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Abstract. The aim of this article is to introduce a new class SO(2)-

equivariant transversal maps T R(cl(Ω), ∂Ω) and to define degree theory
for such maps. We define degree for SO(2)-equivariant transversal maps

and prove some properties of this invariant. Moreover, we characterize

SO(2)-equivariant transversal isomorphisms and derive formula for degree
of such isomorphisms.

1. Introduction

The Brouwer degree plays important role in nonlinear analysis. This degree
and its infinite-dimensional generalization, the Leray–Schauder degree, have been
successfully applied to the studies of solutions of nonlinear problems. Significant
contributions to the degree theory have been done by Borsuk. Borsuk established
that the degree of an odd map of a sphere into itself is odd. He was the first who
observed that symmetries can lead to the restriction of possible values of the
mapping degree. Some computations of these degrees for equivariant maps have
been done in [5], [9], [18], [19], [28], [29]. Degree theories for equivariant maps
have been defined by many authors. The first degree theory for admissible SO(2)-
equivariant gradient maps (this class is a subclass of the class GRAD(cl(Ω), ∂Ω)
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defined in our article), which is a rational number, is due to E. N. Dancer ([2]).
Degree theories for equivariant maps with SO(2)-symmetries have been defined
in [4], [7], [10], [11], [16]. The class of SO(2)-equivariant orthogonal maps (class
ORT (cl(Ω), ∂Ω) in our article) have been introduced in [20]. The first degree
theory for SO(2)-equivariant orthogonal maps, which is an element of tom Dieck
ring U(SO(2)) = Z ⊕ (

⊕∞
i=1 Z) , is due to the second author (see [20]). Appli-

cations of degree theory for SO(2)-equivariant orthogonal maps to differential
equations one can find in [3], [17], [20]–[27]. Degree theories for abelian actions
have been defined in [13]–[15]. A definition of degree theory for equivariant or-
thogonal maps (symmetries of any compact abelian Lie group are admitted) is
due to J. Ize and A. Vignoli (see [15]). Finally, degree theory for G-equivariant
gradient maps, where G is any compact Lie group, is due to K. Gȩba (see [6]).
Let Ω ⊂ V be an open, bounded subset of a real, finite-dimensional, orthogo-

nal representation V of the group SO(2). Since V is an orthogonal representation
of the group SO(2), GRAD(cl(Ω), ∂Ω) ⊂ ORT (cl(Ω), ∂Ω). The aim of this ar-
ticle is to define a class of SO(2)-equivariant transversal maps T R(cl(Ω), ∂Ω)
such that ORT (cl(Ω), ∂Ω) ⊂ T R(cl(Ω), ∂Ω) and to define degree theory for
these maps.
The paper is organized as follows. In Section 2 we set up notations, termi-

nology and introduce classes of maps considered in this article. Moreover, we
show the relation of symmetric SO(2)-equivariant isomorphisms to orthogonal
SO(2)-equivariant isomorphisms, see Lemma 2.5. Additionally, we characterize
SO(2)-equivariant transversal isomorphisms, see Lemma 2.8. In Section 3 we de-
fine degree for SO(2)-equivariant transversal maps, see Definition 3.5, and prove
its properties, see Theorem 3.6. In Section 4 we derive an interesting formula
for degree of transversal SO(2)-equivariant isomorphism, see Theorem 4.3. In
Section 5 we discuss relation of degree for SO(2)-equivariant transversal maps to
the Brouwer degree. Moreover, we indicate possible applications of this degree
to nonlinear analysis.

2. Preliminary results

In this section we set up notation and terminology. Throughout this article
we let N = {1, 2, . . . }, Z = {0,±1,±2, . . . } Moreover, GL(n,R),O(n,R) and
SO(n,R) stands for the group of nonsingular matrices, orthogonal matrices and
special orthogonal matrices, respectively. The cyclic subgroup of SO(2) of order
m ∈ N will be denoted by Zm. From now on V stands for a finite-dimensional,
real, orthogonal representation of the group SO(2) with an SO(2)-invariant scalar
product 〈 · , · 〉, i.e. V = (Rn, ρ), where ρ: SO(2)→ O(n,R) is a homomorphism.
The linear action of SO(2) on Rn is given by %: SO(2)×Rn → Rn, where %(g, x) =
ρ(g)x. To shorten notations we will write gx instead of %(g, x). For K = SO(2)
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or Zm put V K = {v ∈ V : gv = v for all g ∈ K} and (V K)⊥ = {v ∈ V :
〈v, w〉 = 0 for all w ∈ V K}. Moreover, put Dα(V ) = {v ∈ V : ‖v‖ < α}. Let
Ω ⊂ V denote an open, bounded and SO(2)-invariant subset. The closure of
Ω will be denoted by cl(Ω). A continuous map f :V → V is said to be SO(2)-
equivariant map, if f(gv) = gf(v) for any g ∈ SO(2) and v ∈ V . Let L:V → V
be an SO(2)-equivariant linear map. We will denote by L∗:V → V the adjoint
operator to L, i.e. 〈Lv,w〉 = 〈v, L∗w〉 for all v, w ∈ V . For m ∈ N define a map
ρm: SO(2)→ GL(2,R) as follows

ρm(eiθ) =
[
cosm · θ − sinm · θ
sinm · θ cosm · θ

]
0 ≤ θ ≤ 2π.

For k,m ∈ N we denote by R[k,m] the direct sum of k copies of (R2, ρm), we
also denote by R[k, 0] the trivial k-dimensional representation of SO(2). We
will use the symbol ∇f to denote the gradient of SO(2)-equivariant C1-map
f : Ω → R[1, 0]. Since representation V is orthogonal, ∇f is SO(2)-equivariant
continuous map. It is known that

SO(2) =
{
ξ(θ) =

[
cos(θ) −sin(θ)
sin(θ) cos(θ)

]
: θ ∈ [−π, π)

}
.

Let E:V → V be an SO(2)-equivariant, linear map defined as follows:

E(v) = lim
θ→0

ξ(θ)v − v
θ

.

It is clear that that E(v) is a tangent vector to the orbit SO(2)v at v ∈ V .

Definition 2.1. Let Q ⊂ V . Two SO(2)-equivariant continuous maps
f, g:Q → V are said to be orthogonal on Q, if 〈f(v), g(v)〉 = 0 for any v ∈ Q.
The notation f ⊥Q g means that maps f and g are orthogonal on Q.

Definition 2.2. Let Q ⊂ V . Two SO(2)-equivariant continuous maps
f, g:Q→ V are said to be transversal on Q, if for any v ∈ Q

f(v) 6= 0 and g(v) 6= 0 implies rank{f(v), g(v)} = 2.

