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1. Introduction and notations
We consider the system of second order differential equations
48] 4+ VG(t,z(t)) =0,

where G : R x RY — R is a continuous function, periodic with minimal period
T > 0 in its first variable and is such that its first and second derivatives with
respect to its second variable D,G(t, ) and D2G(t,z) are continuous; we shall
write VG(t,z) for D,G(t,z). When N = 1 we write equation (1) in the form

(2 £(t) + g(¢,=(t)) = 0,
and, accordingly, we define
T
G(t,z) =/ g(t, s) ds.
0

Our purpose is to study the problem of the existence of kT-periodic solutions of
(1) or (2) (k > 1 is an integer) which are not T-periodic. These solutions will be
found by applying Morse theory to the associated functional

orto)= | . (E”(Zt—"z - G(ta(v) at
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for z € Hy = Hi (R; RY), the Sobolev space consisting of the kT-periodic
absolutely continuous functions a : R — R, whose first derivative is in
L*([0,kT]; RN), equipped with the usual inner product

kT
/0 [(z(2), y(£) + (£(t), 9(t))] dt.

Here (-, -) stands for the Euclidean inner product in RY and || - || = (-, -)!/2.
Identifying RY with the space of constant functions we may write Hy = RY & Hj,
(orthogonal decomposition) and, for each z € Hy,

2(t) =  + (1),

1 kT
z= / z(t) dt,
0

where

kT

kT
[ F(t)dt =0,
0

We also consider the Banach space C([0,T];RN) of continuous functions z :
[0,T] — R¥ equipped with the norm ||z]joc = supg<;<r |2(t)|. We shall denote
by || - ||2 the usual L2-norm.

It is well known that under our regularity assumptions the set of kT -periodic
solutions of (1) coincide with the set of critical points of ;. Moreover, ¢y is a
C? functional and D?py(z) is a Fredholm operator, for each = € Hy.

It is clear that a kT-periodic solution of (1), even if it is not T-periodic, needs
not have minimal period kT'. However, if for example k is a prime number and

so that

the property

if 2(t) is a periodic function with minimal period ¢T, ¢ rational,
(Ho) and VG(t, z(t)) is a periodic function with minimal period qT,
then g is necessarily an integer

holds, then any kT-periodic solution of (1) which is not T-periodic must have
minimal period kT (see [11]); these are called subharmonic solutions of (1). For
example, if G(t, z) = a(t)G(z) or G(t,z) = G(z) + (h(t), z), where a(t) > 0 and
h(t) have minimal period T, then (Hp) holds. Our main results (Theorem 1 and
2) state that under certain conditions upon the function G(¢,z) there exist kT-
periodic solutions which are not T-periodic, for every k sufficiently large; under
the additional assumption (Hp) this provides subharmonics for (1) with minimal
period kT, for every k prime and large.

The typical case we consider is the convex subquadratic case (see theorems 3
and 4); this was studied in [11], [17] by the use of a Z,-index theory (in [17] the
superquadratic case was also considered). In [17] it is assumed that (Hp) holds,
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G(t,-) is convex for every t € R, G > 0, G(¢,0) = 0 and there exist positive
constants aq, az, as, a4, o, 4 with 1 < @ < p < 2, such that

a1lz|® — a3 < G(t,z) < as|z|” + aq

for every (t,z) € Rx RY. However the examples given in section 3 show that the
main ideas contained in theorems 1 and 2 may apply to other situations where
neither convexity nor subquadratic growth hold. We also note that the periodic
case (ie., G(t,x + 1) = G(t,z) for some T > 0) was treated in [6] using some
ideas developed in this paper.

The paper is organized as follows: in section 2 we recall some definitions for
the estimate of the Morse index of critical points at critical levels of inf-sup and
then prove our main abstract result. In section 3 we apply the ideas of section
2 to equation (1) and (2) in several different situations.

