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EXISTENCE AND MULTIPLICITY RESULTS
FOR WAVE EQUATIONS

WITH TIME-INDEPENDENT NONLINEARITY

Juha Berkovits — Herbert Leinfelder — Vesa Mustonen

Abstract. We shall study the existence of time-periodic solutions for
a semilinear wave equation with a given time-independent nonlinear per-

turbation and small forcing. Since the distribution of eigenvalues of the

linear part varies with the period, the solvability of the problem depends
essentially on the frequency. The main idea of this paper is to consider

the situation where the period is not prescribed and hence treated as a pa-
rameter. The description of the distribution of eigenvalues as a function of

the period enables us to show that under certain conditions the interaction

between the nonlinearity and the spectrum of the wave operator induces
multiple solutions. Our basic new result states that the autonomous equa-

tion admits at least two nontrivial solutions (free vibrations) for a restricted

(but infinite) set of periods such that the nonlinearity interacts with one
simple eigenvalue. As a corollary we prove that the semilinear wave equa-

tion with time-independent nonlinearity and small forcing admits an infinite

sequence of pairs of periodic solutions with corresponding period tending
to zero. The results are obtained via generalized topological degree theory.

1. Introduction

We shall consider semilinear wave equation of the form

(1.1)

{
∂2

t v − α2
0∂

2
xv − g(x, v) = h(x, t),

v(0, t) = v(L, t) = 0 (x ∈ ]0, L[, t ∈ R).
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We assume that the forcing term h in (1.1) is τ -periodic in t, τ being a parameter,
and look for τ -periodic solutions for equation (1.1).

The linear wave equation models a string with lenght L with constant density
and fixed endpoints. The unknown function v is the displacement of the string
from equilibrium, x is the distance along string’s equilibrium position, and t is
time. The constant α2

0 > 0 is related to the tension of the string.
After rescaling we obtain the equation

(1.2)


ω2∂2

t u− α̂2
0∂

2
xu− ĝ(x, u) = hω(x, t),

u(0, t) = u(π, t) = 0 (x ∈ ]0, π[, t ∈ R),

u(x, t) = u(x, t+ 2π),

where ω = 2π/τ , u(x, t) = v((L/π)x, ω−1t), hω(x, t) = h((Lπ)x, ω−1t), α̂0 =
α0π/L and ĝ(x, u) = g((L/π)x, u). The “normalized frequency” ω = 2π/τ ,
has a major role in our considerations. Throughout this paper we assume that
ω ∈ α0Q+. Without loss of generality we may assume that L = π and hence we
can simplify the notations by denoting ĝ again by g, α̂0 by α0 and hω(x, t) =
h(x, ω−1t).

We shall study the existence of weak solutions of (1.2), i.e. solutions of the
operator equation

(1.3) Lωu−N(u) = hω, u ∈ D(Lω)

in H = L2(Ω; R) with Ω = ]0, π[ × ]0, 2π[, where N is the Nemytskĭı operator
generated by g and Lω:D(Lω) ⊂ H → H is the abstract realization of the wave
operator ω2∂2

t − α2
0∂

2
x. The operator Lω is self adjoint and its kernel is infinite

dimensional. Hence the Leray–Schauder degree is not applicaple and we shall
employ the extension introduced in [7].

Another method used in this paper is the reduction to suitable invariant
subspaces. Indeed, if the wave operator Lω is reduced by a closed linear subspace
V and N(V ) ⊂ V , any solution of the reduced equation

(1.4) Lω|V u−N |V (u) = hω, u ∈ D(Lω) ∩ V, hω ∈ V

is also a solution for the original operator equation (1.3). If the reduction yields
dim KerLω|V < ∞, then the use of Leray–Schauder degree is possible. The
method of reductions to suitable subspaces was already used by O. Vejvoda
(see [22]) and J. M. Coron ([13], see also [8], [11]). The same idea was employed
earlier in the study of periodic solutions for ordinary differential equations (see for
instance [20]).

In order to study of the solvability of (1.3) we have to deal with the question
how the nonlinearity interacts with the spectrum of the linear part. The distri-
bution of eigenvalues of Lω changes dramatically by considering different periods



Multiple Solutions for Wave Equations 275

and also by reduction to suitable invariant subspaces. It is relevant to consider
the problem with different frequencies, because there is no a-priori reason for
any prescribed period for the external forces. In a special case the forcing term
does not depend on time (for instance h = 0). Then hω = h is independent of
ω = 2π/τ and the frequency ω is a free parameter. For any h = h(x) the solution
may be time-independent and we possibly get a solution for the ODE

(1.5)

{
−α2

0u
′′ − g(x, u) = h(x),

u(0) = u(π) = 0 (x ∈ ]0, π[).

Semilinear wave equations with prescribed period τ and α0 = 1 are widely stud-
ied by different methods, e.g. degree theory, variational methods and saddle point
reduction. We mention here the papers [1]–[3], [6], [12], [14], [16], [17], [19] and
the references therein. The existence of multiple periodic solutions for (1.1) with
special nonlinearity is examined both numerically and theoretically in connection
of modeling suspension bridges, see [18], [21], for instance.

In this paper the nonlinearity g is a Caratheodory function satisfying the
condition

(1.6) a ≤ g(x, s)
s

≤ b for all s 6= 0.

The classical condition for the nonlinearity g = g(s) assumes the boundedness of
the derivative g′(s), that is, a ≤ g′(s) ≤ b for all s ∈ R (see [12]). The relaxation
of the regularity of g leads to the condition, where the difference quotient of
g remains between a and b (see [15]). Our condition (1.6) can be viewed as
a further generalization. Indeed, if g is differentiable and (1.6) holds, then the
derivative g′ may be unbounded.

We say that the nonlinearity g interacts with the spectrum of Lω, if [a, b] ∩
σ(Lω) 6= ∅. The interaction, which clearly depens on the frequency, is crucial for
the existence of multiple solutions. We recall the following two standard results
(cf. [7]).

Theorem 1.1. Assume that (1.6) holds, ω ∈ α0Q+ and a < b are such that
[a, b] ∩ σ(Lω) = ∅. Then the equation

(1.7)


ω2∂2

t u− α2
0∂

2
xu− g(x, u) = 0,

u(0, t) = u(π, t) = 0 (x ∈ ]0, π[, t ∈ R),

u(x, t) = u(x, t+ 2π),

has only the trivial solution u = 0.

Theorem 1.2. Assume that 0 < a < b, g(x, · ) is nondecreasing and the
condition (1.6) holds. If ω ∈ α0Q+ and [a, b] are such that [a, b] ∩ σ(Lω) = ∅,
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then the equation

(1.8)


ω2∂2

t u− α2
0∂

2
xu− g(x, u) = f,

u(0, t) = u(π, t) = 0 (x ∈ ]0, π[, t ∈ R),

u(x, t) = u(x, t+ 2π),

admits at least one weak solution for any f ∈ L2(Ω; R).

