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EXISTENCE AND MULTIPLICITY OF POSITIVE SOLUTIONS
FOR BOUNDARY VALUE PROBLEMS OF 2D ORDER ODE

Patrick Habets — Marcellino Gaudenzi

Abstract. We study the existence and multiplicity of positive solutions
of the boundary value problem

u′′ + sf(t, u) = 0, u(0) = u(1) = 0,

where s is a positive parameter and f is a non-negative function. We
indicate examples with more than two solutions.

1. Introduction

In this paper, we study positive solutions of the Dirichlet problem

(1) u′′ + sf(t, u) = 0, u(0) = u(1) = 0,

for positive values of s and in case f is non-negative. With such assumptions,
non-trivial solutions are positive for t ∈ (0, 1). Early results on positive solutions
can be found in the survey paper by Wong [17].

We consider assumptions so that the number of solutions of problem (1)
depends on the value of the parameter s. Typically, for large values of s there
is no solution and the number of solutions increases as s becomes small. This
problem has been widely studied. The model example

(2) u′′ + sh(t)eu = 0, u(0) = u(1) = 0,
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was studied by Choi [2]. Korman and Ouyang [11] have considered nonlinearities
with polynomial growth and in case of convex nonlinearities they obtain an exact
count of the number of solutions. Systems with an exponential nonlinearity
are considered in Ki Sik Ha and Yong-Hoon Lee [8]. Autonomous equations
with asymptotically linear nonlinearities can be found in Mironescu and Radu-
lescu [14].

It is known that natural assumptions for the Dirichlet problem allow f to be
singular at both end points 0 and 1. This remark goes back to Rosenblatt [15]
in 1933. A more recent study can be found in Habets and Zanolin [7]. Here,
we use the framework in [7], i.e. f is supposed to satisfy some Carathéodory
conditions and is bounded on compact sets by a function h(t) such that t(1 −
t)h(t) ∈ L1(0, 1). In this case solutions are in C([0, 1]) ∩W 2,1

loc ((0, 1)). This is
clear from the example

(3) u′′ +
s

t
= 0, u(0) = u(1) = 0,

whose solution is u(t) = st log(1/t). Problems (1) with singular nonlinearities
have been studied by Lomtatidze [13], Wong [16], Ki Sik Ha and Yong-Hoon
Lee [8].

Positive solutions of (1) were obtained using various methods such as upper
and lower solutions [11], [13], [8], bifurcation theory [11], fixed point theory [1],
variational methods [12]. We will base our analysis on the method of upper and
lower solutions except for the last sections where we use a shooting argument
together with a detailed analysis of variational equations. Most of our results
can be extended to the derivative dependent case

u′′ + sf(t, u, u′) = 0, u(0) = u(1) = 0.

This implies obtaining an a-priori bound on the derivative. One way is to impose
some Nagumo condition |f(t, u, u′)| ≤ ψ(t)φ(|u′|), where ψ ∈ Lp(0, 1) and φ ∈
C(R) satisfy appropriate conditions. This approach rules out singular problems
such as (3). An alternative way uses bounding functions (see [9], [10]) but is
quite elaborate. For these reasons, we do not consider here derivative dependent
nonlinearities.

The paper is organized as follows. In Section 2, we recall the theoretical
backgrounds from the theory of lower and upper solution we use. These can be
found in [4] and [5]. The third section deals with the existence of one solution.
Several cases are considered which ensure the existence of at least one positive
solution if s > 0 is smaller than some s0 and zero solution for s > s0. In the
next section, we study cases where there are at least two positive solutions for
s < s0, one if s = s0 and no solution if s > s0. An exact count of the number
of solutions is worked out in Sections 5 for non-autonomous problems but under
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strict convexity assumptions. The last section considers the model example (2)
and investigates cases where there are more than two solutions.

The authors wish to thank C. De Coster for numerous comments and sug-
gestions.

2. Preliminary results

Let us first introduce the notation. We shall write R
+ = [0,∞), and “for

a.e.” instead of “for almost every”. We consider the set of functions

A := {u ∈ L1
loc(0, 1) | s(1 − s)u(s) ∈ L1(0, 1)},

W k,p(I) := {u ∈ Ck−1(I) | u(k) ∈ Lp(I)}, where I is an interval,

W 2,A(0, 1) := {u ∈ W 1,1(0, 1) | u′′ ∈ A},
and the norms

||u||A :=
∫ 1

0

t(1 − t)|u(t)| ds, ‖u‖∞ := sup
t∈[0,1]

|u(t)|.

To study the nonlinear boundary value problem

(4) u′′ + f(t, u) = 0, u(0) = u(1) = 0,

it is necessary to investigate first the corresponding linear problem. The following
proposition is easy to verify.

Proposition 2.1. There exists K > 0 such that, if h ∈ A, the problem

(5) u′′ + h(t) = 0, u(0) = 0, u(1) = 0,

has a solution u ∈ W 2,A(0, 1) with

u(t) =
∫ 1

0

G(t, s)h(s) ds,

where G(t, s) is the Green function corresponding to (5). Further, one has

||u||∞ ≤ K||h||A
and if h ≥ 0, then u ≥ 0.

