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MULTIPLE SOLUTIONS
OF COMPACT H-SURFACES IN EUCLIDEAN SPACE

Yuxin Ge — Feng Zhou

Abstract. We prove here the multiplicity results for the solutions of com-

pact H-surfaces in Euclidean space. Some minimax methods and topo-
logical arguments are used for the existence of such solutions in multiply

connected domains.

1. Introduction

Let Ω be a smooth and bounded domain in R2. We denote V = {a ∈
H1(Ω), a 6= constant}. Given two functions a, b ∈ V , we denote by ϕ the unique
solution in W 1,1(Ω) of the Dirichlet problem

(1.1)

{
−∆ϕ = {a, b} in Ω,

ϕ = 0 on ∂Ω,

where {a, b} = axby − aybx and subscripts denote partial differentiation with
respect to coordinates.

Thanks to the works of H. Wente ([16]), H. Brezis and J.-M. Coron ([3]), we
have the following estimates:

(1.2) ‖ϕ‖L∞(Ω) + ‖∇ϕ‖L2(Ω) ≤ C0(Ω)‖∇a‖L2(Ω)‖∇b‖L2(Ω)
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for some constant C0(Ω) > 0. Later on it was proved by F. Bethuel and
J. M. Ghidaglia ([1]) that C0(Ω) does not depend on Ω. This leads to consider
the best constant involving the L2-norm in the estimations analogous to (1.2).
More precisely, Y. Ge has obtained in [6] the following

(1.3) C2(Ω) := sup
a,b∈V

‖∇ϕ‖22
‖∇a‖22‖∇b‖

2
2

=
3

16π
,

where ‖ · ‖2 denotes the usual norm in L2(Ω). Moreover, this best constant is
achieved if and only if Ω is simply connected. In fact the study of the best
constant involving the L2-norm can be also done as follows (see [6]): For any
a, b ∈ V and ϕ defined by (1.1), we define the following energy functional

E(a, b,Ω) =
‖∇a‖22 + ‖∇b‖22

2‖∇ϕ‖2
or equivalently,

E1(a, b,Ω) =
1
2
(‖∇a‖22 + ‖∇b‖22), defined for all (a, b) ∈M,

where M = {(a, b) ∈ H1(Ω) × H1(Ω) : ‖∇ϕ‖2 = 1} is a complete C2-Finsler
manifold. The critical points (a, b, ϕ) of this functional satisfies the following
Euler–Lagrange equation:

(1.4)

{ −∆u = ux ∧ uy in Ω,

ϕ =
∂a

∂n
=
∂b

∂n
= 0 on ∂Ω,

where u := (λa, λb, λ2ϕ) for λ =
√

(‖∇a‖22 + ‖∇b‖22)/(2‖∇ϕ‖22) and n = (n1, n2)
is the normal vector on ∂Ω. Note that the functional E and its critical points
are invariant by conformal transformations of the domain Ω. So this variational
problem depends only on the complex structure of Ω. Moreover, the boundary
conditions permit to construct a solution of H-system ũ from a compact oriented
Riemannian surface in R3 by gluing two copies of Ω. More precisely, we construct
N := Ω ∪∂Ω Ω̃, where Ω̃ is a copy of Ω, provided with opposing orientation
and a smooth map ũ from N into R3 which is defined by ũ = u on Ω and
ũ = (λa, λb,−λ2ϕ) on Ω̃. Therefore ũ satisfies

−∆ũ = ũx ∧ ũy in N.

If ũ is conformal, that is, the Hopf differential

ω := (|ũx|2 − |ũy|2 − 2i〈ũx, ũy〉) dz ⊗ dz = 0,

it would be a constant mean curvature branched immersion from N into R3.
This motivates the search for critical points of E. Unfortunately, we can not
obtain it directly by the standard minimization method since the energy of any
minimizing sequence concentrates around some point on the boundary of Ω. In
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[6], we proved an existence result for a perforated domain with small holes and
this result is generalized for any annular domain in [7]. In this paper, we will deal
with this procedure in order to find the multiple solutions with different energy
for some multiply connected domains. We will see that the special conformal
structure of domains causes this multiply solutions result. More precisely, let
B(z, r) = {z′ ∈ C : |z′ − z| < r} be the disc in R2 ≈ C centered at z of radius
r and B(z, r) its closure. Let z1, . . . , zk ∈ B(0, 1/2) be fixed such that for some
r > 0, B(zi, r) ⊂ B(0, 1

