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ON SOME CONTRIBUTIONS OF KAROL BORSUK
TO HOMOTOPY THEORY

P. Hirron

Dedicated to the memory of Karol Borsuk, a great topologist and a dear friend.

Introduction

So many and varied are the contributions of Karol Borsuk to topology in
general and to homotopy theory in particular that it would be idle to attempt
a global view in the space of a brief memoir.! I have therefore chosen to be
highly selective, and discuss only two of his major contributions, each selected
for a special attribute it possesses. First, I cite his invention of the cohomotopy
groups. Of course Borsuk introduced them to analyse a topological problem—he
was never a formalist. But it is important to remember that Borsuk was not
an algebraic topologist and thus was not in the mainstream of development of
algebraic topology; moreover, his circumstances at the time of this work (just
before World War II) made it even more difficult for him to remain in even
indirect contact with other topologists in Western Europe and the United States.
Nevertheless, he invented a notion which, as I show, fitted into the mainstream
of homotopy theory and made an essential contribution to its progress. Once
the Borsuk cohomotopy groups are recognized as special but important cases of
stable track groups, the full force of the apparatus of modern algebraic topology
(exact sequences, functoriality, spectral sequences, ... ) can be brought to bear
on them automatically. That recognition owes much to the excellent account
provided by Spanier [9]

1In any case, I would expect that other aspects of his immense contributions would feature
in other articles in this volume.
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My second example of Borsuk’s contribution is chosen for its fundamental im-
pact on my own development as a topologist; thus I should apologize in advance
for the inevitably personal tone of my account. I was fortunate to meet Borsuk
at the Amsterdam International Congress in 1954, and he invited me to visit
Warsaw the following year. We had many discussions centering on his current
interests, and I was tremendously stimulated by his ideas. Indeed, several of the
principal directions of my own research owe their origins to Borsuk’s ideas, not
least the duality in homotopy theory which Beno Eckmann and I developed when
I settled for a sabbatical leave in Ziirich after my exciting visit to Warsaw (see
[5,7]). It is a pleasure and a privilege to have this opportunity to acknowledge
my debt to Karol Borsuk.

1. The cohomotopy groups

Borsuk announced his discovery of the cohomotopy groups in a paper in the
Comptes Rendus in 1936 [1] , but most of us learnt about them by reading
Spanier’s definitive account [9] , published in 1949. In Spanier’s version one
considers a polyhedron X with dimX < 2n — 2 and considers the set 7#"X
of (based) homotopy classes of maps of X into $™. If f,g are any two such
maps then a map (f,g9) : X — S™ x S" is defined in the obvious way. Now
S" x S™ may be given the structure of a CW-complex in which a 2n-cell e is
attached to S™ V 87, the wedge (= one-point union) of two copies of S™. Since
dim X < 2n — 2, the map (f, g) may be deformed into a map A’ : X — S™ v S,
and the homotopy class of &’ is uniquely determined by that of (f, g), that is, by
those of f and g. If one follows A’ by the folding map Vv : S* v §® — S™, which
identifies the two copies of ™, one obtains a map h = VA’ : X — S™ and one
defines

(L1) [h] = [f] + (],

yielding a binary operation in the set 7*(X). Special arguments are then invoked
to show that the addition rule (1.1) turns #™(X) into an additive abelian group,
which is plainly contravariant in X on the category of pointed polyhedra of
dimension < 2n — 2. There is, moreover, a Hurewicz theorem showing that, if
dim X = n, then

«*(X) = H*(X).

We now recognize that, in a sense, Borsuk was really inventing stable homo-
topy theory. For let us embed S™ in 25™*!, the space of loops on $™*1, in the
canonical manner. The induced map of homotopy sets [X, S"] — [X, 25"*1] is
bijective since dim X < 2n — 2; and the set [X, 2S™*!] acquires a natural group
structure from the (homotopy-) group structure on the loop-space Q5™*1. More-
over, [X, Q8™+ — [X,Q28"*+2), induced by the embedding §”+! — QS5"*2is a
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group-isomorphism, and [X, 257+2] is abelian, so [X, S"] acquires the structure
of an abelian group.

