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1. Introduction

Let 4 be a *-semi-simple Banach algebra with involution *. One of the main
problems concerning the structure of A is the determination of the space £ of the
twosided closed ideals of 4. Let Prim, (A4) be the space of the kernels of the topologi-
cally irreducible unitary representations of 4 equipped with the Jacobson topology.
For I in £, let h(I)={J¢Prim, (A)J>1}; (h() is a closed subset of Prim, (4))

" and define for the closed subset C of Prim, (4) the subset % of 4 by S.=
{Ie #|h(I)=C)}. The closed subset C of Prim, (A4) is called a set of spectral synthesis
if £ consists only of one point, namely the ideal ker C={"y.cJ. The spectral syn-
thesis problem has been most intensively studied for the algebra 4=1L1(G), where G
is an abelian, locally compact group G. The first result was the famous theorem of N.
Wiener who showed that the empty set is a set of synthesis in Prim, L'(R). The
latest deep results are those of I. Domar. (see for instance [4]).

Almost nothing is known for the algebra L2(G) is G is not abelian. If G is a con-
nected, simply connected nilpotent Lie group, the dual space G is well known and
thus also the space Prim, (LY(G)).

Let g be the Lie algebra of G and Ad* the coadjoint action of G on g*. By Kiril-
low’s theorem and Brown’s proof of the Kirillow conjecture ([7], [2]) G is homeo-
morphic with the orbit space g*/,q4«c, and [1] tells us that Prim, (L*(G))=4*/sax)-
Thus we may indentify the closed subsets C of Prim, (L*(G)) with the closed G-in-
variant subsets of g*. L1(G) has a remarkable property: For every closed subset C
of G there exists a twosided ideal j(C) in L(G) with the properties:

1) h(j(4))=4;2) j(A) is contained in every closed, twosided ideal I of L1(G)
with h(I)c 4 ({11]).

If G is a group of step 1 and of step 2 every point in G is a set of spectral synt-
hesis [9]. In this paper we show that in general a point is not a set of synthesis
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if G is of step 3. Indeed, we are able to determine explicitly the spaces S, for
every T€G.

In general .# 5, contains an infinity of elements.

In [12] it has been shown that for every T in G, the algebra ker T/ j((ry 18 nil-
potent. The results of this paper make it possible to compute the degree of nilpotency
of ker T/;qy if G is of step 3.

2. Let G be a connected and simply connected nilpotent Lie group and let ¢
be the Lie algebra of G. The exponential mapping is a homeomorphism from g
onto G.

We can thus define the Schwartz space S(G) to be the space of all functions f on
G such that foexp is contained in the ordinary Schwartz space S(g) of the rapidly
decreasing smooth functions on the real vectorspace g.

S(G) is a dense *-subalgebra of L1(G). If I is any element of #,In S(G) is
a twosided closed ideal in S(G).

(2.1) Proposition. Let G be a connected, simply connected nilpotent Lie group.
For every © in G, ker nn\S(G) is dense in ker =.

Proof. We show first, that for every tempered distribution @ on S(G) which
annihilates kermwn S(G) and for every £, f; in S(G), there exists a constant C=>0
(depending on f; and f;) such that

Ko, fixfxfo] = Cln(f)];  vfeS(G).

(I=(f)! denotes the operatornorm of n(f)).

(2.2) There exists k€N and a realization of = on L2(R*) such that:

a) For every fin S(G) the operator n(f) on L*(R¥) is described by a Schwartz-
kernel K,(f); that means: there exists a function K,(f) in S(R*XR¥) so that:

®(NO® = [ KN 0EG)dy; WECLARY)
Vx€RE,

b) The mapping K,: S(G)—>SR*XR¥) is surjective.

¢) If dr denotes the representation of the envelopping algebra U(g) correspond-
ing to = on L2(RY), then
dn(U(g)c) is the algebra of differential operators with polynomial coefficients on
R*. ([15) and [7))

Thus K, defines an algebraical and topological isomorphism also denoted by K,,
of the Fréchet spaces S(G)/s@ynker= and S(R*XR¥). This allows us to define a tem-
pered distribution & on S(R*XR¥) by:

(@, Ko (f)) =Ko, f); fES(G).
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There exists a continuous and bounded function w in L2(R*XR¥) and a diffe-
rential operator D with polynomial coefficients such that

(@, 8) = [ om0 1D (%, p)dxdy; g€SR¥XRY
(see [16]).
Now if f;, f, /,6S(G), x, y€R*:

K S f5 )0 = [ 0 Kefi (6 WK f(u, ) K (0, y) dudb.