The notation f tQ g means that maps f and g are transversal on Q.

The following classes of maps will be considered in this article:

• GLSO(2)(V ) = {L:V → V : L is an SO(2)-equivariant linear isomor-
phism},
• GRADGL(V ) = {L ∈ GLSO(2)(V ) : L = L∗},
• ORT GL(V ) = {L ∈ GLSO(2)(V ) : L ⊥V E},
• T RGL(V ) = {L ∈ GLSO(2)(V ) : L tV E},
• CSO(2)(cl(Ω), V ) = {f : cl(Ω)→ V : f is SO(2)-equivariant C0-map},
• CSO(2)(cl(Ω), ∂Ω) = {f ∈ CSO(2)(cl(Ω), V ) : f−1(0) ∩ ∂Ω = ∅},
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• C1SO(2)(cl(Ω),R[1, 0]) = {f : cl(Ω) → R[1, 0] : f is SO(2)-equivariant C1-
map},
• GRAD(cl(Ω), ∂Ω)={∇f ∈CSO(2)(cl(Ω), ∂Ω):f ∈C1SO(2)(cl(Ω),R[1, 0])},
• ORT (cl(Ω), ∂Ω) = {f ∈ CSO(2)(cl(Ω), ∂Ω) : f ⊥cl(Ω) E},
• T R(cl(Ω), ∂Ω) = {f ∈ CSO(2)(cl(Ω), ∂Ω) : f tcl(Ω) E}.

In the sequel we call:

• GRAD(cl(Ω), ∂Ω) – the class of admissible SO(2)-equivariant gradient
maps,
• ORT (cl(Ω), ∂Ω) – the class of admissible SO(2)-equivariant orthogonal
maps,
• T R(cl(Ω), ∂Ω) – the class of admissible SO(2)-equivariant transversal
maps.

Let Cn = Rn+
√
−1Rn be a complexification of Rn. Define complexification

Lc:Cn → Cn of a linear map L:Rn → Rn as follows Lc(x +
√
−1y) = L(x) +√

−1L(y). Define χ(L) = σ(Lc), where σ(Lc) ⊂ C denotes the spectrum of Lc.

Fact 2.3. Under the above assumptions the following holds true:

(a) GRADGL(V ) ⊂ ORT GL(V ) ⊂ T RGL(V ) ⊂ GLSO(2)(V ),
(b) GRAD(cl(Ω), ∂Ω) ⊂ ORT (cl(Ω), ∂Ω) ⊂ T R(cl(Ω), ∂Ω)
⊂ CSO(2)(cl(Ω), V ).

The easy proof of this fact is left to the reader.

Lemma 2.4. Let L ∈ GLSO(2)(V ). Then,
(a) L∗ ∈ GLSO(2)(V ),
(b) (L− L∗)∗ = −(L− L∗),
(c) (L− L∗)(L− L∗)∗ = (L− L∗)∗(L− L∗),
(d) χ(L− L∗) ⊂

√
−1R,

(e) E∗ = −E,
(f) EE∗ = E∗E,
(g) χ(E) ⊂

√
−1R,

(h) EL = LE, EL∗ = L∗E,
(i) E(L− L∗) = (L− L∗)E.

Proof. (a) Suppose contrary to our claim that there is w ∈ V such that w 6=
0 and L∗w = 0. Thus we obtain 0 6= 〈w,w〉 = 〈LL−1w,w〉 = 〈L−1w,L∗w〉 =
〈L−1w, 0〉 = 0, a contradiction. What is left is to show that L∗ is an SO(2)-
equivariant map. Fix g ∈ SO(2) and v, w ∈ V . Since V is an orthogonal
representation of the group SO(2) we obtain the following

〈w, g−1L∗v〉 = 〈gw,L∗v〉 = 〈L(gw), v〉 = 〈gLw, v〉
= 〈Lw, g∗v〉 = 〈Lw, g−1v〉 = 〈w,L∗(g−1v)〉.
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From the above it follows that for any g ∈ SO(2) and v ∈ V we have g−1L∗v =
L∗(g−1v), which completes the proof of (a).
(b) Obvious. (c) Direct consequence of (b).
(d) Since operator L − L∗ is skew-adjoint, i.e. (L − L∗)∗ = −(L − L∗),

χ(L− L∗) ⊂
√
−1R.

(e) Fix v, w ∈ V . Since V is an orthogonal representation of the group SO(2)
we obtain the following

〈v,E∗w〉 = 〈Ev,w〉 =
〈
lim
θ→0

ξ(θ)v − v
θ

, w

〉
= lim
θ→0

〈
ξ(θ)v − v
θ

, w

〉
= lim
θ→0

〈
v,
ξ(θ)∗w − w
θ

〉
= lim
θ→0

〈
v,
ξ(θ)−1w − w

θ

〉
= lim
θ→0

〈
v,
ξ(−θ)w − w

θ

〉
= 〈v,−Ew〉,

which completes the proof of (e).
(f) Direct consequence of (e).
(g) Since operator E is skew-adjoint, i.e. E∗ = −E, χ(E) ⊂

√
−1R.

(h) Fix v ∈ V . Then

ELv = lim
θ→0

ξ(θ)Lv − Lv
θ

= lim
θ→0

Lξ(θ)v − Lv
θ

= LEv,

which completes the proof (h).
The same reasoning applies to L∗. (i) Direct consequence of (h). �

Let L:V → V be an SO(2)-equivariant linear map and let v = (vSO(2), v⊥) ∈
V = V SO(2) ⊕ (V SO(2))⊥. Then,

L(v) = L(vSO(2), v⊥) = (L|V SO(2)(vSO(2)), L|(V SO(2))⊥(v⊥)).

For simplicity of notation we denote LSO(2) = L|V SO(2) and L⊥ = L|(V SO(2))⊥.

Lemma 2.5. The following conditions are equivalent:

(a) dimV SO(2) ≤ 1,
(b) GRADGL(V ) = ORT GL(V ).

Proof. (a)⇒(b). From Fact 2.3(a) we obtain that

GRADGL(V ) ⊂ ORT GL(V ).