2 ) for all 1 ≤ i ≤ k and B(zi, r) ∩ B(zj , r) = ∅ for any
1 ≤ i 6= j ≤ k. Taking r/2 ≥ r1 ≥ . . . ≥ rk > 0, we have the following result:

Theorem. Let Ω = B(z1, . . . , zk; r1, . . . , rk) = B(0, 1) \ (
⋃k

i=1B(zi, ri)).
Then there exist r1 > 2r2 > . . . > 2k−1rk such that if ri ∈ (ri/2, ri) for all
1 ≤ i ≤ k, there exist k distinct critical points of E1 with different energy in Ω.

This is a generalization of the previous result of [6] (Theorem 11) which is
similar to an earlier work of J.-M. Coron ([4]) concerning the critical Sobolev
exponent problem. Here we use the same strategy. For t ∈ R, we denote
Et

M = {(a, b) ∈M : E1(a, b) ≤ t} the level set of E1. We see that the topology of
Eγ

M is equivalent to ∂Ω when γ is near the value G(Ω) := inf(a,b)∈M E1(a, b,Ω) =√
16π/3 and the topology of the level set changes k times for t ∈ (G(Ω),

√
2G(Ω)).

To establish the result we argue by contradiction. We construct a topological
disc ∆ in E

√
2G(Ω)

M whose boundary is a non contractible circle ∂∆ in E
G(Ω)+µ
M

for some small µ > 0. And if the system (1.4) does not admit a solution in
E
√

2G(Ω)
M , then it implies that there exists a contraction h of ∆ onto ∂∆, which is

a contradiction. Iterating this procedure we can find the second minimax critical
value between the first one and G(Ω) and so on. This method has been exploited
to search several critical points by D. Passaseo in [12] and P. Padilla in [13] for
semi-linear problems involving critical Sobolev exponent and by F. Takahashi
in [15] for H-systems with homogenous boundary conditions.

In the following section, we will prove some technical lemmas which are
needed in the proof of the main theorem. In all this paper, C denotes generic
positive constant independent of the solutions, even its value could be changed
from one line to another one.

2. The proof of Theorem

The proof is divided into several steps.

Step 1. We introduct a map Q from H1(Ω)×H1(Ω) into R2,

Q:H1(Ω)×H1(Ω) → R2,

(a, b) 7→
√

3
8
√
π

∫
Ω

(x, y) · (|∇a|2 + |∇b|2) dx dy ∈ R2.
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It is easy to prove that Q is continuous. Our first result is the following

Lemma 2.1. Let 1 ≤ m < k. For any r ∈ (0, r/2), there exist positive
numbers ε > 0 and δ > 0 such that for the domain Ω = B(z1, . . . , zk; r1, . . . , rk)
with r/2 ≥ r1 ≥ . . . ≥ rm > r and δ > rm+1 ≥ rm+2 ≥ . . . ≥ rk > 0, if (a, b) ∈
M with E(a, b,Ω) <

√
16π/3 + ε, then Q(a, b) ∈ B(z1, . . . , zm; r/2, . . . , r/2).

Proof. We argue by contradiction. Suppose that the statement fails. Then
there exist some positive number r with r/2 > r > 0 and a sequence of domains
Ωn = B(z1, . . . , zk; r1,n . . . , rk,n) and (an, bn) ∈M(Ωn) with

ri,n ≥ r for all n ∈ N, 1 ≤ i ≤ m,

ri,n → 0 as n→∞ for any m+ 1 ≤ i ≤ k,

E(an, bn,Ωn) →
√

16π/3 as n→∞,

Q(an, bn) 6∈ B(z1, . . . , zm; r/2, . . . , r/2).

Without loss of generality, we can assume that for any 1 ≤ i ≤ m,

ri,n → ri as n→∞.

Thus Ω∗ = B(0, 1) \ (
⋃m

i=1B(zi, ri) ∪ (
⋃k

i=m+1{zi})) is the limit domain of Ωn.
Setting Ωθ = B(0, 1) \ (

⋃k
i=1B(zi, r/2)), we can suppose that∫

Ωθ

an =
∫

Ωθ

bn = 0,

otherwise, we take

ãn = an −
1
|Ωθ|

∫
Ωθ

an and b̃n = bn −
1
|Ωθ|

∫
Ωθ

bn

instead of an and bn if necessary. By virtue of Poincaré’s inequality, we get

‖an‖L2(Ωθ) ≤ C‖∇an‖L2(Ωθ) ≤ C

and
‖bn‖L2(Ωθ) ≤ C‖∇bn‖L2(Ωθ) ≤ C.