Our next definition concerns the regularity conditions we require on the non-
linearity f(t, u). A function f(t, u) defined on [0, 1] × R

+ is said to satisfy A-
Carathéodory conditions (resp. to satisfy L∞-Carathéodory conditions) if

(a) for almost every t ∈ [0, 1], f(t, · ) is continuous,
(b) for any u ∈ R

+, the function f( · , u) is measurable,
(c) for all r > 0, exists hr ∈ A (respectively, exists hr ∈ L∞), for all

u ∈ [0, r] and for a.e. t ∈ [0, 1], |f(t, u)| ≤ hr(t).
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The basic concept of lower and upper solutions we use is defined as follows.
A function α ∈ C([0, 1]) is a lower solution of (4) if α(0) ≤ 0, α(1) ≤ 0 and for
any t0 ∈ (0, 1), one of the following is satisfied: either D−α(t0) < D+α(t0), or
there exists an open interval I0 ⊂ (0, 1) such that t0 ∈ I0, α ∈W 2,1(I0) and, for
almost every t ∈ I0,

α′′(t) + f(t, α(t)) ≥ 0.

In the same way, a function β ∈ C([0, 1]) is an upper solution of (4) if β(0) ≥
0, β(1) ≥ 0 and for any t0 ∈ (0, 1), one of the following is satisfied: either
D−β(t0) > D+β(t0), or there exists an open interval I0 ⊂ (0, 1) such that
t0 ∈ I0, β ∈W 2,1(I0) and, for almost every t ∈ I0,

β′′(t) + f(t, β(t)) ≤ 0.

We can state now the following existence result, which can be found in [7]
for continuous f and in [3] for the A-Carathéodory case.

Proposition 2.2. Let f : [0, 1]×R → R satisfy A-Carathéodory conditions.
Assume that α and β are lower and upper solutions of (4) such that, for any t ∈
[0, 1], α(t) ≤ β(t). Then the problem (4) has at least one solution u ∈W 2,A(0, 1)
such that, for all t ∈ [0, 1],

α(t) ≤ u(t) ≤ β(t).

The next tool we need concerns the relation between lower and upper solu-
tions and degree theory. Let us recall first that the problem (4) can be written
u = Tu, where T : C0([0, 1]) → C0([0, 1]) is defined by

(6) Tu(t) :=
∫ 1

0

G(t, s)f(s, u(s)) ds,

and G(t, s) is the Green function corresponding to (5).
Next, we must introduce strict lower and upper solutions. The definitions

we propose are not the most general ones but they suffice for our purpose. A
function α ∈ C([0, 1]) is a strict lower solution of (4) if α(0) < 0, α(1) < 0 and
for any t0 ∈ (0, 1), one of the following is satisfied:

(a) D−α(t0) < D+α(t0),
(b) there exists an interval I0 ⊂ [0, 1] and ε > 0 such that t0 ∈ intI0,

α ∈W 2,1(I0) and for almost every t ∈ I0, for all u ∈ [α(t), α(t) + ε], we
have

α′′(t) + f(t, u) ≥ 0.

In the same way, a function β ∈ C([0, 1]) is a strict upper solution of (4) if
β(0) > 0, β(1) > 0 and for any t0 ∈ (0, 1), one of the following is satisfied:

(a) D−β(t0) > D+β(t0),



Boundary Value Problems of 2d Order ODE 135

(b) there exists an interval I0 ⊂ [0, 1] and ε > 0 such that t0 ∈ intI0,
β ∈W 2,1(I0) and for almost every t ∈ I0, for all u ∈ [β(t) − ε, β(t)], we
have

β′′(t) + f(t, u) ≤ 0.

Now we can state the relation between lower and upper solutions and degree
theory (see [4] or [5]).

Proposition 2.3. Let f : [0, 1]×R → R be a A-Carathéodory function and
assume α and β are strict W 2,1-lower and upper solutions of the problem (4)
such that α < β. Let

Ω = {u ∈ C0([0, 1]) | for all t ∈ [0, 1], α(t) < u(t) < β(t)},

and T : C0([0, 1]) → C0([0, 1]) be the operator defined by (6). Then, we have

deg(I − T,Ω) = 1.

3. Existence of one solution

In this section, we consider the problem

(7) u′′ + sf(t, u) = 0, u(0) = u(1) = 0.

Theorem 3.1. Let f : [0, 1] × R → R
+ satisfy A-Carathéodory conditions

and assume f(t, 0) 	≡ 0. Then, there exists s0 ∈ (0,∞) ∪ {∞} such that

(a) for any s ∈ (0, s0), (7) has at least one positive solution,
(b) for any s > s0, (7) has no solution.

Proof. Claim 1. For any s > 0 small enough, there is a positive solution
us of (7).

Define h ∈ A such that

for a.e. t ∈ [0, 1] and all u ∈ [0, 1], |f(t, u)| ≤ h(t).

Define now β1 to be the solution of

β′′
1 + h(t) = 0, β1(0) = β1(1) = 0.

From Proposition 2.1, we know that

β1(t) ≥ 0 and ||β1||∞ ≤ K||h||A.
Next, we choose ŝ > 0 small enough so that ŝK||h||A ≤ 1 and define, for s ∈ (0, ŝ],
β := sβ1. We compute then

β′′ + sf(t, β) = s(f(t, β) − h(t)) ≤ 0.
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Hence, α = 0 and β ≥ α are lower and upper solutions for (7) and the claim
follows from Proposition 2.2.

Claim 2. Define s0 = sup{s | (7) has a solution } ∈ (0,∞) ∪ {∞}. Then for
any s ∈ (0, s0) problem (7) has a positive solution.