Thus: DK, (fixf*f)(x,y) = fvjf

e FH 06 K, S (4, 0) F} 0, 3) du do

for some F}, Fi¢S(R*XR").
Taking

S =1, .., N) in S(G) with K, (f) = F; K. (f)=F}(,j=1,...,N)
we get:

Ko, fixfxfo] = Ikaka w(x, y) (Z{LIIKﬂ(fil *fx D), ¥) dxdy]

= 25;’:1 [Wla | K (S % /%P2

As for any F in S(R*XRY), |F,| is the Hilbert — Schmidt norm of the operator
defined by F on L%(R") we have:

Keo, foxfafyl = 3 oy Whln (5 fPDlas. = { 37 In(flus. (Y7 (-

Let now ¢@€L=(G) with (¢, ker 1 S(G))=0.

Then: [, fixf*fo)=Cln(f)]; VfES(G) (C depending on f; and f;).
Hence (¢, fixkermf)=0 for all f;, £,6S5(G) and so (¢, ker n)=0.
This implies (by Hahn — Banach):

ker nnS(G) is dense in ker 7.
q.e.d.
3. The determination of ., for a point T in G, if G is of step 3.
From now on G will denote a connected and simply connected nilpotent Lie group of
step 3, that means: if ¢ is the Lie algebra of G,

Lg:[9:21] # 05 [:19 19 #1]] = O

Let T be a point in G and denote by 0 the corresponding orbit in g*.

Let = be the centre of g and %, a subspace of » contained in the kernel of an
element 7 of O.
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The subset zy ={0€Glo (exp xp)=Idy,} is closed in G and a set of spectral
synthesis in G ([11]). Hence, as T€x;:
(3.1) Every element I of £, contains ker (z3).
Let g=4/, , (7=G/exwo. As T(expzo)=Id, T defines an element T of G.
If p denotes the canonical projection from G onto G
T=Top.

As [MG)=L"(®)|xer (i) it follows from 3.1 that.

(3.2) The map I-Imod (ker ;) is an inclusion preserving bijection from
Sy onto I g.

If for 1€0; I([g,14, 2])=0 and if we put %=[g, [4, #1], then 3 is an algebra
of step 2 and so [T'] is a set of synthesis, thus:

{ker T} = #7 and hence
fT = {ker T}.

We suppose from now on that (/,[g, [¢, #]])=0. 1t follows also from (3.2) that
we can suppose that dim z=1.
Thus we have the following situation:

(3.3) [#.[#9]] =« and dimx =1,

We give now a detailed description of a nilpotent Lie algebra of step 3 satisfying
(3.3).

Let z€2\(0). Let yy, ..., y; be elements of [¢, #] such that {y,, ys, ..., ¥x, 2}
is a basis of [g, ¢].

As [g,[g,#1]=Rz, there exist ¢, ..., p,€4* such that

[u, yi] = @;(W)z; Yucy, i=1,.., k.
(3.4) The ¢@;’s are linearly independent:
if ¥, ce;=0 forsome ¢, ...,c,€R then:
[w, Zicivi] = (G, cioi(w))z=0 for every u€g.

Thus 3%, ¢;y,€+ and hence c¢;=c,=...=¢,=0.
This implies:
(3.5) There exist x,, ..., X, in g, such that

I, vl =65z, i,j=1,.., k.
(3:6) Let A=, kerg;; then /i={ugllu, 7, #]1=0}
For 1€0, let y(l):{UEgKl,[u,yD:O}.
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(3.7) Let go=2()+[g, 4]. (g0 depends only on O).
We show now that:
(3.8) g is the centre of #.
It is clear that [ g, ¢] is in the centre of .
As [g2(D, ][4, gl]cker Inz=0, g(l) is contained in #£.
As [g,[4, £1]<[4. [, A1] < [4]g> #1]=0.