Therefore {an}n∈N and {bn}n∈N are bounded in H1(Ωθ). Fixing a function
ξ ∈ C∞0 (R2) such that supp(ξ) ⊂ B(0, r), and ξ|B(0,r/2) = 1. We define for all
n ∈ N, for all 1 ≤ i ≤ k,

an,i(z) =

{
ξ(z − zi)an(z) if z ∈ B(zi, r) \B(zi, ri,n),

0 if z ∈ R2 \B(zi, r),

and

an,i(z) =


an,i(z) if z ∈ B(zi, r) \B(zi, ri,n),

an,i

(
(ri,n)2(z − zi)
|z − zi|2

+ zi

)
if z ∈ B(zi, ri,n).
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Hence, for any 1 ≤ i ≤ k, we obtain a sequence {an,i}n∈N in H1
0 (B(zi, r)).

Clearly,

‖∇an,i‖L2(B(zi,r)) =
√

2‖∇an,i‖L2(B(zi,r)\B(zi,ri,n))
≤ C.

It follows again from Poincaré’s inequality that {an,i}n∈N is bounded in
H1

0 (B(zi, r)). Now set

an(z) =

{
an(z) if z ∈ Ωn,

an,i(z) if z ∈ B(zi, ri,n) with 1 ≤ i ≤ k.

We see that {an}n∈N is bounded in H1(B(0, 1)). Similary we can define another
bounded sequence {bn}n∈N in H1(B(0, 1)). Set

ϕn(z) =

{
ϕn(z) if z ∈ Ωn,

0 if z ∈ B(0, 1) \ Ωn,

where ϕn is the solution of (1.1) for a = an and b = bn in Ωn. It follows from
(1.2) that {ϕn}n∈N is bounded in H1

0 (B(0, 1)). Without loss of generality, we
may assume that

• an → α weakly in H1(B(0, 1)) and strongly in L2(B(0, 1)),
• bn → β weakly in H1(B(0, 1)) and strongly in L2(B(0, 1)),
• ϕn → ψ weakly in H1(B(0, 1)) and strongly in L2(B(0, 1)) and a.e. for
z ∈ B(0, 1).

On the other hand, ϕn → 0 a.e. for z ∈
⋃m

i=1B(zi, ri). Therefore ψ = 0
in

⋃m
i=1B(zi, ri) which implies ψ ∈ H1

0 (B(0, 1) \
⋃m

i=1B(zi, ri)). In view of
Lemma 7.2 in [6], for any domain Ω′ ⊂⊂ Ω∗, we have {an, bn} → {α, β} in
D′(Ω′). Hence we deduce −∆ψ = {α, β} in D′(Ω∗).

For any m < i ≤ k, let ψi,1 and ψi,2 be solutions of the following problems{
−∆ψi,1 = 0 in B(zi, r/2),

ψi,1 = ψ on ∂B(zi, r/2),

and {
−∆ψi,2 = {α, β} in B(zi, r/2),

ψi,2 = 0 on ∂B(zi, r/2).
Clearly, ψi,1 ∈ H1(B(zi, r/2)) and, by (1.2), ψi,2 ∈ H1

0 (B(zi, r/2)) so that

ψ − ψi,1 − ψi,2 ∈ H1
0 (B(zi, r/2))

and
−∆(ψ − ψi,1 − ψi,2) = 0 in D′(B(zi, r/2) \ {zi}).

Therefore, there exists l0 ∈ N∗ such that

−∆(ψ − ψi,1 − ψi,2) =
∑

γ=(γ1,γ2)∈N2,|γ|=γ1+γ2≤l0

Cγ1γ2

∂|γ|

∂xγ1∂yγ2
δzi
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in D′(B(zi, r/2)), where Cγ1γ2 ∈ R and δzi
denotes the Dirac measure centered

at zi with unit mass. Remark that for all γ = (γ1, γ2) ∈ N2, (∂|γ|/∂xγ1∂yγ2)δzi 6∈
H−1(B(zi, r/2)). Thus the fact −∆(ψ − ψi,1 − ψi,2) ∈ H−1(B(zi, r/2)) implies
that Cγ1γ2 = 0 for all γ = (γ1, γ2) with |γ| ≤ l0. Finally, we have{

