 (g)l(i)rQ )flx/z 40 €20 dy
= Q’(x)r e o [eQ (E) — eQ(l)] =< Q'(x)r e oo (3) <« 1 (38)

by Lemma 1(b).
The claim is proved by (36), (37), (38), 1§

Lemma 6: (a) Let either (6) or (15) (hypothesis of Theorem 1) hold. Let f be
differentiable, f(0)=0 and wyf’€L=(R). Then
(L +07 ()3 2w (%) f (] << [[wg (%) S (O~ (39

(b) Let (18) in the hypothesis of Theorem 2 or (15) hold. Let f be differentiable’
f(©)=0 and wyf'cL=(R). Then

I +Q (X)) wo () f (o < [(1+Q2Wo ] (40)
In particular, if f is twice differentiable, f(0)=f"(0)=0 and wyf”€L” (R) then
1A+ wo flle < |wof e (41)

Proof. (a) Let Y (X)=wo(x)f (x). If x>0
(1+Q N 2o (I (0] = (14+Q () 2w (%) [, . 0N @) dt
= Wl (1+Q ) V2wo(x) [T €0 dr @)

Clearly (42) also holds if x=0. Thus (39) follows from Lemma 5. (5a if (6)
holds, 5b if (15) holds)
(b) Let ¥ (x) = ((1+0HHwy f'(x). As before,

(1)
(1 Q@) we@If ] = Wl (b @Yol [} i gy

The conclusion then follows from Lemma 5(a) if (18) holds and 5(b) if (15)
holds. }
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Applying Lemmas 4(a) and 6(a) to the operator
T: g~ (14+Q/(x)2) 2wy (x) [ 2Wg(r)ds

we see by the version of Calderdn’s theorem given in [1] that under the hypothesis of
Lemma 6(a), (39) holds in an arbitrary r.i. space X for differentiable functions f with
f(©0)=0 and wyf’cX. Similarly, if (18) is satisfied, and f is a twice differentiable
function with f(0)=/"(0)=0 and wyf”€X we have inequality (41) even in the
norm of X,

For small enough 6, we can solve the equation Q’(x)=06"1. We call the grea-
test such solution x;.

Lemma 7: (a) Let (21) hold. Then 8Q’(x;+rd) and consequently

S[1+(Q (xs+10))?]2
is bounded as 0.

(b) If (15) holds, then the above conclusion holds for all r.

Proof. (a)
1 1 1 X .+ré Q”(t)
0—=; =S~ = [T =22 dt < 16,6
e e e Rl M o el
if 6 is small enough.

, o1
Hence 5Q (x5+r5):m;<+ .
(b) If é is so small that x;+rd=2x; and gﬂéM (say), we have

0'(x5)

"(x5+710) - Q'(2x5) -
0y S oy M

Let us now summarize the results obtained so far.

50/ (xs +78) = 2

Proposition 8:
(a) Lemma 7.
(b) Lemma 2(a): Under the assumptions (i) and (iii) of Theorem 1,

0"(x)+0%(x) < 1+0%(x), x€R.

(c) Let the hypothesis of Theorem 1 hold. Let f be differentiable, f(0)=0 and
wof €X.
Then
IA+Q7) 2w flls < Iwaf"llx (43)
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(d) Let (18) (hypothesis (iii) of Theorem 2) hold. Let f be twice differentiable,
FO=f"(0)=0 and wyf"cX. Then

Q"+ 2D wof e < 1A +@)wofllx < lIwo S "lx (44)

Lemma 9: Let for each tcla, by, g(-,t)€X. Let g(x,t) be jointly measurable.
Then |g(-, )|z is measurable and

/2 g natl), = [71g(-, Dllzdr (45)

Proof. The measurability assertion is found in [9]. Let X’ be the associate space
of X. Since X has the Fatou property,

If? ez ai|, = S S e[ lg(x 0ldrdx  ([14D

b = b . = b .
=S I NLICY | FTe Dldxdi= sup LG Dlzdr=[Clg(-. e B

4. Lower estimates

Observe that, by triangle inequality,
(X, wg, fi+/fs, 0) = 0 X, wg, f1, 0)+w, (X, wo, f,0) r=1,2. (46)
Further, since 6Q;=1, we have for wyfc¥,
o, (X, wg, f, 8) < [[wo fllx- CY))
From here onwards, ¥ and Q are fixed. Their mention will be suppressed; for
example, @,(X,wq, f,0)=0,(f,0), |-lz=I-I.
Lower estimate in Theorem 1

Let f=fi+/f; be an arbitrary decomposition with wy f1€X, £, differentiable,
wofs €X. Let
S ) =£@-£0); ff=A+A"

Then
Q. (f, 8) = 0,(f7, ) = 0,(f1, )+, (fys §) < [wofill + o (¥, 9)
(By (47)).
We have
Q5w ol = (L +QH 2wy 5l < llwo fo¥ll = Sllwo fil (49)

by Proposition 8(c).
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Let |h|=4. Using Lemma 9, translation invariance of | - || and then Proposition v
8(c), we have
|4k wo N = || f7 W it (et v du|| = || f7 1= @ wo £ +wo fi1 i+ u)
= [h{I@'wo fi'll +lwa £} < dllwo f2l (50)

(/. 0) < Ky(f, ) (51

follows from (48), (49), (50) if we observe that f=f;+f, was an arbitrary decom-
position.

