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GLOBAL BIFURCATION PROBLEMS
ASSOCITATED WITH i-HESSIAN OPERATORS

JON JACOBSEN

ABSTRACT. In this paper we study global bifurcation phenomena for a class
of nonlinear elliptic equations governed by the h-Hessian operator. The
bifurcation phenomena considered provide new methods for establishing
existence results concerning fully nonlinear elliptic equations. Applications
to the theory of critical exponents and the geometry of k-convex functions
are considered. In addition, a related problem of Liouville-Gelfand type is
analyzed.

0. Introduction

Let Q be a domain in R®. If & € {1,...,n} and u € C?(Q), then the
k-Hessian operator is defined by

Se(D%u) = S(A[D*u]) = > Xip Ay,
1<ip<...<ip<n
where A[r] = (A1,...,\,) denotes the eigenvalues of the symmetric matrix r
and S, is the k" elementary symmetric polynomial in n variables. Notice that
S1(D?*u) = Au and S,,(D?u) = det D?u. Thus, the k-Hessian operators form
a discrete collection of partial differential operators, which includes the Laplace
and Monge-Ampere operators. In this framework, it is natural to think of the
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Laplace and Monge—Ampere operator as connected by a family of operators,
whose properties vary as k varies. This connection raises many interesting ques-
tions concerning the k-Hessian operators.

The study of Monge-Ampeére equations began with the early work of Monge
[32] in 1784 and was continued by Ampere [1] in 1820. Motivated by questions
from geometry, Monge undertook a study of equations of the form

(0.1) A(rt —s*)+ Br+Cs+ Dt + E =0,

where the coefficients A, B, C, D, E are functions of z,y, u, p, and q. Here x and
y are the independent variables, p = du/dx and ¢ = Ou/0dy are the components
of the gradient of u, and r = 9%u/02?, s = 0%u/0x0y, and t = 9%u/dy? are the
elements of the Hessian matrix D?u. Monge studied a transformation to convert
(0.1) into a system of ordinary differential equations to which he then could
apply integral methods. Ampere generalized the method of Monge to develop a
method which transformed (0.1) into a system of first order partial differential
equations. Although there were several further contributions to the theory (e.g.
Boole [3] and De Morgan [11]), it was not until the work of Lie [26], [27] that the
depth of the contributions of Monge and Ampére were realized. In fact, it seems
to be Lie [27] who first used the terminology “Monge-Ampere” for equations
of the form (0.1). The following relevant quote concerning the work of Monge
and Ampere is taken from the preface of Goursat’s text [16, p. vii]: “On n’a pas
assez remarqué, il me semble, ces profondes recherches du grand géometre, ou
sont employées des transformations de contact tout a fait générales, un demi-
siecle avant les travaux de M. Sophus Lie.”

During this century the Monge-Ampere operator has continued to enjoy a
great deal of investigation (see e.g. [31], [25], [36], [2], [5], [15], [28], [19]), in
particular for its applications to problems from geometry. Beginning with the
work of Krylov [23] and Caffarelli, Nirenberg, and Spruck [6], there has been
considerable study of the general k-Hessian operators (e.g. [44], [45], [47]-[49]).

The focus of this paper is to study global bifurcation phenomena for the class
of k-Hessian operators and some consequences thereof. In addition to being of
independent interest, the bifurcation phenomena studied here provide new meth-
ods for establishing various existence results concerning fully nonlinear elliptic
equations.

The main equation of study is defined by

(0.2)

Sk(D?u) = f(A\u) z €,
u=0 x € 09,
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where Q) is a strictly (k — 1)-convex domain in R™. In addition to considering
“powerlike” growth conditions on f, we shall also consider the case of exponen-
tial growth, in which case (0.2) may be thought of as a Liouville-Gelfand type
problem.

An interesting case where an equation of the form (0.2) arises with k = n,
is in the study of evolution problems for nonparametric surfaces with speed
depending on Gauss curvature. In [33], Oliker considers equations of the form

D?u
WZW n (0,00) x Q,
(0.3) u(z,t) is strictly convex  for each t > 0,
u(z,t) =0 in [0, 00) x 09,

for 8 > 0 a constant. Geometrically, the graphs of u(z,¢) may be thought
of as a family of hypersurfaces evolving in R™t! with a fixed boundary. For
B = (n+ 1)/2, the normal speed of a point (z,u(x,t)) is equal to the Gauss
curvature of the graph at this point. By first looking for self-similar solutions
to (0.3) of the form wu(z,t) = ¢(¢)y(x) in the case B = 0, Oliker shows that the
function ¥ would satisfy the Monge—Ampére equation

{<mtD2¢::ww| r€Q,

(0.4) =0 z € 99,

for = 1/(n —1). Oliker then establishes the existence of a unique solution to
(0.4) by sharpening some of the previously known a priori estimates [5], [7], [36]
of the C3-norm for the solution 1. This solution is then used to analyze the
asymptotic behavior for the solutions to (0.3) when 5 > 0. In particular, sharp
estimates for the rate at which u(x,t) — 0 as ¢ — oo in terms of this solution
are given.
Another motivating example of equations of the form (0.2) are the so-called

Liouville-Gelfand problems defined by
0.5) { —Sk(D%*u) = Xe* 1 €Q,

u=0 x € 0N.
The classical Liouville-Gelfand problem is concerned with positive solutions to
(0.5) in the case k = 1, where S1(D?u) = Au. In this case, if Q = Bg(0) is the
open ball of radius R centered at the origin in R™, then by the well-known results
of Gidas—Ni—Nirenberg [14], all positive solutions to (0.5) are radially symmetric;
hence (0.5) becomes the ordinary differential equation
n—1

"

. u' =X re€(0,R),
(0.6) u>0 rel0,r),
uw'(0) = u(R) =0.
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This problem was studied by Liouville [30] in the case n = 1, Bratu [4] in the
case n = 2, and later, Gelfand [13] for higher dimensions. Of particular interest
is the relationship between the space dimension and multiplicity results for (0.6)
first observed by Joseph and Lundgren [20]. The results may be divided up into
three cases, which we now briefly recall:

e (Case I) n =1,2. There exists a A* > 0 such that (0.6) has exactly one
solution for A = A\* and exactly two solutions for 0 < A < A*.

e (Case II) 3 < n < 9. The continuum of solutions to (0.6) oscillates
around A = 2(n — 2), with the amplitude of oscillations tending to zero,
as ||ul| — oo.

e (Case III) n > 10. Equation (0.6) has a unique solution for each A\ €
(0,2(n — 2)) and no solutions for A > 2(n — 2).

In [9], the authors consider the Liouville-Gelfand problem associated with (0.5)
for the k-Hessian operator when k = n/2.

The purpose of this paper is to demonstrate how results concerning equations
of the form (0.2) may be established using topological methods. In particular,
using recent results due to Trudinger and Wang [43]-[45] for k-Hessian operators,
we shall study (0.2) from the perspective of global bifurcation.

It is worth remarking that some of the results obtained in this paper overlap
with earlier results of P. L. Lions [29], Wang [49], and Tso [46], [47]. Nevertheless,
we believe that our point of view enjoys an inherent simplicity, may be useful for
more general problems, and sheds some light into the nature of the geometry of

k-convex functions.

This paper is organized as follows: in Section 1 we recall some fundamental
results in the theory of k-Hessian operators. In Section 2 we develop an exten-
sion of the Krein—Rutman theorem to operators which are not necessarily linear
or strongly positive but satisfy the “linear-like” properties of homogeneity and
monotonicity. In Section 3 we shall discuss how the abstract results of Section 2
may be applied to the k-Hessian operators to establish the existence of a prin-
cipal eigenvalue for the k-Hessian operator. This result was first established by
Lions [29] for the Monge-Ampere operator and Wang [49] for the k-Hessian op-
erator (1 < k < n). Here we see the results of Lions and Wang can be obtained
in unison, as an application of the general results from Section 2. Interesting
related results may be found in [9], where the authors establish the existence of
a principal eigenvalue for a large class of ordinary differential operators which
includes the radial cases for the p-Laplacian and k-Hessian.

In Section 4 we study bifurcation phenomena for equations of the form (0.2)

for “powerlike” perturbations f. We divide the study of (0.2) into two distinct
cases corresponding to sub/superlinear perturbations.
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In Section 5 we continue our study of global bifurcation phenomena associ-
ated with (0.2). The approach we use is to embed (0.2) into the one parameter
family of equations

2u) = |Aul® u) T
07) {Sk(D )=l + f(u) z€Q,

u=20 x € 09,

and consider the behavior of global bifurcation continua. In particular, we look
for solutions to (0.7) when A = 0. Here we demonstrate that in contrast to the
Laplace operator, the Monge—Ampere operator does not have a critical exponent.
This result was first established by Tso [46] using variational methods. Since the
Laplace and Monge-Ampere operator are the first and last k-Hessian operator,
respectively, it raises the natural question: For which values of k does the k-
Hessian operator have a critical exponent? We shall discuss this question and
some related insight it gives into the geometry of k-convex functions.