We shall prove the existence of multiple solutions for (1.8) whenever certain
interaction between the nonlinearity and the spectrum occurs. We prove that
the homogeneous equation (1.7) admits at least two nontrivial solutions for a
certain infinite set of periods such that the nonlinearity interacts with one simple
eigenvalue. We show that the conclusion remains valid for any sufficiently small
forcing term h which is even in t. As a corollary we obtain the result that the
equation (1.1) with small forcing admits an infinite sequence of pairs of periodic
solutions with corresponding period tending to zero. The results are obtained
using a generalization of the Leray–Schauder topological degree and reduction
to invariant subspaces.

The paper is organized as follows. In Section 2 we recall the formulation of
problem (1.2) in Hilbert space L2(Ω; R) and give the properties of topological
degree needed in the sequel. Section 3 is devoted to the study of the distribution
of eigenvalues as a function of the frequency. We obtain a characterization for
the spectrum of the wave operator on any given compact interval as a function
of ω. In Section 4 we prove a priori estimates for the homotopy equation. These
estimates improve the previous results and we show that they hold uniformly in ω
on a certain set of frequencies. Section 5 contains new existence and multiplicity
results. In all theorems the solvability is obtained for an infinite set of frequencies.

2. Prerequisites

We recall first the basic properties of the linear wave operator. Denote H =
L2(Ω; R), where Ω = ]0, π[ × ]0, 2π[. We shall use the notations 〈 · , · 〉 and ‖ · ‖
for the inner product and norm in any real Hilbert space. A possible subscript
V indicates that we are dealing with a subspace V of H. Define

φj,k(x, t) =



√
2
π

sin(jx) sin(kt) j ∈ Z+, k ∈ Z+,

1
π

sin(jx) j ∈ Z+, k = 0,
√

2
π

sin(jx) cos(kt) j ∈ Z+, −k ∈ Z+.
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Then the set {φj,k | j ∈ Z+, k ∈ Z} forms an orthonormal basis in H and each
u ∈ H has a representation

u =
∑

j∈Z+,k∈Z
〈u, φj,k〉φj,k.

The wave operator ω2∂2
t −α2

0∂
2
x with periodic Dirichlet boundary conditions has

in H the abstract realization

Lωu =
∑
j,k

λω
j,k〈u, φj,k〉φj,k

with λω
j,k = α2

0j
2 − ω2k2, j ∈ Z+, k ∈ Z, and with the domain

D(Lω) =
{
u ∈ L2(Ω)

∣∣∣∣ ∑
j,k

|α2
0j

2 − ω2k2|2|〈u, φj,k〉|2 <∞
}
.

Thus the othonormal basis {φj,k} consists of the eigenvectors of the operator Lω.
We shall always assume that ω ∈ α0Q+, i.e. α0/ω is rational. Otherwise we
encounter the hard problem of “small divisors”, see [6], [11], for instance. For
any ω ∈ α0Q+ the operator Lω is self adjoint and has a compact partial inverse
Kω on ImLω. For more details on related abstract operators and their properties
we refer to [5].

Let the function (x, s) → g(x, s) from [0, π] × R to R be measurable in
x ∈ [0, π] for each s ∈ R and continuous in s for almost all x ∈ [0, π]. Moreover,
we assume that g satisfies the linear growth condition

(2.1) |g(x, s)| ≤ c0|s|+ k0(x),

where c0 ≥ 0 and k0 ∈ L2(]0, π[). Denote by N :H → H the bounded continuous
Nemytskĭı operator generated by g, that is,

N(u)(x, t) = g(x, u(x, t)) for all u ∈ H, (x, t) ∈ Ω.

For any f ∈ H a function u ∈ H is called a weak solution of the problem

(2.2)


ω2∂2

t u− α2∂2
xu− g(x, u) = f(x, t),

u(0, t) = u(π, t) = 0 (x ∈ ]0, π[, t ∈ R),

u(x, t) = u(x, t+ 2π),

if and only if

(2.3)
∫

Ω

u(ω2ψtt − α2ψxx) dx dt =
∫

Ω

(g(x, u) + f)ψ dx dt

for all ψ ∈ C2, where C2 stands for twice continuously differentiable functions
ψ: [0, π] × R → R such that ψ(0, t) = ψ(π, t) = 0 for all t ∈ R and ψ(x, · ) is
2π-periodic. It is easy to see that u ∈ H satisfies (2.2) if and only if

u ∈ D(Lω) and Lωu−N(u) = f.
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Let us consider more closely the spectrum σ(Lω) of the operator Lω. For any
ω ∈ α0Q+ it is easy to see that KerLω is infinite dimensional. Indeed, if ω =
α0p/q ∈ α0Q+, where p and q are relative primes, then λj,k = 0 if and only if j =
lq and |k| = lp, l ∈ Z+. It is easy to see that Lω has a real pure point spectrum
σ(Lω) = {λω

jk | λω
j,k = α2

0j
2−ω2k2, j ∈ Z+, k ∈ Z}. The eigenvalues are isolated

and all nonzero eigenvalues have finite geometric multiplicities. Note that the
spectrum is unbounded from below and from above. Clearly the eigenvalues
λ = 0 and λ = λω

j,0, j ∈ Z+, being constant in ω, play a special role. In order
to deal with these exceptional “constant eigenvalues” it is possible to look for
solutions of (1.3) in suitable invariant subspaces. Indeed, if the operator Lω

is reduced by a closed subspace V ⊂ H, then σ(Lω) = σ(Lω|V ) ∪ σ(Lω|V ⊥),
implying that the spectrum of Lω in V is thinner than the spectrum of Lω in H.
The main problem is to find natural conditions ensuring N(V ) ⊂ V .

Let ω ∈ α0Q+ be fixed and denote by P and Q = I − P the orthogonal
projections to KerLω and ImLω = (KerLω)⊥, respectively. The equation

Lωu−N(u) = f, u ∈ D(Lω),

can be written equivalently as

(2.4) Q(u+KωQN(u)) + PN(u) = (KωQ− P )f, u ∈ H.

Since dim KerLω = ∞ the Leray–Schauder degree cannot be applied to tackle the
solvability of equation (2.4). This difficulty can be dealt with if N is monotone
or of class (S+) or more generally pseudomonotone by using the extension of
degree constructed in [7]. Indeed, recall first some basic definitions of mappings
of monotone type. In all definitions we assume that N is bounded in the sense
that it takes any bounded set into a bounded set, and demicontinuous, i.e. uk → u

(norm convergence) implies N(uk) ⇀ N(u) (weak convergence). The mapping
N is monotone if

〈N(u)−N(v), u− v〉 ≥ 0 for all u, v ∈ H.