What is left is to show that ORT GL(V ) ⊂ GRADGL(V ), i.e. L = L∗ for any
L ∈ ORT GL(V ). Since V is an orthogonal SO(2)-representation we have
(1) V = V SO(2) ⊕ (V SO(2))⊥,
(2) L = diag(LSO(2), L⊥):V = V SO(2) ⊕ (V SO(2))⊥ → V SO(2) ⊕ (V SO(2))⊥,
(3) L∗ = diag(L∗SO(2), L

∗
⊥):V = V

SO(2)⊕ (V SO(2))⊥ → V SO(2)⊕ (V SO(2))⊥,
(4) E = diag(Θ, E⊥) : V = V SO(2) ⊕ (V SO(2))⊥ → V SO(2) ⊕ (V SO(2))⊥.
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From Lemma 2.4 it follows that operators E and L − L∗ are normal, skew-
adjoint and mutually commuting. Moreover, since dimV SO(2) ≤ 1, LSO(2) =
L∗SO(2). Hence there is Q ∈ O(dimV,R) such that

E =


Qdiag

{[ 0 −ν1
ν1 0

]
, . . . ,

[
0 −ν(dimV )/2

ν(dimV )/2 0

]}
Q−1 if dimV SO(2) = 0,

Qdiag
{
0,
[ 0 −ν1
ν1 0

]
, . . . ,

[
0 −ν(dimV−1)/2

ν(dimV−1)/2 0

]}
Q−1,

if dimV SO(2) = 1,

where µi 6= 0 for any i = 1, . . . , (dimV )/2 and that

L− L∗ =



Qdiag
{[ 0 −µ1
µ1 0

]
, . . . ,

[
0 −µ(dimV )/2

µ(dimV )/2 0

]}
Q−1

if dimV SO(2) = 0,

Qdiag
{
0,
[ 0 −µ1
µ1 0

]
, . . . ,

[
0 −µ(dimV−1)/2

µ(dimV−1)/2 0

]}
Q−1

if dimV SO(2) = 1.

Suppose contrary to our claim that L 6= L∗. Therefore there is µj0 6= 0.
Hence there is v ∈ (V SO(2))⊥ such that 〈(L − L∗)v,Ev〉 6= 0. Taking into
account that L ∈ ORT GL(V ) and Lemma 2.4 (e), (h) we obtain the following

0 6= 〈(L− L∗)v,Ev〉 = 〈−L∗v,Ev〉 = 〈L∗v,−Ev〉
= 〈v,−LEv〉 = 〈v,−ELv〉 = 〈v,E∗Lv〉 = 〈Ev,Lv〉 = 0,

a contradiction.
(b)⇒(a) Suppose, contrary to our claim, that GRADGL(V ) = ORT GL(V )

and that dimV SO(2) ≥ 2. To obtain a contradiction we will construct a map
L ∈ ORT GL(V ) such that L 6= L∗. Since dimV SO(2) ≥ 2, there is a lin-
ear map LSO(2):V SO(2) → V SO(2) such that LSO(2) 6= L∗SO(2). Moreover, put

L⊥ = id:
(
V SO(2)

)⊥ → (V SO(2))⊥. Finally define L := (LSO(2), L⊥):V =
V SO(2) ⊕ (V SO(2))⊥ → V . It is evident that L ∈ ORT GL(V ) and that L 6= L∗,
a contradiction. �

We say that two representations V and W are equivalent if there exists an
equivariant, linear isomorphism T :V → W . The following classic result gives a
complete classification (up to equivalence) of finite-dimensional representations
of the group SO(2) (see [1]).

Theorem 2.6. If V is a representation of SO(2) then there exist finite se-
quences {ki}, {mi} satisfying

(∗) mi ∈ {0} ∪ N, ki ∈ N, 1 ≤ i ≤ r, m1 < . . . < mr

such that V is equivalent to
⊕r
i=1 R[ki,mi]. Moreover, the equivalence class of

V (V ≈
⊕r
i=1 R[ki,mi]) is uniquely determined by {mi}, {ki} satisfying (∗).
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Let JR(L) denote the real Jordan form of L ∈ GLSO(2)(R[k,m]) and JC(T )
denote the complex Jordan form of T ∈ GL(C, k).

Lemma 2.7. Let k,m ∈ N. Then,

(a) there is isomorphism h:GLSO(2)(R[k,m])→ GL(C, k),
(b) group GLSO(2)(R[k,m]) is arc-connected,
(c) if L ∈ GLSO(2)(R[k,m]), then h(JR(L)) = JC(h(L)),
(d) if L ∈ GLSO(2)(R[k,m]), then there is P ∈ GLSO(2)(R[k,m]) such that
(d1) P−1LP = JR(L),
(d2) P−1EP = E.

Proof. (a) It is clear that if L ∈ GLSO(2)(R[k,m]), then

L =
[
αij −βij
βij αij

]k
i,j=1
.

Therefore isomorphism h:GLSO(2)(R[k,m])→ GL(C, k) is given by

h

([
αij −βij
βij αij

]k
i,j=1

)
= [(αij + βij

√
−1)]ki,j=1.

(b) Since GL(C, k) is arc-connected and (a), GLSO(2)(R[k,m]) is arc-connec-
ted.

(c) Fix L ∈ GLSO(2)(R[k,m]) and choose Q ∈ GL(C, k) such that JC(h(L)) =
Qh(L)Q−1. Thus

h−1(JC(h(L))) = h−1(Q)Lh−1(Q−1) = h−1(Q)L(h−1(Q))−1 = JR(L),

which completes the proof of (c).

(d1) Fix L ∈ GLSO(2)(R[k,m]) and choose Q ∈ GL(C, k) such that

Q−1h(L)Q = JC(h(L)).

From (c), it follows that

JR(L) = h−1(JC(h(L))) = h−1(Q−1)Lh−1(Q) = (h−1(Q))−1Lh−1(Q).

Defining P = h−1(Q), we complete the proof of (d1).

(d2) Since h(E) = m
√
−1 · idCk , Q−1h(E)Q = h(E). Hence P−1EP = E,

which completes the proof. �

Lemma 2.8. The following conditions are equivalent:

(a) L ∈ T RGL(V ),
(b) L ∈ GLSO(2)(V ) and χ(L⊥) ∩

√
−1R = ∅.
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Proof. Without loss of generality we assume that

V = R[k, 0]⊕ R[k1,m1]⊕ . . .⊕ R[kr,mr].