(3.9) [#4, 4] < Rz

so [g(l), #lcker InRz=0, thus
#(1)+[g, glccentre of 4.
There exists an element /, on O such that

L)=o0; i=1,.,k

Let v€centre of 4; put [x;,v]=3%_, ¢;;»;+¢;z.
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Then {(J;, [xi, v — Z§=1 ijj]> = (b, [x;, o) —(l, ¢;z) = ey, zy~clh,z) =0

as [v—23%_,¢;v;,4] =0 weseethat

v— 3% 1 ¢;y€e(l) andso veg(l)+Ig. 4] = g0-
This proves (3.8).
As [4, #]CRz (see 3.9):

(3.10) There exist u;,v; in £ (7, j=1, ..., 5)
such that 4=23 , Ru;+ 37 Rv;+g4, and such that

[uia vj] = 5ijz; Lj=1,..,s.

(3.11) Let now O, be the restriction of O to gy, Ov=G(/,,) for any 1 in O. O,

is a closed G-invarjant subset of g3.

Let Gy=exp g,. G acts as a group of automorphisms on G, by restriction of

the inner automorphisms to G, so G acts on L*(G,) too by the formula:

fe(x) = f(g71xg); fELY(Gy), x€G,, g€G.

(3.12) For a closed subset C of G, let £& be the set of all twosided closed

ideals I of L1(G,) with h(I)=C, which are G-invariant.

(3.13) Proposition: Let G be a connected and simply connected Lie group of step

3 satisfying (3.3). Let T<G. Let O be the G-orbit of T in g*. If T(centre (G)) #Idr),
there exists an inclusion preserving bijection between S 1y and S (%o) (O, as in(3.10)).

Proof. Let IO satisfy: I(y))=0, j=1, ..., k, I(x)=0, i=1, ..., k.
We verify immediately that, using (3.5):



132 Jean Ludwig

(3.14) The map: [g, g]~I+4-Cy*
v (L [-,v]) is surjective.

(3.15) Denote by #* the set of the unitary characters of G which are trivial on
H=exp #. For every x€#*, zhere exists v€[y, 4], such that y(exp x)=e ““5Py
x€g (this follows from 3.14). As I+4" is a closed G-invariant subset of g%, it
defines a closed subset, also denoted I+4%, of G.

(3.16) I+4" is a set of spectral synthesis by ([5], 5.3).

(3.17) Let K=ker (I4+41)<at L(G). If z€centre (g) with (I, z)=1, then one
computes easily that:

(3.18) K={fcL'(G)| [y f(g(exp rz))e~"dr=0 for almost all gcG} and that

(3.19) for fcLY(G), y€4* one has using (3.18) (3.15) (3.5):

x-f—fP€K if yx=yx@) asin (3.15).

Let now O, be the restriction of O to 4*.

From (3.16) we see that X is contained in every element I of .y, as T¢l + 4%

Thus (3.19) implies: y-ICI for every x€#4", Iin J 5. [5] now implies that
there exists an inclusive preserving bijection between 1, and ng .

Now again the map: yo"llyu"‘%L <%, u~l, , [+, ul) is surjective (by 3.10).

We can use similiar arguments as above, to get: there exists an inclusion preserv-

ing bijection between
S5 and J§. qed.

4. The determination of .%i

Let 4 be as in (3.3) and g, as in (3.7).

(4.1) Let D,:adx,-lgo; i=1,...,k, (x; as in 3.5).

The Dis are linearly independent and commuting endomorphisms of g,.

Let D=3 RD; and let D=exp DcGl(g,).

(4.2) We can realize the 2k + 1-dimensional Heisenberg group H, by defining:
H,=DX[g4,4] and defining the multiplication of H, by: (D,u)-(D,u)=
(D-D',u+D®W)); D, DD, u,u'c[g, ). The group H, acts as a group of dif-
feomorphisms on g, by the formula:

4.3) D, u(x)=D(x)+u

(4.4) Now as g, is abelian, we may identify the additive group g, with G, and
s0 L1(Go)=L'(gy).
We define the (isometric) action of H, on L'(g) by:

(4.5) (D, w)-£)&) = (D, )72 (¥); (D, WEH,; feL  (go), X€ 0.
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(4.5) allows us to define a representation of L'(H,) on L'(g):
(4.6) aof = [ a(hh-fdh; a€LMHy, feL(go).