In Section 6 we investigate the Liouville-Gelfand problem defined by (0.5) in
the case of k = n. In particular, we shall demonstrate that, unlike the results of
Joseph—Lundgren [20], the qualitative behavior of the solution continua to (0.5)
do not depend on the space dimension n. We shall also discuss some results
concerning (0.5) in the cases 1 < k < n.

The main results of the paper are as follows:

THEOREM 0.1. Let E contain a cone K. Let A : E — K be a completely
continuous operator with Alx : K — K homogeneous, monotone, and strong.
Furthermore, assume there exists w, A(w) € Im(A) N K\{0}. Then there exists
a constant A\g > 0 with the following properties:

(1) There exists u € K\{0}, with u = M A(u).
(2) If v e K\{0} and A > 0 such that v = ANA(v), then A = Xg.

THEOREM 0.2. Let Q be a strictly (k — 1)-convex domain. Then there exists
a unique positive constant Ao = Ao (k, Q) such that the k-Hessian equation

{ Sk(D%*u) = |Moul* x€Q,

0.8
0.8) u=20 x € 09,

admits a nontrivial admissible solution u. We call Ay the eigenvalue for the
k-Hessian operator associated with the domain 2. Moreover, the following state-
ments are true:

(1) Let w be a nontrivial solution to (0.8). If v is any other nontrivial
admissible solution to (0.8), then v = Bu, for some 6 > 0.

(2) If U C Q, both strictly (k — 1)-convez, then the eigenvalue associated
with the domain Q' is strictly greater than the eigenvalue associated with
the domain Q.
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THEOREM 0.3. The point (u,0) is a bifurcation point for the equation

Sk(D?u) = MJul¥ 4+ go(u)) =z € Q,
u=20 x € 09,
if and only if |pu| = No. Furthermore, there exists an unbounded continuum CT

(resp. C™) of nontrivial solutions which bifurcates from (Xg,0) (resp. (—Xg,0))
and lies in the strip {(\,u) : 0 < X < Ao} (resp. {(A\,u) : =g < A <0}).

THEOREM 0.4. The constant u is an asymptotic bifurcation value for
Sr(D%u) = MJulf + goo(u)) z € Q,
u=0 x € 08,

if and only if |u| = Ao. Furthermore, there exists an unbounded continuum of
nontrivial solutions which lies in the strip {(Au): —Xo < A < Ao}

THEOREM 0.5. Let Q C R"™ be a strictly convex, bounded domain. Then the
Monge—Ampére equation
det D?u = |[6ulP 2z € Q,

(0.9)

u=20 x € 09,
has a nontrivial admissible solution for all p #mn, p >0, and § € R. In the case
p < n, the solution is unique.

THEOREM 0.6. Let k € {1,... ,n}, g(u) = |0ulP for some 0 <p <k, § €R,
and suppose Q) is a strictly (k — 1)-convex domain in R™. Then there exists a

global continuum of nontrivial solutions to the k-Hessian equation
Sk(D?*u) = |Mul® + g(u) = €Q,
{ u =0 x € 01,
which crosses the A = 0 azis nontrivially. Therefore, the equation
Sk(D?u) = |6ulP =z € Q,
{ u=0 x € 0N,

has a nontrivial k-convez solution for all 0 < p < k, and 6 € R. Moreover, the

solution is unique.

THEOREM 0.7. There exists \* > 0 such that the equation

(0.10)

det D?u= e ™ =z €,
u=0 x € 08,

has at least two solutions for all X\ € (0,\*). Furthermore, there exists X > 0
such that (10) has no solution for A > \.
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1. Preliminaries

For a given convex function u, the n-Hessian operator gives rise to a Borel
measure u defined by

polel = [ 1de= (el
Xu(€)

where x, is the normal mapping (subdifferential) associated with the convex
function w [2]. In this section we discuss the generalization of this measure to
the intermediate k-Hessian operators, due to Trudinger and Wang [44], [45].
The key idea is to introduce the class of k-convex functions, for k € {1,... ,n}.

Important contributions to this theory may be found in the recent papers [6],
[42)-44], [10].

1.1. k-convex functions. For k € {1,... ,n}, let Ty be the component of
{NeR"™: Sx(\) > 0} C R™ containing the positive cone I't = {A € R": \; > 0,
i=1,...,n}. Theset Iy is a convex cone, with vertex at the origin, and is equal

to the set {A € R" : S;(A) >0, j=1...,k}. Moreover, the chain of inclusions
I'*=I,C...CI'4y1 CTy C...CTy holds.

The cones I'y are the key to defining k-convex functions.

DEFINITION 1.1. Let k € {1,... ,n} and let 2 be a bounded domain in R™.
A function u € C%() is called k-convex (uniformly k-convex) in € if A\[D?u] €
T (T'y) for each z € Q. Equivalently, u is k-convex if S;(D?*u) > 0 (> 0) in €,
foreach j=1,... k.

For example, 1-convex functions satisfy Au > 0, hence are subharmonic.

Similarly, n-convex functions satisfy
det D*u > 0,...,Sp(A\[D?u]) > 0,...,Au >0,

hence are convex. By using the notion of viscosity solutions these notions may
be readily extended to include continuous functions.

DEFINITION 1.2. A continuous function u : Q@ — (—o0, 00) is called k-convex
in Q, if Sg(D?u) > 0 in the viscosity sense.

We shall denote the class of k-convex functions on Q by ®*(Q). As above, a
function u € C'(f) is 1-convex if and only if it is subharmonic and n-convex if
and only if it is convex. It is shown in [44] that for k > n/2, k-convex functions
are in fact Holder continuous, with exponent o = 2 — n/k > 0, generalizing the
well-known fact that convex functions are Lipschitz continuous.

The following is a useful criterion for k-convex functions.
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LEMMA 1.3 ([45]). A function u : Q — (—00,00) is k-convez if and only if
its restriction to any subdomain Q' CC Q is the limit of a monotone decreasing
sequence in C%(Q') N ®F(Q).

Whereas strict convexity is a natural condition for the domain when con-
sidering boundary value problems for Monge—Ampere equations, there is a cor-
responding notion of k-convexity for the domain which is natural for k-Hessian

equations.

DEFINITION 1.4 (k-convex domain). Let £ C R” be a bounded domain with
C?-boundary and let k € {1,... ,n — 1}. We say that the domain 2 is k-convex
provided (K1, ... ,kn_1) € 'y for each x € 99, where x; (i = 1,... ,n—1) are the
principal curvatures of 9Q at x. Equivalently, Q is k-convex if S;j(k1,. .. , kn—1) >
0 for each j =1,... ,k and for every xz € 0f).

Similarly, one defines a uniformly k-conver domain, by requiring the strict
inequality S;(K1,...,kn—1) > 0 to hold, for each j = 1,... ,k, and for every
xz €90 Ik =(Kki1,...,kn—1) is the vector of principal curvatures for 9 at
the point z, then the quantity S;(k1,...,Kn—1) is the jth mean curvature of
the boundary at xg. Thus, a domain  will be k-convex provided the jth mean

curvatures of 02 are nonnegative for each j =1,... k.

1.2. Symmetric polynomials. For the convenience of the reader, we col-
lect some results concerning the symmetric functions acting on symmetric matri-
ces. For k fixed, with 1 < k < n, we shall use the notation S;;(r) = 9Sk(r)/0r;;.

PropPOSITION 1.5 ([49]). Let r € S™*™. If A[r] € Ty, then
(1) 227ty Si(r) = (n — k +1)Sk—1(r).
(2) (Si;(r)) is positive definite; i.e.
Sk (r)
87‘1']'
(3) Sk(r) = 1 227 =1 184 ().
PRrROOF. Identity (1) may be verified directly. Property (2) is established

in [6], where they show 0Sk/0X; > 0 for all z € Q and 1 < i < n. Identity (3)
follows from noticing that Si(r) is the sum of all £ x k principal minors of r

1 Tk
Sk(r) = 525(%._. ik)riljl'---'rikjk»

)

&& >0 for all £ e R™M\{0} and z € Q.

where §(j1"" ’jk) is the generalized Kronecker symbol defined to be 1 (resp. —1)

ARTERNY 2
if 41,...,4) are distinct and (ji,...,7%) is an even (resp. odd) permutation of
(i1,. .. ,ir); otherwise it is equal to 0. Hence identity (3) follows from

1 1y ee 301,10
Sl(T)ZWZ((f( -)Ti1j1""'Tik1jk1' O

jlv"' 7jk717.]
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Let us introduce the “homogenized” function Fj, = (Sk)/*, and as above let
F,; = OFy/0r;j. One can check that the identity

1 S

F,=-—"Y _
nS](ck_l)/k

holds, in which case the matrix (F;;(r)) is positive definite whenever (S;;(r)) is
positive definite and Sk(r) > 0.

In [6], Caffarelli, Nirenberg, and Spruck show how an inequality due to
Garding [12] implies the following proposition.

PROPOSITION 1.6. F} is concave on the set A= {r € S"*™ : \[r] € T'x}.

The properties above imply the following lemma for which we shall find use
repeatedly in the sequel.

LEMMA 1.7. Let k € {1,... ,n} and consider the linear operator L defined
by
L= Z Fij(D2w)Dij.
ij=1
Then L is elliptic whenever w € ®F(Q), and if u,v € ®¥(Q), then

L(u — v) > Fy(D*u) — Fp(D?v).