For abbreviation, we write Ei instead of E|R[ki,mi]. Since

Ei = diag
{(
0 −mi
mi 0

)
, . . . ,

(
0 −mi
mi 0

)
︸ ︷︷ ︸

ki-times

}
,

we have χ(Ei) = {±mi
√
−1}. If L ∈ GLSO(2)(V ), then, by the Schur lemma,

L(v0, . . . , vr) = (L0(v0), . . . , Lr(vr)). From Lemma 2.7 it follows that for any
i ∈ {1, . . . , r} there is Pi ∈ GLSO(2)(R[ki, ji]) such that P−1i LiPi = JR(Li) and
P−1i EiPi = Ei. Therefore, without restriction of generality we can assume that
JR(Li) = Li for i = 1, . . . , r.
(a)⇒(b) Suppose contrary to our claim that L ∈ T RGL(V ) and that χ(L⊥)∩√
−1R 6= ∅. This involves no loss of generality, if we assume that χ(L1) ∩√
−1R 6= ∅. What is left is to show that there is v1 ∈ R[k1,m1] − {0} such
that vectors L1(v1) and E1(v1) are linearly dependent. Let χ(L1) = {±λ1 =
±β
√
−1, λ2, . . . , λk} and let J(L1, λi) is the generalized Jordan block corre-

sponding to the eigenvalue λi. Since J(L1) = L1 we have

L1 = (J(L1,±β
√
−1), J(L1, λ2), . . . , J(L1, λk)).

Define v1 = (1, 1, 0, . . . , 0) ∈ R[k1,m1] and notice that

(2.1) E1(v1) = (−m1,m1, 0, . . . , 0) and L1(v1) = (−β, β, 0, . . . , 0)

Define v = (0, v1, 0, . . . , 0) ∈ V = R[k, 0]⊕ R[k1,m1]⊕ . . .⊕ R[kr,mr]. By (2.1)
we obtain E(v) = (m1/β)L(v), a contradiction.
(b)⇒(a) Suppose contrary to our claim that L ∈ GLSO(2)(V ) and χ(L⊥) ∩√
−1R = ∅ and that L /∈ T RGL(V ). Therefore, there is v = (v0, . . . , vr) /∈
V SO(2) such that E(v) and L(v) are linearly dependent. There is no loss of
generality in assuming that v1 6= 0. We claim that E1(v1) and L1(v1) are linearly
independent. Indeed, let v1 = (ω1, . . . , ω2k1). Define j0 = max{j : ωj 6= 0} and
notice that

E1(v1) =

{
(∗, . . . , ∗,−m1ωj0 ,m1ωj0−1, 0, . . . , 0) if j0 is even,
(∗, . . . , ∗, 0,m1ωj0 , 0, . . . , 0) if j0 is odd,

and that

L1(v1) =

{
(∗, . . . , ∗, αωj0−1 − βωj0 , βωj0−1 + αωj0 , 0, . . . , 0) if j0 is even,
(∗, . . . , ∗, αωj0 , βωj0 , 0, . . . , 0) if j0 is odd.

Since χ(L⊥) ∩
√
−1R = ∅, α 6= 0. Hence vectors L1(v1), E(v1) are linearly

independent, a contradiction. �
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3. Definition of degree for SO(2)-equivariant transversal maps

In this section we define degree theory for SO(2)-equivariant transversal
maps.

Definition 3.1. Let f0, f1 ∈ ORT (cl(Ω), ∂Ω) and let h: cl(Ω)× [0, 1]→ V
be a homotopy joining f0 with f1. Homotopy h is called an admissible orthogonal
homotopy if for any t ∈ [0, 1] h( · , t) ∈ ORT (cl(Ω), ∂Ω). We say that maps f0, f1
are orthogonally homotopic.

Definition 3.2. Let f0, f1 ∈ T R(cl(Ω), ∂Ω) and let h: cl(Ω)× [0, 1]→ V be
a homotopy joining f0 with f1. Homotopy h is called an admissible transversal
homotopy if h( · , t) ∈ T R(cl(Ω), ∂Ω) for any t ∈ [0, 1]. We say that maps f0, f1
are transversally homotopic.

Lemma 3.3. Let f ∈ T R(cl(Ω), ∂Ω). Then, there is an admissible transver-
sal homotopy h: cl(Ω)× [0, 1]→ V such that

(a) h( · , 0) = f( · ) and h( · , 1) ∈ ORT (cl(Ω), ∂Ω),
(b) h−1(0) = f−1(0)× [0, 1].

Proof. We first construct a homotopy h and next show that it is an admis-
sible transversal homotopy. Let us define homotopy h: cl(Ω)× [0, 1]→ V by the
following formula

h(v, t) =

{
f(v)− t

|E(v)|2
· 〈E(v), f(v)〉 · E(v) if E(v) 6= 0,

f(v) if E(v) = 0.

Taking into consideration decomposition v = (v1, v2) ∈ V SO(2) ⊕
(
V SO(2)

)⊥
we

obtain the following

(a) f(v1, v2) = (f1(v1, v2), f2(v1, v2)),
(b) f(v1, 0) = (f1(v1, 0), f2(v1, 0)) = (f1(v1, 0), 0),
(c) E(v1, v2) = (0, E⊥(v2)).

Now homotopy h can be defined as follows

h(v1, v2, t) =


(f1(v1, v2), f2(v1, v2))−

t

|E(v2)|2
·〈E(v2), f2(v1, v2)〉 · E(v2) if v2 6= 0,

(f1(v1, 0), 0), if v2 = 0.

It is clear that homotopy h is continuous at any point (v1,0, v2,0, t0) such that
v2,0 6= 0.
Fix a point (v1,0, 0, t0) and choose sequence (v1,n, v2,n, tn) converging to

(v1,0, 0, t0) such that v2,n 6= 0 for any n ∈ N. What is left is to show that

lim
n→∞
h(v1,n, v2,n, tn) = h(v1,0, 0, t0).
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Since f1 is continuous,

lim
n→∞
f1(v1,n, v2,n) = f1(v1,0, 0).

It remains to prove that the second coordinate of h(v1,n, v2,n, tn) converges to
0 ∈ (V SO(2))⊥. Since E|V SO(2) = Θ, E = (ESO(2), E⊥) = (Θ, E⊥). By the
Schwartz inequality we obtain the following:∣∣∣∣f2(v1,n, v2,n) − tn

|E⊥(v2,n)|2
· 〈E⊥(v2,n), f2(v1,n, v2,n)〉 · E⊥(v2,n)

∣∣∣∣
≤ |f2(v1,n, v2n)|+

tn
|E⊥(v2,n)|

· |〈E⊥(v2,n), f2(v1,n, v2,n)〉|

≤ |f2(v1,n, v2,n)|+ tn|f2(v1,n, v2,n)| ≤ 2|f2(v1,n, v2,n)|.

Since f2 is continuous and f2(v1,0, 0) = 0,

lim
n→∞
h(v1,n, v2,n, tn) = (f1(v1,0, 0), 0),

which completes the proof of the continuity of h. Since V is an orthogonal
representation of the group SO(2), h is an SO(2)-equivariant homotopy.