(4.7) Let Ky=ker (l,+-z") (=1, I€0)
(4.3) tells us that K, is invariant under the action of H, (and of course of G also)
(4.8) Let L'(g,), be the algebra of all measurable functions f on g, satisfying

D Sx+rz) =€ f(x), YréR for almost all x€g,

2) = fpyme |/ dx <o

with the multiplication defined by:
f*8() = [, m, fO&(—y+2)dy, £, 2L (g0)y; xE 0.

The map P, I (g0)~ L (g0),

P, f(x)=[gf(x+rz)e""dr is a continuous surjective homomorphism. Thus:

4.9) L'(g0)/ K, is isometrically isomorphic with L!(gp),.

The dual space of L*(g,), is of course homeomorphic with the subspace 7,+z*
of g&. Let O, denote the image of O in L!(go)}.

(4.10) The map: 7—-Imod X, is an inclusion preserving bijection between
JOGQ and .ﬁgﬂ.

Let us return for one moment to H,.

It is well known that there exists exactly one representation = of H,}) with
n(exp rz)=e~" Id(rcR).

Let J=ker n. Then:

(4.11) ker n={a€ L*(H,)|f «((D, u+rz))e~"dr=0, for almost all (D,u)}.

Using (4.11) and (4.5) one computes easily that:

(4.12) ker noL'(gg)Ky.

Thus we can define a representation of L*(H,),=L'(H,),; on L'(g,), by the
formula (4.6).

The algebra L'(H,), has many projectors:

(4.13) Let ¢ be the character of Rz+Y(¥Y=3% Ry): y(y+rz)=e=",
yeY, réR.

If m=ind¥,1 ¥, 7 acts on LE(R¥) and = fulfils the conditions of (1.1).

For finS(H): K, (f)(D, D)= [ vore /@ 71D w)e P du; D, D'ED;

here (D, uy = Xd;uj—ug, if D=-exp(Zd;D) and ' =% ujy,+ujz



134 . Jean Ludwig

(4.14) For ¢cS(D), [¢,=1, let a, be the (unique) element of S(H,),=
S(Hy)kerrnsa,y With K, (a)=¢®¢&, that means: n(x;) is the projector on C¢.
Thus «, is a projector in L*(H,),.

(4.15) Let 2 be the set of all a, in S(H,),, such that n(a,) is a one dimensional
projector (on the subspace C¢, [¢],=1) As {r} is a set of synthesis in A,([9]), for
every a€, the ideal L'(H,),xoa*L*(H), is dense in L'(Hy),.

(4.16) Let L'(g,); be the algebra of all the measurable functions 4 on g, satis-
fying:

1) h(x+y+rz) = € h(x); forall ycY, rcR for almostall xCg.

) Joony GO 6 = By <

(4.17) Remark: Let W be a subspace of ¢(/) such that Wn (Y +Rz)=0 and
such that g,=W+(Y+Rz); then the restriction map f—f/y is an isometric iso-
morphism of the algebra

L'(gy); onto L'W)=L'(g(1)+I[g 4112 #D-

(4.18) Let C=C(D, L'(g,);) be the Banach algebra of all bounded continuous
functions from D(=R") into L!(g,), (with pointwise multiplication).

Let C.. be the closed subalgebra of the functions vanishing at infinity.

(4.19) Let p be the projection from L!(g) . onto L'(gy); defined by:

PN = [, fx+y)dy
(4.20) Proposition: The map K: L'(g,),~C(D, L (g,),)
Kf(D) = p(D7*-f)
is a continuous and injective homomorphism of
L'(gy), into C..

Proof. As for any f€Ll(g,),, DED, |[Kf(D)h=|p(D71-Hh=|D1-fli=|fh,
K is a bounded operator.

If {D,} is a sequence in D, converging to D, D, '.f converges to D™'-f in
L'(g,),, for any f, and so K(f)(D,) convergesto K(f)(D); thus K(f) is continuous
for any f. It is clear that K is a homomorphism.

For (D, w)€H,, feL'(g),:

K((D', &) -f)(D) = p((D*- (D', w))-f) = p((D72- D', D71 w)f).
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For x in g, we have:
P01, D) -f)) = [, f(D' - D(x+y) D' (W) dy
= [ A(D'-D(x+y—u)+(D, w)z)dy
=& [ f(D'71.D(x+y)) dy = &PKF(D' - D) (x)
if (D,uy= 3% du—uy;, where D=exp(>F_, d,D,) and
=% uly+uz.