Now 25™*! may be replaced by James’ reduced product space S7 (see [8] ),
whose 2n-skeleton S has the cell-structure S™ U e2", the 2n-cell being attached
by the Whitehead product [¢,¢]. Thus there is a commutative diagram

x 9 gnygn T gn

]

srver—V_,gn

where 7(z,y) = (z,y) € S7. However maps X — S™ are composed in 5"+!
by actually composing them in S% by juxtaposition. This implies that the sum
of f and g is obtained by deforming 7(f,g) down into S™. Such a deformation,
however, yields VA', so that the Borsuk-Spanier addition in 7 (X) coincides with
that induced by the bijection [X, "] — [X, Q8™ +1]. This, of course, immediately
establishes, from general principles, that 7™(X), as originally defined, satisfies
all the axioms of an abelian group.

However, it does much more. For the bijections [X,$"] — [X,QS"+1] —
[X,0257+2] are equivalent to the bijections [X, S| S[EX, g+ B n2y, S+
induced by suspension. Now we see that there is no need to assume dim X <
2n — 2; we may define 7™ X, for any polyhedron X, by the rule
(1.3) "X = lim[ZF X, 5"tk

k
Then 7™ X is an abelian group, coinciding with the Borsuk-Spanier definition if
dimX < 2n — 2. If dim X = m, then [Z*X, S"**| stabilizes at k = m — 2n + 2,
meaning that
- [EkX, Sn+k] N [2k+1X, Sn+k+1]

is an isomorphism if k > m —2n+ 2. Thus, if X is finite-dimensional, then 7" X,
as defined by (1.3}, is, in fact, a cohomotopy group in the original sense, namely,
antk(TkX), for k sufficiently large.

Of course, one may go much further. There is no reason to confine attention
to the case in which the target space is a sphere. Thus we may define

(1.4) {X,Y} =lim[Z* X, B*y].
k
Just as in the special case Y = §", this gives an abelian group structure to the set

{X,Y} of stable homotopy classes of maps of X into Y. (Notice that the maps
are also ‘stable’; an element of {X,Y} is represented by a map ¥X — T*Y
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for some k.) Again, as in the special case, {X,Y} stabilizes, provided X is
finite-dimensional.

2. Divisors and multiples of maps; dependence of maps

Borsuk published a series of papers in 1955-56 [2,3,4] which had a profound
impact on the author’s own research. Let us again modify Borsuk’s ideas slightly
by talking of polyhedra, rather than of compacta or ANR’s. Thus let f, g be maps
from the polyhedron X to the polyhedron Y. Then f is said to be a divisor of
g (and g a multiple of f) if, whenever f can be extended to a polyhedron X’
containing X, g can also be extended to that same X’. Further, if f is replaced
by a family ® of maps from X to Y, then g is said to depend on ® if, whenever
f can be extended to X' for every f in ®, then g can also be extended to X !

Borsuk proved that g is a multiple of f if and only if g ~ hf for some
h:Y — Y. Before giving the proof, let me give a generalization of Borsuk’s
definition which proved very fruitful in my own development of his work. I
will speak only of dependence, since the notions of divisor and multiple may be
subsumed in the notions of dependence. The generalization consists of allowing
f and g to have different targets. Thus we will say that g : X — Z depends
on f : X — Y if, whenever f may be extended to X’ D X, so may g. Notice
that if Y'® is the Cartesian product of copies of ¥ indexed by ®, then we may
identify the family ® of maps from X to Y with a single map F: X — Y%; and
g depends on @ in the sense of Borsuk if and only if g depends on F in our sense.
Thus, by our generalization, we avoid the need for any distinction between maps
and families of maps. We now prove:

THEOREM 2.1. The map g : X — Z depends on the map f : X — Y if and
only if there exists h: Y — Z with g ~ hf.

PROOF. If h exists, and if f extends to f' : X' — Y, then hf extends to
hf' : X' — Z. But, by the homotopy extension property, it follows that g
extends to X’. Conversely, suppose that g depends on f. Let M be the mapping
cylinder of f; thus M is obtained from X x I UY by identifying (z, 1) with fz.
If f is cellular (and there is plainly no real loss of generality in supposing it is,
since the extendability of f is a homotopy invariant property of f), then M is
a polyhedron in which X is embedded by the map z — (z,0). Moreover, f
extends to a map M — Y given by (z,t) — fz,y — y. Thus g extends to a map
G: M — Z. Since G extends g, G(z,0) = g(z). Thus G|X x I is a homotopy of
g and G(z,1) = Gf(z) = hf(z), where h: Y — Z is the restriction of G to Y.
We have g ~ hf, proving the theorem.

