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1. Introduction 

Let A be a *-semi-simple Banach algebra with involution *. One of the main 
problems concerning the structure of A is the determination of the space or of the 
twosided closed ideals of A. Let Prim, (A) be the space of the kernels of the topologi- 
cally irreducible unitary representations of A equipped with the Jacobson topology. 
For I in J ,  let h(I)={JEPrim, (A)IJ~I}; (h(I) is a closed subset of Prim, (.4)) 

' and define for the closed subset C of Prim, (A) the subset J c  of J by J c  = 
{IEJIh(I)=C}. The closed subset C of Prim, (A) is called a set of spectral synthesis 
if J c  consists only of one point, namely the ideal ker C----~j e cJ. The spectral syn- 
thesis problem has been most intensively studied for the algebra A =LI(G), where G 
is an abelian, locally compact group G. The first result was the famous theorem of N. 
Wiener who showed that the empty set is a set of synthesis in Prim, LI(R). The 
latest deep results are those of I. Domar. (see for instance [4]). 

Almost nothing is known for the algebra L ~ (G) is G is not abelian. If G is a con- 
nected, simply connected nilpotent Lie group, the dual space G is well known and 
thus also the space Prim, (LI(G)). 

Let ~ be the Lie algebra of G and Ad* the coadjoint action of G on ~*. By Kiril- 
low's theorem and Brown's proof of the Kirillow conjecture ([7], [2]) ~ is homeo- 
morphic with the orbit space r and [1] tells us that Prim, (LX(G))_~r 
Thus we may indentify the closed subsets C of Prim, (L~(G)) with the closed G-in- 
variant subsets of ~*. LI(G) has a remarkable property: For every closed subset C 
of ~ there exists a twosided idealj(C) in LI(G) with the properties: 

1) h(j(A))=A; 2) j(A) is contained in every closed, twosided ideal I of LX(G) 
with h(I)cA ([11]). 

If G is a group of step 1 and of step 2 every point in ~ is a set of spectral synt- 
hesis [9]. In this paper we show that in general a point is not a set of synthesis 
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if G is of step 3. Indeed, we are able to determine explicitly the spaces J(r},  for 
every TEd. 

In general J{rl contains an infinity of elements. 
In [12] it has been shown that for every T in d, the algebra ker T/j{(r)} is nil- 

potent. The results of this paper make it possible to compute the degree of nilpotency 
of ker T/l{(r)} if G is of step 3. 

2. Let G be a connected and simply connected nilpotent Lie group and let 
be the Lie algebra of G. The exponential mapping is a homeomorphism from 
onto G. 

We can thus define the Schwartz space S(G) to be the space of all functions f on 
G such that foexp  is contained in the ordinary Schwartz space S(p) of the rapidly 
decreasing smooth functions on the real vectorspace ~. 

S(G) is a dense *-subalgebra of LI(G). If I is any element of J ,  I n  S(G) is 
a twosided dosed ideal in S(G). 

(2.1) Proposition. Let G be a connected, simply connected nilpotent Lie group. 
For every ~ in ~, ker r~nS(G) is dense in kerrc. 

Proof. We show first, that for every tempered distribution o) on S(G) which 
annihilates kern n S(G) and for every f l ,  f~ in S(G), there exists a constant C>O 
(depending on f l  and fz) such that 

l(~o,A*f*A)[ <= C[n(f)l;  VfES(G). 

(l~(f)l denotes the operatornorm of n( f ) ) .  
(2.2) There exists kEN and a realization of ~ on L~(R k) such that: 
a) For every f i n  S(G) the operator n ( f )  on L2(R k) is described by a Schwartz- 

kernel K , ( f ) ;  that means: there exists a function K~(f) in S(Rk•  k) so that: 

(z(f )~)(x)  = fakK.(f)(x, y)~(y)dy; V~EL2(R k) 

VxER k. 

b) The mapping K~: S(G)--,-S(Rk• k) is surjective. 
c) I fdz denotes the representation of the envelopping algebra U(p)c correspond- 

ing to rc on L2(Rk), then 
dn(U(p)c ) is the algebra of differential operators with polynomial coefficients on 
R k. ([151 and [7]) 

Thus K~ defines an algebraical and topological isomorphism also denoted by K~, 
of the Fr6chet spaces S(G)/s(G)nko~ and S(Rk• This allows us to define a tem- 
pered distribution c5 on S(RkXR k) by: 

(Co, K~(f)) := (co, f ) ;  fES(G). 
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There exists a continuous and bounded function w in L~(Rk• k) and a diffe- 
rential operator D with polynomial coefficients such that 

(~ '  g) = fR',zR', w(x, y)Dg(x, y)dxdy; gES(RkXR k) 

(see [16]). 
Now if f l ,  f ,  f ~ S ( G ) ,  x, yERk: 

K,~(fl * f * f2)(x, y) = f K,~fl (x, u)K,~f(u, v)K,~(v, y)dudv. 