Thus:
(4.21) K((D', &) -f)(D) = P> Kf(D'~1.D); D,D'eD, W CY+Rz.

For «€l*(Hy),, we get:
K(aof)(D) = p(D* [ oD, w)(D', w)-fdu’ dD’)

=[_ f (D', )P du)Kf (D' ~1-DYdD’' = [_&(D, D)Kf(D)dD .
DY Rz+Y D

4.22) if we write  &(D, D) = [ yme MDD, W) PO
Thus
(4.23) K(-f) = - (Ko 2)(D, D) Kf (D) dD’ (see(4.13)).
As S(Hy), is dense in L'(H}), and as L'(H,), has bounded approximate units we
get:
4.24) K(S(HY, - L'(g0),) is dense in  K(L(go),)-

On the other hand, if «€S(H)),, itis clear from (4.21) (4.22) that K(x-f)cC..
for every f€L'(go),. Thus (4.23) implies that K(L'(gy),)<C...

We show now that K is injective.

If K(f)=0 for some fin L'(g,), then for almost all x in g4,, for all D in D:

0= &K/@)D7@) = [, fx+DYPdy = [, &7 f(x+7)d.
But then f(x)=0 for almost all x in g.
Thus K is injective g.e.d.

(4.25) Proposition: There exists a subalgebra o/ (T) in L*(gy)y, such that for
every a=0CP:
K(aoL(gy),) = E@A(T).
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& (T) is a Banach algebra under the equivalent norms | |,:
bl =1fl if K(f)=<E(@h and fea-(L'(go), (x= 2, £P).

Proof: For a€?, I,=a-1 is a closed subspace of L'(g,), for every twosided
closed ideal in L'(g,), (as axo=a).

(4.26) Put Li=(L'(g,),)s-

For fcL;, «-f=f and thus by (4.23)

K()(D) = [ K@D, DYK(/)(D)dD' = &D)- [, EDVK(H) D) AD, if = o.

Put o (T),={hcL (g,),| there exists f in LL with h= [g. E(D)Kf(D')dD’}.

Then ¢®«/(T), D K(LD).

If on the other hand h= [y E(DYKf(D)dD'€ 4 (T),, then for f’'=a-fcLy:
K(f) =¢@ [, ED)Kf(D)dD = ERh.

Thus (R4 (T),=K(L).
(4.26) If o is another element of # and o =aj (|&'|,=1) then there exists
BES(H,), such that
(B =¢. (18]

Let he€ o (T),. There exists fcL., such that Kf=¢®h.
Let f'=do"«fof=a"-(Bof). Then:

4.27) feLy and  Kf'(D)= [ K.(« % B)(D, D)Kf (D) dD’
= ([ K@ % p(D, DYe(D)AD) - b = (n (@ + BE(D) - h = £(D) - h.

Thus he ot (T), .
We see that &/ (T), is independent of « in #; we write & (T) from now on.
If h,h" are in o/(T) and f, f* are in L} with

K(f)=¢(0h, K(f)=E(QN, (¢ = w),
then K(fxf")=EQhxl =& @|Ehxl, if &=|E51- &

(4.28) As &€S(R¥), there exists '€ with o« =aj.
Thus h*h €L (T)y=4(T) and so & (T) is an algebra.

(429) Themap M,: A(T)~L}; (2€PnS(H,),)
M) =f if feL; and K(f)=(Qh; (=),

is well defined (as X is injective).
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As L} is closed, if we provide & (T') with the norm | |,:

|h,az = ,Ma(h)ll
& (T') becomes a Banach space.
Take another element o'=ay in & and let BE.S(H,) be such that:

(B¢ =<
Then for any heod (T):

M, (h) = @ % foM,(h) (4.27).

Thus |h|, =o' % B, - |h|,. This shows that the norms | |,(x€Z) are all equivalent.
If o’ is as in (4.28) then for h, W€/ (T):

((hx )], = Clhx k], = CIM, (hx Y,
= CIM, (b * M, ()| = CIM, (W)}, |M, (k)] = Clhl.olW,

(for some C=0, as | |, is equivalent to | |,).
Thus &/ (T) is a Banach algebra. g.e.d.