2. A general result

We start by recalling the following definitions: let X be a real Hilbert space
with inner product (,-) and ¢ : X — R be a C? function. We let D2¢(z)
denote the unique bounded self-adjoint operator in X such that {D2p(z)y, zy =
¢"(z)(y)(2) for every z,y,z € X. Let o be a critical point of ¢; we define the
Morse index [augmented Morse index] my,(zo) [me;(o0)] of zp as the supremum
of the dimensions of the vector subspaces of X over which D%p(z) is negative
definite (semi-negitive definite). We also define the nullity v,(z) = mg,(zo) —
My(Zo); To is called nondegenerate if v,(zq) = 0.

When applied to the functional ¢, k& > 1, defined in section 1, we simply
write mg(Zo), My (o), vk(2o); in this case we can use the following alternative
(equivalent) approach: for every o € §* = {z € C: |z| = 1} and every kT-
periodic solution z(t) of (1) define J(kT,o,z) [J*(kT,0,z)] as the number of
negative [non positive] real numbers A, counted with their multiplicity, for which
there exists a nontrivial solution of the problem

v(t) + (D7 G(t, (1)) + Nu(t) = 0

v(t + kT) = ou(t).
Then mi(z) = J(kT,1,z) and m}(x) = J*(kT,1,z); notice that v, < 2N.
Moreover, the function J(kT,-,-) : S x Hy — N is lower semi-continuous
(see[1]).

LEMMA 1. Let z(t) be a T-periodic (hence kT -periodic) solution of (1) such
that m1(z) > 1. Then

lm myg(z) = +oo.
k—o0
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Proor. Consider the eigenvalue problem
3) v"(t) + (D2G(t, z(t)) + Av(t) = 0
(4) v(t + kT) = v(t).

By a result of Bott [2] there exists a non trivial solution of (3), (4) if and only if
there exists a nontrivial solution v(t) of (3) verifying

(5) v(t+T) = ov(t)

for some o € S, o* = 1 (see the proof of Proposition 2.1 (iv) in [1]). Besides,
one has
(6) mg(z) = Z J(T,0,z).
ok=1

Assume m;(z) > 1. Then also J(T,0,z) > 1 for some 0 € S* and |0 —1| <€
(for small € > 0). Now, given M € N, choose ko > M such that |e?™/F —1| < ¢
for every j € {1,...,M}. Then if k > ko we have J(T,e>"%9/% z) > 1, j €
{1,...,M}. From (6) we get my(z) > M and this proves the lemma. O

REMARK 1. Let C be a compact subset of H; consisting of critical points
of @1 such that my(z) > 1 for every € C. Then also J(T',0,z) > 1 for every
z €C,|o—1|<¢ o €8, if € is small enough. The preceding argument then
shows that my(z) — oo as k — oo, uniformly in z € C.

LEMMA 2. Assume N = 1 and let z(t) be a T-periodic solution of (2) such
that mi(z) = 0. Then

my(z) =0, for everyk > 1
and, either vg(z) = 0 for every k > 1, or vx(z) = 1 for every k > 1.

PROOF. Denote by Ax(z) the first eigenvalue of (3), (4). It is clear that
M(z) < M(z) for every k > 1; but from the theory of Hill’s equation (see [8])
one knows that situations (3), (5) belong to ]0,+oo[\{1} if A < Ai(z)). Hence
we deduce that

Ai(x) = ()
for every k > 1. Now, from the very definition of Morse index we have m;(x) = 0
if and only if A;(z) > 0 and so we have my(z) = 0 for every k > 1. If Ay(z) =0
then vg(z) = 1 for every k > 1, since 0 is the first eigenvalue, which is simple. If
otherwise A;(z) > 0, then vi(z) = 0 for every k > 1. O

Next we recall two results which provide estimates for the Morse index of some
class of critical points. Given a Hilbert space X and a C? function ¢ : X — R
we shall say that ¢ verifies the Palais-Smale condition (in short (PS) condition)
over X if any sequence (z,,) in X such that (¢(z,)) is bounded and Vy(z,) — 0
has a convergent subsequence in X. For each R > 0 and x € X we denote by



SUBHARMONIC SOLUTIONS FOR SECOND ORDER DIFFERENTIAL EQUATIONS 53

Br(z) the open ball centered at z with radius R and by Sg(x) its boundary.
Also, we assume that D2p(z) is a Fredholm operator for every critical point z
of .