−∆ψ = {α, β} in Ω̃,

ψ = 0 on ∂Ω̃,

where Ω̃ = B(0, 1) \
⋃m

i=1B(zi, ri). We claim that

‖∇an‖2L2(Ωn) = ‖∇(an − α)‖2L2(Ωn) + ‖∇α‖2
L2(eΩ)

+ o(1),(2.1)

‖∇bn‖2L2(Ωn) = ‖∇(bn − β)‖2L2(Ωn) + ‖∇β‖2
L2(eΩ)

+ o(1),(2.2)

‖∇ϕn‖2L2(Ωn) = ‖∇(ϕn − ψ)‖2L2(Ωn) + ‖∇ψ‖2
L2(eΩ)

+ o(1).(2.3)

For this purpose, we write

(2.4)
∫

Ωn

|∇an|2 =
∫

Ωn

|∇(an − α)|2 +
∫

Ωn

|∇α|2 + 2
∫

Ωn

∇(an − α)∇α

=
∫

Ωn

|∇(an − α)|2 +
∫
eΩ

|∇α|2 + 2
∫
eΩ

∇(an − α)∇α

+
∫

Ωn\eΩ
(|∇α|2 + 2∇(an − α)∇α)

−
∫
eΩ\Ωn

(|∇α|2 + 2∇(an − α)∇α).

It is clear that ∫
eΩ

2∇(an − α)∇α = o(1),

since an → α weakly in H1(B(0, 1)). Moreover, denoting Ωn∆Ω̃ = (Ωn \ Ω̃) ∪
(Ω̃ \ Ωn), we have∫

Ωn∆eΩ

(|∇α|2 + 2|∇(an − α)∇α|)

≤ ||∇α||L2(Ωn∆eΩ)(||∇α||L2(Ωn∆eΩ) + 2||∇(an − α)||L2(Ωn∆eΩ))

≤ C||∇α||L2(Ωn∆eΩ).

As meas(Ωn∆Ω̃) → 0, we deduce that

(2.6)
∫

Ωn∆eΩ

(|∇α|2 + 2∇(an − α)∇α) dx = o(1).

Combining (2.4) to (2.6), we obtain (2.1). Similarly, we establish (2.2) and (2.3).
Now denote by ϕn,1 (resp. ϕn,2) the unique solution of equation (1.1) for a =
an−α and b = β (resp. a = α and b = bn−β) in Ωn. So γn = ϕn−ψ−ϕn,1−ϕn,2

is the unique solution of equation (1.1) for a = an − α and b = bn − β in Ωn.
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Denote by ϕ̃n,1 the unique solution of equation (1.1) for a = an − α and b = β

in B(0, 1) and set

ϕn,1(z) =

{
ϕn,1(z) if z ∈ Ωn,

0 if z ∈ B(0, 1) \ Ωn.

As ϕ̃n,1 minimizes the energy functional

E2(ϕ) =
1
2

∫
B(0,1)

(|∇ϕ|2 dx− 2{an − α, β}ϕ) dx,

for all ϕ ∈ H1
0 (B(0, 1)). We have

1
2

∫
Ωn

|∇ϕn,1|2 =−1
2

∫
B(0,1)

|∇ϕn,1|2 +
∫

B(0,1)

{an − α, β}ϕn,1

≤−1
2

∫
B(0,1)

|∇ϕ̃n,1|2 +
∫

B(0,1)

{an − α, β}ϕ̃n,1

=
1
2

∫
B(0,1)

|∇ϕ̃n,1|2 =
1
2

∫
B(0,1)

{an − α, β}ϕ̃n,1.

Using Lemma 7.2 of [6], we obtain∫
Ωn

|∇ϕn,1|2 = o(1).

With the same argument, we get∫
Ωn

|∇ϕn,2|2 = o(1),

so that
1 = ‖∇ϕn‖2L2(Ωn) = ‖∇γn‖2L2(Ωn) + ‖∇ψ‖2

L2(eΩ)
+ o(1).

