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1. Introduction and Preliminaries

In [4], the topological transversality theorem of A. Granas [3] was used to
establish existence principles for systems of differential equations in R™. The
results developed in [4] extend rather easily to the case of Banach space-valued
solutions. For initial results along these lines see [6]. The present paper ex-
tends the general existence results in the papers above in two directions. First,
we do not ask that the right member of the differential equation be completely
continuous. Instead, we introduce a new property, called K-Carathéodory, that
is automatically satisfied when the right member is Carathéodory or continu-
ous and the Banach space is finite dimensional and implies condition (x) in [6]
in the infinite dimensional case. With this new property, the basic existence
principles have the same formulation in a Banach space as in R™. Second, we
enlarge substantially the class of admissible boundary conditions considered in
[4] and [6]. In effect, the results formulated below allow any linear boundary
forms which together with the differential operator in question determine an in-
vertible operator. In the papers above, the boundary conditions were required to
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satisfy a particular factorization property. This property is satisfied by typical
multipoint boundary conditions and natural integral boundary forms, but is not
satisfied by matrix boundary conditions such as Au(0) + Bu'(0) = ¢ € R". The
present treatment includes all these boundary conditions and their Banach space
analogues.

Throughout E is a real Banach space with norm |-|. In case F = H a Hilbert
space, we denote the inner product by - so that [h|> = h-h for h € H. We denote
by C™ = C™([a, b], E) the Banach space of functions u : [a,b] — E such that
u(™) ig continuous and equipped with the norm

|ulm = max{Julo, [&/lo, - -, [u™ o},

where |v|o = max{|v(t)| : t € [a,b]} for any v € C°([a,d], E) = C([a,d], E). We
set Cy = Co([a,b], E) = {u € C([a, ], E) : u(a) = 0}.

Let u : [a,b] — E be a measurable function. By f t)dt we mean the
Bochner integral of u, assuming it exists. See [1,7] for propertles of the Bochner
integral mentioned below. A measurable function u : [a,b] — E is Bochner in-
tegrable if and only if |u| is Lebesgue integrable. Moreover, if u : [a,b] — E
is measurable, |u(t)| < g(t) almost everywhere, and g(t) is integrable, then u(t)
is integrable. Let u : [a,b] — E be integrable and set v(t) = f: u(s)ds. The
function v : [a,b] — E is absolutely continuous, v is differentiable almost every-
where, and /() = u(t) almost everywhere in [a,b]. Finally, let u : [a,b] - E
be integrable and T : E — FE; be a bounded linear operator, where E; is also a
Banach space. Then Tu : [a,b] — F is integrable and [, Tu(t)dt = T f,, u(t) dt
for each measurable subset N C [a, b].

As usual, L?[a,b] = L?([a,b], E) for 1 < p < oo denotes the Banach space of
measurable functions u : [a,b] — E such that |u|? is Lebesgue integrable with
flull, = ( f: |u(t)|? dt)}/?. The space L>®[a,b] is defined in the usual way and
equipped with the essential supremum norm || |«. In our context, [a,b] is a
bounded interval and Holder’s inequality and an earlier remark imply that each
L? function is Bochner integrable. We define the Sobolev classes W¥P[a,b] =
W*?([a,b], E) inductively as follows. A function u € W'?[a, b] if it is continuous
and there exists » € LP[a,b] such that u(t) — u(a) = f: v{s)ds, for all ¢t in
[a,b]. Then for k > 1,u € W*P[a,b] if u,u’ € WF1P[q,b]. Notice that if
u € WbP[a,b] then u is differentiable almost everywhere on [a,b],u’ € L?[a, Y],
and u(t) — u(a) = f !(s) ds, for t in [a, b].

We are concerned with solutions to initial or boundary value problems of the
form

y® () = f(t,y(@),...y* V1), yeB,
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where y : [a,b] — E and the differential equation is to hold either everywhere or
almost everywhere according as f is continuous or is a Carathéodory function.
The admissible boundary conditions B will be described next.

Boundary Conditions. Fori=1,2,...,k, let U; : C*~([a,}], E) — E be
continuous linear operators. Let 2y, ..., z; be real-valued and a basis of solutions
for the scalar equation Agz = z(® = 0. As usual, E* is the k-fold cartesian
product of E. Define

U:E*— EF
by
Uley,-..rcx) = (Ui(erzr + - - - + crz), - .-, Up(er121 + - + cp2g)).
We are concerned with the invertibility of U. It is easy to check that if U is
invertible for one basis of solutions zi,..., zx it is invertible for all such bases.
Thus, any convenient basis can be used.