Any monotone map is a special case of pseudomonotone maps, that is, the con-
ditions uk ⇀ u and lim sup〈N(uk), uk − u〉 ≤ 0 imply that N(uk) ⇀ N(u) and
〈N(uk), uk〉 → 〈N(u), u〉. If there exists a constant ν > 0 such that for all
u, v ∈ H

〈N(u)−N(v), u− v〉 ≥ ν‖u− v‖2,

N is strongly monotone. Such mappings belong to the wider class (S+) defined
by the property: uk ⇀ u and lim sup〈N(uk), uk − u〉 ≤ 0 imply that uk → u.
Any map of the form I − C:H → H, where C is compact is said to be of
Leray–Schauder type. Note that in Hilbert space any map of Leray–Schauder
type belongs to the class (S+). Moreover, the class (S+) is contained in the
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class of pseudomonotone maps. The class (S+) is stable under a large class
of perturbations, for instance, compact or pseudomonotone perturbations are
allowed. If N is of class (S+), then the topological degree constructed in [7] is,
as a special case, well-defined for mappings of the type

Q(I +KωQN) + PN :H → H.

This degree theory is a unique extension of the classical Leray–Schauder degree.
It is single-valued and has the usual properties of degree, such as additivity
of domains and invariance under homotopies. Let the corresponding degree
function be dH and simplify our notations by setting

degH(Lω −N,G, f) ≡ dH(Q(I −KωQN) + PN,G, (KωQ− P )f)

for any open bounded set G ⊂ H such that f /∈ (Lω−N)(∂G∩D(Lω)). Similar,
degree theory exists for mappings of the type Lω + N , where N :H → H is
bounded, demicontinuous and of class (S+) (see [7] and also the remarks in
Section 6). By a reference map we refer to any linear injection Lω − N0 for
which the degree is well-defined. For any reference map we have (see [7])

degH(Lω −N0, G, f) 6= 0 for any f ∈ (Lω −N0)(D(L) ∩G).

Typical reference maps are

Lω − P, Lω − λI, where λ /∈ σ(Lω),

and
Lω − λI + Pλ, where λ ∈ σ(Lω), λ 6= 0,

and Pλ is the orthogonal projection onto Ker(Lω − λI). Only the last one is
actually used in this paper. For different types of reference maps, their applica-
tion and the calculation of the value of degree we refer to [4], [7] and [10]. The
following continuation theorem is a direct consequence of the basic properties of
the degree.

Theorem 2.1. Assume that Lω − N0 is a reference map, N :H → H is
bounded and demicontinuous, G ⊂ H is open and bounded, f0 ∈ (Lω −N0)(G ∩
D(Lω)) and f ∈ H. Assume that

(2.5) Lωu− µN(u)− (1− µ)N0(u) 6= µf + (1− µ)f0

for all u ∈ ∂G ∩D(Lω) and 0 ≤ µ ≤ 1. If N is of class (S+), then

degH(Lω −N,G, f) = degH(Lω −N0, G, f0) 6= 0

and the equation
Lωu−N(u) = f, u ∈ D(Lω)
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admits at least one solution u ∈ G ∩ D(Lω). A solution exists also when N is
pseudomonotone, G is convex and (2.5) holds.

3. On the distribution of eigenvalues

Assume that the nonlinearity g is time-independent and satisfies, for almost
all x ∈ [0, π], the condition

a ≤ g(x, s)
s

≤ b for all s 6= 0.

Essential to our considerations is the set of interacting eigenvalues [a, b]∩σ(Lω).
By Theorem 1.1 the existence of nontrivial solution for homogeneous equation
(1.7) requires some interaction between the nonlinearity and the spectrum of the
linear part.

In this section we prove some some new results on the spectrum of Lω in a
compact interval [a, b] as a function of the frequency ω. Note that there are two
different types of eigenvalues. Indeed, the set

σconst := {0} ∪ {α2
0j

2 | j ∈ Z+} ⊂ σ(Lω)

remains constant in ω ∈ α0Q+. Moreover, the eigenvalue λ = 0 is special in the
sense that the corresponding eigenspace Ker(Lω) is always infinite dimensional
but depends on ω. Denote σω = σ(Lω) \ σconst, i.e.

σω = {λω
j,k = α2

0j
2 − ω2k2 | j ∈ Z+, k ∈ Z, k 6= 0, λω

j,k 6= 0}.

All the results of this section characterize the set σω ∩ [a, b], where a < b. We
show first that the set of frequencies such that σω ∩ [a, b] 6= ∅ is dense in α0Q+

and for all sufficienly small frequencies σω ∩ [a, b] 6= ∅. On the other hand, in
Lemma 3.2 we prove that there exists an infinite number of frequencies such that
σω∩ [a, b] = ∅. The third result (Lemma 3.3) is quite technical, it states, roughly
speaking, that for a given interval [0, R] and given integer n ≥ 0 we can find
frequencies such that σω ∩ [0, R] contains exactly n eigenvalues. As a corollary
we obtain the result used later on that for a certain set of frequencies the set
σω∩ [a, b], where 0 /∈ [a, b], contains exactly one eigenvalue with multiplicity two.

In our basic existence result (Theorem 5.1) the nonlinearity interacts with
one simple eigenvalue. Due to the asymmetry of the spectrum σ(Lω) we face two
cases. First, if 0 < a < b the set σconst∩[a, b] may be empty or nonempty. In both
situations we obtain existence results. For instance, if σconst∩ [a, b] = ∅, we shall
prove (using Corollary 3.4 and reduction to suitable subspace V ) that there exist
infinitely many frequencies ω ∈ α0Q+ such that [a, b]∩σ(Lω|V ) contains exactly
one simple eigenvalue. Secondly, if a < b < 0, then always σconst ∩ [a, b] = ∅
and by similar argument we conclude that there exist infinitely many frequencies
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ω ∈ α0Q+ such that [a, b] contains exactly one simple eigenvalue of the reduced
operator Lω|V .

Our first result shows that for almost all frequencies there is some interaction
between σω and g.

Lemma 3.1. Let [a, b] be a given compact interval in R. Then we have:

(a) The set {ω ∈ α0Q+|[a, b] ∩ σω 6= ∅} is dense in R+.
(b) There exists a limit value ω̃ > 0 such that [a, b]∩σω 6= ∅ for all ω ∈ α0Q+

with ω ≤ ω̃.

Proof. (a) Let r > 0 be a given real number. Then there exist a sequence
(rl)∞l=1 of rational numbers such that

rl =
pl

ql
6= r, pl →∞, ql →∞ and rl → r.

Take

sl ∈

[√
p2

l

q2l
− b

α2
0q

2
l

,

√
p2

l

q2l
− a

α2
0q

2
l

]
∩Q+

such that sl 6= pl/ql and denote ωl = α0sl. Then it is easy to see that ωl/α0 → r

and λωl
pl,ql

∈ [a, b] \ {0} for all l ∈ Z+. Thus r is in the closure of the set
{ω/α0 ∈ Q+ | [a, b] ∩ σω 6= ∅} completing the proof.