The estimate

Lower estimate in Theorem 2a

Let f=fi+f:, wofi€X, fo be twice differentiable, wyfy €X. Let fy*(x)=
So(x)—f2(0)—f5 (0)x and f*=f+f;*. We have

Q:(f,0) = w3(f*, 0) = wa(f1, D+ (S, 8) < Iwo fil + 0o (S5 ). (52)

Using Lemma 9, translation invariance of || - ||, convexity of Q and Proposition
8(c) and 8(d) we get, for |h[=$,

143wt = || f2 2 wo fi?) (et ws + ug) du, du

=l 2@ =@ o it~ 20 o i+ o it 1+t + ) di ]

< [RP{I@"+ QD wo 'l +1Q wo /o7l +Iwe i1} < 8%l wo fi'll. (53)
By Proposition §(d)
1057 wo fi'l] = * (1 +0P)wo fs'l] < S*llwo fyl. (34

Further, using assumption (i) (inequality (17)) translation invariance and Pro-
position 8(d), 8(c) we get for [h|=d=1,

3103 4n(wo S = 8| Q5(%) [T W ity (x + 1) dl

= 8|05 [ (— @ wo it +wo fY (e+u) du|
Qi) [ (Q@wo i+ wg £ ) e+ )
<8 || fINA+ QD wo S5+ (L +Q 2w f ) (x + ) dul

= S+ 2 wo il + 11+ QB wo 7} < 8% [wo £ (55)

Observe that f=f;+/; was an arbitrary decomposition; so that (52) (53), (54)
and (55) imply

§5|

2,(f, 0) < Ku(/; 6% (56)
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5. Upper estimate

Let x; be the greatest positive solution of the equation 1+ Q’(x3)?*=6"% Note
x;=x, where Q’'(x;)=6"1 Put

B we(X) f(x) if [x|=x;
yix) = { 0 otherwise 7
Then
B if x| = x5
Wo¥) S () —Y(x) = {wQ(x)f(x) if x| = x;.
But if |x|>x;, (1+Q'(x)*))/*=6"1. Thus, Q;(x)=0"1 Hence
B { if |x} = x;
WQ(x)f(x)_'//(x) = 5’Q$(X)’WQ(X)f(X) if 'x( - x';
r = 1 any integer. (58)
Hence
Iwg f=y¥ll = FIQ5wofll, T=1. (59)
Put
02(%) =87 wg () [y (x+1)dr (60)

0:(6) = 57w () [° [ [w [x+ ’1;’2)—¢/(x+t1+t2)] dtydt,.  (61)

. Clearly, using Lemma 9 and (59), for r=1,2

Iwof—wool = llwo /=¥l +lwoo,—¥ll = 6"1Q5" wo f1 +sup [
= 0Q5 wofl +!§'}1§% 4R (wa N +2 | wo =¥l

< sup | 4,0vo /I +1Q5 Wo. I = 0,(£8) r=1,2 ()

Upper estimate in Theorem 1

o1 (0] = | @wg ) [ W+ di-+wz () A ()]

=

Q'()wz'(®) [2 4,4 () di|+1Q () wg (Y (D) +wg @ Ap (). (63)

Therefore
Ollwo o) =

Q' [7 4 di|+ 510 ¥l +14,¥1. (64)
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We shall estimate each term on the right hand side of (64) separately. Note
that 4,4 =0 if |x{=x;+5. Otherwise
10| = (1+ Q') = (14+Q'(x5+0)9)2 = (140 (x5+8)H)V?
<« §~! (By lemma 6).
Then by Lemma 8, (59),

o’ f; 40t d] < sup 14,91 < sup (4300 +vas— V1

< [i[ugl?s N As(wa fll+81Q5wo f1 = w.(f, 6). (65)

Also if |x|>x; then ¥ =0. Otherwise
0] = (14+Q ) = (1+Q () = 67
So, Q;(x)=(1+Q (x))2=|Q'(x)I.

Hence
OO VIl = 6[Q5¥ll = 0l1Qswo fIl Hlwof—¥ll < 61Qswofll = . (£,0)  (66)

¥l = sup 1dn(wo I +2llwo f— il < Sup 14k +61Qswo f1I = (£, 9).