We say a function v € C™([a, ], E) with m > k — 1 satisfies the boundary
conditions B if U;(u) = v; for i = 1,2,...,k, and where v; € E are given data.
We write u € B when u satisfies the boundary conditions B. When ~; = 0 for
each ¢ we write B = Bg. Thus, u € By means that U;(u) =0 fori = 1,2,..., .
It is convenient to define Cg = CE([a,b], E) = {u € C™([a,b],E) : u € B}.
Define

A:CE -, Ay =y®),

L: C]’;_l — Co, Ly(t) = y*(t) — y*=1(q).
Note that A is linear and L is affine. We say a continuous bijection is invertible
if it has a continuous inverse.

LEMMA 1.1. Let U, A, and L be as above. The following statements are
equivalent.

(a) U : E* — E* is invertible;

(b) A: C’]’go — C is invertible;

(c) L:CE - Cy is invertible.

Proor. Consider (a) and (b). Let g € C and define

11
/ g(to) dto, k=1,

a

1 tx—1 t1
/ / / g(to) dto...dtk_l, k 2 2.
aJa a

The differential equation y*) = g has general solution y = c;2; )+ - +erzr(t)+
G(t), where c; € E are arbitrary. Consequently, Ay = g holds precisely when y
is given by the previous expression and ¢y, ..., ¢ satisfy

G(t) =

U,(y)=0 for i=1,...,k <= U(Cl,...,ck)=—(U1(G),...,Uk(G)).
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The equivalence of (a) and (b) is now clear. Next, consider (a) and (c). Let
g € Cp and define G1(t) = G'(t) with G as above. Since g(a) = 0, it is easy to
check that Gy is a particular solution to y*—1(t) — y*~1)(a) = g(t). It follows
that the general solution of this equation is y = ¢121(t) + - - - + crzx(t) + Gi(t),
where ¢; € E are arbitrary. Now, reason as above to see that (a) and (c) are
equivalent. O

REMARK. We can give an elementary extension of Lemma 1.1: Define Agz =
apz® + .-« + a12' +agz, where a; € R and aix # 0. Let zi,. .., 2 be real-valued
and a basis of solutions for the scalar equation Agz = 0. Define U : E¥ — E* as
above and define

A: C{;o — C, Ay = aky(k) + -+ a1y’ + aoy,

a

k i
L:O5 — 0 Lyl =3 a9 0 V@) + ao [ 4() s
j=1

Then Lemma 1.1 holds and the proof is virtually the same: use variation of
parameters to construct G(t) such that AG(t) = g(t) and G(a) = G'(a) = -+ =
G*-1)(g) = 0. Now, reason as before.

The boundary conditions in [4], where E = R", are of the type considered
here but with the added restriction: for each i = 1,...,k there is a scalar form
U; : C*1([a,b],R) — R such that U;(p(t)c) = Ui(¢(t))c for each (k — 1) times
differentiable scalar function ¢(¢) and each vector ¢ € E. For such forms,

Ules,...,cx) = (I}l(zl)cl +- 4 I-Il(zk)ck, .. .,ffk(zl)cl +t (}k(zk)ck)
= [Ti(2))]e, where ¢ = (¢1,...,cx)T.
Thus, U is invertible if and only if det [ﬁ;(zj )] # 0, which is the principal invert-
ibility condition used in [4].
Important boundary conditions that do not have the special factorization
property above and which are treated here include the separated boundary con-
ditions

U1(y) = Aoy(0) — Boy'(0) =7, Ua(y) = A1y(1) + Bry'(1) = s,

where A; and B; are particular bounded linear operators and r, s € E. For use
later, we prove

LEMMA 1.2. Let U; and U be separated boundary forms as above and B
denote the corresponding boundary conditions. The operator A : Clz_,,o — C is
invertible if either Ag+Bgy and M = (A1+B1)— B (Ao+By) 1By are invertible,
or Ay + By and N = (A + Bo) — Bo(A1 + B1)™ !By are invertible.
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PROOF. We use Lemma 1.1. In this context, it is convenient to choose the
basis z1(t) = ¢ and 23(t) = 1 - ¢. Then the boundary operator U is given by

U(cx, e2) = ((Ao + Bo)ez — Bocy, (A1 + Bi)es — Bies).