Let us notice first that solutions of (7) for s > 0 are positive so that the
existence of solutions is equivalent to the existence of positive solutions. From
Claim 1, it follows that s0 > 0. Let us fix s ∈ (0, s0) and s1 ∈ [s, s0] such that
(7), with s = s1, has a solution u1, which is positive. Notice that α = 0 and
β = u1 are lower and upper solutions for (7), with s = s, and the claim follows
from Proposition 2.2. �

Remarks. (a) If in the proof of Claim 1 we let s go to zero, we have that
||β||∞ and hence ||us||∞ goes to zero. This shows there is, in the space (u, s), a
“branch” of solutions that goes out of the origin.

Further, if we assume f ∈ C1, we can apply the implicit function theorem to
the equation

Φ(s, u) = u′′ + sf(t, u) = 0,

and prove that this “branch” is actually a curve parametrized by s.
(b) If s1 < s2, it follows from the proof of Claim 2 that there exist corre-

sponding solutions u1 and u2 which are ordered: u1 ≤ u2. It can also be proved
that for any s ∈ (0, s0) there exists a minimal positive solution us which is an
increasing function of s, i.e. s1 ≥ s2 implies that, for all t ∈ [0, 1], us1(t) ≥ us2(t).

(c) If we consider the example (3) it is clear that solutions do not have in
general bounded derivatives.

That same example (3) has a positive solution for any s > 0. Hence without
additional assumptions we might have s0 = ∞. The next result gives conditions
so that s0 ∈ R

+.

Theorem 3.2. Let f : [0, 1] × R → R
+ satisfy A-Carathéodory conditions.

Assume f(t, 0) 	≡ 0 and there exists k ∈ L∞(0, 1) such that k ≥ 0, k(t) 	≡ 0 and

for a.e. t ∈ [0, 1] and all u ≥ 0, f(t, u) ≥ k(t)u.

Then, there exists s0 ∈ R
+ such that

(a) for any s ∈ (0, s0), (7) has at least one positive solution,
(b) for any s > s0, (7) has no solution.

Proof. From Theorem 3.1, it is enough to prove that for s > 0 large enough,
there is no solution of (7). Consider the eigenvalue problem

u′′ + λk(t)u = 0, u(0) = u(1) = 0,
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and let λ1 > 0 and ϕ1 be its first eigenvalue and eigenfunction. Assume there
exists a solution u of (7) with s > λ1. We compute

0 =
∫ 1

0

d

dt
(u′(t)ϕ1(t) − u(t)ϕ′

1(t)) dt ≤
∫ 1

0

(λ1 − s)k(t)u(t)ϕ1(t) dt < 0,

which is impossible. �

Remarks. (a) Notice there is no point in assuming that k ∈ A, since we
can replace k(t) by min(k(t), 1), which is in L∞(0, 1).

(b) It follows from the proof that s0 ≤ λ1. Hence, in case k is constant,
λ1 = π2/k and there is no solution if s ∈ (π2/k,∞).

To better understand the role of the lower bound on f(t, u), we can write
the following modification of Theorem 3.2.

Proposition 3.3. Let f : [0, 1] × R → R
+ satisfy A-Carathéodory condi-

tions. Assume f(t, 0) 	≡ 0 and there exists a continuous function g : R → R
+

such that

(i) sup
u0>0

∫ u0

0

du√
G(u0) −G(u)

<∞, where G(u) :=
∫ u

0

g(v) dv,

(ii) lim infu→0 g(u)/u > 0,
(iii) for a.e. t ∈ [0, 1] and all u ≥ 0, f(t, u) ≥ g(u).

Then, there exists s0 ∈ R
+ such that

(a) for any s ∈ (0, s0), (7) has at least one positive solution,
(b) for any s > s0, (7) has no solution.

Proof. Assumption (ii) is such that for a small enough and s large enough,
α(t) = a sinπt is a lower solution of

(8) u′′ + sg(u) = 0, u(0) = u(1) = 0.

Any solution u(t) of (7) is an upper solution for (8). Hence if s0 = ∞, we deduce
from Proposition 2.2 that the problem (8) has solutions for any value of s. But
this is impossible since assumption (i) implies that for s large enough, (8) has
no solution. �

We can obtain more precise results for linearly bounded nonlinearities.

Proposition 3.4. Let f : [0, 1] × R → R
+ satisfy L∞-Carathéodory con-

ditions. Assume f(t, 0) 	≡ 0 and for some a > 0, b > 0 and all u ≥ 0
f(t, u) ≤ a+ bu. Then, for s ∈ (0, π2/b), (7) has a positive solution.

Proof. Take

β(t) = B(cos
√
sb(t− 1/2)− cos

√
sb/2) ≥ 0,
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and compute for B large enough

β′′(t)+ sf(t, β(t)) ≤
≤ −sbB cos

√
sb(t− 1/2) + s[a+ bB(cos

√
sb(t− 1/2) − cos

√
sb/2)]

= s[a− bB cos
√
sb/2] < 0.

The proof follows now from Proposition 2.2 with α(t) = 0. �

The situation is somewhat different if f is also asymptotically linear near the
origin as follows from the following result.

Proposition 3.5. Let f : [0, 1] × R → R
+ satisfy A-Carathéodory condi-

tions. Assume that for some c ∈ [0,∞), d ∈ [0,∞)∪ {∞}, for a.e. t ∈ [0, 1] and
all u > 0, c ≤ f(t, u)/u ≤ d. Then, for s ∈ (0, π2/d) ∪ (π2/c,∞), (7) has no
positive solution.