Thus: DK,~ (./'l*f*f~)(x, y) = ~ J f R ~ •  F~ (X, u)K=f(u, v) F~ (v, y) du dv 

for some F~, F~Cs(Rk• 
Taking 

f l ,  fi2 (i,j = 1, ..., N) in S(G) with K,~(f ~) = F{; K=(fj  2) = F~(i, j = 1 .... , N) 

we get: 

I( ~o, A *f . f~)  1 = f~k• W (X, y) (27L1 K. (.~1 *f*f?))(X, y) clx ely] 
j = l  

N 
Z,.  j =1 Iw12 Ig= ( f ?  *f*fj2)lz �9 

As for any F in S(Rk• rF2{ is the Hilbert - -  Schmidt norm of  the operator 
defined by F on L2(R k) we have: 

I(o~,A*f*A) [ <= Z~ j= I  IwIs I~ (f/1,f.fj2)ln.s. ~ { ~ j  l~(f31,.s. ~(fj)}l~ (f)I .  
C 

Let now q~CL=(G) with Qp, ke rnc~S(G) )=0 .  
Then: l(9,A,f,A){<=Cl~(f)l; VieS(G)  (C depending on j~ and f~). 
Hence (~o, f l . k e r n , f ) = 0  for all f~,ACS(G) and so (9,  k e r n ) = 0 .  
This implies (by Hahn - -  Banach): 

ker tenS(G) is dense in ker re. 
q.e.d. 

3. The determination of JtT") for a point T in G, if G is of  step 3. 
From now on G will denote a connected and simply connected nilpotent Lie group of  
step 3, that means: if ~ is the Lie algebra of  G, 

[e,  [e, e l i  ~ o; [e,  [e, [e, e]]] = 0. 

Let T be a point in d and denote by 0 the corresponding orbit in p*. 
Let ~ be the centre of  p and xo a subspace of  ~ contained in the kernel of  an 

element l of  O. 
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The subset ,~o~={oCG[Q (expxo)=Idar~} is closed in G and a set of  spectral 
synthesis in G ([11]). Hence, as T~:oa: 

(3.1) Every element I of  J{r} contains ker (zol). 
Let ~=y/~o, G=G/exp~o. As T(exp~:o)=Id, T defines an element 2P of  G. 

If  p denotes the canonical projection from G onto G 

T =  iPop. 

As LI(CJ)=LI(G)/ker(~{~ it follows from 3.1 that. 
(3.2) The map I - ~ I m o d  (ker ~:0 ~) is an inclusion preserving bijection from 

~r onto J{~}. 
If  for IEO; l([y, [y, y]])=O and if we put xo=[y,  [y, y]], then ~ is an algebra 

of  step 2 and so [:F] is a set of  synthesis, thus: 

{ker ~} ~- d~, and hence 

J r  = {ker T}. 

We suppose from now on that (l, [y, [y, y ] ] )~0 .  It follows also from (3.2) that 
we can suppose that dim x =  1. 

Thus we have the following situation: 

(3.3) [y,  [~, y]] = ~: and dim ~: --= 1. 

We give now a detailed description of  a nilpotent Lie algebra of  step 3 satisfying 
(3.3). 

Let z C ~ ( 0 ) .  Let Yl, ..., Yk be elements of  [~, y] such that (Yl, Y~ . . . . .  Yk, Z} 
is a basis of [y, y]. 

As [y, [y, y]] = R z ,  there exist ~p~ . . . .  ,q~kEy* such that 

[u, y/] = ~o~(u)z; VuEy, i = 1 . . . .  , k. 

(3.4) The ~0i's are linearly independent: 

if ~ = ~ c ~ o ~ =  0 for some c~ . . . .  ,ckER then: 

[u, .~ic ,  y,] = (.~f=~ci~o,(u))z = 0 for every u~ e.  

Thus z~=l  clyiC;~ and hence q=ca  . . . . .  Ck=0. 
This implies: 
(3.5) There exist Xl . . . . .  x k in y, such that 

[xi ,y~]=6i~z;  i , j = l  . . . .  ,k .  

(3.6) Let d =  k ~i=~ ker ~oi; then ~ =  {u~y][u, [~, ell=0} 

For lgO, let y(l)  = {v~y[(/, [v, y]) = 0}. 
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(3.7) Let p o = p ( l ) + [ p , p ] .  (p0 depends only on O). 
We show now that: 

(3.8) ~7o is the centre of  /;. 
It is clear that [~, ~] is in the centre of  ~. 
As [~7(l), [~7,~]]cker l n z=O,  g(l) is contained in /L 
As [~, [/~,/~]]c[~, [~,/;]] c [~[~, ~ ] ]=0 .  

(3.9) [/2, ~] c Rz  

so [~(1), /~]cker lc~Rz=0,  thus 
(1) + [~, ~] ccen t re  of  ~. 

There exists an element /1 on O such that 

1 l ( y ~ ) = o ;  i = l  . . . .  ,k .  

Let v@entre of /~;  put [xi, v ] = ~ = ~  cuyj+ciz. 