Thanks to Theorem 1.3 in [6], we have√
16π
3

=
1
2
(‖∇an‖2L2(Ωn) + ‖∇bn‖2L2(Ωn)) + o(1)

=
1
2
(‖∇(an − α)‖2L2(Ωn) + ‖∇(bn − β)‖2L2(Ωn))

+
1
2
(‖∇α‖2

L2(eΩ)
+ ‖∇β‖2

L2(eΩ)
) + o(1)

≥
√

16π
3

(‖∇γn‖L2(Ωn) + ‖∇ψ‖L2(eΩ)) + o(1)

=

√
16π
3

(√
1− ‖∇ψ‖2

L2(eΩ)
+ ‖∇ψ‖L2(eΩ)

)
+ o(1).

Passing to the limit as n→∞, there holds√
16π
3

≥
√

16π
3

(√
1− ‖∇ψ‖2

L2(eΩ)
+ ‖∇ψ‖L2(eΩ)

)
.
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That is, ‖∇ψ‖L2(eΩ) = 0, or ‖∇ψ‖L2(eΩ) = 1. In the later case, we infer that

1
2
(‖∇α‖2

L2(eΩ)
+ ‖∇β‖2

L2(eΩ)
) =

√
16π
3

which contradicts Theorem 1.3 in [6]. Therefore α = β = γ = 0.
Now denote by M(R2) the space of non-negative measures on R2 with finite

mass. Set

µn(z) =

{ 1
2
(|∇an|2 + |∇bn|2)(z) dx dy if z ∈ Ωn,

0 if z 6∈ Ωn,

and

νn(z) =

{
|∇ϕn|2 dx dy if z ∈ Ωn,

0 if z 6∈ Ωn.

Clearly, {µn}n∈N and {νn}n∈N are bounded in M(R2). Without loss of gen-
erality, we suppose that µn ⇀ µ, νn ⇀ ν weakly in the sense of measure for
some bounded non-negative measures µ and ν on R2. Fixing some η ∈ C∞0 (R2).
Denote by ψn the unique solution of equation (1.1) for a = ηan and b = ηbn
in Ωn. Set

ψn(z) =

{
ψn(z) if z ∈ Ωn,

0 if z 6∈ Ωn.

Thus ηan ⇀ 0 and ηbn ⇀ 0 in H1(B(0, 1)). Reasoning as before we have

ψn ⇀ 0 weakly in H1(B(0, 1)) and strongly in L2(B(0, 1)).

A direct computation shows that∫
Ωn

|∇(ψn − η2ϕn)|2

=
∫

Ωn

(−∆(ψn − η2ϕn))(ψn − η2ϕn)

=
∫

Ωn

(ηbn{an, η}+ ηan{η, bn}+ 2∇(η2)∇ϕn + (∆η2)ϕn)(ψn − η2ϕn)

≤ (‖bn‖L2(Ωn) + ‖an‖L2(Ωn))(‖∇bn‖L2(Ωn) + ‖∇an‖L2(Ωn))

× ‖η‖2C1(B(0,1))‖ψn − η2ϕn‖L∞(B(0,1))

+ ‖η‖2C2(B(0,1))‖ϕn‖L2(Ωn)‖ψn − η2ϕn‖L2(Ωn)

+ ‖η‖2C1(B(0,1))‖∇ϕn‖L2(Ωn)‖ψn − η2ϕn‖L2(Ωn),

which implies
lim

n→∞
‖∇(ψn − η2ϕn)‖L2(Ωn) = 0.

Therefore√
16π
3
‖∇(η2ϕn)‖L2(Ωn) + o(1) ≤ 1

2
(‖∇(ηan)‖2L2(Ωn) + ‖∇(ηbn)‖2L2(Ωn)).
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Letting n→∞, we deduce that

(2.7)

√
16π
3

√∫
R2
η4 dν ≤

∫
R2
η2 dµ, for all η ∈ C∞0 (R2).

Reasoning as in [6], there exists z0 ∈ Ω̃ such that ν = δz0 and µ =
√

16π/3δz0 .
Thus for n large enough, we have

Q(an, bn) ∈ B(z1, . . . , zm; r/2, . . . , r/2).

This contradiction yields the desired result. �

Step 2. We need the following lemma.

Lemma 2.2 ([6, Theorem 6.3]). E1 satisfies the Palais–Smale condition for
all c ∈ (

√
16π/3,

√
32π/3).