Assume that Ao+ By and M are invertible. The other case follows by symmetry.
A short calculation shows that the equation U(e;, cp) = (d1,d2) is equivalent to

cx = (Ao + Bo)_l[B()C]_ + dl],
[(A1 + B1) — B1(4q + By) ™ Boley = dz + B1(Ao + Bo)~Yd;.

By assumption the second equation uniquely determines ¢; and then the first
equation uniquely determines c;. Clearly ¢; and c; depend continuously on
(d1,d2), so U is invertible. O

In some applications given in Sec. 3, we shall assume that E = H is a Hilbert
space and that the boundary conditions B are Sturm-Liouville, SL-boundary
conditions: that is,

Ui(y) = Aoy(0) — Boy'(0) =7, Ua(y) = Ary(1) + Biy/(1) = s,

where the bounded linear operators Ag, By, A;, and B, satisfy the following
conditions:

(i) Bo=0orI; By=0o0rlI.
(ii) Ao and A; are bounded linear operators on H such that there exists
o, 01 > 0 with Aoz - z > aolz|? and Arz - 7 > oy |z]2.

(iii) ap and By are not both zero; a; and B; are not both zero.

Thus, Ag (resp., A;) is positive definite or nonnegative definite according as
ap (resp., ay) is positive or zero. Notice that we do not require Ay or A; to
be symmetric. Evidently, the SL-boundary conditions generalize the familiar
Sturm-Liouville conditions for the classical case when F = H = R.

We shall use the following elementary facts. A short proof is included for
completeness.

LEMMA 1.3. If'C: H — H is a positive definite, bounded linear operator
such that Cz - x > 7y|z|? with v > 0, then C is invertible and the operator norm
|IC~ <1/,

PROOF. The relations v|z|> < Cz -z = z - C*z imply that C and C* are
one-to-one and y|z| < |Cz|. Then R(C) = N(C*): = H. Consequently, if
y € H there exists Cz, — y. Then y|z, — | < |Czn — Czpy| implies that
{zn} is Cauchy, £, — z € H,Cz, — Cxz; therefore, y = Cz and C is onto. So
C~! exists. Finally, set z = C'y in ~]z| < |Cz| to obtain |[C~1y| < (1/7)|y|
and |CY < 1/4. ad
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LEMMA 1.4. Let B denote the Sturm-Liouville, SL-boundary conditions.
Then the linear operator A : CZ ([0,1],H) — C([0,1],H) is invertible if
ag + oy > 0.

PrOOF. The desired conclusion follows from Lemmas 1.2 and 1.3 because
Ao + Bo and M = Ay + By — B1(Ap + By)~! By are positive definite and hence
invertible. This is clear for Ap+ By because ag or By are not both zero. Likewise
if Bo = 0 or By =0, then M = A, + B, is positive definite. If By = B; = I then
M=A +I—(Ag+I)"!and

Mz-z=Aiz-z+z-z— (Ao + )7z 2> (a1 + 1)laf* - (Ao + D)7 |z

By Lemma 1.3, |(A0 + I)_1| < 1/(ag + 1). Therefore,

apay +agtay, o
Mz -z > 1-— 22 074
220+ ao+1)|x| e 1
and ag + a1 > 0. [}

Carathéodory and K-Carathéodory Functions. Let E; and Es be Ba-
nach spaces. A function f : [a,b] X E; — Ey is an LP-Carathéodory function
if:

(1) the map ¢t — f(t,z) is measurable for each z in Ey;

(2) the map z — f(t,2) is continuous for almost all ¢ in [a, b];

(3) for each r > 0 there exists h, € LP([a,b],R) such that |z| < r implies

|f(t,2)| £ hy(t), for almost all ¢ in [a, b).

By a Carathéodory function we mean an L!-Carathéodory function.

Now, we introduce a new property that replaces a customary complete con-
tinuity assumption made in treating nonlinear differential equations in Banach
spaces.

A function f : [a,b] x Ey — E; is said to be K-Carathéodory if it satisfies
properties (1) and (2) of a Carathéodory function and also has the following
property, called property-K:

for each r > 0 there exist a nonnegative function 5, € L?([a, 8], R)
and a compact set K, in E, such that |z| < r implies f(t,2) € 5,(t) K,
for almost all ¢ in [a, B].