(b) Denote j0 = min{j ∈ Z+ | j2 > b/α2
0} and c20 = j20 − b/α2

0 and d2
0 =

j20 − a/α2
0. If ω̃ ≤ α0(d0 − c0), then it is easy to see that for any ω ≤ ω̃,

k0ω/α0 ∈ [c0, d0] for some k0 ∈ Z+. But then λω
j0,k0

∈ [a, b] and the proof is
complete. �

It is easy to see that the set N = {ω ∈ α0Q+ | [a, b] ∩ σω 6= ∅} is a union
of intervals (in α0Q+). Note also that in case a, b /∈ α2

0Q the set N is relatively
open in α0Q+. Indeed, if ω ∈ N and a, b /∈ α2

0Q then there exist j, k ∈ Z+ such
that a < λω

j,k < b and clearly a < λω′

j,k < b for all ω′ close enough to ω.
On the other hand the interaction does not occur for certain sufficiently large

values of ω. This is verified in our next result.

Lemma 3.2. Let [a, b] be a given compact interval in R, and ω1 = α0r, where
r = p/q ∈ Q+. Denote ωn = α0rn, where n ∈ Z+. If α0ωn ≥ qmax{|a|, |b|}
then [a, b] ∩ σωn

= ∅.

Proof. For any λωn

jk ∈ σωn
we have

|λωn

jk | = α2
0|j − nrk|(j + nrk) = α2

0

|jq − pnk|
q

(j + nrk) ≥ α2
0

(1 + nr)
q

.

Hence, if α0ωn ≥ qmax{|a|, |b|}, then |λωn

jk | > max{|a|, |b|} and the conclusion
follows. �
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The existence of multiple solutions requires some interaction between the
nonlinearity and the spectrum of the linear part. The following result is crucial.

Lemma 3.3. Let r0 ∈ R, r0 > 0 be given. Take any rational sequence
(si/qi)∞i=1 such that si/qi 6= r0, si/qi → r0, si → ∞ and qi → ∞. Denote
pi = siqi − 1 and ωi = α0pi/qi. Then ωi →∞ and, for all l ∈ Z+,

(3.1) λωi

lsi,l
→ 2r0α2

0l
2 as i→∞.

Moreover, for any n ∈ Z+, there exists in ∈ Z+ such that for all i ≥ in the first
n positive eigenvalues in σωi

are

(3.2) 0 < λωi
si,±1 < λωi

2si,±2 < . . . < λωi
nsi,±n.

Proof. By the fact that pi/qi = si − 1/qi we get

λωi

lsi,l
= α2

0l
2

(
si −

pi

qi

)(
si +

pi

qi

)
= α2

0l
2

(
si − si +

1
qi

)(
si + si +

1
qi

)
= α2

0l
2

(
2
si

qi
+

1
q2i

)
→ 2α2

0r0l
2

and consequently (3.1) holds.
The main part of the proof is to show (3.2). Indeed, let n ∈ Z+ be given

and denote cn = 2r0α2
0(n+ 1/2)2. It is sufficient to show that for all sufficiently

large values of i

(3.3) [0, cn] ∩ σωi
= {λωi

si,±1, λ
ωi
2si,±2, . . . , λ

ωi
nsi,±n}.

Indeed, assume the contrary. Then we can find a subsequence of (i)∞i=1 (denoted
for simplicity again by (i)∞i=1) such that

0 < λωi

ji,ki
≤ cn, ji, ki ∈ Z+, (ji, ki) 6= (lsi, l), l = 1, . . . , n.

Since pi/q
2
i = si/qi − 1/q2i → r0 and jiqi − piki ≥ 1 we have

λωi

ji,ki
= α2

0

1
q2i

(jiqi − piki)(jiqi + piki) ≥ α2
0

pi

q2i
ki

and thus (ki) is bounded. Taking a subsequence if necessary we can assume that
ki ≡ k0 ∈ Z+. Hence

λωi

ji,ki
= λωi

ji,k0
= α2

0

(
ji −

pi

qi
k0

)(
ji +

pi

qi
k0

)
,

where ji + (pi/qi)k0 →∞ and therefore

ji −
pi

qi
k0 = ji − sik0 +

k0

qi
→ 0

implying ji = k0si for all sufficiently large values of i. Hence we get

lim
i→∞

λωi

ji,ki
= lim

i→∞
λωi

k0si,k0
= lim

i→∞
α2

0

k2
0

qi

(
2si −

1
qi

)
= 2r0α2

0k
2
0.
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Consequently 2α2
0r0k

2
0 ≤ cn = 2α2

0r0(n+ 1/2)2 implying k0 ≤ n, a contradiction
completing the proof. �

Note that analogous result as above holds if r0 < 0. In fact the result is
better, because all negative eigenvalues of Lω belong to σω. Take any rational
sequence (si/qi)∞i=1 such that si/qi 6= −r0, si/qi → −r0, si → ∞ and qi → ∞.
Denote pi = siqi + 1 and ωi = α0pi/qi. Then ωi →∞ and

λωi

lsi,l
→ 2r0α2

0l
2, l = 1, 2, . . . , as i→∞.

Moreover, for any n ∈ Z+ there exists in ∈ Z+ such that for all i ≥ in the n
greatest negative eigenvalues of Lωi are

λωi
nsi,±n < λωi

(n−1)si,±(n−1) < . . . < λωi
si,±1 < 0.

As a direct consequence of the above lemma we obtain the following.

Corollary 3.4. Let [a, b] be any compact interval such that 0 /∈ [a, b]. Then
there exist infinitely many frequencies ω ∈ α0Q+ such that [a, b] ∩ σω contains
exactly one eigenvalue having multiplicity two.

Proof. Assume 0 < a < b and choose c ∈ R such that a < c < b and
4c > b. Denote r0 = c(2α2

0)
−1 and apply Lemma 3.3. Consequently there exist

sequences (λωi
si,±1)

∞
i=1 and (λωi

2si,±2)
∞
i=1 such that, for all sufficiently large values

of i, 0 < a < λωi
si,±1 < b < λωi

2si,±2 and [a, b] ∩ σωi = {λωi
si,±1}. If a < b < 0 we

can apply the corresponding result on negative side. �

4. A priori estimates

In this section we shall prove a-priori estimates for a solution set of a certain
homotopy equation which will be used in Section 5. The idea of the proofs is
adopted from [9] and [15]. However, we shall sharpen and improve the estimates
and show explicitly their dependence on the frequency ω = 2π/τ .