Proof. Assume u(t) is a positive solution of (7) and let v(t) = sinπt. If
sc > π2, we have the contradiction

0 =
∫ 1

0

d

dt
(u′(t)v(t) − u(t)v′(t)) dt =

∫ 1

0

(
π2 − s

f(t, u(t))
u(t)

)
u(t)v(t) dt < 0.

Similarly, if sd < π2, we obtain

0 =
∫ 1

0

d

dt
(u′(t)v(t) − u(t)v′(t)) dt =

∫ 1

0

(
π2 − s

f(t, u(t))
u(t)

)
u(t)v(t) dt > 0. �

Notice that the nonexistence of positive solutions for s ∈ (π2/c,∞) is essen-
tially the remark (b) after Theorem 3.2.

Examples. Consider first the problem

u′′ + s(u+ h(t)e−u)+ = 0, u(0) = u(1) = 0,

where h(t) ∈ (0, 1] and u+ = max(u, 0). We have here, with the notations of
Propositions 3.4 and 3.5, a = 1, b = 1, c = 1, d = ∞ so that these propositions
imply there exists a solution if s ∈ (0, π2) and no solution if s ∈ (π2,∞) i.e.
s0 = π2.

Consider next the problem

u′′ + smax(1, u− 1) = 0, u(0) = u(1) = 0.

Here a = 1, b = 1, c = 1/2, d = ∞ so that we can deduce from the same
propositions there is a solution if s ∈ [0, π2) and there is no solution if s ∈
(2π2,∞), i.e. s0 ∈ [π2, 2π2].

Another example is

u′′ + s(u− 1)+ = 0, u(0) = u(1) = 0.

Here c = 0, d = 1 and there is no solution if s ∈ [0, π2).
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4. Existence of multiple solutions

The type of problem we consider, can have unique solutions as it is clear
from the example

u′′ + s(u+ 1)+ = 0, u(0) = u(1) = 0,

whose solution

u(t) =
cos(

√
s(t− 1/2))

cos(
√
s/2)

− 1,

is unique and defined for s ∈ (0, π2). To obtain more solutions, some structural
assumptions on the nonlinearity f are necessary.

Theorem 4.1. Let f : [0, 1] × R → R
+ satisfy A-Carathéodory conditions

and assume that given r > 0 and η > 1, there exists some ε > 0 such that

(9) for all u1, u ∈ [0, r] and for a.e. t ∈ [0, 1],

u1 ≤ u ≤ u1 + ε⇒ f(t, u) ≤ ηf(t, u1).

Suppose f(t, 0) 	≡ 0 and further that for some k ∈ L∞(0, 1) such that k ≥ 0,
k(t) 	≡ 0, and a > 0, we have

for a.e. t ∈ [0, 1], and all u ≥ 0, f(t, u) ≥ k(t)u(1 + ua).

Then, there exists s0 ∈ R
+ such that

(a) for any s ∈ (0, s0), (7) has at least two positive solutions,
(b) for s = s0, (7) has at least one positive solution,
(c) for any s > s0, (7) has no solution.

Proof. Define s0 from Theorem 3.2, fix s ∈ (0, s0) and choose s1 ∈ (s, s0).
Let u1 be a solution of (7) with s = s1 and ε ∈ (0, 1] be small enough so that for
all u, v ∈ [0, ||u1||∞ + 1] and for a.e. t ∈ [0, 1]

v ≤ u ≤ v + ε⇒ f(t, u) ≤ s1
s
f(t, v).

Claim 1. If T is defined by (6) and Ω = {u ∈ C0 | for all t ∈ [0, 1], −1 <
u(t) < u1(t) + ε}, we have

deg(I − sT,Ω) = 1.

Notice that α = −1 and β = u1 + ε are strict lower and upper solutions of (7)
with s = s. The claim follows then from Proposition 2.3.

Claim 2. There exists R0 > 0 such that for all positive solutions u of

(10) u′′ + sk(t)u1+a = 0, u(0) = u(1) = 0,

we have ||u||∞ ≤ R0.
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Assume, by contradiction, there exists a sequence (un)n of solutions of (10)
such that ‖un‖∞ = An ≥ n. Notice that un(t) ≥ Anϕ(t) with ϕ(t) = min(t, 1−t).
Hence, for n large enough, we have the contradiction

0 = −
∫ 1

0

(u′′n(t) + π2un(t)) sin πt dt

=
∫ 1

0

(sk(t)u1+a
n (t) − π2un(t)) sin πt dt

≥
[
s

( ∫ 1

0

k(t)ϕ1+a(t) sinπt dt
)
Aα

n − π2

]
An > 0.

Claim 3. There exists R > 0 such that solutions of (7) with s ≥ s satisfy
||u||∞ ≤ R.

Assume the claim is wrong. Hence, there exist (sn)n ⊂ [s, s0] and solutions
un of (7), with s = sn, such that ||un||∞ → ∞, as n→ ∞.

Let µ > 0 and ϕ be the first eigenvalue and eigenfunction of the problem

ϕ′′ + µk(t)ϕ = 0, ϕ(1/4) = ϕ(3/4) = 0.

Let us extend ϕ on [0, 1] so that ϕ(t) = 0 on [0, 1/4] ∪ [3/4, 1] and define α0 ∈
W 2,∞(0, 1) to be such that its graph is the concave envelop of the graph of ϕ on
[0, 1]. Hence there exist 1/4 < t0 < t1 < 3/4 such that α0 is linear on [0, t0] and
on [t1, 1], and α0(t) = ϕ(t) on [t0, t1]. Consider now α = Aα0. It is easy to see
that if A is large enough

α′′(t) + sk(t)α1+a(t) = Ak(t)ϕ(t)(sAaϕa(t) − µ) > 0, on [t0, t1].