LEMMA 3 (MOUNTAIN PAsSs THEOREM). Let ¢ be as above, assume that ¢

satisfies the (PS) condition over X and has only isolated critical points. Suppose
that there exist R > 0 and zo,z1 € X such that ||zo — z1|| > R and

(7) max{p(zo), p(z1)} < _inf ¢.
SR(I(])
Then there exists a critical point T of ¢ such that z # zy and
my(z) < 1 < mi(z).

(For a proof see [9]).

REMARK 2. Let us recall that condition (7) holds if x is an isolated local
minimum of ¢, provided ¢ satisfies the (PS) condition and ¢(u,) — —oo for
some unbounded sequence (u,) in X (see [3, Theorem 5.10]).

LEMMA 4 (SADDLE POINT THEOREM). Let ¢ be as above, assume that ©
satisfies the (PS) condition over X and has only isolated critical points. Let X =
Xy ® X3, X; and X3 being closed subspaces of X withdimX, =d,1<d < oo
and assume that for some R > 0 one has
(8) sup ¢ < inf .

SR(0)NX, X2

Then there ezists a critical point x of ¢ such that
me(z) <d < mg(z).

(See [7] or [9].)
From this we can deduce the following

LEMMA 5. Assume N =1 and for some k > 1 the functional ¢} associated to
equation (2) satisfies the (PS) condition over Hy and the geometric assumption
(8) of Lemma 4 [resp: (7 ) of Lemma 3]. Let d be as in Lemma 4 [resp: d = 1
if (7 ) holds]. Moreover, assume that the (non empty) set Z of critical points of
@ 18 compact in Hy and that, for every x € Z, either

(9) me(z) >d+1
or
(10) mg(z) = 0 = mi(z).

Then equation (2) has a kT -periodic solution which is not T-periodic.

PROOF. Let Zp and Z; denote the subsets of Z whose points verify (10) and
(9) respectively. From our hypothesis, Zj is finite and Z; is compact. Assume
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by contradiction that (2) has only T-periodic solutions. A compactness and
continuity argument shows that we can fix positive constants «, § such that

z € Zy, |z — 2| < o = (D*pr(2)h, h) > B|h|*,
for every h € Hy, and
T € Zy,|z — 2| < a = (D?pk(2)h, h) < —B|h)%,

for every h € E., where E; is some finite dimensional subspace of Hy with
dim E,; > d+ 1. Here (-, -) stands for the inner product in Hy.
Consider the situation (7), take zp,z;, R as in Lemma 3 and choose

of or)/3}.

i
r(zo)

0 < e < min{5/2, (max{pk(z0), pr(z1)} —
According to a perturbation theorem of [10], we can choose a G2 functional 1
such that

(i) ¢ satisfies the (PS) condition over Hy;
(ii) 1 has only non degenerate critical points (in particular, they are isolated);
(iii) ¥(z) = ¢(z) whenever dist(z, Z) > a/2;

(iv) sup,cp, {lox(2) —¥(2)| + [Vor(z) = Vi (2)l g, +
1D%¢x(z) — D*9(2)ll gy} < €

It follows from our choice of € that
ma'x{"p(z())! 1/)(1"1)} < inf "/"1
Sr(xo)

and from Lemma 3 we can take a critical point z of ¢ with Morse index one.
Now take z € Z such that ||z — z|| = dist(2, Z) < a. Then, either

(D*(2)h, h) > (B/2)Ih%,
for every h € Hy, (if z € Zp), or
(D*9(2)h, k) < —(B/2)|h|?,

for every h € E, (if z € Z;). Since dimE, > d + 1 > 2 we get a contradiction
in both cases.
Finally, if situation (8) holds, we proceed as before by choosing

0<e< min{ﬂ/2, (infcpk)/3 —  sup <pk}
X2 Sr(0)NX,

where R, X;, X5 are as in Lemma 4. O
Now we can state our main general results.



SUBHARMONIC SOLUTIONS FOR SECOND ORDER DIFFERENTIAL EQUATIONS 55

THEOREM 1. Let N = 1, consider the functional ¢y, (k > 1) associated to
equation (2) and assume that ¢y satisfies the (PS) condition over Hy, for every
k > 1 and either

(a) for every k> 1, pr satisfies the geometric assumption (7) of Lemma $:

or

(b) for every k > 1, ¢y satisfies the geometric assumption (8) of Lemma 4.