It is clear that a K-Carathéodory function is a Carathéodory function. Also,
it is easy to check that if f is completely continuous (that is, maps bounded sets
into relatively compact sets) then f has property-K with ,(t) = 1 for each 7 > 0.
Thus, in the finite dimensional context, a continuous or Carathéodory function
has property-K and, in fact, condition (3) in the definition of a Carathéodory
function implies property-K. In other words, Carathéodory and K-Carathéodory
are equivalent in finite dimensions. This is not true in infinite dimensions.
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A Carathéodory function f : [a,b] x E; — E3 induces an associated operator
Ny : C([a,b], E1) — Co([a,b], E2) defined by Nyu(t) = f: J(s,u(s))ds. We use
the following properties of Ny.

THEOREM 1.5. Let f : [a,b] x E; — E; be a K-Carathéodory function. Then
the operator Ny : C([a,b],E1) — Co([a,b], E2) is continuous and completely
continuous.

PROOF. Since f is a Carathéodory function, the reasoning used in [4] in R™
can be applied in the Banach space context to establish that N; is continuous and
that N;S is bounded and equicontinuous for each bounded set S c C ([a,b], E1).
Thus, by the general Arzela-Ascoli Theorem, N;S will be relatively compact,
and therefore N; will be completely continuous, if for each ¢ in [a, b] the set

{Nsu(t):ue S} = {‘/:f(s,u(s))ds Ty € S}

is relatively compact in E3. To prove this, let r > 0 be such that |u|y < r for all
u € S. By property-K there is a function € L*([a, b], [0, 00)) and a compact set
K in E; such that f(t,u(t)) € n(t)K for almost all ¢ in [a,b]. Let b5 € E} and
suppose K is contained in the half-space, where b3 < ¢; that is, z € K implies
b3(x) < c. For each u € S and almost all s in [a, b],

f(s,u(8)) = 1(8)ku(s), for some k() € K.
Then, for almost all s,
b3(f (s, u(s))) = b3(n(8)ku(s)) = n(8)b3 (ku(s)) < 1(s)c.
Now, suppose f: n(s)ds > 0. Then

by (m /:f(S,u(s)) ds) = m /at b3(f(s,u(s)))ds <e.

Since the intersection of all half-spaces that contain K is its closed convex hull,
we find that

./a«t f(s,u(s))ds € (/a‘ 77(s)ds)E(K) =K,

which is compact by a theorem of Mazur. Finally, if f: n(s)ds = 0, then n(s) = 0

almost everywhere on [0,], f(s,u(s)) = n(s)k,) = 0 almost everywhere on

[0,%], and f: f(s,u(s))ds = 0. Therefore, f: f(s,u(s))ds € K, for each u € S.

As noted above, this completes the proof that Ny is completely continuous. [
The map

i1 C* (b, B) — C((a,bL, B*), ju= (u,,...,ultD)
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is continuous and maps bounded sets to bounded sets. Therefore, if f : [a, ] x
E* - E is a K-Carathéodory function, the operator

N;j = Ny oj: C*([a,b], E) — Co([a,b], E)
inherits all the properties in Theorem 1.5. Thus,
COROLLARY 1.6. Let f : [a,b] x E* — E be a K-Carathéodory function and

Ny its associated Carathéodory operator,

Nfu(t)=/ F(s,u(s),...,uFV(s))ds.

Then Ny is continuous and completely continuous.

2. Existence Principles

Let U; : C*~1([a,b], E) — E be continuous linear operators as in Sec. 1 and
fixy; € Efori=1,...,k. Let B specify the boundary conditions U;(u) = ~; for
i=1,...,k. Consider the k** order problem

(P) y® = f(t,y,...,y*Y), yeB,
where f : [a,b]x E* — E is a K-Carathéodory function, and the related problems
(Px) y® = 2f(t,y,...,y* ), yeB,

where A € [0,1]. If f is continuous, a solution y to (P,) is a classical solution:
that is, y € C*([a,b], E) and satisfies (Py) for all ¢ in [a,b]. If f is an L? -
Carathéodory function, a solution y to (Py) is a Carathéodory solution; that is,
y € W¥*P([a,b], E) and satisfies the differential equation in (P,) for almost all ¢
in [a, b].

The main result of this paper is the following existence principle.

THEOREM 2.1. Assume that the linear operator A : C§ — C is invertible
and that f : [a,b] x E* — E is a K-Carathéodory function. Assume there ezists
a bounded open set G C CE™'([a,b), E) such that for any A € [0,1) and any
solution y to (P») we have y € G. Then the problem (P) has a solution y € G.