Hence, α is a lower solution for (10). Choose now un such that un ≥ α and notice
that un is an upper solution for (10). If ‖α‖∞ > R0, we get from Proposition 2.2
a solution of (10) with maximum larger than R0, which contradicts Claim 2.

Claim 4. Problem (7), with s = s, has at least two solutions.
It follows from Claim 1, there is a solution in Ω. From Claim 3, Theorem 3.2

and the properties of the degree, we deduce that deg(I − sT,B(0, R)) = deg(I −
(s0 + 1)T,B(0, R)) = 0. Hence, we get deg(I − sT,B(0, R) \ Ω) = −1, which
proves the existence of a second solution in B(0, R) \ Ω.

Claim 5. For s = s0, (7) has at least one solution.
Consider a sequence (sn)n ⊂ [0, s0] such that limn→∞ sn = s0 and corre-

sponding solutions un of (7) with s = sn. From Claim 3 and the A-Carathéodory
conditions on f(t, u), there exists h ∈ A such that

|u′n(t)| = sn

[
−

∫ t

0

rf(r, un(r)) dr +
∫ 1

t

(1 − r)f(r, un(r)) dr
]

≤ sn

[∫ t

0

rh(r) dr +
∫ 1

t

(1 − r)h(r) dr
]
∈ L1(0, 1).
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Hence, from Arzelà–Ascoli Theorem, there exists a subsequence (uni)i which
converges in C([0, 1]) to some function v0. From the closedness of the derivative,
v0 ∈W 2,1

loc ((0, 1)) and satisfies (7), with s = s0. �

Remarks. (a) Notice that condition (9) is satisfied if f(t, u) is continuous
and f(t, u) > 0.

(b) If f ∈ C1, we can arrange the two solutions us and vs such that ‖us‖∞ → 0
and ‖vs‖∞ → ∞ as s → 0. If the sequence (vs)s is bounded as s → 0, then
for some subsequence vs → v and v satisfies v′′(t) = 0, v(0) = v(1) = 0. Hence
v = 0, but in a neighbourhood of the origin there exists a single branch of
solutions.

(c) We can arrange the two solutions so that us(t) < vs(t) for t ∈ (0, 1).
If not, we can prove the existence of solutions between α(t) = 0 and β(t) =
min(us(t), vs(t)) (see [5]).

5. Convex nonlinearities

The main result of this section presents conditions on the nonlinearity f(t, u)
so that Theorem 4.1 gives an exact count of the number of solutions of (7). A
model example of such nonlinearities is f(t, u) = h(t)eu.

Theorem 5.1. Assume f ∈ C1([0, 1] × R,R+) is such that

(i) f(t, u) = f(1 − t, u) and f( · , u) is nondecreasing on [0, 1/2],
(ii) f(t, · ) is a strictly convex function,
(iii) there exist k > 0 and a > 0 so that for all t ∈ [0, 1] and u ≥ 0, we have

f(t, u) ≥ ku(1 + ua).

Then, there exists s0 ∈ R
+ such that

(a) for any s ∈ (0, s0), (7) has exactly two positive solutions u1 and u2 and
for any t ∈ (0, 1), u1(t) < u2(t),

(b) for s = s0, (7) has exactly one positive solution,
(c) for any s > s0, (7) has no solution.

Moreover, these solutions are symmetric, i.e. ui(t) = ui(1 − t).

The proof of this theorem uses several auxiliary results. The first one con-
cerns ordered solutions.

Proposition 5.2. Let f : [0, 1] × R → R
+ satisfy A-Carathéodory condi-

tions. Assume solutions of the Cauchy problem are unique and that for a.e.
t ∈ [0, 1], function f(t, · ) is strictly convex. Then, if u1, u2 and u3 are solutions
of (7), they are not ordered.

Proof. Assume that for all t ∈ (0, 1), u1(t) ≥ u2(t) ≥ u3(t). From the
uniqueness of solutions of the Cauchy problem, we can assume the inequalities
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are strict. Let v1(t) := u1(t) − u3(t) > 0 and v2(t) := u2(t) − u3(t) ∈ (0, v1).
Notice that we can write

f(t, u1(t)) − f(t, u3(t)) = a1(t)(u1(t) − u3(t)),

and
f(t, u2(t)) − f(t, u3(t)) = a2(t)(u2(t) − u3(t)),

where, using the strict convexity of f , we have a1(t) > a2(t). Hence, we obtain
the contradiction

0 = v′1v2 − v1v
′
2|10 = s

∫ 1

0

(a2 − a1)v1v2 dt < 0.

Notice that (a2 − a1)v1v2 ∈ L1(0, 1) since (a2 − a1) ∈ A and vi ∈ H1
0 (0, 1), i.e.

|vi(t)| ≤ K
√
t(1 − t). �

Our next result concerns the nonexistence of nonsymmetric solutions.

Proposition 5.3. Let f ∈ C1([0, 1] × R,R+) be such that f(t, u) = f(1 −
t, u) and f( · , u) is nondecreasing on [0, 1/2]. Then positive solutions of (7) are
symmetric, i.e. u(t) = u(1 − t).

This proposition can be found in Gidas, Ni and Nirenberg [6] for PDE. The
proof in the ODE case is identical to the one in [6] and will be omitted.