We claim that h is a family of transversal maps. Suppose, contrary to our
claim, that there are t0 ∈ [0, 1], v0 ∈ Ω and λ0 ∈ R \ {0} such that

(a) h(v0, t0) 6= 0,
(b) E(v0) 6= 0,
(c) h(v0, t0) = λ0E(v0).

Since h(v0, t0) 6= 0, f(v0) 6= 0. Moreover, from the above it follows that

h(v0, t0) = f(v0)−
t0

|E(v0)|2
· 〈E(v0), f(v0)〉 · E(v0) = λ0E(v0),

f(v0) =
(
t0

|E(v0)|2
· 〈E(v0), f(v0)〉+ λ0

)
· E(v0),

which means that f /∈ T R(cl(Ω), ∂Ω), a contradiction.
Fix t0 ∈ [0, 1] and v0 ∈ Ω ⊂ V SO(2) ⊕ (V SO(2))⊥. If f(v0) = 0 then

h(v0, t0) = 0. In other words f−1(0) ⊂ h( · , t0)−1(0). What is left is to show
that h( · , t0)−1(0) ⊂ f−1(0). If h(v0, t0) = 0, then f1(v0) = 0. If E(v0) = 0, then
v0 ∈ V SO(2) and f2(v0) = 0. Suppose now that E(v0) 6= 0 and notice that

(3.1) (0, f2(v0))−
t0

|E(v0)|2
· 〈E(v0), f(v0)〉 · (0, E⊥(v0)) = 0.

Suppose, contrary to our claim, that f2(v0) 6= 0. Since f ∈ T R(cl(Ω), ∂Ω)
vectors (0, f2(v0)) and (0, E⊥(v0)) are linearly independent, which contradicts
(3.1). In other words we have just shown that h( · , t0)−1(0) ⊂ f−1(0). Summing
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up, we have shown that for any t ∈ [0, 1] h(·, t)−1(0) = f−1(0). Finally notice
that

〈h(v, 1), E(v)〉 = 〈f(v)− 1
|E(v)|2

· 〈E(v), f(v)〉 · E(v), E(v)〉 = 0

for any v ∈ cl(Ω) such that E(v) 6= 0, which completes the proof. �

Lemma 3.4. If f0, f1 ∈ ORT (cl(Ω), ∂Ω) are transversally homotopic maps,
then they are orthogonally homotopic.

Proof. Let h be an admissible transversal homotopy joining f0 with f1.
Define homotopy g: cl(Ω)× [0, 1]→ V as follows:

g(v, t) =

 h(v, t)−
1

|E(v)|2
〈E(v), h(v, t)〉 · E(v) if E(v) 6= 0,

h(v, t) if E(v) = 0.

Repeating the reasoning from the proof of Lemma 3.3 we show that g is an
admissible orthogonal homotopy joining g( · , i) = fi( · ), i = 0, 1. �

We are now in a position to define degree theory for SO(2)-equivariant
transversal maps.

Definition 3.5. The degree for SO(2)-equivariant transversal maps is an
element of the group Z⊕ (

⊕∞
i=1 Z) defined as follows

DEG(f,Ω) := DEG(f0,Ω) ∈ Z⊕
( ∞⊕
i=1

Z
)
,

where f ∈ T R(cl(Ω), ∂Ω), f0 ∈ ORT (cl(Ω), ∂Ω) is chosen as in Lemma 3.3 and
DEG( · , · ) denotes the degree for SO(2)-equivariant orthogonal maps defined
in [20].

First of all we will show that the above definition does not depend on the
choice of the map f0. Let f1 ∈ ORT (cl(Ω), ∂Ω) be a map transversally homo-
topic with f such that f0 6= f1. Notice that f0, f1 ∈ ORT (cl(Ω), ∂Ω) and
these maps are transversally homotopic. By Lemma 3.4 f0 and f1 are or-
thogonally homotopic. Finally, by the homotopy invariance of degree theory
for SO(2)-equivariant orthogonal maps, see Theorem 3.9(d) in [20], we obtain
DEG(f0,Ω) = DEG(f1,Ω). In other words the definition of degree for SO(2)-
equivariant transversal maps does not depend on the choice of f0.

Theorem 3.6. Assume that Ω ⊂ V is an open, bounded and SO(2)-invariant
subset of a finite-dimensional, real, orthogonal, representation V of SO(2) and
that f ∈ T R(cl(Ω), ∂Ω). Then

(a) if DEGK(f,Ω) 6= 0, then f−1(0) ∩ ΩK 6= ∅,
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(b) if Ω0 ⊂ Ω is an open SO(2)-invariant subset such that f−1(0)∩Ω ⊂ Ω0,
then

DEG(f,Ω) = DEG(f,Ω0),
(c) if Ω1,Ω2 ⊂ Ω are open, disjoint, SO(2)-invariant subsets such that
f−1(0) ⊂ Ω1 ∪ Ω2, then

DEG(f,Ω) = DEG(f,Ω1) +DEG(f,Ω2),

(d) if h: (cl(Ω)×[0, 1], ∂Ω×[0, 1])→ (V, V−{0}), is an admissible transversal
homotopy, then

DEG(h( · , 0),Ω) = DEG(h( · , 1),Ω),

(e) if U ⊂W is an open, bounded and an SO(2)-invariant neighbourhood of
0 ∈W , then if a map F : (cl(U×Ω), ∂(U×Ω))→ (W⊕V,W⊕V−{(0, 0)})
is given by the formula F (w, v) = (w, f(v)), then DEG(F,U × Ω) =
DEG(f,Ω).

Proof. (1) Choose f0 ∈ ORT (cl(Ω), ∂Ω) as in Lemma 3.3. Therefore by
Definition 3.5 we have

DEGK(f,Ω) = DEGK(f0,Ω) 6= 0.