Moreover, assume that the (non empty) set Z of critical points of @1 is compact
and has the following property:

(H) ifz € Z and my(z) =0, then v(z) = 0.

Then there exists kg € N such that for every k > kg, equation (2) has a kT-
periodic solution which is not T-periodic.

PROOF. Let Zy = {z € Z : my(z) = 0} and Z; = Z\ Z,. By (H), Z, is finite
and Z, is compact. Hence, by Lemma 2, we may fix ko € N such that (9) holds
for every x € Z; and k > ko (see Remark 1) and (10) holds for every z € Z,.
Then Lemma 5 can be applied. 0

REMARK 3. In case situation (b) holds with d > 2 and Z, Z; are both com-
pact (hence Zj is also compact), we can drop assumption (H) in Theorem 1 since
it follows from Lemma 2 that m;(z) < d for any z € Zy, k > 1 and then the
above argument applies.

Using the same arguments together with Lemma 1, one can prove the follow-
ing result for system (1), with N > 1.

THEOREM 2. Assume that the functional o (k > 1), associated to system
(1), satisfies the (PS) condition over Hy, for every k > 1 and that either situation
(a) or (b) of Theorem 1 holds. Moreover, assume that Z, the (nonempty) set of
critical points of 1, is compact and

(H) my(z) > 1, for everyxz € Z.

Then there exists kg € N such that for every k > ko equation (1) has a kT-
periodic solution which is not T-periodic.

PROOF. Simply note that now Z = Z;, use Remark 1 and proceed as in
Lemma 5. O

REMARK 4. It is easily seen that Z is compact in H; if and only if Z is
bounded in C([0, T]; RV).

Next we give a sufficient condition for (H') in Theorem 2 to hold.

LEMMA 6. Assume that
G(t, -) is convez, for every t € [0,T] and there are no

"
(H) T'-periodic solutions x(t) of (1) such that D,G(t,z(t)) = 0.
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Then my(z) > 1 for any T-periodic solution z(t) of (1).

PROOF. Let £ € Z and denote by A;(z) the first eigenvalue of (3), (4) with
k = 1. It is well known that

T
Ma(@) = min{ [ 90" - (DG(E (0)w(e) vl de v € Hu,yll, =1},

Taking constant functions y(t) = y € RN we get A1(z) < 0; and in fact Ay (z) < 0
since otherwise D2G (¢, z(t)) = 0, which contradicts (H"). But A;(z) < 0 means
precisely that mi(z) > 1 and we are done. O

REMARK 5. It is clear that (H”) holds if D2G(%, -) is positive definite for
every t € [0,T]. Also, if an a priori bound ||z|lc < R for z € Z is known, we
only require the strict convexity for G(, -) on the ball Bg(0) of RV.

3. Applications

In this section we apply the above theorems to a few special cases of equations
(1) and (2).

THEOREM 3. Consider equation (1) with N > 1, assume that G(t, ) satisfies
(H") and

(i) there exists a positive constant K such that |VG(t,z)| < K for every
(t,z) e Rx RV;
o T
(#) limzn0o f; G(t,7)dt = +o0.
Then the conclusion of Theorem 2 holds true.
PrOOF. For every k > 1 write Hy = R™ & Hj. (see section 1). From (i) (resp.
(ii)) it follows that g (resp: —y) is coercive in Hy, (resp. :RY); thus we are in

situation (b) of Theorem 2. In order to verify the (PS) condition, let (z,) C Hi
be such that

kT
(11) | i [L1an®)]? = G(t,2a(1))] dtl <M

kT
12) | [ [0, 6n) ~ (V6 200, w(O)] ] < eulyl,

for every m > 1, y € Hy, where M,¢e,, > 0 and ¢, — 0. Taking y = %, in
(12) and using (i) we get that (||Z,||,) is bounded. Then (||£,],,) and, from
(11), (| fok Ta (t, 7, (1)) dt|) are also bounded. From the convexity assumption we
derive

(13) G(t2) < 3Gt za(t) + §G(t, ~n(t)
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so that ( OkT G(t,%,/2) dt) is bounded and then from (ii), (|Z,|) is bounded.
Hence (||z|| Hl:) is bounded and from classical arguments we can find a conver-
gent subsequence (see e.g. [13]).