Proposition 5.4. Assume f ∈ C1([0, 1] × R,R+) is such that

(i) f(t, u) = f(1 − t, u) and f( · , u) is nondecreasing on [0, 1/2],
(ii) f(t, · ) is a strictly convex function.

Then problem (7) has at most two solutions.

Proof. Define u(t; a) to be the solution of

(11) u′′ + sf(t, u) = 0, u(0) = 0, u′(0) = a.

Let 0 ≤ a1 < a2 < a3 be such that u(t; ai) are three solutions of (7). We know
from Proposition 5.3 that these solutions are symmetric.

Define now the function z(t; a) = du(t; a)/da which satisfies the Cauchy
problem

(12) z′′ + s
∂f(t, u(t; a))

∂u
z = 0, z(0) = 0, z′(0) = 1.

Let r1(a) be the first positive zero of z(t; a). Notice that r1(a) is a continuous
function of a.

Claim 1. r1(ai) ≥ 1/2.
Assume r := r1(ai) < 1/2 and notice that

(13)
d

dt
(z′(t; ai)u′(t; ai) + sf(t, u(t; ai))z(t; ai)) = s

∂f(t, u(t; ai))
∂t

z(t; ai).
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The following contradiction follows then

0 ≤ s

∫ r

0

∂f(t, u(t; ai))
∂t

z(t; ai) dt

= (z′(t; a)u′(t; a) + sf(t, u(t; a))z(t; a))|r0 = z′(r; a)u′(r; a) − a < 0.

Claim 2. r1(a) is a decreasing function.
Let b < c and assume r1(b) ≤ r1(c). Define m ∈ [b, c) to be such that

r := r1(m) = min[b,c] r1(a). Let us fix t ∈ (0, r). We have for all a ∈ [m, c],
z(t; a) > 0 and therefore u(t; c) > u(t;m). This implies

∂f

∂u
(t, u(t; c)) >

∂f

∂u
(t, u(t;m)).

Now, we obtain

z(r; c)z′(r;m) = (z(t; c)z′(t;m) − z′(t; c)z(t;m))
∣∣∣r
0

= s

∫ r

0

(
∂f

∂u
(t, u(t; c)) − ∂f

∂u
(t, u(t;m))

)
z(t; c)z(t;m) dt > 0.

Hence, z(r; c) < 0 and r1(c) < r ≤ r1(b), which contradicts our assumption.
Conclusion. From Claims 1 and 2, we know that for a ≤ a3, r1(a) ≥ r1(a3) ≥

1/2. Hence for any t ∈ [0, 1/2], u(t; a) is an increasing function in a. In particular,
u(t; a1) ≤ u(t; a2) ≤ u(t; a3) for t ∈ [0, 1/2]. As these solutions are symmetric,
they are ordered on [0, 1] which contradicts Proposition 5.2. �

Our next step is to prove that, if problem (7) has two solutions for some
s1 > 0, it has at least one solution in some neighbourhood of s1. To this end,
we will use the following lemma.

Lemma 5.5. Let f ∈ C1([0, 1] × R,R+), f(t, 0) 	≡ 0 and s1 > 0. Assume
there exists a function u(t) which is positive on [0, 1] and such that

(14) u′′ + s1f(t, u) = 0.

Then for s near enough s1, problem (7) has a positive solution.

Proof. Let β(t) be the solution of

β′′ + sf(t, β) = 0, β(0) = u(0), β′(0) = u′(0).

For s near enough s1, β(t) is positive. Hence it is an upper solution for (7) and
the claim follows from Proposition 2.2 with α = 0. �

Lemma 5.6. Assume f ∈ C1([0, 1]× R,R+) is such that

(i) f(t, u) = f(1 − t, u) and f( · , u) is nondecreasing on [0, 1/2],
(ii) f(t, · ) is a strictly convex function and
(iii) f(t, 0) 	≡ 0.
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Assume s1 is such that there exist two solutions of problem

(15) u′′ + s1f(t, u) = 0, u(0) = u(1) = 0.

Then for s near enough s1, the problem (7) has at least a positive solution.

Proof. Define u(t; a) to be the solution of (11) with s = s1. Let a1 < a2

be such that u(t; ai) are the given solutions of (15). From Proposition 5.3 these
solutions are symmetric. The function z(t; a) = du(t; a)/da satisfies the Cauchy
problem (12) with s = s1. Define next ri(a) to be the i-th positive zero of z(t; a)
and notice that ri(a) are continuous functions of a. It follows from Claims 1
and 2 in the proof of Proposition 5.4 that r1(a) is a decreasing function such
that r1(ai) ≥ 1/2.

Claim 1. r2(ai) > 1.
Let us assume the two first positive zeros, r1 := r1(ai) and r2 := r2(ai), of

z(t; ai) are in [1/2, 1]. We deduce then from (13) the contradiction

0 ≤ s1

∫ r1

r2

∂f(t, u(t; ai))
∂t

z(t; ai) dt

= (z′(t; ai)u′(t; ai) + s1f(t, u(t; ai))z(t; ai))|r2
r1

= z′(r2; ai)u′(r2; ai) − z′(r1; ai)u′(r1; ai) < 0.

Claim 2. z(1, a1) ≥ 0.
This follows from the fact that a1 corresponds to the solution u(t; a) for the

smallest value of a, i.e. u(1; a) < 0 if a < a1 and u(1; a1) = 0.
Conclusion. If z(1, a1) > 0, then by Claim 1, z(t, a1) > 0 for all t ∈ (0, 1]. It

follows that, for a > a1 and a − a1 small enough, u(t, a) > 0 on (0, 1]. Hence,
there exists a function u(t) which is positive on [0, 1] and satisfies (14) which
implies the affirmation of the Lemma 5.5 holds true.