Then (11, Ix,, v - z k = l  cjyj]) = <l~, [x,, v]>--<l~, ciz> = c,(l~, z>--c~<l~, z> = 0 

as [ v - - ~ = l  cjyj, ir = 0 we see that 

v-Z~=lcjyjE~7(ll) and so v E e ( l l ) + [ e , e ]  = p0. 

This proves (3.8). 
As [ /~, / ; ]cRz (see 3.9): 

(3.10) There exist ui, vj in ~r ( i , j = l ,  . . . ,s) 
such that f f = ~ = l  Ru~+~]=~Rvj+~7o and such that 

[u~,vj]=~uz; i , j =  l . . . . .  s. 

(3.11) Let now O0 be the restriction of O to y0, Oo=G(l/a) for any I in O. Oo 
is a closed G-invariant subset of  y*. 

Let G o = exp go. G acts as a group of automorphisms on Go by restriction of 
the inner automorphisms to Go, so G acts on D(Go) too by the formula: 

i f ( x )  = f ( g - l x g ) ;  fELl(Go), xEOo, gEG. 

(3.12) For a closed subset C of  ~0 let J c  ~ be the set of all twosided closed 
ideals I of  D(Go) with h(I)=C, which are G-invariant. 

(3.13) Proposition: Let G be a connected and simply connected Lie group of  step 
3 satisfying (3.3). Let TE ~. Let 0 be the G-orbit o f t  in ~*. IfT(centre (G)) #ldje(r), 

o (0 ~ as in(3.10)). there exists an inclusion preserving bijection between "r and J(oo) 

Proof. Let lEO satisfy: l(y~)=0, j = l  . . . . .  k, l(xi)=0, i---1 . . . . .  k. 
We verify immediately that, using (3.5): 
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(3.14) The map: [ y , p ] ~ l + 4 •  * 

v -+ (l, [ . ,  v]) is surjective. 

(3.15) Denote by/~• the set of  the unitary characters of  G which are trivial on 
H = e x p  A. For every xE/~ • zhere exists rE[g, ~], such that x(exp x)=e-i<l'tx'vJ>V 
xE~ (this follows from 3.14). As l+/~ • is a closed G-invariant subset of  p*, it 
defines a dosed subset, also denoted l + ~  • of G. 

(3.16) l+/~ • is a set of spectral synthesis by ([5], 5.3). 
(3.17) Let K = k e r  ( l+ /~•  LI(G). If zEcentre (g) with (l, z ) = l ,  then one 

computes easily that: 
(3.18) K =  I fELl(G)] fR f (g (exp  rz))e-g'dr=O for almost all gEG t and that 
(3.19) for fELX(G), Z~/~ • one has using (3.18) (3.15) (3.5): 

x'f-f~XpVEK if Z = X(v) as in (3.15). 

Let now O1 be the restriction of O to/~*. 
From (3.16) we see that K is contained in every element 1 o f J { r  } as TEI+A • 
Thus (3.19) implies: ~ . 1 c I  for every zE/~ • I in J{r ) .  [5] now implies that 

there exists an inclusive preserving bijection between J{r} and J ~ .  
Now again the map: y0-~l[e0+~o~C/U, u-*(lleo, [ ' ,  u]) is surjective (by 3.10). 
We can use similiar erguments as above, to get: there exists an inclusion preserv- 

ing bijection between 
Jff~ and Jgo. q.e.d. 

4. The determination of or 

Let p be as in (3.3) and po as in (3.7). 
(4.1) Let Di=adxile ~ ; i=1  . . . .  ,k, (xi as in 3.5). 
The D~s are linearly independent and commuting endomorphisms of  ~o. 
Let D----~k=l RDI and let D = e x p D c G / ( ~ 0 ) .  
(4.2) We can realize the 2 k +  1-dimensional Heisenberg group Hk by defining: 

Hk=DX[~,p] and defining the multiplication of H k by: (D,u).(D',u')= 
(D.D', u+D(u')); D,D'ED, u, u'E[~,p]. The group Hk acts as a group of  dif- 
feomorphisms on ~0 by the formula: 

(4.3) (D, u)(x) = D(x)+u 

(4.4) Now as ~0 is abelian, we may identify the additive group ~o with Go and 
SO Ll(Go)=Zl(~7o). 

We define the (isometric) action of Hk on Ll(~o) by: 

(4.5) ((D, u).f)(x) ----f((D, u)-l(x));  (D, u)EHk; fELX(e0), xEe0. 
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(4.5) allows us to define a representation of L~(Hk) on Ll(y0): 

(4.6) aof = fu~ a(h)h . f  dh; aEL~(Hk), fELX(yo). 

(4.7) Let Ko=ker (lo+z 1) (lo=l],o, IE0) 
(4.3) tells us that K0 is invariant under the action of H a (and of course of G also) 
(4.8) Let Ll(yo)z be the algebra of all measurable functions f on yo satisfying 

1) f ( x+rz )  -= ei~f(x), VrER for almost all 

2) Ifll  = f go/R~ If(x)l dx < oo 

with the multiplication defined by: 

XEgo 

f *  g (x) = f~o/Rz f (y)g( - -  y + X) dy, f ,  gEL ~ (go)z; XEgo. 