To end the proof it remains to show that any sequence (zn) of T-periodic
functions such that
(14) E,(t) + VG(t,24,(8) =0
is bounded in H;. Multiplying (14) by #,(t) and using (i) we get (||nll,)
bounded. Since G is convex, one has the inequality

G(t,y) < G(t,0) + (VG(t,y),y) for (t,y) eRx RV,
and from (13) and (14) we get

T 3 T )
(15) /0 G(t.5) ar < [ [len(®l +6(6,0) + G ~2a )] dt.
The result then follows as before. O

THEOREM 4. Consider equation (2), assume that G(t,z) satisfies (H"), (i1),
and
(#i8) lim)g) o0 (G(2, z)/22) uniformly in t;
(iv) Hmsupy o (9(t, 2)/z) < M < (21r/T)2 uniformly in t.
Then the conclusion of Theorem 1 holds true.
PROOF. Writing Hy = R @ Hy, conditions (i) and (iii) show that we are
again in situation (b) of Theorem 1. We only sketch the proof of the Palais-

Smale condition which combines the arguments in [5] and [14]. Consider (11)
and (12) above (where VG(t,z) = g(t,x)). From (12), taking y = 1, we get

kT
(16) [ stanenae—o.
0
We claim that
<
(17) o<tgllcT lea(t)] < €

for some constant ¢ > 0 If not then, passing to a subsequence if neces-
sary, we would have min |z, (f)| — +o0c. Since (H”) implies that the function
sign(z)g(%, ) is bounded from below, we get from (16) that (f; - l9(t, T ()| dt)
is bounded (see[5]). Then from (12), taking y = Zn(t), we get that (||@y]|,) is
bounded and from (11), ( b Ta, (1)) dt) is also bounded. Since (||, |[o0) is
bounded, by taking into account (13) and (ii) we reach a contradiction.

Hence (17) holds. Let us prove now that (|Z,|) is bounded. If not, for a
subsequence, |Z;| — +o0o and we get from (11) and (iii) that #,(¢)/Z, — 0 in H;
(see[14]). But then |z,(t)| = |Zn||l + Zn(t)/Zn] — +oo uniformly in ¢ and this
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contradicts (17). Hence (|%,]) is bounded and from (11) and (iii) (||Z,[|2) is also
bounded.

Finally, let (z,) be a sequence of T-periodic solutions of (2). A similar
argument shows that (17) holds (use(15)). Now suppose that |||z,]||| = l|lzall2 +
I£nll2 + ||£]la = +oo (for some subsequence) and let z,(t) = z,(t)/|||zn|l|. We
proceed as in [16] and use (iv) to write

(18) g(ta 5!7) =0 (ts iL') T+ gO(ta 1‘),

where go, g1 are functions such that |go(t,z)| < ¢; and —ez < g1(t,7) < 3 <
(2r/T)? for every (t,z) € R? and some positive constants c;, i = 1,2, 3 (notice
that, by (H"), g(t,z)/z is bounded below for |z] large). Dividing both members
of (14) by |||za|||, taking limits and using (18) we see that z,(f) — z(t) in
C([0,T);R), z # 0 and for some function a(t) such that —cz < aft) < ¢3 <
(27/T)? we have
Z(t) + at)z(t) =0
2(0) — 2(T) =0 = 2(0) — 2(T)

From the Sturm-Liouville theory it follows that 2z(t) # 0 for every t € [0,7].

Then 2,(t) has a constant sign for n large enough and since ,(t) = |||Zn ||| 2, (f)
we have a contradiction with (17). This shows that (|||z,]|||) is bounded and
ends the proof of the theorem. a

ExAMPLE 1. Theorem 3 applies to g(t,z) = arctanz — h(t) where h(t) is a
continuous T-periodic function such that

T 1 /7 ™
—_— —_ dt —.
2 < T‘/o‘ h(t) dt < 2

EXAMPLE 2. Theorem 4 applies to
z

(14 z2)*/*

for any continuous 7-periodic function.

glt,z) = + h(t)

REMARK 6. Let

T xr
g(t,z) =

A+a)t  1+a?