PROOF. The inequality follows from the concavity of Fy, on ®*(£2):

Lu—v) = Y F;(D*w)(Diju— Dijv) > Fy(D*u) — Fi(Dv). 0

1,j=1

1.3. Existence theorems. The class of k-convex functions is naturally
related to the k-Hessian operators, in that, the operators Si(D?u) are elliptic
on the class of k-convex functions [6], and the Dirichlet problem

{ Se(D?*u) = P(z) z€Q,

(1.1) u=¢ x € 09,

has a unique k-convex solution u € C(2) for any ¢ € LP(Q) with p > n/2k and
¢ € C(Q), if Q is a uniformly (k — 1)-convex domain. Furthermore, u € C%(Q)
for any exponent « < 1, such that o < 2 —n/kp [43, Theorem 1.1].

The main result of [45] is that for each k-convex function u, the k-Hessian
operator defines a Borel measure uy, and that the corresponding mapping v —
1k [u] is weakly continuous. The resulting measure py[u] is called the k-Hessian

measure generated by u.
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THEOREM 1.8 ([45]). Let k € {1,...,n}. Then, for any u € ®*(Q), there
exists a Borel measure ui[u] in Q such that

(1) pelu)(e) = [, Sk(D?u), for any Borel set e C Q, if u € C*(Q2), and
(2) if {um} is a sequence converging locally in measure to a function u €
*(Q) then pug[um] — pxlul; i.e.

[ st — [ gdmlul
Q Q
for all g € C(Q), with compact support.

From well-known properties of subharmonic functions (see e.g. [17]) we have
the inclusions ®*(Q) C ®1(Q2) c L (Q), and local convergence in measure is

equivalent to convergence in Li ().
This generalization allows one to consider the corresponding Dirichlet prob-

lem (for measures) defined by

(1.2)

jle) = v inQ
u=¢ on 0,

in the class of k-convex functions. Presently, the most general theorem concern-
ing (1.2) is due to Trudinger and Wang;:

THEOREM 1.9 (Trudinger-Wang, [44]). Let the domain Q be uniformly (k —
1)-convez. Suppose we are given the measure v = vy + va, where v; € L1(Q)
and vy has compact support. Then for any ¢ € C(Q), there exists a unique
u € ®*(Q) N C(Q) satisfying (1.2), provided k > n/2.

This theorem extends Theorem 1.1 of [43] in the case k > n/2. In [44], the
authors also establish a useful comparison principle, generalizing the well known
cases k=1 and k = n:

THEOREM 1.10 (Trudinger-Wang, [44]). Let u,v € ®%(Q) N C(Q) satisfy

(1.3)

pelv] < pelu] in €,
u<ov on 012,

on the (k — 1)-convex domain Q. Then u < v in Q.

With this background material exposed, we are ready to investigate the k-
Hessian equations. In light of the above remarks, unless otherwise stated, we
shall assume throughout the rest of this paper that the domain 2 is a uniformly

(k — 1)-convex domain.
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2. Krein—Rutman theory

In this section we partially extend the classical Krein—Rutman theorem to
completely continuous operators which are strong, monotone, and homogeneous.
As an application of this theorem, we will prove the existence of a principal
eigenvalue for the k-Hessian operator, in Section 3.

The Krein—Rutman theorem asserts that a strongly positive linear operator
has a unique positive eigenfunction (of prescribed norm), and the corresponding
eigenvalue is real and simple. The first theorem in this direction is the Perron—

Frobenius theorem:

THEOREM 2.1 (Perron—Frobenius [18]). Let A be an nxn matriz with strictly
positive coefficients. Then A has a positive eigenvalue A, larger in magnitude
than all the others, and the components of an associated eigenvector all have the

same sign. Furthermore, the eigenvalue is simple.

Krein and Rutman extended this result to arbitrary dimensions by employing
the theory of cones in Banach spaces:

THEOREM 2.2 (Krein-Rutman [22]). Let E contain a solid cone K. Let L
be a strongly positive linear compact operator. Then there exists a unique Ag > 0
such that the following statements are true:

(1) There exists u € Int(K), with u = AoLu.
(2) If (\,v) € R\{N\o} x E\{0}, with v = ALv, then v ¢ K U{—K} and
Ao < |)\|

One of the key ideas in this section is that the linearity assumption in the
Krein—Rutman theorem may be replaced by a corresponding homogeneity and

monotonicity assumption.

2.1. Existence of eigenvalues. Let E be a real Banach space with a cone
K. Recall that a cone K introduces a partial order in E by the relation

(2.1) u <w if and only if v —u € K.

By homogeneous, we shall mean positively homogeneous with degree 1. Further-
more, the term monotone shall refer to an operator that satisfies A(z) < A(y)
whenever x < y in E.

The following theorem will be established in this section:

THEOREM 2.3. Let A : E — E be a completely continuous operator with
Al : K — K homogeneous and monotone. If there exists w € K\{0} and a
constant B > 0 such that

(2.2) w < fA(w),
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then for each R > 0, there exists A = A(R) > 0 and u € K, with ||u|]| = R, such
that

(2.3) u = AA(u).

Furthermore, A < (3.

Thus, for each level set ||u|| = R in E, there exists at least one solution pair
(A u) to (2.3) such that |ju|| = R and A € (0,3]. The constant 1/X will be
called an eigenvalue of A, and the function u will be called an eigenfunction of A
(corresponding to the eigenvalue 1/)). Note that the condition that A(F) C K
implies A is a positive operator. We also remark that if A = 0, then (2.2) will
not be satisfied for any w € K\{0}.

A key ingredient in the proof of Theorem 2.3 is the following lemma concern-
ing bounds on possible values for A:

LEMMA 2.4. Let A: E — E be a positive operator such that Al : K — K
is homogeneous and monotone. Assume there exists w € K\{0} and a constant

B > 0 such that
(2.4) w < BA(w).
If A >0,e>0, and u € K are such that the equation
u = A(u + ew)
holds, then A < (3.
PRrROOF. Suppose A > 0, € > 0, and u € K are such that the equation
u = A(u+ ew)

holds. Since ¢ > 0 and w € K, it follows that u < u+ew. Hence, by applying the
monotonicity of A to this inequality, we obtain A(u) < A(u + ew). Multiplying
by A and employing (2.5) we arrive at the inequality

(2.6) MM (u) < u.

In a similar fashion (now requiring the homogeneity of A) we obtain the inequal-
ity
AeA(w) < u.

Furthermore, by (2.4), we must have

A

3 ew < AeA(w) < u.
Applying A to this last inequality we obtain the inequality

%EA(U)) < A(u).
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Multiplying through by A and using (2.6) we have

2
s eAw) < u.

B
One more application of (2.4) yields the inequality

(5)
B) ew < Uu.

Applying A repeatedly in this manner, we obtain (by induction) the inequality

A n
(2.7) (B) ew<wu, foreachn=1,2,....

Multiplying each side of (2.7) by (8/A)"™ and recalling the definition of < we see
that

(2.8) (?) u—cw € K, foralln=1,2,....

Therefore, if A > (3, then (8/A\)"u — 0 as n — oo and (2.8) implies —cw € K,
since K is closed. However, since K is a cone and ew € K, the fact that —ew € K
implies w = 0, a contradiction, as by assumption w # 0. Therefore A < . |

Notice that since (3 is fixed, this estimate is independent of the value of ¢ > 0
in (2.5). Using this lemma we may now establish Theorem 2.3.

PROOF OF THEOREM 2.3. Fix R > 0 and suppose there exists w € K\{0}
and 8 > 0 such that w < fA(w). Let A: E — K denote the Dugundji extension
of A and consider the two parameter family of operators defined by

feOuu) =u— )\g(u + ew).

For each fixed € > 0 and A > 0, the operator f:(}, -) : E — E is a completely
continuous perturbation of the identity. If A = 0, then the operator f.(}, -) is
the identity mapping; hence for the ball Br(0) C F, the Leray—Schauder degree
is defined and is given by

(2.9) d(f.(0, -), Bg(0),0) = d(id, Bg(0),0) = 1.

On the other hand, if there exist constants € > 0 and A > 0 such that the
equation

(2.10) f-Ou) =u— M(u+ew) =0,

has a solution u € E, then u € K, since A(E) C K. Therefore A= A in equation
(2.10) and by Lemma 2.4, we may conclude that for any ¢ > 0 and 8* > (3 the

equation

u— " Alu+ew) =0
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has no solutions in E. Thus the Leray—Schauder degree of f.(8*, -) is defined,
with

(2.11) d(f-(8, ), Br(0),0) = 0.

Since the degrees (2.9) and (2.11) are unequal, it follows from the homotopy
invariance of the Leray—Schauder degree, that for each fixed € > 0, there exists
(A u) € (0,8%) x 0BR(0) such that

(2.12) u=AA(u+ cw).