The map Pz: Ll(~o)~Ll(~o)x 
Pzf(x)  = fRf(x+rz)e-lrdr is a continuous surjective homomorphism. Thus: 
(4.9) Ll(~O)/Ko is isometrically isomorphic with L~(yo)x. 
The dual space of L ~ (Yo)z is of  course homeomorphic with the subspace 10 + z  • 

of  ~ .  Let 00 denote the image of O0 in La(~0)x A . 
(4.10) The map: I ~ I m o d K o  is an inclusion preserving bijection between 

Jo 0 and Jgo 
Let us return for one moment to Hk. 
It is well known that there exists exactly one representation n of Hk A with 

n(exp rz)=e -ir Id(rER). 

Let J = k e r  ~. Then: 
(4.11) ker ~={~ELX(Hk)]fa((D,u+rz))e,i"dr=O, for almost all (D, u)}. 
Using (4.11) and (4.5) one computes easily that: 
(4.12) ker z~oD(~o)cK o. 
Thus we can define a representation of D(Hk)z=D(Hk)/s on Ll(yo)z by the 

formula (4.6). 
The algebra LX(Hk)z has many projectors: 
(4.13) Let ~ be the character of  Rz+Y(Y-=~=IRy i ) :  ~(y+rz)=e  -it, 

yE IT, rER. 

If  n=ind/~ , ]  ~0, zc acts on L~(R k) and ~ fulfils the conditions of  (1.1). 

For  finS(Hk): K~(f)(D, D') ----- f _ f (D  '-1 .D, u)e *(D',") du; D, D'ED; 
Y + R z  

Zdi ui - Uo, D here (D, u') = ' ' if = exp (ZdiDi) and u" = ,~=Ik uly~+uOz., , 
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(4.14) For ~ES(D), 1~]~=1, let ar be the (unique) element of S(Hk)z= 
S(Hk)/kor~ns~n~) with K~(ar174 that means: z(ar is the projector on C~. 
Thus ere is a projector in D(Hk)z. 

(4.15) Let ~ be the set of all ar in S(Hk) x, such that ~(ar is a one dimensional 
projector (on the subspace C~, l~l~--1) As {~} is a set of synthesis in ilk([91), for 
every aE~, the ideal D(Hk)z ,a .LI (Hk) ,  is dense in Ll(Hk)z. 

(4.16) Let L!(g0)~ be the algebra of all the measurable functions h on g0 satis- 
fying: 

1) h(x+y+rz)  = ei"h(x); for all yEY, rER for almost all xEg0. 

2) f~o,'R~+r Ih (x)l dx = [hi1 < ~' 

(4.17) Remark: Let W be a subspace o fy ( l )  such that Wn(Y+Rz)=O and 
such that po=W+(Y+Rz);  then the restriction map f-~f/w is an isometric iso- 
morphism of the algebra 

Ll(po)~ onto L~(W)=La(p(1)+[ff, p]/[~,p]). 

(4.18) Let C =C(D,  Ll(po)e) be the Banach algebra of all bounded continuous 
functions from D(~_R k) into LX(g0)~ (with pointwise multiplication). 

Let C,o be the closed subalgebra of the functions vanishing at infinity. 
(4.19) Let p be the projection from La(p0)z onto Ll(p0)~ defined by: 

p ( f )  (x) -= frf(x +y) dy 

(4.20) Proposition: The map K: LI(po)x-~C(D, LI(~7o)x) 

Kf(D) = p(D -1 . f )  

& a continuous and injective homomorphism of  

Ll(]o)z into C~. 

Proof. As for any fELl(go)z, DED, IKf(D)II= Ip(D -1 .f)]l<= [D -~ . f]t= [fll, 
K is a bounded operator. 

If {D,} is a sequence in D, converging to D, D~ -1 . f  converges to D -1 . f  in 
Zl(g0)x, for any f, and so K(f)(D,)  converges to K(f)(D); thus K( f )  is continuous 
for any f. It is c/ear that K is a homomorphism. 

For (D', u')EHk, fED(go)x: 

K((D', u') .f)(D) = p((D -1 �9 (D', u')).f) = p((D -~. D', D-1 u')f). 
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For  x in ~o, we have: 

p ((D-1. D', D-au') . f)  (x) = f r f ( ( D ' - l .  D (x + y) - D ' - I  (u')) dy 

= f J ( o ' - I  . O ( x + y -  u')+(D, u') z)dy 

= e'W, .'~ frf(D" --1. D (x +y)) dy = e i(D, "~ Kf(D'-I .  D) (x) 

(D,  u') = ~ ' ' ~,=ldlu , -uo,  where D=exp(~=id,D,)and 

t l t  = k p t Z I = I  //10 Z~ ui Yi + 
Thus: 

K((D', u ' ) . f ) (O)  = e~,'~XU(D '-1 .D) ;  D,  D ' ~ D ,  r  

aCU(Hk)x, we get: 

K(aof)(D) = p(D-l  f ,~ <Zr, u')(D', u ' ) . f  du'dD') 

= f~ f~,+, ~,(D', u')e i(~ ")du')Kf(D '-1. D)dD" = fn a(D, D')Kf(D')dD'. 

if we write 2(D, D') = fr+R~ a(D'-I .D, u')ei<O,U')du ". 
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K(a .f)  = f ~  (K,~. a)(D, D')Kf(D')dD" (see(4.13)). 