If z(1, a1) = 0, i.e. r1(a1) = 1, and since r1(a) is a decreasing function, we
have r1(a2) < 1 and by Claim 1 z(1, a2) < 0. This implies that for, a < a2 and
a − a2 small enough, u(t, a) > 0 on (0, 1]. Once again, there exists a function
u(t) which is positive on [0, 1] and satisfies (14) which proves the lemma. �

Proof of Theorem 5.1. Define s0 from Theorem 4.1. From Proposi-
tion 5.4 there is exactly two solutions for s ∈ (0, s0). From Lemma 5.6 we
deduce that there is exactly one solution for s = s0. �

6. A model example

The model problem

(16) u′′ + sh(t)eu = 0, u(0) = u(1) = 0,
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can exhibit a variety of multiplicity results. We know (see Theorem 5.1) that
there is at most two solutions, if h is nondecreasing on [0, 1/2], positive and
symmetric (i.e. h(t) = h(1 − t)). Further, these solutions are symmetric.

The situation is different if h is decreasing on [0, 1/2]. If we choose

(17) h(t) = 1 if t ∈ [0, t0] ∪ [1 − t0, 1], h(t) = 0 if t ∈ (t0, 1 − t0),

and t0 ∈ (0, 1/2), Proposition 6.1 hereunder shows that, here also, (16) has at
most two symmetric solutions. However, for small values of s, Proposition 6.2
establishes the existence of four solutions, two of them being symmetric, the
others being non-symmetric. Figure 1 provides such a bifurcation diagram. It
represents the initial slope of solutions as a function of s. Symmetric solutions
correspond to bold face lines.

Figure 1

There is some computational evidence that the geometry of the set of so-
lutions can be much more complicate. For example, for small values of the
parameter s, problem (16) with

h(t) = 1 if t ∈ [0, 0.1] ∪ [0.9, 1], h(t) = 0.001 if t ∈ (0.1, 0.9)

exhibits numerically six solutions, two symmetric ones and four non-symmetric
ones. Further, in some interval of the parameter s, we compute eight solutions,
four of them being symmetric. This is represented in Figure 2, where we used
the same conventions as for Figure 1.

Our first result concerns symmetric solutions of (16).

Proposition 6.1. There exists s0 ∈ R
+ such that for any s ∈ (0, s0) problem

(16), with h defined in (17), has exactly two positive symmetric solutions u1( · ; s)
and u2( · ; s) which are such that:

(a) for any t ∈ (0, 1), u1(t) < u2(t),
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(b) lims→0 ‖u1( · ; s)‖∞ = 0,
(c) lims→0 ‖u2( · ; s)‖∞ = lims→0 u

′
2(0; s) = ∞.

Proof. Consider the auxiliary problem

(18) v′′ + sev = 0, v(0) = v(2t0) = 0,

From Theorem 5.1, there exists s0 such that for s < s0 (18) has exactly two
solutions, which are symmetric and ordered. Notice next there is a bijection
between symmetric solutions u and v of (16) and (18) given by u(t) = v(t) if
t ∈ [0, t0], u(t) = v(t0) if t ∈ (t0, 1 − t0), u(t) = v(t− 1 + 2t0) if t ∈ [1 − t0, 1].

Claim (b) follows from Remark (a) after Theorem 3.1.
Claim (c) follows from Remark (b) after Theorem 4.1 and the fact that

u′(0; s) ≥ u(t0; s)/t0 = ‖u( · ; s)‖∞/t0. �

Remark. Notice that u′1(0; s) < u′2(0; s) since u1(t; s) < u2(t; s).

Figure 2

The main result of this section completes Proposition 6.1.

Proposition 6.2. There exists s1 ∈ R
+ such that for any s ∈ (0, s1) problem

(16), with h defined in (17), has at least four positive solutions.

Proof. We shall prove this result using a shooting method. Consider the
problem

u′′ + sh(t)eu = 0, u(0) = 0, u′(0) = a,

and write its solution u(t; a, s). Solutions of (16) are the functions u(t; a, s) such
that

(19) u(1; a, s) = 0.
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Hence, we have to prove that for small values of s, (18) has at least four positive
solutions ai(s).

Consider first the solutions u1 and u2 given in Proposition 6.1 and define
a1(s) = u′1(0, s) and a2(s) = u′2(0, s). These are solutions of (18).

To obtain one additional solution, we shall use the following claim, which
will be proved later.

Claim. For small values of s,

∂

∂a
u(1; a1, s) > 0 and

∂

∂a
u(1; a2, s) > 0.

It follows then by an intermediate value theorem that there exists a3 ∈ (a1, a2)
such that u(1; a3, s) = 0.

From Proposition 6.1, the corresponding solution u3(t; s) = u(t; a3, s) cannot
be symmetric. Hence, we have a fourth solution u4(t; s) = u3(1 − t; s). �

In order to prove the above claim, notice that

z(t; a, s) =
∂

∂a
u(t; a, s)

is the solution of the Cauchy problem

z′′ + sh(t)eu(t;a,s)z = 0, z(0) = 0, z′(0) = 1.

Lemma 6.3. For small values of s,

z(1; a1, s) =
∂

∂a
u(1; a1, s) > 0.