In this way, we may construct a sequence of pairs {(Ag, ux)}, corresponding
to {er}, where e — 0 and wuy solves (2.12) with A = Ay and ¢ = ;. Note
that by construction |Jux|| = R for each k. As the sequence {A\x} C (0,0], we
may assume, by relabeling if necessary, that Ay — p with g € [0, 8]. Since the
sequence {uy + exw} forms a bounded set in E, the complete continuity of A
implies the sequence {A(uy + e,w)} has a convergent subsequence. Once again,
by relabeling if necessary, we may assume A(uy 4+ eyw) — z. Note that z € K
since K is closed. Therefore, by (2.12), we may conclude the sequence {uy}
contains a convergent subsequence, with up — pz € K. By the continuity of
A and (2.12), we may conclude that pz = pA(uz). Since ||ug|| = R for all k,
we have |puz| = R and, in particular, pz € K\{0}. Thus, if we let A\ = p and
u = pz, then the equation v = AA(u) is satisfied, with 0 < A < 8, u € K, and
|lu|| = R. Since R > 0 was arbitrary, the proof is complete. O

Note that for any level set ||u]| = R > 0, the set of such constants A\, whose
existence is guaranteed by the above theorem, is bounded below (away from 0).
There is an alternative way to view the proof of Theorem 2.3. For each fixed
€ > 0, we may apply Theorem 4.1 with Ay = 0, to conclude there exists at least

one continuum
Ce CS.={(\u) €0,00) X E: (A u) solves (2.10)}

which satisfies C. N ({0} x E') = {(0,0)} and is unbounded in the space [0, 5] x E
(see Figure 2.1).

In particular, the continuum is unbounded in F, hence must meet each level
set ||u]| = R. In this way, we may construct the sequence {(Ag,ug)}, with A\, €
(0,0] and ||ug|| = R. Then, arguing as before, we may extract a subsequence
lying on the level ||u|| = R, and draw the same conclusions as above.

It is interesting to note that for € > 0 and w # 0, (2.12) may not have the
trivial branch of solutions. However, by homogeneity, A(0) = 0; thus for ¢ = 0,
(2.12) does have the trivial branch of solutions (A,0), and in fact, bifurcation

from the trivial branch must occur by Theorem 2.3. Intuitively, one may imagine
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\J

F1cure 2.1. Continuum Ct for fe(A\,u) =0

the continua C. “flattening out” as € — 0. In particular, it is not unreasonable

for A to have many nonzero bifurcation values.

2.2. Strong operators. Solid cones and strongly positive operators play
an important role in the study of semilinear elliptic problems. The operators
studied here, however, cannot be put into this framework due to the nature of
the nonlinearities. On the other hand, the full strength of strong positivity is not
necessary to carry out arguments similar to those used in the semilinear case.

With this in mind we introduce the following definition:

DEFINITION 2.5 (strong operator). A positive operator A : E — FE is called
strong (relative to the cone K) if for all u,v € Im(A)NK\{0}, there exist positive
constants ¢ and 7 (which may depend on u and v), such that

u—o6v €K and v—~ué€ K.

For example, if the cone K is solid, any strongly positive operator is strong.
For, if u,v € Int(K), then v — dv € K for all § > 0, sufficiently small.

The advantage of introducing strong operators is that we may work in cones
which are not necessarily solid, and/or with operators which are not strongly
positive. We shall see an example of an operator which is strong, but not strongly
positive (relative to a fixed cone K) in Section 3.

The following lemma is useful for comparison arguments involving strong

operators:



96 J. JACOBSEN

LEMMA 2.6. Let A: E — E be a strong operator and suppose u,v € Im(A)N
K\{0}. Then there exists a mazimal 0* and v* such that v — §*v € K and
v—v*u e K.

PRrROOF. Let u,v € Im(A) N K\{0} and suppose u — dv € K for all § > 0.
Then u/d — v € K for all 6 > 0; hence —v € K as K is closed. As v # 0, this
contradiction implies the set of such ¢ is bounded above. Let A = {§: u—dv €
K} and 0* = supp 6. By the above argument, 6* < co and we may conclude, by
taking a sequence ép — 0%, that u — 6*v € K as K is closed. The proof for * is
identical. |

In applications of Theorem 2.3, the key point is to find a constant g > 0
and a cone element w such that (2.2) holds. We next verify that if A is a strong
operator, then this condition is automatically satisfied. Furthermore, in the
case that A is strong, stricter conclusions may be drawn. Essentially, one can
verify (2.2) holds for any strong operator, provided there exist nonzero elements
w, A(w) € Im(A) N K. In the applications considered in later sections, this
condition will follow from the stronger fact that the set N (A) = {z € E: A(z) =
0} satisfies N(A) = {0}. The corresponding generalization of Theorem 2.3 is as
follows:

THEOREM 2.7. Let E contain a cone K. Let A : E — E be a completely
continuous operator with Alx : K — K homogeneous, monotone, and strong.
Furthermore, assume that there exist nonzero elements w, A(w) € Im(A) N K.

Then there exists a constant Ao > 0 with the following properties:

(1) There exists u € K\{0}, with u = M A(u).
(2) If v e K\{0} and A > 0 such that v = ANA(v), then A = Xg.

PROOF. Assume w, A(w) € Im(A) N K\{0}. Then the strength of A implies
that there exists § > 0 such that A(w)—dw € K. In terms of the partial order we
have dw < A(w). Therefore, by Theorem 2.3, there exists A9 > 0 and v € K\{0}
such that u = A\gA(u), establishing the first part of the theorem.

Let (\,v) € (0,00) x K\{0}, such that v = AA(v). The strength of A
combined with Lemma 2.6 implies that there exists 6* > 0, maximal, such that

u—0"ve K, ie., 6v<u.

Using the monotonicity and homogeneity of A we obtain §*A(v) < A(u). Equiv-

alently,
1

Therefore
1 Ao

— 6" = K
" [u \ v] € I,
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and the maximality of §* implies A\g < A. Similarly, there exists a maximal
~v* > 0 such that

1
v—v"u e K and X {vv*}%u} € K;

hence A < X\g.Thus A = \g and the proof is complete. O
The following corollary of Theorem 2.7 will be important in the sequel:

COROLLARY 2.8. Let A : E — K such that Al : K — K is a completely
continuous, monotone, homogeneous, and strong operator. Furthermore, suppose
N(A) ={0}. Then A has the unique positive eigenvalue 1/Xg.

PRrROOF. The existence of uw € K\{0} and \g > 0 such that
(2.13) u = AA(u)

follows from property (1) of Theorem 2.7. It follows from property (2) of Theo-
rem 2.7, that Ao is unique since A(E) C K. O

Since the operator A is positively homogeneous and there exists a nontrivial
solution u € K to (2.13), the function du will also solve (2.13) for all 6 > 0. Thus,
there exists a line of nontrivial solutions to (2.13) bifurcating from the trivial
branch at A = Ag. A complete generalization of the Krein—-Rutman theorem
must also demonstrate the simplicity of the principal eigenvalue. Although this
step remains to be proven for general strong operators, it is true in the case A

is linear:

COROLLARY 2.9. Let A: E — FE be a linear, compact, and strong operator
and let v € K satisfy v = AoA(u). If v € K\{0} such that v = Mg A(v), then
v = Ou for some 0 > 0.

PROOF. As A is strong and u,v € Im(A) N K\{0}, there exists §* > 0,
maximal, such that u — §*v € K. Furthermore, by linearity of A, we have
u— 0%y = A(Ag(u — 6*v)). Therefore, if u — §*v # 0, then we may again appeal
to the strength of A to conclude there exists & > 0 such that (v — §*v) — {v =
(u— (6* + &)v € K, contradicting the maximality of §*. Therefore u = Qv for
6 =0*. O

In summary, in this section we established a partial generalization of the
Krein—Rutman Theorem, for nonlinear operators which satisfy the “linear-like”
properties of homogeneity and monotonicity. The proofs are quite similar to
those used for linear operators (e.g. [21], [40]) where linearity conditions are re-
placed by corresponding monotonicity and homogeneity properties. A complete
generalization must also prove simplicity of the eigenvalue. Although this step
will be readily established in the applications considered here, it is unclear at
this time how to prove this step for a general nonlinear strong operator A.
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3. Principal eigenvalue for k-Hessian operator

Let us now turn to the question of existence of a principal eigenvalue for the
k-Hessian operator. That is, we shall consider the eigenvalue problem

51) { Sp(D2u) = |Mulf zeQ,

u=0 x € 0L,

in the class of k-convex functions.

One is naturally led to Krein—-Rutman type considerations for this problem,
in that, any k-convex solution to (3.1) is necessarily subharmonic, hence lies in
the cone of nonpositive functions in C(2). Thus, a nontrivial solution to (3.1)
will correspond to a positive solution (in the sense of the partial order) to the
corresponding eigenvalue problem.

Let E denote the Banach space C(2) of continuous functions on Q, with the

supremum norm | - || = || - ||so. Consider the following two cones in E:
K={uec FE:u(x)<0forall x € Q}

and
K* ={u € E : u is subharmonic and u|pn = 0}.

Notice KT C K, and if u € K*t\{0} then u < 0 in . Applying Definition 2.1
to the cone K we see that

(3.2) u < wvin K if and only if v(z) < u(z) for all z € Q.

Notice that the ordering given by (3.2) is contravariant with respect to the
“usual” pointwise ordering. To avoid confusion, we shall always include the

explicit dependence on x when considering pointwise relations.