Proor. It follows easily from the properties of the Bochner integral men-
tioned in Sec. 1 that y is a solution to (P,) if and only if y € C]’:f,_l([a, b, E)
and .

y* () —y*V(a) = ,\/ £(5,4(8), ..., y* V() ds.
a
Equivalently,
Ly = ANyy,
where L : Cﬁ_l — Cp and Ny : Cg'l — (p are the operators introduced in
Sec.1. Recall that Ny is continuous and completely continuous (Corollary 1.6)
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and that L is an invertible, affine operator (Lemma 1.1). Thus, ¥ is a solution
to (Py) if and only if

y = AL Ns(y) + (1 — A)L7(0).

Observe that the operator L™'Ny is continuous and completely continuous,
L7(0) € G, and there is no y € &G such that y = AL™ Nj(y) + (1 ~ A)L~1(0)
for some A € (0,1). With these observations, the conclusion of Theorem 2.1
follows from the nonlinear alternative (Th. 2.3 in [4]), which is a variation on
the well-known Leray-Schauder alternative. O

REMARK. The more refined existence principles stated in [4] for R and when
A is invertible hold in a Banach space under the assumptions of Theorem 2.1.
The proofs are the same, once property-K is available.

Similar reasoning leads to existence results for certain problems with nonlin-
ear boundary conditions. To this end, let V; : C¥~([a,b], E) — E be continuous
and completely continuous and let U; be continuous linear operators as in Sec. 1.
Denote by B the nonlinear boundary conditions given by Uj(u) = V;(u) for
i=1,...,k. Consider the k' order problem .

(P) y® = fty,....s* M),  yeB,
and the related family of problems

(P») y® =2ty .., 3%, Ui(y) = AVi(w),
where A € [0,1] and i =1,2,...,k.

THEOREM 2.2." Assume that the linear operator A : CED — C is invertible
and that f : [a,b] x EF — E is a K-Carathéodory function. Assume there exists
a bounded open set G C C*¥~Y([a,b], E) such that for any A € [0,1) and any
solution y to (P,) we have y € G. Then the problem (P) has a solution yE€QG.

PROOF. Define L, Ny : C*~1([a,b], E) — Co([a,b], E) x E* by
Ly = (y* 1 — y*(a), Uy (y), - .., Ur(9)),
Nyy = (Nsy, Vi(y), ..., Vi(¥)).

It follows from Lemma 1.1 that the operator L is invertible. Consequently, y is
a solution to (P 1): equivalently, Ly= AN +y, if and only if

y = AL"1N¢(y).

The rest of the proof goes as in Theorem 2.1. O

REMARK. In [4], existence principles in R™ are established for (P) and (P)
by a translation technique when the natural differential operator is not invertible.
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The resulting translate of f is not K-Carathéodory in the Banach space setting.
We will develop existence principles for this situation in a forthcoming paper.

In most applications, an a priori bound r with |y|x—1 < r is established for
solutions y to (Py). Then Theorem 2.1, applied with G = {y € CE™!([a,b], E) :
|y|k—1 < 7}, yields a solution y to (P) with |y|x—1 <.

3. Applications

This section contains several applications of the existence results given in
Sec.2. The examples extend and refine corresponding results in the literature,
as noted below.

Cauchy Problems. We begin with an extension of Theorem 5.1 in [4] from
R™ to a Hilbert space. We also generalize the growth condition modestly. Con-
sider the Cauchy problem

y=f(ty), O0<t<T,
y(0) =r,

and the related family of problems
¥y =Aft,y), O0<Lt<T,
y(0) =,

where 7 € H and A € [0, 1].

)

(Z»)

THEOREM 3.1. Let f : [0,T] x H — H be a K-Carathéodory function such
that
y- fty) <a®e(yl),  for ae te[0,T] andye H,

where ¢ : [0,00) = (0, c0) is Borel measurable, a € L1([0,T],[0,00)) and

/oTa(t)dt< /l‘:loﬁdx

PRrOOF. Let B denote the initial condition y(0) = r. Evidently, the operator
A Cllag — C, Ay = ¢/, is invertible. So by Theorem 2.1, it suffices to establish
an a priori bound in C[0,T] on solutions y to (Zy) for A € [0,1). Such a bound
follows immediately from the next lemma, applied with ¢, = 0, R = |r|,z = |y],
and 9(z) = p(z)/z. 0O

LEMMA 3.2. Let R > 0, 9: [0,00) — (0,00) be a Borel function end o €
L([0,T], [0,00)) be such that

‘/O‘Ta(t)dt</:°ﬁdx.