(4.30) Proposition: There exists an inclusion preserving bijection between the
set of the G-invariant closed ideals in L*(g,), and the set of the closed ideals in o (T).

Proof. Let S¢ denote the first set and # denote the second set. Define the map
b, F°~F by
£® baz(]) = K(Ia) (d = %Eg)-

As M, (b(1))=1,, b,(I) is a closed subspace of &/ (T); If o’=a} is another
element of 2 we have:

(@xp)-(I) < T (B asin 4.26) and so

a,'(ﬂ'la) c Ia"
Thus
¥ @b, (I) = K'(I,) > K(«o(BoL)) = & b,(I).

(4.31) This shows that b,(I) is in fact independent of «. We write b(I) from
now on.

If he/(T) and HK€b(I), then for a,o as in (4.28) LLOM,(h*h)=
M, (h)x M, (W) C L} (go), *IC1.

Thus hxh’€b, (I)=b(I). This shows that b([) is an ideal, b is thus well defined.
b is injective: if 7 and I” are in ¢ with b(I)=b(I’), then: for any a€P:axI=axl’
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thus
ak (L (go)y* I) = ax (LY go)* I’ and

(L (go)y % ax L' (go)) ¥ T = (L (go)y ¥ a % L (o)) % 1.

But L'(gg),*axL'(g0),=L(go), (4.15).
Thus /=1’ (as L'(g,), has bounded approximate units). b is surjective: Let E
be a closed ideal in (7).
Let I be the closure of the vectorspace generated by the spaces M, (E); (x€2).
As K(Lix M, (E)) = ((@A(1)- (E'QE) = - EQA(T)*EC - &'QEF

(x=0; and o =az€P)

we see that I is a (closed) ideal in L(g),.
(4.32) As K(«' - M,(E)) ={& V@&’ QF

we see that o’ - 7 I and so I is also G-invariant. (4.23) too shows that b(/)=E.

Thus b is surjective.
It is clear that b is inclusion preserving. q.e.d.

(4.33) Proposition: S(g,); is contained in /(T) and dense in 4 (T).
Hence s/ (T') is dense in L(g,);.

Proof. From the equation:
EN(D)(x) = f i (D(x+y))dy it is clear that:

(4.34) K(S(g0),) € S(D) & S(ga)y (= SOXW); W as in (4.17).

Let now F in S(D)® S(gy),-
Define the function M(F) on g, by:

(4.35) M(F)(x) = [ F(D, D~*(x))dD.

Let W be as in 4.17. (go=W ®Y & R2).
The formula:

(4.36) M(FYW+y+rz) :fs F(D, D71(x))e="@»+ir gD

proves that M(F)E€S(20), <L (0),-
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Furthermore for DED, x€g,:
(4.37) (KM (FYD) ) = [, ME(D(x+y))dy
= [, MBD@+y)e®rdy = [, [, FO, DD @)+y)dDe™ 7 dy
= [ ([, F(D', D’ -D(x)e*" dD')e= P 7 dy

= F(D, x) (by the Fourier inversion formula)

We see that S(D)& S(g0), KL (50),).
From this it follows easily that S(g,); is contained in &/ (T).
As «0S(g,), is dense in L;, S(go); is then dense in o/ (T)(2€P). q.ed

5. The determination of .«/(T)

We give now an explicit formula for the norm ||, (4.25) for a special o in 2.
Forhin S(g,);C o (T)(4.33), for ain 2, the norm [k, is given by the expression:
CAY bl = MWL = [,
=f ey | f é(D)h(D”l(w))e'i<D’y)dD‘ dwdy.

Now (exp D)(w) = w-+D(w)+3 D*(w); weW, DED.
As DW)EY+Rz, put Dw)=3F a,(D, w)y;+b(D, w)z.
(5.2)

Thus: }h), = fwxyuné(expD)h(w)e
= [, IR [B(w, y)|dydw

where B(x, )= [p £(exp DYh(wye™ OO AR 4y

[Ma(h)(w+y)[dwdy (W as in 4.17)

~i(D,y)—ib(D, w)+% {1, DE(w))

dD| dy dw

We choose the function &(exp D)=e~ """ where [D*=>F d?, if D=23F d.D,.

(5.3) For weW, let A(w) be the kXk matrix {a;;(w)} ;-; where a;(w)=
(1, D; D;(W)).

