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BORSUK’S SHAPE THEORY

J. SEGAL

Dedicated to the memory of Karol Borsuk

In 1968, K. Borsuk introduced a new branch of topology called shape theory.
Like homotopy theory, shape theory is devoted to the study of global properties
of topological spaces. However, in order for homotopy theory to yield interesting
results the spaces need to behave well locally as in the case of ANRs. Shape
theory, on the other hand, yields interesting results in the case of complicated
local behavior (e.g., on compacta). Moreover, it agrees with homotopy theory
on ANRs. Thus shape theory can be considered as an extension of classical
homotopy theory. In fact, it can be viewed as a Cech homotopy theory since its
relation to homotopy is analogous to the relation of Cech homology to singular
homology.

In [1} Borsuk described the fundamental notions of shape theory based on his
notion of a fundamental sequence. The latter is more general than the notion of
mapping (continuous function) which is basic to homotopy theory. Borsuk was
able to generalize mappings and yet retain a great deal of the geometry inherent
in the original notion.

Roughly, a fundamental sequence is based on having the metric compacta X
and Y embedded in the Hilbert cube @ and considering maps of @ into itself
which behave as follows on neighborhoods of X and Y. A fundamental sequence
(pn) : X — Y is a sequence of maps p, : @ — @Q, for all positive integers n,
with the following property:

Every neighborhood V' of Y admits a neighborhood U of X and a positive
integer ny such that

@n|U = on|U in V,n,m > ny.
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An equivalence relation ~ between fundamental sequences (¢n), (¢5) : X —
Y is defined by taking (¢n) ~ (¢%) provided every neighborhood V of Y admits
a neighborhood U of X and a positive integer ny such that

on|lU =@, JU inV,n > ny.

Fundamental sequences turned out to the basic notion which allowed Borsuk
to construct his theory. In particular, it produced the necessary morphisms (ie.,
equivalence classes of fundamental sequences) which allowed him to globally
compare metric compacta which are in different homotopy classes because of a
lack of mappings due to local difficulties in one of the spaces (e.g., when X = §*
and Y is the Warsaw circle).

Shape theory represented an expression of Borsuk’s deep geometric insight.
It had an immediate impact on the work of other topologists. These included
R. H. Fox, S. Mardesié and J. Segal, and T. A. Chapman.

Fox [10] saw shape theory as a way to remove some troublesome local condi-
tions which had blocked a full classification of covering spaces. Fox wrote: “Over
the past few years I have been investigating the relationship between fundamen-
tal group and covering spaces, and when I learned recently from Borsuk about
this new concept I realized that it was exactly what was needed to complete the
theory I had been developing.” Fox specialized the notion of a covering space to
that of an overlay. Using this notion he was able to extend the fundamental the-
ory of covering space theory to metric space which need not be locally connected
and semi-locally 1-connected.

On the other hand, Mardesié and Segal [14] saw it as a way to extend the
classification of continua described in terms of inverse systems of ANRs. This
allowed them to give a more categorical treatment of shape theory and extend
it to the compact Hausdorff case.

Meanwhile Chapman had been working on the topology of the Hilbert cube
or infinite-dimensional topology and in [6] he obtained a remarkable character-
ization of the shape of a compactum embedded in @ as a Z-set in terms of the
topological type of its complement. Moreover, he associated with every Z-set
X in Q its complement Q\X and with every equivalence class of fundamental
sequence of Z-sets (¢,) : X — Y a class of weakly properly homotopic proper
maps Q\X — Z\Y in such a manner as to obtain an isomorphism of categories.

Subsequently, topologists from all over the world contributed to this area.
The reader is referred to [16] for description of these various aspects and an
extensive bibliography which give an indication of the scope of this work. In
addition, Borsuk influenced the work of his own students and other topologists in
Poland. Among these were J. Dydak, S. Godlewski, W. Holsztynski, A. Kadlof,
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K. Kuperberg, M. Moszyniska, S. Nowak, J. Oledzki, M. Orlowski, S. Spiez,
M. Strok and A. Trybulec.

Shape theory has been a very active research area with several hundred papers
having been published in this area. Much of the activity has been inspired by
the numerous questions raised by Borsuk. These questions appear throughout
his book [5] and his various research publications. Shape theory has also made
contact with several other areas of topology, e.g., geometric topology, infinite-
dimensional topology and topological groups.

In discussing some of Borsuk’s over 40 publications in shape theory, it will
be convenient to divide them into several classes corresponding to various shape
invariants, e.g., FANR, movability, fundamental dimension, etc. These are all
entirely new notions due to Borsuk.

Metric compacta shape dominated by compact polyhedra are called FANRs
and represent the shape theoretic analogues of ANRs. Borsuk introduced and
developed this notion in [130], [134] and [136].