From Theorem 3.9(a) in [20] we obtain f−10 (0)∩ΩK 6= ∅. Since f−1(0) = f
−1
0 (0)

we have f−1(0) ∩ ΩK 6= ∅.
(2) Choose f0 ∈ ORT (cl(Ω), ∂Ω) as in Lemma 3.3. By Definition 3.5 we have

DEG(f,Ω) = DEG(f0,Ω). Since f−1(0) = f−10 (0), f
−1
0 (0)∩Ω ⊂ Ω0. That is why

from Theorem 3.9(b) of [20] it follows that DEG(f0,Ω) = DEG(f0,Ω0). Conse-
quently by Lemma 3.3 and Definition 3.5 we have DEG(f,Ω0) = DEG(f0,Ω0).
(3) Choose f0 ∈ ORT (cl(Ω), ∂Ω) as in Lemma 3.3. Therefore by Defi-

nition 3.5 we have DEG(f,Ω) = DEG(f0,Ω). Since f−1(0) = f−10 (0) and
Theorem 3.9(c) of [20], DEG(f0,Ω) = DEG(f0,Ω1) + DEG(f0,Ω2). Conse-
quently by Lemma 3.3 and Definition 3.5 we have DEG(f,Ω1) = DEG(f0,Ω1)
and DEG(f,Ω2) = DEG(f0,Ω2).
(4) By Lemma 3.3 h( · , 0), h( · , 1) are transversally homotopic with orthog-

onal maps g0, g1 ∈ ORT (cl(Ω), ∂Ω), respectively. Since h is an admissible
transversal homotopy, orthogonal maps g0 and g1 are transversally homotopic.
From Lemma 3.4 it follows that maps g0 and g1 are orthogonally homotopic.
Summing up, by Theorem 3.9(d) of [20] we obtain:

DEG(h( · , 0),Ω) = DEG(g0,Ω) = DEG(g1,Ω) = DEG(h( · , 1),Ω).

(5) Choose f0 ∈ ORT (cl(Ω), ∂Ω) as in Lemma 3.3 and notice that by Defi-
nition 3.5 and Theorem 3.9(e) of [20] we obtain:

DEG(F,U × Ω) = DEG(id× f0,U × Ω) = DEG(f0,Ω) = DEG(f,Ω). �
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4. Computations of degree for SO(2)-equivariant transversal maps

The aim of this section is to compute index of an isolated zero of an SO(2)-
equivariant transversal map. In the first step we reduce our computation to
computation of degree of a map from T RGL(V ). In the second step we prove
formula for degree of SO(2)-equivariant transversal isomorphism.
The principal significance of the following lemma is that it allows one to

reduce the computation of a local index of f at 0 ∈ V to computation of a lo-
cal index of its linearization Df(0). This lemma will prove extremely useful
in applications.

Lemma 4.1. Let Ω ⊂ V be an open, bounded SO(2)-invariant neighbourhood
of 0 ∈ V and let f ∈ T R(cl(Ω), ∂Ω) be a C1-map such that

(a) f(0) = 0,
(b) Df(0) ∈ T RGL(V ).

Then, there is γ0 > 0 such that DEG(f,Dγ(V )) = DEG(Df(0), Dγ(V )), for any
γ < γ0.

Proof. We claim that there is γ0 > 0 such that for any γ < γ0 a homotopy

h: (cl(Dγ(V ))× [0, 1], ∂Dγ(V )× [0, 1])→ (V, V − {0})

defined by

(4.1) h(v, t) = Df(0)(v) + t · (f(v)−Df(0)(v)) = Df(0)(v) + t · ϕ(v)

is well defined transversal homotopy. We first prove that h−1(0) ∩ (∂Dγ(V ) ×
[0, 1]) = ∅ for sufficiently small γ. It is clear that

(4.2) for any ε > 0 there is β > 0 such that if |v| < β, then |ϕ(v)| < ε|v|

Fix ε < |Df(0)−1(0)|−1/2 and choose γ1 = β as in (4.2). For any γ < γ1 and
v ∈ ∂Dγ(V ) we have

(4.3) |h(v, t)| = |Df(0)(v) + t · ϕ(v)| ≥ |Df(0)(v)| − t · |ϕ(v)|
≥ |Df(0)−1|−1|v| − t · |ϕ(v)| ≥ |Df(0)−1|−1|v| − t · ε · |v|

≥
(
1− t
2

)
· |Df(0)−1|−1|v| ≥ 1

2
· |Df(0)−1|−1|v| > 0

Suppose that v2 ∈ (V SO(2))⊥ − {0}. Since Df(0) ∈ T RGL(V ), E(v2) and
Df(0)(v2) are linearly independent. Since ∂Dγ((V SO(2))⊥) is compact, there is
δγ > 0 such that

(4.4) sup
|v2|=γ

|〈E(v2), Df(0)(v2)〉|
|E(v2)| · |Df(0)(v2)|

< δγ < 1
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It is easy to check that constant δγ does not depend on γ. Therefore for simplicity
of notation, we write δ instead of δγ . Fix v = (v1, v2) ∈ V SO(2)⊕ (V SO(2))⊥ such
that v2 6= 0. The orthogonal projection of Df(0)(v) on E(v) is given by

1
|E(v)|2

· 〈E(v), Df(0)(v)〉 · E(v) = 1
|E(v2)|2

· 〈E(v2), Df(0)(v2)〉 · E(v2).

That is why the distance from Df(0)(v) to span{E(v)} is given by∣∣∣∣Df(0)(v)− 1
|E(v)|2

· 〈E(v), Df(0)(v)〉 · E(v)
∣∣∣∣

=
∣∣∣∣Df(0)(v)− 1

|E(v2)|2
· 〈E(v2), Df(0)(v2)〉 · E(v2)

∣∣∣∣.
By (4.4) we have∣∣∣∣Df(0)(v) − 1

|E(v2)|2
· 〈E(v2), Df(0)(v2)〉 · E(v2)

∣∣∣∣(4.5)

≥ |Df(0)(v)| − 1
|E(v2)|

· |〈E(v2), Df(0)(v2)〉|

≥ |Df(0)(v)| − δ · |Df(0)(v2)| ≥ (1− δ) · |Df(0)(v)|
≥ (1− δ) · |Df(0)−1|−1 · |v|.

Fix ε < (1− δ)|Df(0)−1(0)|−1/2 and choose γ2 = β as in (4.2). For any γ < γ2
and v ∈ ∂Dγ(V ) by (4.5) we have

(4.6)
∣∣∣∣Df(0)(v)− 1

|E(v)|2
· 〈E(v), Df(0)(v)〉 · E(v)

∣∣∣∣ > ϕ(v).
Define γ0 = min{γ1, γ2}. Combining (4.3) with (4.6) we deduce that for any
γ < γ0 homotopy (4.1) is well defined admissible transversal homotopy, which
completes the proof. �

In the following example we show that the assumptions in the above lemma
cannot be relaxed. Namely, it can happen that f is transversal and Df(0) is not
transversal.

Example 4.2. Consider an SO(2)-equivariant map f :R[1, 1] → R[1, 1] of
the form

f(x, y) = Df(0, 0)(x, y) +∇ϕ(x, y) = (−y, x) + (x(x2 + y2), y(x2 + y2)).