As DD;=D;D; 1=j,i=k, it follows that the matrix 4(w) is symmetric and
can thus be diagonalized. Let U(=U(w)) be an orthogonal matrix, such that
U AU =T={t;jh=i,j=x and t;=0d;;c;.

Write D:—Z'ik=1 d; D; and make the change of variables DU (D) in B(n, y).
Then:

—»{Dl2 —i(U(D),y> —ib(U(D)’ w)+_i. (l, (U(D))Z(W))
e z dbD

Bow )= [y e
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But:

(5.4 L3 UDRW) = Sh_, die,(if D=3}, d;D)).
Let us put: ‘

(5.5 (D;, U*(»))+b(U(D;, w)) = b;.

Then:

B(w, )= [}, B;(w,y) where

B;(w,») =fi° e_d’z“(%c"d?_b’d’)d(dj). As:

_fe 1. 1 ib; L | ib; 2 )
B;(w, ») _f_w exp (—1+—2-ch-) L t7 — d(dj)
1—7wj 1—71cj
1, y°% 1 ib; \?
—{I—EJCj] €Xp —4—' —-—-1——‘ s
1_7wj

1 2 1 2 - 1 2 o
lﬁj(m’y)‘zexp “ij' 1+2—Cj 1+'Z‘cj .

- -3
Thus |h|a=fW1h(w)1]];;1exp{[—%bg[H%ﬁ) ]}[H%cﬁ) dy dw.

Make the changes of variables y—~U(y) and y;—y;—b(U(D,), w).
Then:
1

56 W= [, T [ {403 (142 &)} (144 ) "y,

[ WO T (143 8)

The numbers (1+—1—c§) are the eigenvalues of the matrix

4
1+%~A2(w)
Thus:
3
(5.7 = [ 1hw)] {det(1+%A(w)2]} dw

Let us write:

3
(5.8) w(w) = det (1—}——4!—A(w)2]
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As Z(gy); is dense in o/ (T) we get:
(5.9) A(T) = {heL (gl 1l = [ Km0 w)dw <<}
= {heL2@)||hl, = [, Ih(W)|o(w)dw <o}

(5.10) Theorem: Let ¢ be a nilpotent Lie group of step 3. Let G=exp g be
simply connected. Let TCG and let 0=4* be the G-orbit corresponding to T.

Let go=g()+[g, 41 (€O).

Let d,, ..., d, be a supplementary basis of g to g,.

For wtg,, define the k Xk matrix A(w) by

AW) = {ay; Wy = { [di, [d;, Wi} ;-

Let oWw) = [det (1—!—%— A(w)z)]%.

Let Q,, be the set of polynomials q on g, such that q -~ is bounded on g,.
There exists an inclusion reversing bijection between S {T'} and the space Q,,(inv)
of the translation invariant subspaces of Q,, different from (0).

Proof. If T([[G, G], G]1=1d,,, A(w) is the O-matrix and S p,={ker n}.

The theorem is then obvious.

We may thus suppose that T is not trivial on [[G, GJ, G]. By 3.12) Sy, isiso-
morphic with % go.

Under the canonical isomorphism from L(g,);~L*(W) (4.17) the dual vec-
torspace of L'(g,); is L,,(W)={¢: W—~Clp measurable ¢ -~ bounded}

Let lew* be the restriction of [ to W.

If I¢ J{%o} then b(I)cSy,: (see 4.31 for the definition of b) because for any
a=a,eP, fel,,

/\ _ /\
k(D)) = &) [ EDYPD-f)T)dD’

—_ —
= &(D) [EDHD' - f(hdD’ = £D) [EDYf-(D-DdD" =0

From (4.36) we see also that b™*(F)cf%,. Thus:
[y {Go}

(5.11) b(Fay) = Fu)

(5.12) The smallest ideal j({) contained in & 0 is the ideal generated by the
elements A in (W) whose Fourier transforms 4 have compact support disjoint from
the point {/}.

As j(l) is contained in every element of £ @» by Hahn — Banach:



142 Jean Ludwig

(5.13) there exists an inclusion reversing bijection between the set ., and the
space of the translation invariant weak x closed subspaces of L, (W) contained in
{7(D}* different from (0).

Let us denote this space by Jp.