3.1. The solution operator Tj. In this section we establish the complete
continuity of the solution operator for the k-Hessian operator in the elliptic case.
Let Q be a uniformly (k — 1)-convex domain and consider the equation

{ Sk(D*u) = |f| x€Q,

3.3
(8:3) u=20 x € 0f.

DEFINITION (solution operator Tj). Let f € E. For k= 1,... ,n, define the
solution operator Ty (f) by Tk(f) = u, where u € ®*(2) N C(Q) is the unique
k-convex admissible solution to (3.3).

It follows from the recent results of Trudinger [43, Theorem 1.1] that T}, is
well defined and Ty(f) € C%(Q). Furthermore, Im(7}) C K. Thus T} is a
positive operator.
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PROPOSITION 3.2. For each k € {1,...,n}, the operator Ty is completely
continuous.

PRrROOF. Compactness of Ty,. Let {fn} form a bounded sequence in E, say
|l fmll < M, and consider the set {v,,} = {Tk(fm)}. Let w € ®¥(Q) N C>=(Q)
denote the unique k-convex solution to the equation w = Ty (M). By Theo-
rem 1.10, one sees that the inequality w(z) < v, (z) holds for all € Q, and for
all m. Therefore the sequence {v,,} also forms a uniformly bounded sequence
in C(Q). For any €’ CC €, the Lipschitz continuity of the functions v,, implies
that the sequence {v,,} forms an equicontinuous family of functions in C(Q).
Therefore, by the Ascoli-Arzela theorem, the functions v, converges uniformly
on compacta. By using an exhaustion of the domain 2 we may construct a sub-
sequence of {v,;,} and a continuous function v such that v,, — v for all z € Q.
The presence of the barrier function w implies the limiting function v also satis-
fies v|pq = 0, in which case the sequence v, — v uniformly. This completes the
proof.

Continuity of Ty. Let f,, — f in E. In particular, the sequence {f,} is
uniformly bounded, say || f.|| < M, for all m € N. By an identical argument to
that above in the proof of compactness, we may find a function v € C(Q) such
that the sequence v,, — v uniformly. From the characterization of Lemma 1.3,
it is clear that v € ®*(Q). Therefore, by Theorem 1.8, the associated measures

converge weakly; i.e.,

(3-4) pur[vm] = p[v]-

On the other hand, since Q2 is bounded and |f,,,(z)| < M, we see that

[1ad = [ 151

Combined with (3.4), this fact implies

/ 1l = mlol(e)

for all Borel subsets e C €2, in which case v is the unique k-convex solution to
the equation

Sk(D*v) = |f| =€,
v=20 z € 0f.

Therefore, T}, (f) = v, which implies the operator T}, is continuous. (|

3.2. The operator Aj. In connection with (3.1), it will prove convenient
to introduce the homogenized operator Ay:
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DEFINITION 3.3. Define Ay : E — K by A(u) = z, where z is the unique
k-convex admissible solution to the equation

3.5
(8:5) z=0 x € 0f.

{ Se(D?2) = [ul* zeQ,
Notice that if A > 0 and u € K\{0} such that u = AAy(u), then (A, u) solves
(3.1). The operator A, enjoys many nice properties:

1. A; : K — K is completely continuous.

PRrOOF. This follows as Ay is the composition of the bounded continuous
function u ~ |u|* with the completely continuous operator Tj. |

2. N(4g) = {0}.
3. Aj is homogeneous of degree 1.
4. A is monotone.

PROOF. Let u <wvin E. Then v(z) < u(z) < 0 for all x € , hence |v(z)[F >
|u(z)|¥ > 0 for all z € Q. By Theorem 1.10, we have A (v)(x) < Ay (u)(x) for
all z € Q, hence Ag(u) < Ai(v) in E. O

5. Let u € Im(Ag)\{0}. Then u < 0 in Q.

ProOOF. That u < 0 follows from the comparison principle, Theorem 1.10.
The strict inequality follows from the fact that k-convex functions are subhar-
monic and u is not identically zero. (|

6. Let u € Im(Ax)\{0}. Then for each point xy € I the exterior normal
derivative satisfies u, (x¢) > 0.

PROOF. The proof follows from the Hopf lemma [15, Lemma 3.4] as u is
subharmonic and u(z) < 0 for x € Q. O

Since u € ITm(Ay)\{0} implies v < 0 in £, any nontrivial eigenfunction of Ay,
will lie in the wedge of strictly negative functions, in which case the right-hand
side of (3.1) will be strictly positive in Q and regularity results of [15] imply
u € CYHQ)NCH(Q).

The properties of A enumerated above allow a direct application of Corol-
lary 2.8 to establish the following theorem:

THEOREM 3.4 (principal eigenvalue for Ay). For each k € {1,...,n}, the

operator Ay, has the unique positive eigenvalue 1/ ).

Note that by construction, any eigenfunction for Ay must lie in the cone K,
thus 1/X¢ is the unique eigenvalue associated with a k-convex solution. Further-
more, we also have the simplicity and monotonicity of Ag:
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THEOREM 3.5 (simplicity and monotonicity of Ag). If ug is an eigenfunction
associated with Ao, then the following statements are true:

(1) If v € K\{0} also satisfies (3.1), then v = Oug for some 6 > 0.

(2) If QY cC Q, both uniformly (k—1)-convez, then the eigenvalue associated
with Q' is strictly greater than the eigenvalue associated with ).

PROOF. Let 6* > 0 be maximal such that ug—d*v < 0 for all Q. If ug—d*v =
0, then we are done. Let w = §*v and consider the linear second-order operator
Ly, defined by

(3.6) Ly = Z Fy;(D*w) Dy,
ij=1
where Fj, = Si/k and F;; = 0F/0r;; as discussed in Section 1.2. As w is a

k-convex solution to (3.1), we may apply Lemma 1.7 to conclude

(3.7) Li(uop — w) > Fi(D%ug) — Fp(D*w) = —Xouo — (—Aow)
= 7)\0(’[1,0 - 5*1)) Z 0

Thus we see that the function ug — w satisfies

Li(up —w) >0 in Q,
ug—w =0 on 0f).

Therefore, by Hopf’s Lemma [15, Lemma 3.4], the outer normal derivative of
ug — w satisfies (ug — w), > 0 for all z € 90. This condition implies, for € > 0
sufficiently small, that (ug — w) —ev < 0 for all z € Q, or ug — (§* +e)v € K,
contradicting the maximality of §*. Thus v = fug where § = 1/6* > 0.

Next we prove the monotonicity of domain property. Let (Ao, u), (A, v) denote
nontrivial eigenpairs for the domains 2 and ' respectively. By scaling, we may
assume u < v in . Assume that A < Ao, say A = Ay — ¢, where 0 < & < .
Let 6* > 0 be maximal such that u —0*v < 0 in ©’. Clearly there exists xg €
such that (u — 6*v)(zo) = 0; i.e., u — 6*v achieves an interior maximum. Let L
represent the elliptic operator defined by (3.6), with w = 6*v. Calculating as
before, we obtain

Li(u—0%v)

Y

7)\0’(1, - ()\0 - 5)5*’0
=—Xo(u—(1—¢/X)0"v) = =Ao(u —yv),
where 0 < v < 0*. Therefore Li(u — 6*v) > 0, in which case, by the maximum

principle, u — 6*v = 0 in ©'. Thus u|sq: = 0; hence, since u is subharmonic,
u =0 in 2, a contradiction. Therefore A > Ag. a
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Given these properties of \g, it is natural to call Ag the principal eigenvalue
for the k-Hessian operator on the domain 2. The existence of a principal eigen-
value for the k-Hessian operator (1 < k < n) was first established by Wang [49],
using techniques similar to those first used by Lions [29] in the case k = n. A
related nonlinear eigenvalue result is considered in [9]. In particular, in [9], the
authors (among other things) establish the existence of a principal eigenvalue
for a large class of ordinary differential operators, which includes the radial case
of the p-Laplacian and the k-Hessian.

4. Global bifurcation
In this section we consider the Dirichlet problem

{ Sp(D?*u) = X (Ju|* + g(u)) z€Q,

4.1
(4.1 u=0 x € 082,

where the nonhomogeneous term ¢ : R — [0, 00) satisfies some reasonable prop-
erties. We seek values of the parameter A such that (4.1) has nontrivial solutions.
Note that the case g = 0 was considered in Section 3, where it was established
that there exists a unique positive value of A such that (4.1) has nontrivial so-
lutions. Thus, we shall assume throughout this section that g is not identically
Zero.

The semilinear problem associated with (4.1) when & = 1 (Laplacian) has
been studied extensively. For instance, in [35], [34], [41] (and references therein),
the authors consider the Dirichlet problem

Lu=Xu+g(u) zeQ,
u=70 x € 09,

for L a uniformly elliptic linear second-order differential operator, and obtain
results similar in nature to those found here. Many of the techniques employed
here are motivated by work in these papers.

Let us briefly recall some results from the theory of global bifurcations which
will be essential for our analysis of global bifurcation problems associated with
k-Hessian operators. By continuum, we shall mean a closed connected set.