Let g: [0, π] × R → R be a function satisfying the Caratheodory conditions.
Moreover, we impose on g the following conditions: for almost all x ∈ [0, π]

(4.1) a ≤ g(x, s)
s

≤ b for all s 6= 0,

where b > a > 0 are constants. We assume that there exist further constants a,
b and d > c > 0 such that for almost all x ∈ [0, π]

(4.2)


a ≤ g(x, s)

s
≤ a for all |s| > d,

b ≤ g(x, s)
s

≤ b for all 0 < |s| ≤ c,

and

(4.3) a < a < b < b with 4b > b.
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In view of applications we notice that if g = g(u) satifies the condition (4.1) and

lim inf
s→0

g(s)
s

= b, lim sup
|s|→∞

g(s)
s

= a,

then conditions (4.2) and (4.3) trivially hold. As earlier, we denote σconst =
{0} ∪ {α2

0j
2 | j ∈ Z+} and σω = σ(Lω) \ σconst. Assume that [a, b] ∩ σconst = ∅,

that is, the set of interacting eigenvalues in H is

(4.4) σ(Lω) ∩ [a, b] = σω ∩ [a, b].

By Corollary 3.4 there exist infinitely many frequencies ω ∈ α0Q+ such that

(4.5) σω ∩ [a, b] = {λω
s,1, λ

ω
s,−1} ⊂ [a1, b1],

where a1, b1 are some fixed constants such that a < a1 < b1 < b and 4b1 > b (the
notation λω

s,±1 refers to Lemma 3.3). Moreover, by Lemma 3.3 we can take ω in
such a way that there exist real constants λ and λ such that

(4.6) max{λω
j,k | λω

j,k < λω
s,1} ≤ λ < a, min{λω

j,k | λω
j,k > λω

s,1} ≥ λ > b.

From now on we assume that ω ∈ α0Q+ is fixed such that the conditions (4.4)–
(4.6) hold. Denote λ(ω) = λω

s,1 = λω
s,−1. Crucial for the estimates is the decom-

position H = Hω
1 ⊕Hω

2 ⊕Hω
3 defined by the projections

Pω
1 u =

∑
λω

jk<λ(ω)

〈u, φj,k〉φj,k,

Pω
2 u =

∑
λω

jk=λ(ω)

〈u, φj,k〉φj,k,

Pω
3 u =

∑
λω

jk>λ(ω)

〈u, φj,k〉φj,k,

whereHω
i = ImPω

i , i = 1, 2, 3. In the sequel we shall use the following immediate
consequences of the decomposition:

〈Lωu− λ(ω)u, Pω
1 u〉 ≤ (λ− λ(ω))‖Pω

1 u‖2,

〈Lωu− λ(ω)u, Pω
3 u〉 ≥ (λ− λ(ω))‖Pω

3 u‖2,

which are valid for any u ∈ D(Lω). Let yω ∈ Hω
2 = Ker(Lω − λ(ω)I) be a fixed

such that ‖yω‖ = 1. Denote

Fω
µ (u) = Lωu− λ(ω)u− µ(N(u)− λ(ω)u) + (1− µ)Pω

2 u, 0 ≤ µ ≤ 1,

Kω = {u ∈ D(Lω) | Fω
µ (u) = (1− µ)yω for some µ ∈ [0, 1]},

D+
ω = {u | 〈Pω

2 u− yω, P
ω
2 u〉 ≥ 0},

D−ω = {u | 〈Pω
2 u− yω, P

ω
2 u〉 < 0}
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and
ũ = Pω

1 u+ Pω
2 u− Pω

3 u, û = Pω
1 u− Pω

2 u− Pω
3 u.

Note that the homotopy equation Fω
µ (u) = (1− µ)yω with µ = 0 takes the form

Lωu− λ(ω)u+ Pω
2 u = yω,

which has a unique solution u = yω. We shall prove the following two estimates:

Estimate 1. Assume that (4.1)–(4.3) are satisfied. Moreover, assume that
(4.4) holds and ω ∈ α0Q+ satisfies the conditions (4.5), (4.6). Then any u ∈
Kω ∩D−ω satisfies the inequality

0 > (b− λ)‖Pω
1 u‖2 + (λ− b)‖Pω

3 u‖2 − (b− a)
∫

Ω1

|Pω
1 u+ Pω

2 u|2,

where Ω1 = {(x, t) ∈ Ω | |u| > c, uũ > 0}.

Estimate 2. Assume that (4.1)–(4.3) are satisfied. Moreover, assume that
(4.4) holds and ω ∈ α0Q+ satisfies the conditions (4.5), (4.6). Then any u ∈
Kω ∩D+

ω satisfies the inequality

0 ≥ (a− λ)‖Pω
1 u‖2 + (λ− a)‖Pω

3 u‖2 + (a1 − a)‖Pω
2 u‖2 − c1‖Pω

1 u‖ − c2,

where c1, c2 are positive constants independent of ω.

Proof of Estimate 1. Assume that u ∈ Kω ∩D−ω . Then 0 < ‖Pω
2 u‖ < 1.

We first conclude from the equality 〈Fω
µ (u)− (1− µ)yω, ũ〉 = 0 that

µ〈N(u)− λ(ω)u, ũ〉 ≤ −(λ(ω)− λ)‖Pω
1 u‖2 − (λ− λ(ω))‖Pω

3 u‖2 ≤ 0

and hence
〈N(u)− λ(ω)u, ũ〉 ≤ µ〈N(u)− λ(ω)u, ũ〉.

Combining the results we obtain the basic estimate

(4.7) λ‖Pω
1 u‖2 + λ(ω)‖Pω

2 u‖2 − λ‖Pω
3 u‖2 ≥

∫
Ω

g(x, u)ũ.

By conditions (4.1)–(4.3) together with assumptions on ω we get∫
Ω

g(u)ũ ≥ b
∫
|u|≤c,ueu>0

uũ+ a

∫
Ω1

uũ+ b

∫
|u|≤d,ueu<0

uũ+ a

∫
|u|>d,ueu<0

uũ

= b

∫
Ω

uũ− (b− a)
∫

Ω1

uũ

+ (b− b)
∫
|u|≤d,ueu<0

uũ− (b− a)
∫
|u|>d,ueu<0

uũ

≥ b‖Pω
1 u‖2 + b‖Pω

2 u‖2 − b‖Pω
3 u‖2

− (b− a)
∫

Ω1

|Pω
1 u+ Pω

2 u|2 − (b− b)‖Pω
3 u‖2,
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where in the last estimate the nonnegative term

−(b− a)
∫
|u|>d,ueu<0

uũ

is dropped. Thus by the basic estimate (4.7) and by neglecting the strictly
positive term (b− λ(ω))‖Pω

2 u‖2 we finally obtain

0 > (b− λ)‖Pω
1 u‖2 + (λ− b)‖Pω

3 u‖2 − (b− a)
∫

Ω1

|Pω
1 u+ Pω

2 u|2. �

Proof of Estimate 2. Assume that u ∈ Kω ∩D+
ω . From the equality

〈Fω
µ (u)− (1− µ)yω, û〉 = 0

we obtain in analogy with (4.7) the estimate

(4.8) λ‖Pω
1 u‖2 − λ(ω)‖Pω

2 u‖2 − λ‖Pω
3 u‖2 ≥

∫
Ω

g(x, u)û.