Step 3. Let

(a, b, ϕ) =
(

2× 31/4x

π1/4(1 + x2 + y2)
,

2× 31/4y

π1/4(1 + x2 + y2)
,

√
3(1− x2 − y2)

2
√
π(1 + x2 + y2)

)
be a minimizer of E1 for the unit disc. Denote σs,t(z) = (z + ts)/(1 + tsz) where
s = s1 + is2 ∈ S1, the unit circle and t ∈ [0, 1). We set

Pzi,ri(z) =
ri(z − zi)
|z − zi|2

, for all 1 ≤ i ≤ k.

Now, we define another continuous maps Ti from B(0, 1) to M such that

Ti(s, t; Ω) = e(a ◦ σs,t ◦ Pzi,ri
, b ◦ σs,t ◦ Pzi,ri

)|Ω,

for all s∈S1, for all t∈ [0, 1) where e∈R is well choosen such that Ti(s, t; Ω)∈M .
Then we have the following lemma.

Lemma 2.3. For all ε > 0 there exists δ > 0 such that for all s ∈ S1, for all
t ∈ [0, 1), if ri < δ, we have

E1(Ti(s, t; Ω)) ≤
√

16π
3

+ ε.

Proof. Set as,t = a ◦ σs,t ◦ Pzi,ri
, bs,t = b ◦ σs,t ◦ Pzi,ri

and ϕs,t = ϕ ◦ σs,t ◦
Pzi,ri

. Hence ϕs,t satisfies −∆ϕs,t = {as,t, bs,t} in R2. In particular, there
holds −∆ϕs,t = {as,t, bs,t} in Ω. We decompose now ϕs,t into its harmonic θs,t

and non-harmonic ψs,t components as ϕs,t = θs,t + ψs,t, where

(2.8)

{
−∆θs,t = 0 in Ω,

θs,t = ϕs,t on ∂Ω,
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and

(2.9)

{
−∆ψs,t = {as,t, bs,t} in Ω,

ψs,t = 0 on ∂Ω.

First we remark that for all s ∈ S1, for all t ∈ [0, 1), for all rj < r/2, with j 6= i,

1
2

( ∫
R2\B(zi,r)

|∇as,t|2 +
∫

R2\B(zi,r)

|∇bs,t|2
)

=
1
2

( ∫
B(0,ri/r)

|∇(a ◦ σs,t)|2 +
∫

B(0,ri/r)

|∇(b ◦ σs,t)|2
)

=
1
2

( ∫
σ−1

s,t (B(0,ri/r))

|∇a|2 +
∫

σ−1
s,t (B(0,ri/r))

|∇b|2
)
.

Obviously, σ−1
s,t = σ−s,t and meas(σs,t(B(0, ri/r))) → 0 uniformly in s ∈ S1, and

t ∈ [0, 1) as ri → 0, which in turn implies that for all ε > 0, there exists η > 0
such that for all s ∈ S1, for all t ∈ [0, 1), for all rj < r/2, with j 6= i if ri < η,
then

1
2

(∫
R2\B(zi,r)

|∇as,t|2 dx+
∫

R2\B(zi,r)

|∇bs,t|2 dx
)
≤ ε.

Similarly, for such domain Ω,

(2.10)
∫

R2\B(zi,r)

|∇ϕs,t|2 dx ≤ ε.

On the other hand, for all z 6∈ B(zi, r), we have |Pzi,ri
(z)| ≤ ri/r, so that for all

s ∈ S1, for all t ∈ [0, 1),

|ϕs,t(z)− ϕ ◦ σs,t(0)| ≤ ‖∇ϕ‖L∞(B(0,1))|σs,t(Pzi,ri
(z))− σs,t(0)| < ε

provided ri < η′ for some sufficiently small η′ > 0. For any 1 ≤ j ≤ k, with j 6= i,
we choose χj ∈ C∞0 (R2) such that supp(χj) ⊂ B(zj , r), χj |B(zj ,r/2) ≡ 1 and
‖∇χj‖L∞(R2) ≤ 3/r. We also choose χ0 ∈ C∞0 (R2) such that supp(χ0) ⊂ B(0, 1)
with χ0|B(0,1/2) ≡ 1 and ‖∇χ0‖L∞(R2) ≤ 3, then we define θ̃s,t : Ω → R by