Movable compacta were defined by Borsuk in [2] and [3] as a far-reaching
generalization of space having the shape of an ANR. The name comes from a
geometric interpretation of the definition. While more general than FANRs, mov-
able compacta are still special enough so that when it is present various theorems
(e.g., the shape version of the Whitehead theorem) remain valid with the ho-
motopy pro-groups replaced by the corresponding shape groups. A compactum
X in @Q is movable provided every neighborhood U of X admits a neighborhood
U' of X, U’ C U, such that for every neighborhood U” of X, U” C U, there
exists a homotopy H : U’ x I — U with H(z,0) = z and H(z,1) € U”, for any
z € U'. Borsuk in [4] also introduced n-movability which is an n-dimensional
stratification of movability.

In [2] Borsuk introduced a simple numerical invariant called fundamental
dimension. More recently, this property has been referred to as shape dimension.
This notion has proved to be useful since it is often necessary to distinguish
between the finite and infinite dimensional case in shape theory. S. Nowak 7]
has provided a homological characterization of shape dimension.

In [1] Borsuk showed that the fundamental class of a fundamental sequence
determined a homomorphism of the Vietoris homology groups of compacta. He
went on to show that the Vietoris homology groups were a shape invariant. In
this paper he also introduced the notion of shape group (which he called the
fundamental group). For movable compacta these play the role in shape theory
that the homotopy groups play in homotopy theory.

Some recent trends in geometric topology show that shape theoretic proper-
ties lend themselves to a geometric analysis of mappings or decompositions. For
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more detailed surveys of these developments the reader is referred to [15] as a
general reference.

A map f : X — Y between metric spaces is called a cell-like map if, for
all y in Y, Sh(f~1(y)) = Sh(point), i.e., is of trivial shape. The class of cell-
like mappings is of central importance in geometric topology. Between ANRs
and, in particular, manifolds the importance of cell-like mappings is seen from
their role in the work of L. C. Siebenmann [18], R. D. Edwards, and J. E. West
[20]. However, J. L. Taylor’s example [19] of a cell-like map which is not a
shape equivalence showed the need to limit cell-like maps in this more general
setting. G. Kozlowski [12] did this by introducing the notion of a hereditary
shape equivalence as a generalization of cell-like mappings. Kozlowski used this
shape-theoretic notion to show that if f: X — Y is a cell-like map and X is an
ANR, then Y is an ANR if and only if f is a hereditary shape equivalence. In
[21], J E West showed that every compact ANR is the image of a compact Q-
manifold under a cell-like map. Consequently every compact ANR is homotopy
equivalent to a compact polyhedron. The latter answered a question raised by
Borsuk in his 1954 address to the International Congress.

In [7] D. Coram describes approximate fibrations p : E — B between ANRs
which were introduced by him and P. F. Duvall. They differ from Hurewicz fibra-
tions between ANRs in that the usual homotopy lifting property is replaced by
an approximate homotopy lifting property. This was motivated by the work of
R. C. Lacher [13] and G. Kozlowski [11] on cell-like mappings. A cell-like map-
ping between compact ANRs is an approximate fibration. Coram and Duvall
show that approximate fibrations have several shape theoretic properties analo-
gous to the corresponding homotopic theoretic properties of fibrations. Another
important fact they obtain is that the fibers of an approximate fibration are
FANRs. If, in addition, B is connected, then the fibers are all of the same shape.

In [8] R. J. Daverman surveys recent results on upper semicontinuous (usc)
decompositions G of (n + k)-manifolds M into continua of the shape of closed
connected n-manifolds. He considers what can be said about the decomposition
space B = M/G. When k& < 3, the decomposition space B is necessarily a
k-manifold, as long as certain orientability requirements are met. More specif-
ically, in [9] Daverman and Walsh show that if G is an usc decomposition of
an orientable (n + 2)-manifold M into continua the shape of closed, orientable
n-manifolds, then B = M/G is a 2-manifold. On the other hand, if M is non-
orientable, then B is a 2-manifold with boundary. As a corollary, they show
there is no usc decomposition of E**2(n > 0) into closed, connected, orientable
n-manifolds. When k¥ = 3, B need not be a manifold but it must be finite-
dimensional, in fact, B is 3-dimensional. Here the question of whether B is an
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ANR becomes central. Approximate fibrations prove to be useful since they pro-
vide relationships among the structures on M, B and G, the elements of which
all have the same shape.

In 1931 Borsuk introduced ANRs, and in 1968 shape theory. It is interesting

to note that these two contributions have in the past greatly influenced geometric
topology and continue to do so. This only confirms Borsuk’s deep geometric

insight and originality.
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