THEOREM 4.1 (Continuum property, [40]). Let O be an open bounded subset
of E and assume that F : R x E — E is completely continuous. Furthermore,
assume that for X = \g we have d(id — F()g, -),0,0) # 0. Let

ST ={(\u) € [No,0) x E:u=F(\u)}

and

ST ={(\u) € (o0, o] X E:u=F(\u)}.
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Then there exist mazimal continua CT™ C 8T and C~ C 8, and for both C = C~
and C = C™, the following statements are valid:

(1) Cn{Xo} x O #0.
(2) Either C is unbounded or else C N {A\o} x E\O # 0.

THEOREM 4.2 (global bifurcation, [24]). Let F : R x E — E be completely
continuous such that F(X\,0) = 0, for all A € R. Suppose there exist constants
a,b € R, with a < b, such that (a,0) and (b,0) are not bifurcation points for the
equation
(4.2) u—F(\u)=0.

Furthermore, assume that

d(id — F(a, -), B;(0),0) # d(id — F (b, - ), B-(0),0),

where B.(0) = {u € E : |lu]| < r} is an isolating neighbourhood of the trivial
solution for both constants a and b. Let

S={(\u): (\u) is a solution of (4.2) with u # 0} U ([a,b] x {0}),

and let C be the component of S containing [a,b] x {0}. Then either
(1) C is unbounded in R x E, or
(2) CN[(R\[a,b]) x {0}] # 0.

THEOREM 4.3 (global asymptotic bifurcation, [24]). Let F: R x E — E be
completely continuous and suppose there exist constants a,b € R, with a < b,
such that solutions of (4.2) are a priori bounded in E for X = a and A = b; i.e.,
there exists a constant M > 0 such that

F(a,u) # u # F(b,u),
for all w € E with ||u| > M. Furthermore, assume that
d(id — F(a, ), Bp(0),0) # d(id — F(b, -), Br(0),0),
for R > M. Then there exists at least one continuum C of solutions to (4.2) that

is unbounded in [a,b] x E and either

(1) C is unbounded in the A direction, or else,
(2) there exists an interval [c,d] such that (a,b)N(c,d) = 0, and C bifurcates
from infinity in [c,d] X E.

Theorem 4.2 equates a degree change to the existence of a continuum of non-
trivial solutions which bifurcates from the trivial branch and is either unbounded
in the product space or meets another bifurcation point outside the given interval
[a,b]. Theorem 4.3 equates a priori bounds together with a degree change to the
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existence of a continuum which bifurcates at infinity in the interval [a,b] and is
either unbounded in the A direction or has another asymptotic bifurcation value
outside the interval [a,b]. Note that Theorem 4.3 does not require the trivial
branch of solutions and there may be no bifurcation for (4.2) in the classical
sense.

This remainder of this section is organized into three parts. The first sub-
section contains an elementary degree calculation which we shall need in the
sections that follow. The behavior of the solution set to (4.1) naturally depends
on the growth conditions assumed on g, which we have divided into the two re-
maining subsections. Recall that E is the Banach space of continuous functions
defined on Q, where Q is any bounded strictly (k — 1)-convex domain in R™.

4.1. An elementary degree calculation. In this section we perform an
elementary degree calculation for the operator Ay defined in Section 3.2.

LEMMA 4.4. For any R > 0, there exists Ay > 0 and \p > Ao such that

d(ld - AaAk( : )7 BR(O)v O) 7é d(ld - )\bAk( : )7 BR(O)v O)

ProOOF. Fix R > 0. One may simply choose A\, = 0 and conclude

(43) d(ld - )\aAk( : )7 BR(O)v 0) = d(ldv BR(0)7 O) =1

However, in fact, (4.3) holds for all A\, > 0 sufficiently small. For if not, then
there exist sequences {\,} and {u,,} satisfying A\, — 0, ||un| = R, and

(4.4) U = A Ak ().

The complete continuity of Ay applied to (4.4) implies there exists a solution w,
with ||u|| = R, such that u,, — u. However (4.4) combined with the fact that
Am — 0 implies ||u|| = 0, a contradiction. Therefore we may choose any positive
constant A\, such that A\, < Ag and (4.3) holds.

Next we show that there exists a constant A\, > Ao such that
d(id — My A (), Br(0),0) = 0.

By the strength of Ay, we may find w € K\{0} such that w < SAy(w) for some
B > 0. Furthermore, by Theorem 2.3, \y < 8. Choose A\, > (3. By the continuity
of the Leray—Schauder degree we have

d(ld - AbAk( : )7 BR(O)vo) = d(ld - )\bAk( -+ E’LU), BR(0)70)7

for all € > 0, sufficiently small. Since A\, > (3, we may apply Lemma 2.4 to
conclude the equation
u = A Ag(u + ew)
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has no solutions in E. Therefore,
d(id — /\bAk( -+ aw), BR(O), 0) = d(id — /\bAk( . ), BR(O), 0) =0.
This completes the degree calculation. |

4.2. The k-superlinear case. With (4.1) in mind, consider the perturbed
Dirichlet problem

(4.5) { Sp(D?2) = |ul* + g(u) z€Q,

z=0 x € 01,

where the perturbation term g satisfies the conditions
(1) g: R — [0,00) is continuous,
(2) g =o(|ul*) as [u| — 0.
For instance, we may consider g(u) = |éu|? for § € R and p > k.

Condition (2) is often referred to as a superlinear growth condition near the
origin. To be precise, we shall call it k-superlinear growth, to emphasize the
growth is superlinear near the origin relative to the power |ul|".

Let By = T) o Ny denote the solution operator to (4.5), where T} is the
solution operator introduced in Section 3, and Nj is the Nemytskii operator
defined by Ni(u) = |ul® + g(u). Note that, since g is nonnegative, Ny(E) C
Et={ue F:u(z) >0 forall z € Q}.

As By, is the composition of a bounded, continuous operator with a com-
pletely continuous operator, Bj is also completely continuous. Define ji :
Rx E — FE by

jk()‘vw) =w-— |)‘|Bk<w)v

and consider the equation
(4.6) Je(Au) = u — |A|Bg(u) = 0.

Notice that jx(A, u) = 0 implies v € K, and u is an admissible solution to the
Dirichlet problem

(4.7)

S(D2u) = [Aul* + \Fgu) € 9,
u=~0 z € ON.

Since Bj(0) = Ti(Nk(0)) = 0, the equation ji(A,0) = 0 has the trivial
solution for all values of A € R. We are interested in finding nontrivial branches
of solutions to (4.7) which bifurcate from this trivial branch.

We shall establish the existence of a global branch of nontrivial solutions to
(4.7) which bifurcates from the trivial branch at A = A\, where g is the principal
eigenvalue for the k-Hessian operator on the domain 2. Namely, we prove the
following theorem:
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THEOREM 4.5 (global bifurcation for (4.6)). The point (1, 0) is a bifurcation
point for (4.6) if and only if |u| = Ao. Furthermore, there exists an unbounded
continuum CT (resp. C™) of nontrivial solutions to (4.6), which bifurcates from
(A0,0) ((—A0,0)) and lies in the strip {(A\,u) : 0 < X < Ao} (resp. {(\,u) : =X <
A <0}).

PROOF. Necessity. Suppose (u,0) is a bifurcation point for (4.6). Then
there exists a sequence (Ap,,um) — (1,0) such that |Jun,|| # 0 for all k, and
Jk(Am, Um) = 05 i.e., the components of (A, um) solve the equation

(4.8)

Sk (D) = At | + A |Fg(um) =€ Q,
U, =0 x € 0N.

Let vy, = tm/||tml|]. Then ||v,,|| = 1 and by dividing (4.8) by ||um||* we see that
VU 18 the unique admissible solution to

(4.9) Vm = T(fn(vm)),
where the operators f,, : E — E* are defined by

g(um)
[[wm|®

(4.10) Fm(w) = Amw]® + [Ap |

We next show that the set of functions {f,,(v;,)} is bounded in E, so that we
may apply the complete continuity of the operator Ty to (4.9). To see this, first
let us introduce the function ¢y : R — [0, 00) defined by

(411) o) =] F 70

0 otherwise.

The conditions imposed on g above imply ¢ ou : © — [0,00) is a bounded
continuous function for any w € E. Using ¢, we may express (4.10) in the

following equivalent form (with w = v,;,)

(4.12) fm(vm) = |)‘mvm|k(1 + Gk (um))-

The condition ||u,,|| — 0 implies the functions u,, — 0 uniformly on Q; hence the
functions ¢ (u,,) also tend to 0 uniformly on €2, and in particular, are uniformly
bounded. Therefore, since {px(um)}, {A\m}, and {v,,} are all bounded, we may
conclude that the set {f,(vm)} is bounded in E. Hence, we may apply the
complete continuity of Ty to (4.9) to obtain a convergent subsequence of {v,,},
with vy, — v # 0, as [[vy,|| = 1 for all m.

Armed with this knowledge, we may reexamine (4.12) to conclude that the
functions fo,(vm) — |pv|*. Coupled with (4.9), this implies v = T (|uv|®); i.e.,
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v satisfies the equation

Sk(D?v) = |wo|* z €,
v=20 x € 09,

or v is an eigenfunction associated to the eigenvalue u for the k-Hessian operator.
Therefore, by Theorem 3.4, |u| = A\g. Thus )\ are the only possible bifurcation
points for (4.6).