I learnt of Borsuk’s notion of dependence on a visit I made to Warsaw, at
Borsuk’s invitation, in 1955. I obtained some results on dependence (see [6] )—as
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well as introducing the generalization described—and was also able to disprove a
conjecture of Borsuk (it was probably a question rather than a conjecture) that
if two maps f,g : X — Y are dependent on each other, then g ~ hf for some
homotopy equivalence h : Y ~ Y. In fact, if we consider

S3

7

(2.1) S8 5((5

N

S3

where w generates 7(S%) = Z/12, then we see that w, 5w depend on each other,
but, of course, there is no homotopy self-equivalence h of S2 such that hw = 5w.

From Warsaw I went to Ziirich to work with Beno Eckmann. We studied the
homological algebra of A-modules, and it occurred to us that one could study
the notion of dependence in the category of homomorphisms of A-modules, just
as in the topological category. Indeed, the analogue of Theorem 2.1 remained
valid, provided one introduced the appropriate notion of homotopy. Thus if 4, B
are A-modules, one says that ¢ : A — B is i-nullhomotopic if ¢ extends to an
injective container of A; and ¢,¢ : A — B are i-homotopic, ¢ ~; v, if ¢ — 1 is i-
nullhomotopic. Then the homotopy extension property holds for i-homotopy and
there is a mapping cylinder for a homomorphism ¢ : A — B; namely, one factors
¢ as A>ﬁ>CA€BB—€»B, where CA is any injective container of A, u(a) = (a, ¢(a))
and €(c,b) = b. One then essentially reproduces the proof of Theorem 2.1 in the
category of A-modules.

However, in this category, there is a built-in duality. This leads to the notions
of p-homotopy and p-dependence. Thus ¢ : A — B is p-nullhomotopic if ¢ may
be lifted to a projective module sitting over B, and ¢, v : A — B are p-homotopic
if ¢ — ¢ is p-nullhomotopic. Further ¢ : B — C p-depends on ¢ : A — C if v
may be lifted to C’ over C' whenever ¢ may be lifted to C’. There is then a dual,
in the category of A-modules, of the analogue of Theorem 2.1.

Now came the decisive step—there is an analogue of the dual! This analogue,
however, relates to the same notion of homotopy as that used in Theorem 2.1—
one may say that i-homotopy and p-homotopy coincide in topology. Precisely,
we say that the map g : Z — X co-depends on the map f:Y — X if, whenever
[ lifts to the total space E of a fibration over X, g also lifts to E. Then the dual
of Theorem 2.1 reads
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THEOREM 2.1C. The map g : Z — X co-depends on the map f:Y — X if
and only if there exists h: Z —» Y such that g =~ fh.

Theorem 2.1¢ holds—and marks the birth of Eckmann-Hilton duality. Thus
my debt to Borsuk’s inspiration is enormous!

However, there is one further item to mention in measuring this debt. Bor-
suk asked me, while I was in Warsaw, whether it would be possible to construct
two compact polyhedra with isomorphic homology groups, isomorphic homo-
topy groups but of different homotopy types. In answering this question in the
affirmative, I effectively exploited diagram (2.1), invented for a totally differ-
ent purpose. Borsuk’s question also led me to undertake a systematic study of
non-cancellation phenomena and, later, of the Mislin genus.

But this is another story. Let me close with one reminiscence which epito-
mizes the remarkable modesty of the great mathematician to whom this brief
memoir is dedicated. While I was in Warsaw, Borsuk told me of a result he had
obtained, relating to dependence for maps of an n-complex into S”, in which the
n*h cohomology group appeared. I looked at his argument and pointed out that
he could generalize his result to maps of an m-complex for m < 2n — 2, provided
he replaced the cohomology group by the cohomotopy group. ‘How interesting’,
said Borsuk, ‘but, you see, I never did really understand the cohomotopy groups’.
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