As S(Hk)x is dense in D (H,) x and as L I(H*) x has bounded approximate units we 
get: 

(4.24) K(S(Hk) z �9 Ll(~7o)x) is dense in K(Ll(~7o)x). 

On the other hand, if a~S(Hk)x, it is clear from (4.21) (4.22) that K(a . f ) cC= 
for every f~Ll(po)x. Thus (4.23) implies that K(Ll(po)z)cC~. 

We show now that K is injective. 
If  K ( f ) = 0  for some f i n  Ll(~0)~ then for almost all x in p0, for all D in D:  

0 = (Kf(D))(D-I(x)) = f r f ( x + D ) ( y ) d y  = f r  ei(O'r)f(x+y)dy" 

But then f (x)=O tbr almost all x in ~. 
Thus K is injective q.e.d. 

(4.25) Proposition: There exists a subalgebra s /  (T) in L1(~70))2, such that for 
every ~ = ~ C P  : 

X(aor.l(~o)~) = ~ |  
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d ( T )  is a Banach algebra under the equivalent norms I I~ : 

lhl~=]fll if K ( f ) = r 1 7 4  and fEc~.(LX(eo))x ( c ~ = % ~ ) .  

Proof." For aE#,  I,=ct .1 is a dosed subspace of Ll(~o)z for every twosided 
closed ideal in L~(g0)z (as a .  a=ct). 

(4.26) Put L~=(LX(po)z),. 
For f~L~, ~ . f = f  and thus by (4.23) 

K(f )  (D) = f K= (~) (D, D') K( f )  (D') riD" -= r (D). f R, r (D') K( f )  (D') riD', if e = ~r 

Put d ( T ) ~ =  {h~Ll(go)zl there exists f in L~ with h=fRk ~(D')Kf(D')dD'}. 
Then ~ | d(T)~ ~ K(L~). 
If on the other hand h=fak ~(D')Kf(D')dD'Ed(T)~, then for f ' = a . f ~ L ~ :  

K(f ' )  = ~ | f l~ ~(D')Kf(D')dD" = ~ | h. 

Thus ~ | d(T)~=K(L~). 
(4.26) If  e' is another element of ~ and a ' = @  (l~'l~=l) then there exists 

flCS(Hk)z such that 
~(fl)~ = r ([151). 

Let h6d(T)~. There exists f6L~, such that Kf=~| 
Let f '=~'*flof=cd.(f lof) .  Then: 

(4.27) f'EL~, and Kf'(D)= f K~(a" ,fl)(D,D')Kf(D')dD" 

= (f B(z), D') r (D') dD'). h = (~ (c( .  fl) ~ (D). h = r h. 

Thus h~ ~/ (T)~,. 
We see that ~'(T)~ is independent of a in P ;  we write ~ ( T )  from now on. 

If h, h' are in ~/(T) and f, f '  are in L~ with 

K( f )  = ~ | h, K( f ' )  = ~ | h', (ct = ar 

then K ( f . f ' )  = ~2|  h '=  ~'| l~212h.h', if ~" = l~l~ x. ~. 
(4.28) As ~'6S(R~), there exists c t ' ~  with a ' = @ .  
Thus h.h'~C(T), ,=~C(T) and so ~ ( T )  is an algebra. 

(4.29) The map M,: ~r -~L~; (e~Nc~S(Hg)x) 

M~(h)=f ,  if f~L~ and K ( f ) = ~ |  (a~=a) ,  

is well defined (as K is injective). 
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As L 1 is closed, if we provide ~r with the norm ] ],: 

~r becomes a Banach space. 
Take another element ~'=c~, in ~ and let flES(Hk) be such that: 

~ ( / ~ ) ~  = 4'. 
Then for any hEa l (T) :  

M,,(h) = (~' . fl)oM~(h) (4.27). 

Thus Ihl=,<=l~'./~h �9 Ihl~. This shows that the norms I I ~ ( ~ )  are all equivalent. 
I f a '  is as in (4.28) then for h , h ' E d ( T ) :  

[ (h .  h')l, <_- C]h.h'l~ = C[M~,(h, h')]~ 

= C[M~(h),M~(h')I <= CIM,(h)t ~ �9 [M~(h')[1 ~ C[h[,o[h'l~ 

(for some C > 0 ,  as [ I~ is equivalent to [ I,'). 
Thus d ( T )  is a Banach algebra, q.e.d. 