Denote Ω2 = {(x, t) ∈ Ω||u| ≤ d} and notice that |û| ≤ d + 2|Pω
1 u| on Ω2. By

the assumptions on g and ω we get∫
Ω

g(u)û ≥ a
∫
|u|>d,ubu>0

uû+ a

∫
|u|>d,ubu<0

uû

+ a

∫
|u|≤d,ubu>0

uû+ b

∫
|u|≤d,ubu<0

uû

= a

∫
Ω

uû− (a− a)
∫
|u|>d,ubu>0

uû

− (a− a)
∫
|u|≤d,ubu>0

uû+ (b− a)
∫
|u|≤d,ubu<0

uû

≥ a
∫

Ω

uû− (a− a)
∫
|u|>d,ubu>0

|Pω
1 u|2

− (a− a)
∫

Ω2

|uû| − (b− a)
∫

Ω2

|uû|

≥ a‖Pω
1 u‖2 − a‖Pω

2 u‖2

− a‖Pω
3 u‖2 − (a− a)‖Pω

1 u‖2 − (b− a)
∫

Ω2

|uû|,

where
(b− a)

∫
Ω2

|uû| ≤ (b− a)d
∫

Ω

(d+ 2|Pω
1 u|) ≤ c2 + c1‖Pω

1 u‖

with constants c1 and c2 independent of ω. Hence it follows from the estimate
(4.8) that

0 ≥ (a− λ)‖Pω
1 u‖2 + (λ− a)‖Pω

3 u‖2 + (λ(ω)− a)‖Pω
2 u‖2 − c1‖Pω

1 u‖ − c2,

and since λ(ω) ≥ a1 the desired Estimate 2 follows. �
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Lemma 4.1. Assume that (4.1)–(4.6) hold and let yω ∈ Hω
2 , ‖yω‖ = 1, be

given. Then there exist constants R > 1 and ρ ∈ ]0, 1[ (independent of ω and yω)
such that

Lωu− µN(u)− (1− µ)(λ(ω)u− Pω
2 u) 6= (1− µ)yω

for all 0 ≤ µ ≤ 1, u ∈ D−ω ∩D(Lω) with 0 < ‖P2u‖ ≤ ρ and for all u ∈ D(Lω)
with ‖u‖ ≥ R.

Proof. Assume first that u ∈ Kω∩D−ω . Now ‖Pω
2 u‖ < 1 and by Estimate 1

we get

0 > (b− λ)‖Pω
1 u‖2 + (λ− b)‖Pω

3 u‖2 − (b− a)‖Pω
1 u‖2 − (b− a).

Hence there exists R1 > 1 such that ‖u‖ < R1. If u ∈ Kω ∩ D+
ω it is clear by

Estimate 2 that there exists R ≥ R1 such that ‖u‖ < R.
To prove the second part of the lemma assume again that u ∈ Kω ∩ D−ω .

Recall that Ω1 = {(x, t) ∈ Ω | |u| > c, uũ > 0} and it depends on ω via the
solution u. By dropping the Pω

3 -term from Estimate 1 we get

0 >
∫

Ω1

[(b− λ)|Pω
1 u|2 − (b− a)|Pω

1 u+ Pω
2 u|2].

Thus the set Ω1 has positive measure and denoting γ = maxΩ |Pω
2 u| we obtain

0 >
∫

Ω1

[(a− λ)|Pω
1 u|2 − 2(b− a)γ|Pω

1 u| − (b− a)γ2].

Denote z = |Pω
1 u| and notice that in Ω1 we have z + γ + |Pω

3 u| > c and z + γ −
|Pω

3 u| > 0 implying z > c/2− γ. Consider now the function

E(z) = (a− λ)z2 − 2(b− a)γz − (b− a)γ2, z > c/2− γ.

It is easy to see that E(z) = 0 has only one nonnegative root z0 which is of the
form z0 = const× γ and E(z) < 0 for all 0 ≤ z < z0 and E(z) > 0 for all z > z0.
Thus E(z) > 0 for all z > c/2− γ provided z0 ≤ c/2− γ. On the other hand we
know that ∫

Ω1

E(|Pω
1 u|) < 0.

Hence γ cannot be arbitrarily small and consequently there exists γ0 such that
γ ≥ γ0. Since the space Hω

2 is two-dimensional all its norms are equivalent and
we conclude that there exists a further constant 0 < ρ < 1 such that

‖Pω
2 u‖ > ρ for all u ∈ D−ω ∩Kω,

completing the proof. �
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5. Existence results

As before, we assume that g: [0, π] × R → R is a function satisfying the
Caratheodory conditions and

a ≤ g(x, s)
s

≤ b, for all s 6= 0, for a.a. x ∈ [0, π],

where b > a > 0. Define

Ve = {u ∈ H | u(x, 2π − t) = u(x, t) for a.a. x ∈ ]0, π[, t ∈ ]0, 2π[}.

It is easy to see that

Ve = sp{φjk | j ∈ Z+, −k ∈ N}.

Clearly the operator Lω, ω ∈ α0Q+, is completely reduced by Ve, i.e. PeD(Lω) ⊂
D(Lω) and PeLωu = LωPeu for all u ∈ D(Lω), where we have denoted by Pe

the orthogonal projection onto Ve. Moreover, N(Ve) ⊂ Ve. More generally, for
any closed subspace V of H spanned by any given set of eigenvectors we denote

σconst(V ) = σconst ∩ σ(Lω|V ).

The set [a, b]∩σconst(V ) is independent of the frequency. The only way to make
[a, b] ∩ σconst(V ) thinner is to choose the invariant subspace V appropriately.
Denote

σω(V ) = σω ∩ σ(Lω|V ).

By Lemma 3.1 we know that for almost all ω ∈ α0Q+ the set [a, b] ∩ σω is
nonempty. However, by Lemma 3.2 there exist infinitely many frequencies ω
such that [a, b]∩ σω = ∅ and by Corollary 3.4 infinitely many frequencies ω such
that [a, b] ∩ σω contains exactly one eigenvalue with multiplicity two. We refer
to the set

σ(Lω|V ) ∩ [a, b]

as the set of interacting eigenvalues in V . In order to obtain multiple solutions
it is necessary that the interval [a, b] contains some eigenvalues of Lω|V . The
application of topological degree requires the nonlinearity to be of class (S+).
To this end we assume that

(5.1) (g(x, s)− g(x, s̃))(s− s̃) ≥ ν|s− s̃|2 for all s, s̃ ∈ R, a.a. x ∈ [0, π],

where ν > 0 is constant. By condition (5.1) the Nemytskĭı operator N generated
by g is strongly monotone and hence of class (S+). Before stating the main result
we recall that for any τ -periodic function h(x, t), x ∈ [0, L], t ∈ R, we denote
hω(x, t) = h(x, ω−1t) with the assumption that L = π.
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Theorem 5.1. Assume that (4.1)–(4.6) and (5.1) hold. Then there exists
an ε = ε(ω) > 0 such that the equation

∂2
t u− α2

0∂
2
xu− g(x, u) = h(x, t),

u(0, t) = u(π, t) = 0 (x ∈ ]0, π[, t ∈ R),

u(x, · ) is 2π/ω-periodic,

admits at least two weak solutions for any 2π/ω-periodic function h such that
hω ∈ Ve and ‖hω‖ < ε(ω). If h = 0, both solutions are nontrivial and time-
dependent.