It is clear that

(a) Df(0, 0) /∈ T RGL(R[1, 1]) since χ(Df(0, 0))={±
√
−1} and Lemma 2.8,

(b) Df(0, 0) ⊥R[1,1] ∇ϕ since ∇ϕ ∈ GRAD(R[1, 1], ∅) and Df(0, 0) = E,
(c) f ∈ T R(R[1, 1], ∅) since ϕ−1(0, 0) = {(0, 0)}.
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The remainder of this section will be devoted to the computation of degree of
a linear SO(2)-equivariant transversal isomorphism. The point of the following
lemma is that it allows one to compute degree of elements of T RGL(V ) in terms
of spectrum of such isomorphisms. Let L ∈ T RGL(V ), χ−(L) = {λ ∈ χ(L) :
Reλ < 0} and let µ(λ) denotes the algebraic multiplicity of λ ∈ χ(L). Define

n−(L) :=
∑

λ∈χ−(L)

µ(λ).

In other words n−(L) is the sum of algebraic multiplicities of eigenvalues of
matrix L with negative real parts.

Theorem 4.3. Let L ∈ T RGL(V ) and V = R[k, 0] ⊕ R[k1,m1] ⊕ . . . ⊕
R[kr,mr]. Then we have L = diag(L0, . . . , Lr) and for any α > 0

DEGQ(L,Dα(V )) =


sign(detL0) if Q = SO(2),

sign(detL0) · n−(Li)/2 if Q = Zmi , i = 1, . . . , r,

0 otherwise,

where it is understood that if k = 0 then sign(detL0) = 1.

Proof. We first prove that L is transversally homotopic with an SO(2)-
equivariant orthogonal isomorphism T . For abbreviation, we write Ei instead of
E|R[ki,mi].
From Lemma 2.7 it follows that there is Pi ∈ GLSO(2)(R[ki, ji]) for any

i = 1, . . . , r such that P−1i LiPi = JR(Li).
Define paths γi: [0, 1]→ GLSO(2)(R[ki,mi]), for i = 1, . . . , r, as follows

γi(t) = Pi(diag(JR(Li)) + (1− t)(JR(Li)− diag(JR(Li))))P−1i , t ∈ [0, 1]

and homotopy h0:V × [0, 1]→ V in the following way

h0(v0, . . . , vr, t) = (L0v0, γ1(t)v1, . . . , γr(t)vr).

Since L ∈ T RGL(V ) and Lemma 2.8, χ(Li) ∩
√
−1R = γi(t) ∩

√
−1R = ∅ for

any i = 1, . . . , r and t ∈ [0, 1]. Therefore h0( · , t) ∈ T RGL(V ) for any t ∈ [0, 1].
Thus

h0( · , 1) = (L0, γ1(1), . . . , γr(1))
= (L0, P1diagJR(L1)P−11 , . . . , PrdiagJR(Lr)P−1r )

and h0( · , 1) ∈ T RGL(V ). From Lemma 2.7(b) it follows that there are paths
ξi: [0, 1] → GLSO(2)(R[ki,mi]), i = 1, . . . , r, such that ξi(0) = Pi and ξi(1) =
idR[ki,mi]. Define homotopy h

1:V × [0, 1]→ V as follows

h1( · , t) = (L0, ξ1(t)diagJR(L1)ξ−11 (t), . . . , ξr(t)diagJR(Lr)ξ−1r (t)).
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Since L ∈ T RGL(V ), h1( · , t) ∈ T RGL(V ) for any t ∈ [0, 1]. Define transversal
homotopy h:V × [0, 1]→ V in the following way

h(v, t) =

{
h0(v, 2t) for t ∈ [0, 1/2],
h1(v, 2t− 1) for t ∈ [1/2, 1].

It is clear that h( · , 0) = L and that h( · , 1) ∈ GRADGL(V ) ⊂ ORT GL(V ).
Define T = h( · , 1). By Theorem 3.6(d) we obtain that

DEG(L,Dα(V )) = DEG(T,Dα(V )).

Moreover, since T ∈ GRADGL(V ), DEG(T,Dα(V )) = DEG(T,Dα(V )). Conse-
quently, by Corollary 4.3 in [20] we obtain:

DEGQ(T,Dα(V )) =


sign(detT0) if Q = SO(2),

sign(detT0) ·m−(Ti)/2 if Q = Zmi , i = 1, . . . , r,

0 otherwise,

where m−(Ti) denotes the Morse index of Ti ∈ GRADGL(R([ki,mi])), i =
1, . . . , r. Directly from the definition of homotopy h we obtain that

(a) T0 = L0,
(b) n−(Li) = m−(Ti),

which completes the proof. �

Remark 4.4. Computing the Brouwer degree of L ∈ GL(n,R) on a disc
centered at the origin we take into account the multiplicities of negative eigen-
values of L. If L ∈ ORT GL(V ) (L ∈ GRADGL(V )) then from the Schur Lemma
and Lemma 2.5 it follows that isomorphism L⊥: (V SO(2))⊥ → (V SO(2))⊥ is self-
adjoint and therefore σ (L⊥) ⊂ R. Moreover, computing degree for SO(2)-
equivariant orthogonal (gradient) maps we take into account the multiplici-
ties of negative eigenvalues of L and the structure of representation V of the
group SO(2). Finally, if L ∈ T RGL(V ) then from the Schur Lemma and
Lemma 2.8 it follows that isomorphism L⊥: (V SO(2))⊥ → (V SO(2))⊥ is such
that χ(L⊥) ∩

√
−1R = ∅. Moreover, computing degree for SO(2)-equivariant

transversal maps we take into account the multiplicities of elements of χ−(L),
i.e. eigenvalues of Lc with negative real part, and the structure of representation
V of the group SO(2).

5. Final remarks

In the forthcoming articles we will apply degree theory constructed in this
article to the study of the existence, multiplicity, continuation and global bi-
furcation of solutions of SO(2)-symmetric differential equations without varia-
tional structure. The simplest example of this is furnished by perturbation of
autonomous Hamiltonian systems.
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In the rest of this section we will discuss bifurcations of zeros of the family
of smooth SO(2)-equivariant transversal maps forced by the change of degree for
SO(2)-equivariant transversal maps.
Let f :Rn×R→ Rn be a continuous map such that f(0, λ) = 0 for all λ ∈ R.