(4.30) Proposition: There exists an inclusion preserving bijection between the 
set o f  the G-invariant closed ideals in Ll(~70)z and the set o f  the closed ideals in ~r (T). 

Proof Let j G  denote the first set and J denote the second set. Define the map 
b~: J ~ J  by 

r b,(I) = K(I,) (~ = ~r 

As M, (b( I ) )=l , ,  b,(I) is a closed subspace of  d ( T ) ;  I f  a '=a~, is another 
element of  ~ we have: 

(a '*  fl). (I~) c I (fi as in 4.26) and so 

Thus 
~' .  (/~. I ,)  c I , , .  

r | b~,(I)  = K" (I, ,)  D K(a 'o ( f l o  I~)) = ~" | b , ( I ) .  

(4.31) This shows that b,(I) is in fact independent of ~. We write b( / )  from 
now on. 

I f  hEa l (T )  and h'Eb(I), then for a,a" as in (4.28) L~ ,~M, , (h .h ' )=  
M, (h) �9 M,  (h') c L 1 (~0)z * I c  I. 

Thus h,h'Eb~,(I)=b(I).  This shows that b( / )  is an ideal; b is thus well defined. 
b is injective: if I and I '  are in j a  with b (I)--  b (/ '),  then : for any aE ~ :  ~ * I =  a .  I '  
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* ( L1 (~o)z * I) ---- ~ .  (Ll(~o). I" and 

( f l  (~O)z ~ ~ * f l  (~O)z) ~ ] = ( f l  (~o)z * ~ ~ L1 (~o)z) ~ F .  

But L 1 (#o)z ~ ~ * L1 (#o)x = L1 (~o)z (4.15). 
Thus I=I" (as Ll(#o)z has bounded approximate units), b is surjective: Let E 

be a dosed ideal in d ( T ) .  
Let I be the closure of the vectorspace generated by the spaces M~(E); (~E~). 
As K(L~. M~, (E)) =- (4 | d (T ) ) .  (4" Q E) = 4" 4" | A ( T ) .  E c  4" 4' ~ E 

( ~ = c q  and ~ ' = ~ , E ~ )  

we see that I is a (closed) ideal in LI(p0)x .  

(4.32) As K(c~'.M,(E)) = (4, r174 

we see that o g . I a I  and so I is also G-invariant. (4.23) too shows that b(I)=E. 
Thus b is surjective. 
It is clear that b is inclusion preserving, q.e.d. 

(4.33) Proposition: S(ffo) ~ is contained in ~r (T) and dense in s4 (T). 
Hence s4(T) is dense in Ll(go)~. 

Proof From the equation: 

(Kf) (D) (x) = f r f (D  (x +y)) dy it is clear that: 

(4.34) K(S(e0)z) c S(D)| S ( D •  W as in (4,17)). 

Let now F in S(D) + S(po)z. 
Define the function M(F) on Y0 by: 

(4.35) M(F) (x) = f ~  F(D, D-1 (x)) dD. 

Let W be as in 4.17. (p0 ~ W G Y �9 Rz). 
The formula: 

(4.36) M (F)(w + y + rz) = f ~ F(D, D-l(x))e-'(~ dD 

proves that M(F)ES(qo)xcLI(yo) x. 
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Furthermore for D E D ,  xEyo: 

(4.37) (K(M (F)) (D)) (x) = f ~ MF(D (x + y)) dy 

: f .  M(F)(D-I(x)+y)elilLy;dY = f , . f .  F(D',D'-l(D(x)+y))dDe-i(z~'r~dY 

= f ~ ( f .  F(D',D'-I.D(x))e -i(D',r) dD'Je -i(~ dy 

= F(D, x) (by the Fourier inversion formula) 

We see that S(D)~S(]o)xCK(Ll(~7o)z). 
From this it follows easily that S(~7o)~ is contained in a ' (T) .  
As aQS(p0)z is dense in L~, S(]o)~ is then dense in . ~ (T ) (a~) .  q .e.d 

5. The determination of ~/(T) 

We give now an explicit formula for the norm ]1~ (4.25) for a special a in # .  
For h in S (go)~ c d (T) (4.33), for a in ~ ,  the norm [h[~ is given by the expression: 

(5.1) [hl~ = IMp(h)[1 = fwxr  [M,(h)(w+y)[dwdy (Was in 4.17) 

Now (exp D)(w) = w+D(w)+�89 D2(w); w~W, DCD. 
As D(w)CY+Rz, put D(w)=~k=a ai(D, w)yi+b(D, w)z. 

(5.2) 

Thus: Ihl== f.~• {(expD)h(w) e-i<D'y>-ib('w)+-~O'~ dDldydw 
= f w  [h(w)[ Ifl(w, y)tdydw 

where fl (x, Y)= f D ~(exp D )h(w)e "i<D'r>-ib~D''O+~ O'D*O~)> dD. 