Then (I) has a solution.
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Then there exists a constant M, dependent only upon o, v, end R, such that for
any z in WH1([0,T],[0,00)) such that 2'(t) < a(t)y(z(t)) for a.e. t € [0,T] and
z(to) < R for some ty € [0,T], we have 2(t) < M for all t € [to, T).

REMARK. If in the previous lemma the inequality 2'(t) < a()y(z(t)) is
replaced by —z'(t) < a(t)i(2(t)), then the conclusion is replaced by z(t) < M
for all £ € [0, ¢o).

PRrOOF. Let z € Wh1([0,T],[0, 00)) be such a function. Suppose z(t) > R
for some ¢ € [to, T]. Then there exists T € [to, ) such that z(r) = Rand 2(s) > R
on (7,t]. Now,

7'(s) < a(s)y(2(s))-

Divide by 1, integrate from 7 to ¢, and change of variables (Lemma 2 in [2]) to

obtain ® . r
2 dz Z'(s)ds / / * dz
= < a(s)ds < —
L osw= L <)) «0ws< [ 55
by assumption. Thus, there exists M > R independent of z such that z(t) < M
in [t(), T]. O
A useful corollary of Theorem 3.1 follows.

COROLLARY 3.3. Let f:[0,T]| x H — H be a K-Carathéodory function such
that
|£(t,9)| < a(t)d(lyl) for a.e. t € [0,T],
where 1 : [0, 00) — (0,00) is Borel measurable, a € L*([0,T),[0,00)) and

/OT a(t)dt < »/I.: %

The analogous result holds in a Banach space when 1) is nondecreasing.

Then (Z) has a solution.

THEOREM 3.4. Let f :[0,T] x E — E be a K-Carathéodory function. As-
sume that there exists a nondecreasing, Borel function v : [0,00) — (0, o) and
a € L([0,T],[0,00)) such that

|F& )| < a®)d(ly))  fora.e. t€[0,T] andy € E.
Then (T) has a solution provided

T oo
dx
ot)dt < / —.
/(; ®) | Y(=)
PROOF. As in Theorem 3.1, it suffices to find an a priori bound in C[0, T]

for solutions y € W11[0,T] to (Zx) for A € [0,1). For such a y, y(t) = y(0) +
oty’(s) ds so that

lw(®)] < Irl + / 1v'(5)] ds = ().
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Clearly, p(t) is absolutely continuous and p'(t) = |y'(¢)| almost everywhere. Since
9 is nondecreasing,

A () =1y ()] < a®)d(ly(B)]) < alt)p(p(t)

almost everywhere. Thus, Lemma 3.2 applied with o = 0,R = |r|, and z = p
gives the existence of a constant M, independent of A, such that |y()] < p(t) <
M for t € [0,T). Thus, |ylo < M is the required a priori bound. a

REMARK. Let f(t,y) = n(t)g(t,y), where n € LI([0,T],R) and g(t,y) is a
completely continuous, Carathéodory function. Under these assumptions, it is
easy to check that f = ng is K-Carathéodory; consequently, Theorem 3.4 implies
Theorem 2.1 in [6].

Sturm-Liouville Problems. Let H be a Hilbert space. Consider the
boundary value problem

y' = f(t,u,9), 0<t<l,
(8L) Agy(0) — Boy'(0) =1
Ay(1) + Biy'(1) = s,
where f : [0,1]xH? — H,r,s € H, and Ay, By, A1, B, : H — H are bounded lin-

ear operators that generate Sturm-Liouville, SL-boundary conditions; see Sec. 1.
Consider the related family of problems

v =ty 0<t<1,
(SL») Aoy(0) — Boy'(0) =,

A1y(1) + Biy'(1) = s,
for A € [0,1].

THEOREM 3.5. Suppose the SL-boundary conditions are such that ag+oay >
0 and that By and By are not both zero. Assume: f : [0,1) x H> — H is
continuous and completely continuous; there is a constant M > 0 such that

aoM > |r|, a1M > |s|,

and
ly=M and y-p=0=>y-f(t,y,p)+Ip]* > 0;
there is a Borel function 9 : [0,00) — (0,00) such that |f(t,y,p)| < ¥(|p|) for
(t, |y]) € [0,1] x [0, M] and
® dx

— > 1, where ¢ = max{
e ()

|AolM + |r| |A1IM+|8|}
1Bol * B
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with the convention that when |By| =0 or |By| = 0 the corresponding term in the
right member is deleted. Then the Sturm-Liouville problem (8L) has a solution
y € C*([0,1], H).