+h(2),

where h(t) is any continuous T-periodic function. Here all the assumptions of
Theorem 4 are satisfied except for the convexity hypothesis (H”). Nevertheless
we still have a priori bounds for T-periodic solutions of (2) and, for every k£ > 1,
y, satisfies the (PS) condition over Hy; therefore Theorem 1 can be applied
whenever h(t) is such that condition (H) holds. Note that, for any h(t), equation
(2) has a T-periodic solution (this follows readily from the Saddle Point theorem)
and thus condition (H) is of generic type with respect to h(t) (see[10]).
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REMARK 7. It is proved in [18, example 2] by means of phase-plane methods
that equation (2) has (at least) a T-periodic solution if
z + h(t)
9tho) = T3
where h(t) is a continuous T-periodic function. This follows also from the Saddle
Point Theorem and again we may apply Theorem 1 whenever condition (H) holds

(notice also that (Ho) holds for this case). This remark applies also to

T
g(t,z) = =t h(t)

provided f; A(t)dt = 0.
We now study the Ambrosetti-Prodi type situation.

THEOREM 5. Consider the following equation
(Ps) =" (t) + g(t, z(t)) = s,

where s € R is a parameter, g € C(R%;R) is T-periodic in its first variable and
verifies the regularity assumptions of section 1. Suppose that

() limyg)—, 400 g(t, z) = +00 uniformly in t;

(i) gi(t, -) is strictly increasing for each t € R;

(#4) limg 100 g4(t, ) < A < (20/T)? for every t € R;

(w) [G(t,z)| < Kie™® + K3 for some positive constants K1, Ky and every

teR, z<0.

Then there ezislts a constant s € R such that for every s > sg we can find
k(s) € N such that (P,) has o kT-periodic solution which is not T-periodic, for
any k > k(s).

PRroOF. Without loss of generality we may assume that g(t,z) is positive.
For the sake of clarity we divide the proof into several steps.

Step 1. It is known that under the sole assumption (i) there exists s; >
maxcr g(t,0) such that (P,) has zero, one or two T-periodic solutions according
to whether s < s1, s = s or s > 81, respectively (see [4]). Moreover, assumptions
(ii) and (iii) imply that there are precisely one or two solutions for s — 81 or
§ > s respectively and, in the latter case, they are both non degenerate; this
was proved in [12] for the dissipative Duffing equation with A < (x/T)?, but it
is immediately seen from the proof given there that this still holds true for our
problem. In order to calculate the Morse index we shall obtain those solutions
(for sufficiently large k) by using variational methods applied to the functional

kT ). 2
or(a) = /0 e
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where z € Hy, as in [15].

Step 2 (minimization). For a given s > K (see (iv)) consider the closed
convex subset of Hy:

C ={z€H :|i||s <2sT*?% z <0}.

It is easily seen that ; is coercive in C and, since it is a weakly lower semi
continuous functional, we can find u € C such that

(19) p1(v) < ¢a(z)
for every z € C. From (iv) we can estimate

p1(u) < min{(p(a)’a' G] - 00,0[}
(20) < TK;+ Tmin{Kie *+sa:a€]—o00,0]}
= TK2 + Ts(l - log(s/Kl))

On the other hand, it follows from (iii) that
22
G(t,r) < Ay Y + A

for every (¢,z) € R2, where 42 > 0,0 < 4; < (2r/T)?, and this implies that ¢;
is bounded below (in fact coercive) on H by a constant which does not depend
on s. From (20) we can thus find s¢ large enough so that for s > s¢ the function
% = ug i8 such that

(21) a#0

From now on we fix s such that (21) holds. Choose z = u + ¢, € small, in (19)
and take limits to obtain

T
/ g(t,u(t)) dt = sT.
0

Now choose z = (1 — €)@ + @ in (19), € > 0 small, and take limits to get
T T
[ liopas [ oumaw < Tl < sl
0 0

so that [|ify < sT3/2 < 2sT%/2. Hence we conclude that u belongs to the interior
of C and thus is an isolated local minimum for ¢;.