We choose the function ~(expD)--e"/~1. where n 2 ~,k d2 if D=~k=ldiDi . L"~t = . d . d / = l  i 

(5.3) For w~W, let A(w) be the k X k  matrix {aij(w)}~.j=l where aij(w): 
(1, Di Dy(w)). 

As DiDj=DjD~ 1 <=j, i<_k, it follows that the matrix A(w) is symmetric and 
can thus be diagonalized. Let U(----U(w)) be an orthogonal matrix, such that 
U-1AU=T= {ti~}l<=i,j<=k and tij=cSijcj. 

Write D=-~=I diDi and make  the change of variables D~U(D) in fl(n, y). 
Then: 

fl (w, y) = f ,, e -t~ e'i<vcD)'Y) -ib(VCD), w)+--~ (t, (vCO))zC~)) dO. 
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But: 
(5.4) 
Let us put: 
(5.5) 
Then: 

1 (l, ~U(D)2(w)) k = Zj=I d~cj(ifD = 2~=1 djD2)" 

(D j, U* (y)) + b (U(Dj, w)) = bj. 

fl (w, y) = II]=l flj (w, y) where 

ej(w, y) = f~_= e - ~  +'~*~ a (dj). As: 

(5.6) 

)[ / //1 1. 1 . ibj . 2+_~ 
flj(w,y) = f2~ exp --l+-~tcj u- -~  l__ l  icj 

Thus: 

(5.7) 

Let us write: 

(5.8) 

1 d(dj) 
1 - -~  ic I 

= icj) exp ib.i 
1 1 - -~  ic 

1 - 1  ~ -�88 
[Bj(m, y'l = exp { - l  b~" (l +'-~c~} } (l + l  cj) �9 

Thus Ih]==fw[h(w)]lI~=xexp{[- lb~(l+lc2)- l)}( l+lc,)- �88 

Make the changes of variables y-,-U(y) and yj--,-yj-b(U(Dy), w). 
Then: 

Ih]= = fw ]h (w)]/-/k= 1 fR exp {[ 1 y~)[1 + 1 c})} [1 + 1 c~)-' dyj 

~ k  {1 1 2 �88 

The numbers 1 +-~cj are the eigenvalues of the matrix 

1 +lA2(w)  

,~,, =z~ h(w,,{det{l+i~(~,~}}',w 

o(w, = ~et(~ +1~ (w,')' 
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A s  

(5.9) 

6a(~0) ~ is dense in ~r we get: 

~ '(T) = {hCZ~(g0)~l [hl~ = f ]h(w)lo~(w)dw < ~ }  

= {hEtl(W)Jlh],o = f~ Ih(w)lco(w)dw <o~} 

(5.10) Theorem: Let ~ be a nilpotent Lie group of  step 3. Let G=exp~  be 
simply connected. Let TE~ and let 0--y* be the G-orbit corresponding to T. 

Let ffo=ff(l)+[ff, ff] (I~0). 
Let dl . . . .  , d k be a supplementary basis of  ~ to ~o. 
For wE~7o, define the k •  matrix A(w) by 

(w) = {a,Aw)}~ j = {<I, [a~, [ds, w]l)},.j. 

Let Q~, be the set o f  polynomials q on ~0 such that q . co-1 is bounded on ~o. 
There exists an inclusion reversing bijection between J {T} and the space Qo(inv) 

of the translation invariant subspaces of  Q~o different from (0). 

Proof If T([[G, G], G] = Idz~, A (w) is the O-matrix and J(r} = {ker ~}.. 
The theorem is then obvious. 
We may thus suppose that T is not trivial on [[G, G], G]. By (3.12) Jtr} is iso- 

morphic with j a  0 o" 
Under the canonical isomorphism from LI(~o)~-~LI(W) (4.17) the dual vec- 

torspace of Ll(~0)~ is L2(W)= {q~: W~C[q~ measurable ~0. co -1 bounded} 
Let IEW* be the restriction of l to W. 
If IEJ~o0/ then b( / )cJ{i / :  (see 4.31 for the definition of b) because for any 

~=er162 fC I~, 

K ( f ) ( D ) ( i )  = ~(D) f aD" 

= r  r  = ~ w ) f F ( N ' f .  (D'. OdD' = 0 
- 1  G From (4.36) we see also that b (J(~)cJi60/ .  Thus: 

(5.11) b@r ) = J{~} 

(5.12) The smallest ideal j(l) contained in JtlI is the ideal generated by the 
elements h in 6a(W) whose Fourier transforms h have compact support disjoint from 
the point {l}. 

As j(l) is contained in every element of or }, by Hahn ~ Banach: 
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(5.13) there exists an inclusion reversing bijection between the set i l l} and the 
space of the translation invariant w e a k ,  closed subspaces of  L ~ ( W )  contained in 
{j(/)}• different from (0). 