If pel* for some I€Sy, then ¢ j(I)* and the restriction ¢, of ¢ to FW)
is a temperate distribution. The Fourier transform ¢, of ¢, is a temperate distribution
of & (W™) which annihilates every element k of 2(W *) with k (({))=0 (5.12). Thus

(5.14) ¢=2; cjéﬁ{g, where the ¢;’s are constants and 6?} denotes the j-th
derivative of the Dirac measure at the point {/} ([16]).

Thus:

(5.15) @(w)=e""®* (p(w) where p denotes a polynomial on g,).

As ¢€L;(g,), p must be an element of Q.

On the other hand, every p’ in Q,, defines an element ¢ of j(I)* by (5.15). Thus
there exists a bijection between j(/)* and Q,, and the theorem follows from this. q.e.d

(5.16) Examples: Let g4, ; be the Lie algebra with the basis elements
dl, sy dka Wla [ERS Wr’ yl, reey yks Z. ‘(7' = k)

Let &,44, ..., & be elements of W* different from 0.
Let {;(1=j=r) be defined by &;(w)=06;,, s=1,...,r.
The Lie multiplication of g, is given by:

[di> Wp] = éi(wp)yi; 1 = i = k’ 1 =s5= r
[di,yl=06,z 1=i,j=k

# is a step 3 nilpotent Lie algebra.
Let I€g*, such that I/(z)=1. Then:

= g(D+lp gl = W+Y+Rz (Y = 3% Ry)
For weW =23 Rw,
a; (W) = (L, [d;[d;, wll) = 6;;¢;(w).
Thus w(w)=det (1+3 AW =][, (1+% W)™

If r=kw=2% tw
t2
w(w)=]] [1+2]

Then Q,=R1 and then T corresponding to 1 is a point of synthesis in G, ;.
If r<k, {11=2_,a;¢; and not all the a;’s are zero.
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So
)
a0 = 3oy [yl 1E,0] = C (o I, I = €7 [ﬂ;=l[1+%lc,~<w>l2) ]

for some constants C, C’ = 0.
And

. % 1 3
a0 = s a0 = € (175, (142 5 00) | (1430 00)
=C” ]]'f':l (1-}-% 1€ j(w)gz]‘ = C’ow(w) for some constant C” = Q.

Thus Q,, contains an element, namely &, ,, which is not a constant thus 7€ GA,, k
corresponding to 1 is not a set of synthesis.
If r=1
o(w,) = [[f_,1+C,»)} for some Cy, ..., C, = 0.

J

k.
Thus w(r)=0(¢?) and thus dim Qm=[§]+l.

k
Furthermore ker TR (ker T')22... 2 (ker T)[-E]Jrl are the only elements of
I 1y
If r=2, k=4 and &,=¢&;, {,=¢&, then:

1 2% 1 2% oo, o, 1 22%
o(tw,+lawy) = 1+’2—t1 1+7t2 = 1+'2—(t1+tz)+zt112

0,, has the following basis: {1, #,, 2, t,,} and the elements of Q,(inv) are:
{Ry, R(t;+ct)+Ry, Rey, O, |c#0}.
Thus Q,(inv) has an infinity of elements.

6. Final remarks

(6.1) The computations become much more difficult if G is no longer of step 3.
No general results are known.

(6.2) In [12], it has been shown that for any point T in the dual of nilpotent
connected Lie group, the algebra ker (T')/;r, is always nilpotent. The exact degree of
nilpotency of this algebra is unknown (in general). It can be estimated by the degree
of growth of G is T is in general position. (see [12]). Suppose now that there exists an
ideal 4 ing, such that (I, [#, 4])=0 (I in the orbit O of T) and such that [+4*cO.

Let Ly=1I, and O,=G-l,C4*.

Let H=exp h. Using theorem 2.4 of [5], it can be shown that the degrees of
nilpotency of ker T'/;r, and ker O,/ (09 coincide.
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As [4, #] is an ideal in ¢ on which I disappears, we may as well suppose that

[#4, £]1=0, that means that # is abelian.

The determination of the degree of nilpotency is thus reduced to the study of

the G-orbit O, of the element /; in the dual of the abelian group #4. It follows from [8]

that the degree of nilpotency of ker O/ (0 is less than dim [%]-I—l.

10.
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