67
Inequalities (64), (65), (66), (67) imply

5““’(3‘/’{" < o, (f, 9)-
Hence from (62)

K1(f; 9) = [wo(f— @)l +6[wo pill < w1 (f; ). (68)

Observe now that K,(f, §)=K,(f—a,d) for all acR. This completes the proof
of Theorem 1. JJ

Upper estimates in Theorem 2a
We have,
Wo @y = Wo (WQ- ! Wo ¥y = (WQ P2)"+ 2Q,(WQ 9 + (Q,2 +0") Wo @2 (69)

where @, is defined in (61).
We shall estimate [wo@3|| by estimating the norm of each of the terms on the
right hand side separately. Using Proposition 8(b):

SQ” + QP wopyl < 8 I(1+ Q) wo sl
= +@9 [ [ 441y ¥ ) drydn|+ 871+ @D . (70)
2




K-functionals and moduli of continuity in weighted polynomial approximation 159

If |x|=x;+25, integrand in the first term is zero. Otherwise, 1+ Q"%(x)=
Q%(x;+26)<<6~2 (by Lemma 7(a)). So,

€% [3.J; Ay ¥ dtad

« -2 ”f: f: A'L;_“E Y (x)dt, dtz)’ <« ﬁluépa 142y (Lemma 9)
= sup 142 (wo )| +4llwof—
< |§|u§g 142w I+ 821052 wo Il ((59) with r =2) = w,(f; d). (71)

If |x|=xj5, y=0. Otherwise Qj(x)=(1+0Q"*(x))"2. So,
(1402l = *1Q2yl = 8% QP wo fll Hlwo f~ ¥

< 0%[Q5%wo [l = wu(f, 0). (72)
Hence from (70) and (71),
*IQ"+ Q) wo @all << 05(f, 9) (73)

5 (wo = [° [44‘1 ¥ (x+—;—)—-A5l//(x+t)] dt
=/, [AW A+:‘//+2Aa+,rlf 24, l//](x)dt

Observe, again, that 6%(wy@,)(x) is zero if |x[>x;+2J and otherwise, by
Lemma 7, [1+Q"2(x)]¥2<d~t. Thus, [14+Q2(x)]'2<Qj5(x) if |[x|=x;+25. Then

O*(wopa) Il = Slvger) (1+ @) <= [A+Q [ [Ass ¥ =4 ] 4|
+ja+e2 f7 [4% ¥ = 434.¥] Z
By Lemma 9, and our observation above, we now get
6" (wgpa) 'l < sup 8103 4,¥1 + sup 1421
<0 sup Q3 di(wo )l + sup | 4Hwo Nl +Iwef~V¥l < @y(£,0).  (74)
(Using (59) to estimate the last term)

8 (wo )"l = ||8A2 Y — A3y < Sup (R

< Sup 145w N +llwo f— Yl << wo(f, 8). (75)
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(Using (59) with r=2). From (73), (74), (75) and (69) it follows that
O*lwo ol < wy(f; 6). (76)
Finally, (76) and (62) with r=2 imply that
K,(f, 6) < wy(f, d).

To complete the proof, observe that for all a, beR, K;(f, 6)=K(f—a—bx, J),
so that the above inequality proves Theorem 2a.

There are many ways in which the function Q in Theorem 2b can be construc-
ted. We give one construction. Observe that since Q'(x)—< as x-—<o, there
exists a>0 such that Q”(a)=0 (Q is convex). We distinguish three cases; in each
case, Q(x)=0Q(x) if x=a and Q(x)=Q(|x]) if x=0. We define Q on [0, d] as
follows:

Case I: aQ"(a)=0'(a)
000 = 0@ +2 (@~ + 22 (x—ap 1 15(0 @~ aQ” @) (x— )",

Case 1I: Q' (a)<aQ”(a)<20’(a)

k= 0(@)-aQ'@)+% '(a). Put

2
c—’z‘—+435+k if 0sx=d
Q(x)= Ql/( )
Ax+=—=x%+k if d=x=a

Case HI: 20’ (a)=aQ"(a)

2 O'(a) _ aQ"(@)~20'(a)
CO 3@ O T o
Q”(a)2[ aQ"(@)—20' @]’
40'(a) Q"(a)
2 Q) .. aQ’(a)—20'(a)

O 3w T T 0w

The remaining assertions are now easy to verify. (For the verification of (20),
observe that [Q(x)—0(x)|=M for some M=>0 and all xé¢R because of continuity

of Q and Q.) i

0(x) =

=x=aq.
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Remark: A careful examination of the proof shows that both Theorem 1 and

Theorem 2 are valid if we define the K-functionals by taking inf over all f;, f; such
that f=f,+/;, f2 has compact support and is once (resp. twice) differentiable,

wofy (resp. wofy JEX, wo fi€X.

10.
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