Step & (Mountain Pass Theorem). Let u be an isolated local minimum of ¢;.
It is easily seen that ¢; satisfies the (PS) condition over Hy; moreover,

@1(an) = —oo whenever (a,) € R,a, = +o0
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(these facts remain true for any @i, k > 1). Then, according to Lemma 3 (see
Remark 2) we can find our second T-periodic solution v of (P,) and we have

my(u) = 0= vy1(u),

my(v) = 1,v,(v) = 0.
According to lemmas 1 and 2 we can fix k(s) so large that

(22) mg(u) = 0 = vy (u),
(23) my(v) > 2

for any k > k(s).

Step 4. Take any k > k(s) and assume by contradiction that u,v are the
only kT-periodic solutions of (P,) (in particular they are isolated in Hy). For
each n > 1 consider the critical groups Cp(px,u) (see[9]). Since vy (u) = 0 we
have

dim Gy (@, u) = b m, (u)s
where & stands for the Kronecker symbol ([9; corollary 8.3]). From (22) we get
Co(px,u) # 0 and by [9, Theorem 8.6] u is a local minimum for ¢;. But then
we can apply Lemma 3 to ¢ (see Step 3) in order to get a second solution —
which is precisely v — such that mg(v) < 1. This contradicts (23) and ends the
proof of the theorem. 0O

ExAMPLE 3. Let a(t), h(t) be continuous functions with minimal period T,
a(t) > 0, and A be a positive constant with A < (2r/T). Then if T foT h(t) dt
is sufficiently large, the equation

z"(t) + a(t)e™*® + Az (t) = h(t)
admits infinitely many subharmonics with minimal period kT, k prime.
Our last theorem extends partially corollary 8 in [18].

THEOREM 6. Consider equation (2) where g(t,x) is T-periodic in its first
variable and satisfies the regularity assumptions of section 1. Suppose that g(t,z)
is bounded below, g;(t,z) > 0 and there ezists a positive constant r; such that

T
(24) sign(:c)/ g(t,z)dt >0
0
for everyt € R, |z| > r1. Then the conclusion of Theorem 1 holds true.

PROOF. Again, we divide the proof in several steps and use an argument
similar to the one in Theorem 5.
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Step 1 (a priori bounds). For a given k > 1 let z(t) be a 7 = kT-periodic
solution of (2) and m > 0 be such that —m < ming: g. Since [ g(¢,z(t)) dt = 0,
we have |z(t9)| < r1 for some tg € [0,7]. Multiplying (2) by Z(t) we get

(25) Izl € *Pm=c.
Hence we have the a priori bound
zlloo <1+ T2m=r

for every 7-periodic solution of (2). Next we make the following remark: if
f(t, ) is a function such that f(t,z) > g(t,r1) for every (t,z) in R x [r1, +o0[
and f > —m in R2, we still have the bound (25) and minz(t) < r; for every
T-periodic solution z(t) of

(26) ="(t) + f(t,z(t)) = 0

Since the set Z of T-periodic solutions of (2) is a priori bounded and m,(z) > 1
for every = € Z, we can choose kg € N such that

my(z) > 2

for every £ € Z and k > ko (see Remark 1 and Remark 4). In the sequel we
fix k > ko and assume by contradiction that all ¥T-periodic solutions of (2) are
T-periodic. We shall denote 7 = kT

Step 2 (truncation). Let A > 0 be a small positive number to be chosen below
and consider the function

g, r)z—r)+g(tr), z>r1

g(t, ), —r<z<r
0,(t, x), —2r<z <y
Ox(t,—2r) — A(z +2r), z<-2r,

f(t, T) =

where 8, is such that f € C(R%;R) is T-periodic in its first variable, its first
derivative with respect to its second variable is continuous and —m < 6, (¢,z) <

g(ta —'I")-
Suppose that A verifies:

(27) 0<A< (c'rs/z)_l(— /OT g(t,—r) dt).