Sufficiency. We shall prove that )y corresponds to a bifurcation point for
(4.6) by an application of Theorem 4.2. Clearly the operator |\|Bx : Rx E — E
is completely continuous, as the operator By is. For simplicity, we shall assume
A >0, the case A < 0 is handled in a similar fashion. To apply Theorem 4.2, we
must find constants A\, and Ay, with A, < Ao < Ay, such that u = 0 is an isolated
solution of (4.6) for A € {\,, Ay} and

(4.13) d(id — Ao B (- ), Br(0),0) # d(id — Ay By (- ), Br(0), 0).

Here Br(0) should be an isolating neighbourhood of the trivial solution for both
Ao and \p. Equivalently,

d(id — Te(AE| - [F + Neg (), BR(0),0) # d(id — Ti(AF] - [¥ + Afg(+)), Br(0),0).

First, notice that for any pu > 0, with u # A, the function v = 0 is an isolated
solution of (4.6), by the proof of necessity given above. Second, for any constant
w >0, with u # Ao, and for all R > 0, sufficiently small, the family of mappings
Hj, : [0,1] x BRr(0) — E defined by

Hy(t,u) = Ti(pF|ul® + tuFg(u)),

is a degree preserving homotopy between the operators Ty (u*| - |* 4+ u*g(-)) and
Tr(u*| - |¥). To see this, it suffices to show there exists e > 0, sufficiently small,
such that the equation

w = T(u*ul* + tpt g(u)) = 0

has no solutions v € E, with ||u|| = €, for any ¢ € [0,1]. For if not, then we may
construct sequences {e,,}, {tm} C [0, 1], and {un,} satistying ||um| = €m — 0,
such that

= T (iF [um |+ tnpt* g (1))
Equivalently,

Sk(D?um) = |pum|* + tmpt* g ().
Now we are back in the situation encountered previously, in that we may divide
by ||um||¥ and extract a convergent subsequence of unit vectors, v,, — v, where

v satisfies Sk(D?v) = |uv|*; a contradiction, since p # Ao.
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Therefore it is sufficient to find A, < Ag < Ay such that
d(id — Tp(AS| - ), Br(0),0) # d(id — Tx(A5| - |*), Br(0),0),

where Br(0) is a sufficiently small isolating neighbourhood of the trivial solution.
Since T (A*| - [F) = AAg(-), it suffices to find A\, < A9 < Ay such that

(414)  did — AAx(+), Br(0),0) # d(id — A Ag(-), Br(0), 0).

However, this is precisely the conclusion of Lemma 4.4, which is valid for any
R > 0. Therefore, if we let S be defined by

S ={(\u): (\u) is a solution of (4.6) with u # 0} U ([Ag, Xs] x {0}),
then, by Theorem 4.2, there exists a connected component CT of S containing
[Aas Ap] x {0} which is either

(a) unbounded in R x E, or

(b) €T N [(R\[Aa, Ap]) x {0}] # 0.

Let us examine the possible behavior for the global continuum C*. Since u = 0 is
the unique solution corresponding to A = 0, the continuum C* cannot cross the
A = 0 axis, other than at the trivial crossing, where v = 0. Furthermore, since
u = 0 is an isolated solution for (4.6) for all A > 0, with A # Ag. Alternative (b)
above must not hold. Therefore we may conclude CT is unbounded in R x E.
It remains to show that the continuum lies in the desired strip. Clearly

A > 0. Assume (A u) solves jp(A,u) = 0 with A > XA and v # 0. Let ug
be an eigenfunction corresponding to the principal eigenvalue for the k-Hessian
operator for the domain §2; i.e., ug satisfies

Sk(D2u0) = |)\0U0|k x € Q,

Ug = 0 x € 01.
By scaling if necessary, we may assume u(x) < ug(x) for all z € Q. Let §* > 0
be maximal such that u — d*up < 0 in 2. Let Lj be the operator defined by
(3.6), where w = 6*ug. Employing Lemma 1.7, we compute

Li(u — 8*ug) > Fy(D*u) — Fp(D?*w)

g1 .
= )\|U| 1 + W - )\0|5 U0| Z )\|U| — )\0|5 U0| Z O,

since A > A\ and 0 < [0*ug| < |u| for all € 2. This implies, by the maximum
principle, u = §*uq for all z € Q. Therefore, S,(D?*u) = Sk(D?*w), or

N (Jul® + g(w) = [Aod"uo|* = [Aoul.
Hence

(4.15) A N\E = fAkM <0,
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a contradiction, as A > Ag.
The same reasoning above establishes the existence of a symmetric continuum

C—, corresponding to the bifurcation from —\g. O

We remark that by inequality (4.15) we can infer the following more precise

information about the continuum C™:

(1) Ctc (0,/\0] X K,

(2) if (A\,u) € CT with g(u) # 0, then 0 < A < Ag.
Therefore we have established the existence of a global continuum C* which
is unbounded in the space (0, \¢] X E and bifurcates from the trivial branch
at (Ao, 0), such that the components of an element (\,u) € C* satisfy (4.1).
A possible diagram of CT is sketched in Figure 4.1.

lull A

Y

Ao A

FIGURE 4.1. Continuum C*t of Theorem 4.5

4.3. The k-sublinear case — bifurcation at infinity. The bifurcation
results above establish the existence of solutions to (4.1) for g(u) higher order
than |u|* near 0. Similar assumptions on g near infinity yield corresponding
results. Namely, let us assume the perturbation g is of lower order than |u|
near infinity. More specifically, we will now assume g : R — [0, 00) satisfies the
following conditions:

(1) g is continuous,
(2) g =o(|ul*) as |u] — oo.
Condition (2) above is often referred to as a sublinear growth condition near

infinity. In accord with our previous notation, we shall call it a k-sublinear growth
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condition on g. In this setting we shall also assume ¢ satisfies the additional
hypothesis

(3) ¢ is nondecreasing.

For instance, we may consider g(u) = |0ulP, for § € R, and 0 < p < k. Note that,
in general, we no longer require g(0) = 0. Thus, (4.6) may no longer have the
trivial solution for all A\. For ‘large’ solutions we recall the following definition:

DEFINITION 4.6 (bifurcation at infinity). The constant Ao is a bifurcation
value at infinity (or asymptotic bifurcation value) for (4.6) if and only if there
exist solutions (A, um) of (4.6) such that A,, — Ao and ||u,|| — 0o as m — oo.

For the lower order perturbation we have the following theorem (see Figu-
re 4.2):

THEOREM 4.7 (global asymptotic bifurcation for (4.6)). Let g satisfy con-
ditions (1), (2), and (3) above. Then p is an asymptotic bifurcation value for
(4.6) if and only if |p| = Xo. Furthermore, there exists an unbounded continuum
of nontrivial solutions to (4.6), which lies in the strip {(A,u) : —Ao < A < Ao}

PROOF. Necessity. Let p be an asymptotic bifurcation value for (4.6). Then
there exist sequences {A,} and {un,}, such that A\, — u, ||um| — oo, and the
equation

Sk(D*um) = |)‘mum|k + |)‘m|kg(um)a
is satisfied. Proceeding as before, we obtain unit vectors vy, = ty,/||um|| satis-
fying the equation

(416) Um = Tk(fm(vm))v

where the operators f,,, are defined by (4.10). By condition (3) on g, we have
(4.17) ) < ol + D,

Therefore, by condition (2), the functions f,,(v,,) are uniformly bounded in E;
hence by (4.16), there exists a unit vector v such that v, — v. Equations (4.16)
and (4.17), together with condition (2) on g, imply that v solves the equation

S(D?0) = ot @€,
v=20 x € 0N
Thus, by Theorem 3.4, |u| = Ao.
Sufficiency. We first show that )\g is an asymptotic bifurcation values for

(4.6). To apply Theorem 4.3, it suffices to find constants A, Ay > 0 and M > 0,
such that solutions to (4.6) satisfy

(4.18) Ti(Aaul® +25g(w) # u # Te(|Avul® + A g(u)),
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for all u € E with |lu| > M, and

(4.19)  d(id — T (|Aaul® + X¥g(u)), Br(0),0)
# d(id — T (| Mul” + Afg(w)), Br(0),0),

for R > M. Condition (4.18) is readily satisfied by choosing any constants
Aq and A, such that A\, # Ao # Ay, as we have already shown that )y is the
only positive asymptotic bifurcation value for (4.6). Furthermore, by using a
homotopy argument, dual to the case considered in Theorem 4.5 (now using
condition (3) on g), one sees that (4.19) is equivalent to

d(id — Ay Ak (), Br(0),0) # d(id — MpAx(-), Br(0),0),

for all R > 0, sufficiently large. However, this is precisely the conclusion of
Lemma 4.4. Therefore, by Theorem 4.3, there exists a continuum C* of solutions
to (4.6) that is unbounded in [A4, Ap] X E, and is either

(1) unbounded in the A direction, or else,
(2) there exists an interval [c,d] such that (Ag, Xp) N (¢,d) = 0, and C*
bifurcates from infinity in [¢, d] x E.