Proof. Assume first that h = 0. We already know that the equation has a
trivial solution u = 0. Choose y ∈ Ve ∩Hω

2 , ‖y‖ = 1 and define

G+ = {u ∈ Ve | ‖u‖ < R, Pω
2 u = θy, ρ < θ < R}.

Now Ve ∩ Hω
2 is one-dimensional, the set G+ ⊂ Ve is open and bounded in Ve

and 0 /∈ G+. By Lemma 4.1

Lωu− µN(u)− (1− µ)(λ(ω)u− Pω
2 u) 6= (1− µ)y

for all 0 ≤ µ ≤ 1, u ∈ ∂G+ ∩D(Lω). It is easy to see that

Fω
0 (u) = Lωu− λ(ω)u+ Pω

2 u = y, u ∈ D(Lω)

if and only if u = y ∈ G+ ∩D(Lω). Hence by Theorem 2.1

degV (F1, G+, 0) = degV (F0, G+, y) 6= 0

and consequently 0 ∈ F1(G+ ∩D(Lω)).
Replacing y by −y and G+ by the open bounded set

G− = {u ∈ V | ‖u‖ < R, Pω
2 u = −θy, ρ < θ < R}

yields another nontrivial solution for the equation

Lωu−N(u) = 0.

Denote these solutions by u1 and u2. Since 〈u1, y〉 > 0 and 〈u2, y〉 < 0, the
solutions do not coincide and they are time-dependent. Choose G to be G+

and G−, respectively. The set F1(∂G ∩D(Lω)) is closed and we denote by ∆0

the open component of H \ F1(∂G ∩D(Lω)) containing the origin. Hence there
exists ε(ω) > 0 such that B(0, ε(ω)) ⊂ ∆0. For any h such that hω ∈ V and
‖hω‖ < ε(ω) we have

F1(u) 6= µhω for all u ∈ ∂G ∩D(Lω), 0 ≤ µ ≤ 1.

Hence by the homotopy invariance of the degree we obtain

degV (F1, G, hω) = degV (F1, G, 0) 6= 0
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implying hω ∈ F1(G ∩D(Lω)). �

By the previous theorem we can construct a sequence (ωi)∞i=0, ωi → ∞,
such that for all i the corresponding homogenous equation admits at least two
nontrivial solutions. On the other hand, using Theorem 1.1 and Lemma 3.2 it is
possible to find a another sequence of frequencies (ωi)∞i=0 such that ωi − ωi → 0
but the corresponding equation has only the trivial solution. Indeed, we get the
following result.

Corollary 5.2. Assume that (4.1)–(4.4) and (5.1) hold. Then there exists
a sequence (τi)∞i=1 such that τi → 0+ and the equation

∂2
t u− α2

0∂
2
xu− g(x, u) = 0,

u(0, t) = u(π, t) = 0 (x ∈ ]0, π[, t ∈ R),

u(x, · ) is τi-periodic,

admits at least two nontrivial and time-dependent weak solutions for all i ∈ Z+.
Moreover, there exists another sequence (τ i)∞i=1 such that τ i → 0+, |1− τi/τ i| =
o(τi) and the equation has only a trivial τ i-periodic solution for all i sufficiently
large.

Proof. We can choose a sequence (ωi)∞i=1 such that ωi →∞ and (4.5), (4.6)
hold. Then τi = 2π/ωi → 0 and the first conclusion follows from Theorem 5.1.
By Lemma 3.2 it is easy to construct another sequence (ωi)∞i=1 such that ωi →∞,
|ωi − ωi| → 0 and [a, b] ∩ σ(Lωi) = ∅ for all sufficiently large i. Consequently,
by Theorem 1.1 there exists only trivial τ i-periodic solution for τ i = 2π/ωi.
Moreover,

1
τi

(
1− τi

τ i

)
=
ωi − ωi

2π
→ 0

completing the proof. �

In the preceeding two results we have assumed that [a, b] ∩ σconst = ∅ (con-
dition (4.4)). Assume now that [a, b] ∩ σconst 6= ∅. To be more precise, assume
that

(5.2) α2
0p

2 < a < α2
0(p+ 1)2 < . . . < α2

0(p+ n)2 < b < α2
0(p+ n+ 1)2

for some p ∈ N and n ∈ Z+. In the case n = 1 there is exactly one eigenvalue in
[a, b] ∩ σconst and we obtain the following variant of Theorem 5.1.

Theorem 5.3. Assume that (4.1), (4.2) and (5.1) hold. Moreover, assume
that (5.2) holds with n = 1. Then for infinitely many frequencies ω ∈ α0Q+

there exists an ε = ε(ω) > 0 such that the equation
∂2

t u− α2
0∂

2
xu− g(x, u) = h(x, t),

u(0, t) = u(π, t) = 0 (x ∈ ]0, π[, t ∈ R),

u(x, · ) is 2π/ω-periodic,
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admits at least two weak solutions for any 2π/ω-periodic forcing term h such
that hω ∈ H and ‖hω‖ < ε(ω). If h = 0, both solutions are nontrivial.

Proof. Denote λ = α2
0p

2 and λ = α2
0(p+ 2)2. Then λ < a < b < λ and by

Lemma 3.1 there exists infinitely many frequencies ω ∈ α0Q+ such that

[λ, λ] ∩ σω = ∅.

Hence for all such frequencies we have

max{λω
j,k | λω

j,k < α2
0(p+ 1)2} ≤ λ < a, min{λω

j,k | λω
j,k > α2

0(p+ 1)2} ≥ λ > b.

Now we can proceed as in the proof of Theorem 5.1. Indeed, the Estimates 1
and 2 of Section 4 hold with a1 = b1 = α2

0(p+ 1)2, λ(ω) replaced by α2
0(p+ 1)2

and Pω
2 replaced by orthogonal projection P2 onto the subspace H2 spanned by

the eigenvector φp+1,0. Note that the space H2 is now one dimensional and hence
Lemma 4.1 (with yω replaced by y = ±φp+1,0) suffices to determine disjoint open
bounded sets

G± = {u ∈ H | ‖u‖ < R, P2u = ±θy, ρ < θ < R}

such that for both G = G+, y = φp+1,0 and G = G−, y = −φp+1,0 we have

Lωu− µN(u)− (1− µ)(α2
0(p+ 1)2u− P2u) 6= (1− µ)y

for all 0 ≤ µ ≤ 1, u ∈ ∂G ∩D(Lω). Hence the conclusion follows as in the proof
of Theorem 5.1. �

In the case where [a, b]∩σconst contains more than one eigenvalue, our method
requires further conditions on g and on the forcing term h. For any j0 ∈ Z+,
j0 ≥ 2 we define

Vj0 = {u ∈ H | u(x+ 2π/j0, t) = u(x, t) for a.a. x ∈ ]0, π − 2π/j0[, t ∈ ]0, 2π[

and u(2π/j0 − x, t) = −u(x, t) for a.a. x ∈ ]0, 2π/j0[, t ∈ ]0, 2π[}
=sp{φj,k | j ∈ j0Z+, k ∈ Z}.