REMARK. Theorem 3.5 extends Theorem 3.1 in [6]. In the present theorem,
the conditions on f are somewhat less restrictive. The boundary data in 6] cor-
responds to the present ones further restricted so that Ay and A; are multiples
of I. The boundary conditions in Theorem 3.5 exclude pure Dirichlet data at
both ends, exclude pure Neumann data at both ends, and require any pure Neu-
mann condition to be homogeneous. We shall consider homogeneous Neumann
conditions at both ends in a forthcoming paper. The proof given here does not
apply when f is K-Carathéodory. That case will be treated in a separate paper.

PROOF. Since ap + a; > 0 in the SL-boundary conditions, the operator
A 02 — C is invertible by Lemma 1.4. Consider the auxiliary problem
¥’ = Mt y,9), 0<t<1,
(8£x,1) Aoy(0) ~ Boy'(0) =,
Awy(1) + Biy' (1) = 5,
where A € [0,1] and

M
M ’ > M,;
fl(t,y,p)={ [ (t o’ ) |yl
( ,y,P), Iyl S M.

It is easy to confirm that f; is continuous and has property-K. Observe that
y - f+|p|* > 0 implies that y - Af + |p|2 > 0 for X € (0,1]. Consequently, for
A €(0,1],

(3.1) lyl<M and y-p=0=>y-Afi(t,y,p)+|p|> > 0.

Indeed, if |[y| > M and y - p = 0 then
M My
y-Afi(ty,p) + 1ol = Tyfi “Af (t, —m,p) +pl* > 0,

because [My/|y|| = M and (My/|y|)-p =

We shall prove that (S£1,1) has a solution y € C? with |ylo < M. Evidently,
such a y also solves (§L£). The existence of a solution to (S£; ;) follows from
Theorem 2.1 once we establish an a priori bound in C! on solutions y€C?to
(SLx,1) for A € [0,1). Lemmas 3.6 and 3.7, that follow, establish that there is
a constant M; independent of A such that |y|; < max{M, M;} for any solution
y € C? to (5L 1) for A € [0,1). These lemmas complete the proof of Theorem
3.5. O
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LEMMA 3.6. Ify solves (SLx 1) for some X € [0,1), then |ylo < M.

PROOF. The problem (SCq,1) has the unique solution y = 0. So without loss
in generality assume A € (0,1). Let r(¢) = 2|y()|>. Then
r'(t) = y(t) -y’ (®),
(8) = y(t) - Ma(t, (@), 4’ () + v’ ()]
Now, |y(to)| = |ylo for some tq € [0,1]. If o € (0,1) then r'(¢) = 0 and
™ (to) < 0. In view of (3.1) and (3.2), we find that |y(to)| < M. Suppose next
that o = 0. Since (0) is a maximum, r'(0) = y(0) - ¥'(0) < 0. We consider two
cases: ap > 0 and o = 0. First, suppose that ag > 0. Since By = 0 or I and
agM 2 |r|, we find that
0 = y(0) - Boy'(0) = y(0) - Aoy(0) — ¥(0) - 7
> aoly(0)|* ~ Irlly(0)]
> |y(0)|(axoly(0)| — a0 M).

(3.2)

So

ly(0)| < M.
Second, suppose that ag = 0. Then r = 0, Bg = I, the boundary condition
at t = 0 is Agy(0) — ¥’ (0) = 0, and, hence,
0> 7'(0) = y(0) - ¥'(0) = y(0) - Aoy(0) 2 0.

Then +/(0) = 0 and r”(0) < 0 for a maximum at fp = 0 and reasoning as in
the case when tp € (0,1), we find that |y(0)] < M. Finally, if {, = 1, we find
|¥(1)] < M by reasoning as for o = 0. g

LEMMA 3.7. If y solves (SLx1) for A € [0,1) then |y'|o < My for some
constant independent of A and y.

ProOOF. From Lemma 3.6, |y|o < M. Either By or B; is nonzero. If By = I,
then

y'(0) = Agy(0) — r => |y’ (0)] < |Aolly(0)| + |r| < [Ao]M + |r|.