Now we claim that if «(t) is a 7-periodic solution of (26), and u(t;) = max u(t),
then either

(a) u(t1) < —2r; or
(b) u(ty) > r1.
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Indeed, suppose to the contrary that —2r < u(¢;) < —r;. By the remark
made in Step 1, we know that |||z < ¢; then we have

(28) —2r —er? < u(t) < —ry,

for every t € [0, 7]. But our choice of X implies that
/ @r(t,z) — Az +2r))dt <0
0

for any —2r — ¢r/2 < 2 < —2r, so that we have Iy f(t,2)dt < 0 in
[—2r — er/2,—ry]. Since [y f(t,u(t))dt = 0, we get a contradiction with (28).
This proves the claim.

Now (a) means that u(t) is the unique 7-periodic (in fact, T-periodic) solution
of

(29) i — du(t) = 0x(t, —2r) + A2r.

On the other hand if (b) holds, and according to the remark in Step 1, we have
llullco < r and u(t) is a 7-periodic solution of (2). Hence we conclude that if u(t)
is a T-periodic solution of (26) verifying (a) then any other T-periodic solution
of (26) must be a solution of (2).

Step 3 (the modified problem). Setting F(t,z) = f: F(t,z)ds, consider the
functional

U(r) = /OT [Eg — F(t,z(t))] dt,

defined on Hj. Since the function f(,z) is coercive we may proceed as in Step 2
in the proof of Theorem 5 and choose

u=wux(t) € C = {z(t) € Hi : ||z||2 < 2¢,% < 0}

such that
Y(u) < ¥(x) for every z € C.

Now, denoting
c(r) = 4rma.x{|g(t,.1:)], teR, —r<z< 0}.,

1 T
g= T/o g(t,—r)dt <0,

we have
—F(t,z) < c(r) —zg(t, —r) + AL (z + 2r)®
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for every t € R, £ < —2r, so that
¥(u) < min{¥(a) :€] — 00,0}

A
< re(r) + Tmin{E(a. +2r) —ga:a €] — oo, 0]}
~2
=r1e(r) + T(2-r§ - g_,\)’
and this last expression tends to —oo as A — 0. Since [|t||z < 2¢ we may choose
A so small that ((27) holds and)

(30) U=1y < —2r — 2t/

In particular we have % < 0 and we can proceed as in Step 2 of the proof of
Theorem 5 in order to prove that u is a local minimum of ¥ and hence a 7-
periodic solution of (26). Moreover from (30) we see that situation (a) above
holds and from (29) we get that u is non degenerate (in particular, u is isolated
in Hy).

Since we found an isolated local minimum u for ¥ and, as it is easily seen, ¥
satisfies the (PS) condition over Hj, we have the geometric setting of Lemma 3.
According to our previous remarks we have myg (u) = my (u) = 0 and my (v) > 2
for every critical point v # u of ¥. It follows from Lemma 5 applied to ¥ that
equation (26) admits a kT-periodic solution v which is not 7-periodic. Neces-
sarily v # u and v is a kT-periodic solution of (2), contrary to our assumption.
0O

COROLLARY. Consider equation
(31) =’ (t) + g(x(t)) = h(2),

where g € C*(R; R) is bounded below, g'(z) > 0 and h(t) is a continuous function
with minimal period T. If

(32) h € range(g),

equation (31) admits subharmonic solutions with minimal period kT, for every
k large and prime.

REMARK 8. Let us notice that condition (32) is also necessary for the ex-
istence of a subharmonic solution of (31). Moreover, setting m = ming g and
being r; > 0 such that signz(g(x) — h) > 0 for |z| > ry we have the a priori
bound

T
Izlloo < 71 + VT (2/ |h(t)| dt — Tm) =R
0
for every T-periodic solution of (31). According to Remark 5 (see also the

proof given above) it is sufficient to assume a strict monotonicity on the interval
[-R,R] CR.
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ExAMPLE 4. In [18; Example 3] it is shown that equation £(t) + €*(® = h(¢)

has infinitely many subharmonics provided that h(t) > 0. The above corollary
asserts that it is sufficient to have k > 0.
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