Let us denote this space by ~ .  
If  q)EI • for some I6J{z }, then 9~j([)  • and the restriction % ofq~ to 6)(W) 

is a temperate distribution. The Fourier transform 0r of % is a temperate distribution 
of  6e(W *) which annihilates every element k of N(W*) with k ( ( / ) )=0  (5.12). Thus 

(5.14) ~ - o) q)-z~jcj6{i}, where the cj's are constants and xo) denotes the j- th 
derivative of  the Dirac measure at the point {i} ([16]). 

Thus: 
(5.15) q)(w)=e-~! '~> (p(w) where p denotes a polynomial on q0). 
As q~L=(~0), p must be an element of  Q~. 
On the other hand, every p '  in Qo, defines an element ~o of j ( / )  • by (5.15). Thus 

there exists a bijection between j ( / ) "  and Q,o and the theorem follows from this. q.e.d 

(5.16) Examples: Let Pr, k be the Lie algebra with the basis elements 

dl, ..., d k ,  W l  . . . .  , wr, Yl, ..., Yk, a. (r <-- k) 

Let 4,+1 . . . .  , ~k be elements of W* different from 0. 
Let Cj(,l<=j<=r) be defined by ~j(w~)=6j,~, s = l  . . . .  ,r .  
The Lie multiplication of  ~/r,k is given by: 

[di, w e ] = r l <= i <= k, l<=s<_- r ;  

[di, y j]=a~jz l <=i,j<-k. 

is a step 3 nilpotent Lie algebra. 
Let ICp*, such that l ( z )=l .  Then: 

eo = e ( t ) + [ e , e ]  = W + Y + R z  ( r  = Ry,) 

For w~W=~.[= 1 Rwi 

aiy(w) = (l, [d,[dj, wll) = a , f iAw) .  

Thus co (w) = det (1 + �89 A (w) ~) =//~=x (1 + �89 r (w)l/'); 

If r = k, w = ~ = x  tiwi 

k t~ ~ 
(D(W) = / / j= l  (1 +-~-1 .  

Then Qo,=R1 and then T corresponding to 1 is a point of  synthesis in d,,k. 
If  r<k ,  ~,+1=~]=1 ajr and not all the aj's are zero. 
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So 
[~r+I(W)[ =< Zj=I layII~j(W)l ~ (Zj=I I~J(W)I2) ~ ~ ~ j = l  1-~-'-4I~J(W)[ 2 

for some constants C, C' > 0. 
And 

]~r+l(W)l~]~r+x(W)]�89 (1 "~- + ~J (W)] 2)�88 1"~-1 ]~r+l ( W)[)�88 

~ c  g j = l  l+~-l~i(w)t  ' - - C % ( w )  for some constant C">0. 

Thus Qo~ contains an element, namely ~,+~, which is not a constant thus TE(~,,R 
corresponding to 1 is not a set of synthesis. 

If r = l  
fO(twl) = g;=l(lq-Ckt2)�88 for some C1 .. . . .  Ck > 0 .  

Thus w(t)=O(t -~) and thus dim Q~o--- + 1. 

r~']k +1 
Furthermore ker T~(ker  T)2~.. .  =D(ker T) L~" are the only elements of 

J t r  I �9 
If r=2 ,  k = 4  and ~a=~l, 44=r then: 

co(qw~+t, w2) ( 1 + 1  ] ( + l t~ ) �89  ( 1 + 1 . ,  , . 1  22't' = t~ '  1 = ~( t l+ t2 ,+-~ f i h j  

Qo, has the following basis: {1, fi, t2, fit2} and the elements of Q,o(inv) are: 
{R~, R(q +ct2)+ Rx, Rt,, a,~[cr 

Thus Q~(inv) has an infinity of elements. 

6. Final remarks 

(6.1) The computations become much more difficult if G is no longer of step 3. 
No general results are known. 

(6.2) In [12], it has been shown that for any point T in the dual of nilpotent 
connected Lie group, the algebra ker (T)/j(r) is always nilpotent. The exact degree of 
nilpotency of this algebra is unknown (in general). It can be estimated by the degree 
of growth of G is T is in general position. (see [12]). Suppose now that there exists an 
ideal/~ inr such that (1, [/;, ~ ] )=0  (l in the orbit O of T) and such that l+,~• 

Let lo=1/~ and Oo=G.loc/~ *. 
Let H=exp  h. Using theorem 2.4 of [5], it can be shown that the degrees of 

nilpotency of ker T/jtr) and ker Oo/j(oo ) coincide. 
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As  [/;,/~] is an ideal  in ~ on which l d i sappears ,  we m a y  as well suppose  tha t  

[ / ; , /~ ]=0 ,  tha t  means  tha t  /~ is abel ian.  

The  de te rmina t ion  o f  the  degree o f  n i lpo tency  is thus  reduced  to  the  s tudy  o f  

the  G-o rb i t  O0 o f  the  e lement  10 in the  dual  o f  the  abel ian  g r o u p / L  I t  fol lows f rom [8] 

tha t  the  degree o f  n i lpo tency  o f  ker  O0/j(o0)is  less than  dim 
t z J  
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