Likewise, if B; = I then |y'(1)] < |A1|M + |s|. Consequently, there exists
7 € [0,1] such that |y(7)| < ¢ with ¢ as in Theorem 3.5. On the other hand,

W'(@) - y" @O < 1Y Olyly' @)D,  for £ €[0,1).
Thus, by Lemma 3.2 and the remark following it, there is a constant M; such

that
|¥']o < M.
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Our last example extends results in [5] for differential equations in R™ and
with f continuous to a Hilbert space H and with f a K-Carathéodory function.
In addition, the boundary conditions permitted here are more general than in
[5] even when H = R®. Finally, the principal growth restriction on f in [5] is
relaxed somewhat: K = K(t) is constant in [5].

THEOREM 3.8. Let f : [0,1] x H?2 — H be a K-Carathéodory function and
assume SL-boundary conditions with g + a1 > 0 and r = s = 0. Assume there
is a constant o > 0 and e function K € L'([0,1],[0,00)) such that

y- f(ty:0) +Ipl* > —K@)(1 + |yl + |y - p) + o|f(t, 9, p)]
Jor almost allt € [0,1] and y, p € H. Then (SL) has a solution.
Proor. It is sufficient to find an @ priori bound in C*[0,1] on solutions y
to (S£,) for A € [0,1). It turns out that two key norm estimates in [5] extend
directly to any Hilbert space H. We record these results as Lemmas 3.9 and 3.10.

The reader is referred to [5] for the proofs, which can be modified to accomodate
the variability of K.

LEMMA 3.9. Let v be a nonnegative constant and K € L'([0,1],]0,00)). Let
u be a nonnegative function in W»1([0,1),R) that satisfies the inequalities

w'(0) >0, «'(1) <0,
u(0) <yu'(0) or wu(l) > —yu'(1),
u’(8) 2 —K@)[1+ (2u®)? + [W'(®)]),  for a.e. t €[0,1].
Then, there exists a constant My (depending only on K and ) such that
lu(t)] € Mo, |u'(t)] < My, forte0,1].

Lemma 3.10. Let 8 € L([0,1],]0,00)), and let My, My, and ¢ > 0 be
nonnegative constants. Let y € W2([0,1], H) satisfy

|y(t)| < MOa |y(t) : y’(t)l < MI’ for te [0’ 1]1

2
;?(%ly(t)lz) > —0(t)+oly"(t)l, for a.e. te[0,1].

Then there exists a constant M, (depending only on My, M, 0, and 6) such that
ly'(t)] < My for all t € [0,1].

Now, let y € W*1([0,1], H) be a solution to (SL,) for some A € [0,1). We
claim that u(t) = |y(t)|? satisfies the hypotheses in Lemma 3.9. Indeed,

u(t)=y(t)-y'(t), u"(t) =y(t) At y(t),v' @) + ly'(t)2.
From the inequality in Theorem 3.8 we deduce that

y - f&yp) +IpP 2 K@@+ |y| + |y - pl),
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y-Af(ty,p)+ [pI* 2 —K@) (1 + |yl + |y - p]),
for A € [0,1). Consequently, u” > =K (1+ (2u)/2+|u"|) for almost all ¢ € [0,1].
Suppose ap = 0. Then By = I and u'(0) = y(0) - ¥'(0) = y(0) - Apy(0) > 0. If
ag > 0 then Ay 1 exists and is nonnegative definite. Since By =0 or I,

w'(0) = 4/(0) - y(0) = ' (0) - A5 Boy'(0) > 0.

In the same way, we show that u/(1) < 0. Suppose again that ap > 0. If Bp=0
then Aoy(0) = 0,0 = y(0) - Aoy(0) > aoly(0)|2, and y(0) = 0. Then u(0) =0
and u’(0) = 0. If Bo = I then

u'(0) = y(0) - 3(0) = y(0) - Aoy(0) = exo|y(0)|* = 2a0u(0).

In either case, u(0) < vyu'(0) for v = ap/2. Now, if ap = 0 then @y > 0 and
we find that u(l) < —y2/(1) for v = @;/2, by similar reasoning. Therefore,
u = |y(t))?/2 satisfies the hypotheses of Lemma 3.9 and there is a constant M
independent of A such that

ly(t)] < Mo, |y(t)-y'(t)| < My,  fort €[0,1].
Then,

& o) =) 1) + WO
— MYV O) + O
> KO+ O]+ 170 - 10D + oA (D), ¥ )
> —6(t) + oly" (t)],

for 8(t) = (1 + 2Mg)K(t) and 0 > 0. By Lemma 3.10 there is a constant
M depending only upon My, K, and o such that [y|o < M. Finally, |y); <
max{ My, M}, which is the required a priori bound. |
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