Proof. Assume by contradiction z( · ; a1, s) has a first positive zero r1 ∈
(0, 1]. As lim

s→0
‖u1( · ; s)‖∞ = 0, we have, for s small enough,

sh(t)eu(t;a1,s) ≤ se‖u1‖∞ <

(
π

r1

)2

.

Let v(t) = sin(πt/r1). We obtain then the contradiction

0 = (zv′ − z′v)|r1
0 =

∫ r1

0

(sh(t)eu(t;a1,s) − (π/r1)2)z(t)v(t) dt < 0. �

Lemma 6.4. For small values of s,

z(1; a2, s) =
∂

∂a
u(1; a2, s) > 0.

Proof. Let us write z(t) := z(t; a2, s) and u(t) := u(t; a2, s).
Claim 1. z(t) > 0 for t ∈ (0, t0].
Assume z( · ) has a first positive zero r1 ∈ (0, t0]. Since

d

dt
(u′(t)z′(t) + seu(t)z(t)) = 0,
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we have
0 = (u′(t)z′(t) + seu(t)z(t))|r1

0 = u′(r1)z′(r1) − a2.

This leads to the contradiction 0 ≥ u′(r1)z′(r1) = a2 > 0.
Claim 2. lims→0 z(t0/2) = t0/2.
Let us first prove that

seu(t0/2) = seu(t0/2;a2,s) ≤ k2 :=
(

2π
t0

)2

.

If not, notice that seu(t) ≥ k2 on [t0/2, t0], let v(t) = sin k(t− t0/2) and compute

0 > (zv′ − z′v)|t0t0/2 =
∫ t0

t0/2

zv(seu − k2) dt ≥ 0,

which is a contradiction. Next we compute

a2
2 − u′2(t0/2)

2
=

∫ 0

t0/2

u′′u′ dt = s

∫ t0/2

0

euu′ dt = s(eu(t0/2) − 1) ≤ k2,

and

s

∫ t0/2

0

eu dt = −
∫ t0/2

0

u′′ dt = |a2 − u′(t0/2)| ≤ 2k2

a2 + u′(t0/2)
≤ 2k2

a2
.

As a2 goes to infinity, this proves

(20) lim
s→0

s

∫ t0/2

0

eu dt = 0.

We can write now

z

(
t0
2

)
= z(0) + z′(0)

t0
2

+
∫ t0/2

0

(
t0
2
− τ

)
z′′(τ) dτ

=
t0
2
− s

∫ t0/2

0

(
t0
2
− τ

)
eu(τ)z(τ) dτ.

As further z(t) is concave on [0, t0], we have z(t) ≤ t ≤ 1 and we deduce that∣∣∣∣z
(
t0
2

)
− t0

2

∣∣∣∣ ≤ s

∫ t0/2

0

eu(τ) dτ,

and the claim follows from (20).
Claim 3. lims→0 z(t0) = 0.
As

d

dt

(
u′2

2
+ seu

)
= 0 and

d

dt
(u′z′ + seuz) = 0, on [0, t0]

integrating on this interval, we obtain

a2
2

2
+ s = seu(t0) and a2 = seu(t0)z(t0).
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As further a2 → ∞ as s→ 0, we have

lim
s→0

z(t0) = lim
s→0

α2

α2
2/2 + s

= 0.

Claim 4. For s small enough, z(t) has a first zero r1 ∈ (t0, 1/2).
Notice that on [0, t0], function z(t) is concave. Hence, it follows from Claims 2

and 3 that, for s small enough,

z′(t0) ≤ z(t0) − z(t0/2)
t0/2

≤ −1
2
.

As z(t) is linear on [t0, 1 − t0], the claim follows then from Claim 3.
Claim 5. z(t) has a second zero r2 ∈ (1 − t0, 1).
As z(t) is linear on [t0, 1 − t0] it has no second zero in this interval. Assume

z(t) < 0 on (1 − t0, 1) and define the function ẑ(t) = z(1− t) which is such that

ẑ′′ + sh(t)eu(t)ẑ = 0, ẑ(1 − r1) = ẑ(1) = 0.

One obtains then the contradiction

0 = (zẑ′ − z′ẑ)|11−r1
= z(1)ẑ′(1) − z(1 − r1)ẑ′(1 − r1) > 0.

Claim 6. z(t) > 0 for t ∈ (r2, 1].
Assume z(t) has a third zero r3 ∈ (r2, 1]. As in Claim 5 we have the contra-

diction
0 = (zẑ′ − z′ẑ)|r3

r2
= −z′(r3)ẑ(r3) + z′(r2)ẑ(r2) > 0. �

Remark. Consider problem (16) with h(t) = 1 if t ∈ [0, t0] ∪ [1 − t0, 1] and
h(t) = k > 0 if t ∈ (t0, 1 − t0). Going back to the proof of Proposition 6.2, the
existence of four solutions, for k = 0, was a consequence of the fact that, in this
case, u(1; a, s) has two zeros a1 and a2 with positive slope ∂u(1; ai, s)/∂a, i.e. for
ε > 0 small enough u(1; a1 − ε, s) < 0 < u(1; a1 + ε, s) and u(1; a2 − ε, s) < 0 <
u(1; a2 + ε, s). This situation still holds true for small perturbations of h and
therefore, given s small, we have the existence of at least three positive solutions
for k small enough. This is the situation illustrated in Figure 2. It shows that
Theorem 5.1 does not hold without assuming that f( · , u) is nondecreasing on
[0, 1/2].
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