We obtain the following result.

Theorem 5.4. Assume that (4.1), (4.2) and (5.1) hold. Moreover, assume
that g = g(u) is odd and (5.2) holds with n ≥ 2. Then for infinitely many
frequencies ω ∈ α0Q+ there exists an ε = ε(ω) > 0 such that the equation

∂2
t u− α2

0∂
2
xu− g(u) = h(x, t),

u(0, t) = u(π, t) = 0 (x ∈ ]0, π[, t ∈ R),

u(x, · ) is 2π/ω-periodic,
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admits at least two weak solutions for any 2π/ω-periodic forcing term h such
that hω ∈ Vj0 , j0 = p+ n, and ‖hω‖ < ε(ω).

Proof. Only a slight modification of the proof of Theorem 5.3 is needed.
We first observe that N(Vj0) ⊂ Vj0 and

σconst(Vj0) ∩ [a, b] = {α2
0(p+ n)2}.

Thus we face the same situation as in Theorem 5.3; the space H is only replaced
by Vj0 . Thus the conclusion follows. �

We close this section by a result, where we show how the reduction to an
invariant subspace can be used to remove the assumption on the monotonocity
of g (cf. [13]). To this end we define

V = Z := {u ∈ H | u(π − x, t+ π) = u(x, t) for a.a. x ∈ ]0, π[, t ∈ ]0, π[}
=sp{φj,k | j ∈ Z+, k ∈ Z with j + k is odd}.

We consider the solvability with prescribed period. In fact we shall seek solu-
tions with frequency an integer multiple of the prescribed one. Note that if the
precribed period is τ1 and we find free vibrations with period τ1/n, where n is a
positive integer, then these solutions are also τ1-periodic thus being solutions of
the original, τ1-periodic homoneneous equation. As an example of many possible
variants we prove the following result.

Theorem 5.5. Let τ1 = 2π/ω1, where ω1 = α0p/q ∈ α0Q+ is given such
that p, q are odd. Assume that 0 < a < α2

0 < b < 4α2
0. Suppose g = g(u) satisfies

the conditions (4.1) and (4.2). Denote ωn = nω1. Then there exists εn > 0 such
that the equation

∂2
t u− α2

0∂
2
xu− g(u) = h(x, t),

u(0, t) = u(π, t) = 0 (x ∈]0, π[, t ∈ R),

u(x, · ) is τ1/n-periodic,

admits at least two weak solutions for any τ1/n-periodic forcing term h such that
hωn

∈ Z and ‖hωn
‖ < εn, provided that n is odd and n ≥ q2b(α2

0p)
−1.

Proof. By Lemma 3.2 [a, b] ∩ σωn
= ∅ for all n ≥ q2b(α2

0p)
−1. Moreover, if

λωn

jk = 0 is an eigenvalue of the restriction Lωn
|Z , then necessarily jq = np|k|.

By the definition of the subspace Z this is not possible whenever n is odd. Thus
KerLωn

= {0} for all n ≥ q2b(α2
0p)

−1, n odd. Consequently, for any τ1/n-
periodic forcing term h such that hωn

∈ Z the operator equation

Lωn
u−N(u) = hωn

, u ∈ D(Lωn
|Z)

can be written in the form

u− (Lωn
|Z)−1N(u) = (Lωn

|Z)−1hωn
.
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Since the inverse of Lωn
|Z is compact, we can use the Leray–Schauder degree

theory and no monotonicity for g is needed. Moreover, the estimates given in
Section 3 are valid in an obviously modified form (see the proof of Theorem 5.3).
Hence the proof can be completed exactly as the proof of Theorem 5.3. �

6. Concluding remarks

In many applications it is natural to consider equations of the form

(6.1)


ω2∂2

t u− α2
0∂

2
xu+ g(x, u) = hω(x, t),

u(0, t) = u(π, t) = 0 (x ∈ ]0, π[, t ∈ R),

u(x, t) = u(x, t+ 2π).

From purely abstract point of view we may replace Lω by −Lω in all our con-
siderations. Hence our results have counterparts concerning the equation

(6.2) Lωu+N(u) = hω, u ∈ D(Lω).

Note however that due to the asymmetry of the spectrum of the wave operator
the conditions are different for the solvability of (1.2) and (6.1), respectively. The
main difference is caused by the fact that all the “constant eigenvalues” in σconst

are nonnegative. As pointed out in Section 3 the distribution of eigenvalues in
σω as a function of ω can be treated in a similar way on negative and positive
side. Assume that Lω is replaced by −Lω. Then Theorem 5.1 and Corollary 5.2
still hold, but now without assumption (4.4) which is trivially satisfied. Note
that if we replace Lω by −Lω, then Theorems 5.2–5.3 have no analogies due to
the asymmetry of the spectrum.

Another variant of our results is obtained, if the nonlinearity instead the
condition (4.2) satisfies the opposite one

(6.3)

 a ≤ g(x, s)
s

≤ a for all 0 < |s| ≤ c,

b ≤ g(x,s)
s ≤ b for all |s| > d.

We indicate briefly how this situation can be handled. Indeed, assume that
(4.1), (6.3), (4.3)–(4.6) hold and denote L̂ω = −Lω + bI, ĝ(x, s) = −g(x, s) + bs,
N̂ = −N + bI, â = 0, b̂ = b− a and λ̂(ω) = −λ(ω) + b. Then

â ≤ ĝ(x, s)
s

≤ b̂ for all s 6= 0

and condition (4.2) holds for ĝ with a, b replaced by b− b and b−a, respectively.
Thus we can proceed as before. The homotopy equation used in this case is

L̂ωu− λ̂(ω)u− µ(N̂(u)− λ̂(ω)u) + (1− µ)Pω
2 u = (1− µ)yω,
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which is equivalent to

Lωu− λ(ω)u− µ(N(u)− λ(ω)u)− (1− µ)Pω
2 u = −(1− µ)yω.

It is easy to see that the estimates of Section 5 are valid with Pω
1 replaced by Pω

3

and vice versa. Hence Theorem 5.1, Corollary 5.2 and Theorems 5.3–5.5 remain
true whenever (4.2) replaced by (6.3).

Clearly by the remarks above we can also deal with the case, where g is
decreasing and a < b < 0.
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