θ̃s,t(z) =

(1− χ0(z))(ϕs,t(z)− ϕ(σs,t(0))) for all z ∈ B(0, 1) \B(0, 1/2),

χj(z)(ϕs,t(z)− ϕ(σs,t(0))) for all z ∈ B(zj , r) \B(zj , rj)

with j 6= i,

−ϕ(σs,t(0))
(

ln
|z − zi|

r

)(
ln
ri
r

)−1

for all z ∈ B(zi, r) \B(zi, ri),

0 for all

z ∈ B(0, 1/2) \
( k⋃

l=1

B(zl, r)
)
.
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A direct calculation leads to, for all s ∈ S1, t ∈ [0, 1), ‖∇θ̃s,t‖2L2(Ω) < ε provided
that ri < η′′ for some small η′′. Hence

(2.11) ‖∇θs,t‖2L2(Ω) ≤ ‖∇(θ̃s,t + ϕ(σs,t(0)))‖2L2(Ω) = ‖∇θ̃s,t‖2L2(Ω) < ε.

Finally, we have

‖∇ψs,t‖L2(Ω) ≥‖∇ϕs,t‖L2(Ω) − ‖∇θs,t‖L2(Ω)(2.12)

≥‖∇ϕs,t‖L2(B(zi,r)\B(zi,ri)) − ‖∇θs,t‖L2(Ω)

≥‖∇ϕs,t‖L2(R2\B(zi,ri))

− ‖∇ϕs,t‖L2(R2\B(zi,r)) − ‖∇θs,t‖L2(Ω)

=1− ‖∇ϕs,t‖L2(R2\B(zi,r)) − ‖∇θs,t‖L2(Ω)

and

(2.13)
1
2
(‖∇as,t‖2L2(Ω) + ‖∇bs,t‖2L2(Ω))

≤ 1
2
(‖∇a‖2L2(B(0,1)) + ‖∇b‖2L2(B(0,1))) =

√
16π
3
.

Combining (2.10) to (2.13), we prove the result. �

With the same strategy, we can establish the following lemma.

Lemma 2.4. We have

lim
t→1

E1(Ti(s, t; Ω)) =

√
16π
3

uniformly in (r1, . . . , rk) ∈ (0, r/2)k and s ∈ S1.

Proof of the main theorem completed. We choose r1 > 0 such that if
r1 > r1 ≥ . . . ≥ rk

max
s∈S1,t∈[0,1)

E1(T1(s, t; Ω)) <

√
32π
3
.

In view of Lemma 2.1, there exist β1 > 0, r̃2 ∈ (0, r1/2) such that for the domain
Ω = B(z1, . . . , zk; r1, . . . , rk) with r1 ∈ (r1/2, r1) and r̃2 > r2 ≥ . . . ≥ rk, if
(a, b) ∈M with E1(a, b,Ω) <

√
16π/3 + β1, then

Q(a, b) ∈ B(0, 1) \B(z1, r1/4).

By virtue of Lemma 2.4, we can choose t1 ∈ (0, 1) such that

max
s∈S1

E1(T1(s, t1; Ω)) <

√
16π
3

+
β1

2
.

Therefore, we have

min
h∈H

max
s∈S1,t∈[0,t1]

E1(h(s, t)) >

√
16π
3

+ β1,
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where H is the set of all continuous maps h:B(0, t1) → M , homotopic to
T1|S1×[0,t1] with fixed boundary condition h|S1×{t1} = T1|S1×{t1}. Indeed, for
any such h, Q(h|S1×{t1}) will be a non trivial lacet in B(0, 1) \B(z1, r1/4), how-
ever Q(h|S1×[0,t1]) will be contraction of such lacet in R2. Thus we obtain a
minimax value (critical value) >

√
16π/3 + β1. Then we choose r2 < r̃2 such

that if r2 > r2, maxs∈S1,t∈[0,1)E1(T2(s, t; Ω)) <
√

16π/3 + β1. Repeating the
above arguments, there exist β2 ∈ (0, β1), r̃3 < r2/2 and t2 ∈ (0, 1) such that
for Ω with r2 ∈ (r2/2, r2) and r̃3 > r3 ≥ . . . ≥ rk we can find the second minimax
value

min
h∈ eH

max
s∈S1,t∈[0,t2]

E1(h(s, t)) ∈
(√

16π
3

+ β2,

√
16π
3

+ β1

)
where H̃ is the set of all continuous maps h:B(0, t2) → M , homotopic to
T2|S1×[0,t2] with fixed boundary condition h|S1×{t2} = T2|S1×{t2} and t2 is choo-
sen such that

max
s∈S1

E1(T2(s, t2; Ω)) <
√

16π/3 + β2/2.

Iterating this procedure, we prove the desired result. �
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