Set {0} × R is said to be the set of trivial solutions of the equation f(x, λ) = 0.
Let Σ ⊂ Rn×R denote the closure of the set of non-trivial solutions of equation
f(x, λ) = 0. A point (0, λ0) ∈ Rn × R is called a bifurcation point of solutions
of equation f(x, λ) = 0 if (0, λ0) ∈ Σ. If Σ contains a connected set S such that
(0, λ0) ∈ S and S \ {(0, λ0)} 6= ∅, we will say that (0, λ0) is a branching point of
solutions of the equation f(x, λ) = 0.
Let ϕi:R[1, 1] → R[1, 0], i = 1, 2, be SO(2)-equivariant maps defined as

follows

ϕi(x, y) =
1
2
(x2 + y2)i and A(µ, ν) =

[
µ −ν
ν µ

]
for µ, ν ∈ R. Fix α, β ∈ R and define family of smooth SO(2)-equivariant maps
fα,β :R[1, 1]× R→ R[1, 1], as follows

fα,β(x, y, λ) =A(λ, λ)∇ϕ1(x, y) +A(α, β)∇ϕ2(x, y)

=
[
λ −λ
λ λ

](
x

y

)
+
[
α −β
β α

](
x(x2 + y2)
y(x2 + y2)

)
=(λ+ α(x2 + y2))

(
x

y

)
+ (λ+ β(x2 + y2))

[
0 −1
1 0

](
x

y

)
=(λ+ α(x2 + y2))

(
x

y

)
+ (λ+ β(x2 + y2))E

(
x

y

)
.

Notice that {0} × R ⊂ f−1α,β(0). Since det(Dfα,β(0, 0, λ)) = 2λ2, (0, 0, 0) ∈
R[1, 1] × R is the only possible bifurcation point of solutions of the equation
fα,β(x, y, λ) = 0. We will discuss the existence of bifurcation point of solutions
of equation fα,β(x, y, λ) = 0 with respect to α and β.
Case α 6= β. It is easy to verify that (0, 0, 0) ∈ R[1, 1]×R is not a bifurcation

point of solutions of the equation fα,β(x, y, λ) = 0. Fix (x0, y0, λ0) ∈ (R[1, 1] \
{0})× R such that λ0 + α(x20 + y20) = 0. Since α 6= β, λ0 + β(x20 + y20) 6= 0 and

fα,β(x0, y0, λ0) = (λ0 + β(x20 + y
2
0))E

(
x0
y0

)
6= 0.

Summing up, we have shown that fα,β( · , · , λ0) /∈ T R(R[1, 1], ∅).
Case α = β. First of all notice that fα,α( · , · , λ) ∈ T R(R[1, 1], ∅) for all

λ ∈ R. Put λ± = ±1. Since R[1, 1]SO(2) = {0}, χ(Df(0, 0, λ+)) = {1±
√
−1} and

χ(Df(0, 0, λ−)) = {−1±
√
−1}, from Lemma 2.8 it follows that Df(0, 0, λ±) ∈

T RGL(R[1, 1]). Hence from Lemma 4.1 it follows that there is γ0 > 0 such that
for any γ < γ0

DEG(fα,α( · , · , λ±), Dγ(R[1, 1])) = DEG(Dfα,α(0, 0, λ±), Dγ(R[1, 1])).



270 N. Hirano — S. Rybicki

On the other hand from Lemma 4.3 it follows that

DEGQ(Dfα,α(0, 0, λ+), Dγ(R[1, 1])) =

{
1 if Q = SO(2),

0 otherwise,

and

DEGQ(Dfα,α(0, 0, λ−), Dγ(R[1, 1])) =


1 if Q = SO(2),

1 if Q = Z1,

0 otherwise.

In other words we have shown that bifurcation index η(0, 0, 0) ∈ Z⊕(
⊕∞
i=1 Z)

computed at the point (0, 0, 0) ∈ R[1, 1]× R defined by

η(0, 0, 0) = DEG(fα,α( · , · , λ+), Dγ(R[1, 1]))−DEG(fα,α( · , · , λ−), Dγ(R[1, 1]))

is nontrivial in Z ⊕ (
⊕∞
i=1 Z). Therefore, (0, 0, 0) ∈ R[1, 1] × R is a bifurcation

point of solutions of the equation fα,α(x, y, λ) = 0.
It is known that non-triviality of bifurcation index computed in terms of

any reasonable topological degree implies the global bifurcation (in the sense
of Rabinowitz) of solutions of a suitable equation. Since the bifurcation index
η(0, 0, 0) is nontrivial and (0, 0, 0) ∈ R[1, 1] × R is the only possible bifurcation
point of solutions of equation fα,α(x, y, λ) = 0, it follows that (0, 0, 0) ∈ R[1, 1]×
R is a branching point. Moreover, it is possible to show that connected set
of nontrivial solutions bifurcating from (0, 0, 0) ∈ R[1, 1] × R is unbounded in
R[1, 1] × R. In fact, it is easy to show that, {(x, y, λ) ∈ R[1, 1] × R : λ = 0} ⊂
f−10,0 (0)} and if α 6= 0 then {(x, y, λ) ∈ R[1, 1]× R : x2 + y2 = −λ/α} ⊂ f−1α,α(0).
Finally notice that map fα,α(x, y, λ) is not a gradient, because matrix

Dfα,α(0, 0, λ) = A(λ, λ)

is not symmetric. Therefore we cannot apply critical point theory to study of
solutions of the equation fα,α(x, y, λ) = 0. Moreover, since

detDfα,α(0, 0, λ±) = 2,

bifurcation index, computed in terms of the Brouwer degree, is trivial. Therefore
we are not able to force the bifurcation of solutions of equation fα,α(x, y, λ) = 0
using the Brouwer degree.
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Degree Theory 271

[3] E. N. Dancer and S. Rybicki, A note on periodic solutions of autonomous Hamilton-

ian systems emanating from degenerate stationary solutions, Differential Integral Equa-
tions 12 (1999), 1–14.

[4] G. Dylawerski, K. Gęba, J. Jodel and W. Marzantowicz, An SO(2)-equivariant

degree and the Fuller index, Ann. Polon. Math. 62 (1991), 243–280.

[5] P. M. Fitzpatrick, J. Pejsachowicz and J. Rabier, The degree of proper C2 Fred-
holm mappings: covariant theory, Topol. Methods Nonlinear Anal. 3 1994, 325–367.

[6] K. Gęba, Degree for gradient equivariant maps and equivariant Conley index, Topolog-

ical Nonlinear Analysis, Degree, Singularity and Variations (M. Matzeu and A. Vignoli,
eds.), vol. 27, PNLDE, Birkhäuser, 1997, pp. 247–272.
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