However, arguing exactly as in the proof of Theorem 4.5, we may show the
continuum lies completely in the strip {(A\,u) : —=Ag < A < Ao}; hence the
continuum is not unbounded in the A direction, and alternative (2) above must
hold. We have shown that £y are the only possible asymptotic bifurcation
values for (4.6), thus — )¢ is also an asymptotic bifurcation value for (4.6). Since
the continuum may not cross the A = 0 axis, other than at (0,0), we see that the
continuum must pass through the origin. In the case that g(0) = 0 this would
imply that the origin must correspond to a bifurcation value for (4.6) as well.
This completes the proof. (|

As expected, there is a dual nature to the results for the two cases g = o(|u|¥)
as |u| — 0 and g(u) = o(|u|*) as |u| — oo. The reader should compare Figure 4.1
and Figure 4.2.

5. Global bifurcation and critical exponents
In this section we consider the nonlinear k-Hessian equation

{ Sk(D?u) = g(u) z€Q,

5.1
(5-1) u=20 x € 09,

on the strictly (k — 1)-convex domain Q C R", for g : R — [0, 00), continuous.
We seek nontrivial solutions to (5.1). The approach we use is to embed (5.1)



112 J. JACOBSEN

flwll

A

A
Y

—Ao )\0
FIGURE 4.2. Continuum C*° of Theorem 4.7

into the one parameter family of equations

5o Sk(D?*u) = |Mulk + g(u) = €Q,
(5:2) { u=20 x € 09,
and consider the behavior of global bifurcation continua.

It is in this section that the most striking differences between the k-Hessian
operators appear. In particular, our approach to (5.1) will depend on the geom-
etry of k-convex functions. For instance, we shall see that in the Monge—Ampere
case (kK = n) there is no critical exponent associated to (5.1). On the other
hand, it is well-known that (5.1) has no positive solution in the case k = 1, when
g(u) =uP for p > (n+2)/(n —2), n > 3, and  is starshaped.

We divide the study of (5.1) up into three parts. We begin by examining
some general results for (5.1) which hold for each k € {1,... ,n}. Next, we study
(5.2) in the k-sublinear case. We will prove that there exists a global continuum
of nontrivial solutions to (5.2) which crosses the A = 0 axis nontrivially. By
“crossing the A = 0 axis nontrivially” we mean the continuum crosses the A =0
axis at a point (0,u) with u # 0. Therefore (5.1) admits a nontrivial solution.
Moreover, we will prove that this solution is unique.

The k-superlinear case turns out to be a bit more delicate in the general case;
hence, we divide the study of this case into two parts. First, we study the Monge—-
Ampere case. Here we shall see how the natural convexity of solutions may be
used. For instance, using convexity, we will prove that the global continuum
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of nontrivial solutions to (5.2) must cross the A = 0 axis nontrivially, thereby
exhibiting a nontrivial solution to (5.1). In this manner, we demonstrate that
there is no critical exponent for the Monge—Ampere operator. Finally, we return
to the general superlinear case of (5.1). Here we discuss some relevant questions
in the theory of critical exponents. These sections will illuminate some properties

concerning the geometry of k-convex functions.

5.1. General results. We begin with two lemmas concerning the norms of
solutions to (5.1).

LEMMA 5.1. Let {v,} C C(Q) be a collection of k-convex solutions to the
Dirichlet problem

(5:3) { Sk(D*vp,) = gm  x €9,

Vm =0 x € 0N,

where g, @ Q0 — R form a collection of nonnegative continuous functions. If

gm — 00, uniformly on compacta, then ||v.,| — co.

PROOF. Let Q' C § be a strictly (k — 1)-convex subdomain. Let A be the
principal eigenvalue for the k-Hessian operator on the domain '. Choose t € N
and let u be an eigenfunction for the domain €' with |lu|| = t. As gm — o
uniformly on €, there exists m > 1 such that

gm > sup |Aulf for all z € Q.
Q/

Therefore, by Theorem 1.10, vy, (z) < u(zx) for all z € Q. This implies ||vy,| >
||u]| = t. As t was arbitrary, the result follows. O

LEMMA 5.2. Let {v,,} € C(Q) be a collection of k-convex solutions to the
Dirichlet problem
Sk(D*v,) = gm  x €9,
Um =0 x € 0N,
where g, @ Q0 — R form a collection of nonnegative continuous functions. If

gm — 0, uniformly on compacta, then ||v,| — 0.

ProOOF. Let B be a ball of radius r > 0 such that 0 CC B. Define constants
Cpn by Cy, = supq g and let wy, = Ti(C,y,) denote the unique solution to
Si(D?*w,,) = C,, x € B,
Wy, = 0 r € 0B.

By Theorem 1.10, we must have w,,(z) < vy, (x) for all z € Q. Since C,,, — 0,
the continuity of T} implies ||wy,|| — 0, in which case v,,, — 0 for all z € Q. The
result follows. O

The next lemma yields bounds on the values of A for solutions to (5.2).
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LEMMA 5.3. Let (A, u) solve (5.2) with u# 0. Then |A| < Ao.

PROOF. Suppose (A, u) is a solution of (5.2) with |A| > |Ao|. Let ug be
an eigenfunction corresponding to the principal eigenvalue for the k-Hessian
operator; i.e., ug satisfies the equation

Sk(D2uO) = |)\0U0|k T e Q,
Ug = 0 x € 0N.

By scaling if necessary, we may assume u(z) < uo(z) for all z € Q. Let §* > 1
be maximal such that (u — é*ug)(z) < 0 in Q. Let Ly be the operator defined
by (3.6), where w = 6*ug. By Lemma 1.7 we have

Li(u — 8" uo) = Fr(D*u) — Fi(D*w) = [|Aul® + g(w)]'/* — [[Ao6"uo|*]*/*

1/k
g(u) . .
— |l [1+ lw} ~ Pollduol = [\lul - [Aolld*uol 0,

since |A| > [Ao] and 0 < |§*ug| < |u| for all z € . This implies, by the maximum
principle, that u = §*ug for all z € Q. Therefore, Sk(D?*u) = Si(D?w), and

IXul¥ + g(u) = [Nod*uol* = [Aoul*.

Hence

~—

g(u
A = X" = Tl <0,

a contradiction, as [A| > |[Ao. O

As in Section 4, we shall find the existence of continua of nontrivial solutions
to (5.2) will depend on the assumptions made on g, either near the origin, or
“near infinity.” However, in the absence of the multiplicative factor of A\, we
shall need to add conditions on g both near the origin and near infinity.

There are two models for the nonlinear term g, which we shall henceforth
denote by go and goo. We assume both gy and g, are nonnegative continuous
functions, with the asymptotic behavior defined by

(1) g0 = o(|ul*) as |u] — 0,

(2) go(u)/ul* — oo as [u| — oo,

(3) g0 = o(|ul*) as |u] — oo,

(4) goo(u)/|ul* — oo as Ju] — 0,

(5) goo is nondecreasing.
For example, we may take go(u) = |du|P for any p > k, and goo(u) = |du|?P for
any 0 < p < k, where § € R.

For either ¢ = g9 or ¢ = ¢go0, We may introduce the Nemytskii operator
Ni : R x E — E* defined by

Ni(&,u) = |€ul® + g(u),
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and let Hy = Ty, o Nj, denote the composition. Thus z = Hy (), u) solves
Sk(D?%*2) = [Mul* + g(u) z€Q,
{ z=0 x € 0.
Define hy : R x E — E by

(5.4) hi(\ w) = w — Hg (A, w).

If (A, u) is a zero of (5.4), then u is a k-convex function which is an admissible
solution to (5.2). We are now ready to state and prove some results concerning
the existence of global bifurcation continua for (5.2). Let us first consider the

case of g = goo.

THEOREM 5.4. For g = ¢oo, the constant p is a bifurcation value at infin-
ity for (5.4) if and only if |u] = No. Furthermore, there exists an unbounded
continuum of solutions to (5.4), which lies in the strip {(A\,u) : =Xog < A < Ao}.

PRrROOF. The existence of such a continuum will follow from Theorem 4.3,
provided there exist constants A, \p > 0, and M > 0, such that all solutions to

{ Se(D?u) = Pul* + goo(u) z € 9,

5.5
(5:5) u=20 x € 0N,

satisfy |lu|| < M, for all u € E, when A € {As, \p}. In addition, we need the

unequal degree condition
(5.6) d(id — Tr(|Aau|" + goo(u)), Br(0),0)
# d(id — Ti(|Mvul* + goo(w)), Br(0),0),

to hold for all R > M.

First, we show that for any positive constant p # Ao, the solutions to (5.5)
are bounded. For if not, then there exists a sequence {u,,} of k-convex solutions
to (5.5) with A = p, such that ||u,,|| — co. By dividing through by ||u.,||¥, we
obtain the equation

(5.7) Sk(DQUm) = |/“1m|k + QOO(UW)/Hum”k»

where vy, = U /||uml]. By properties (3) and (5) of g, the right-hand side
of equation (5.7) is bounded. Therefore, by the complete continuity of T}, the
sequence {v,, } contains a convergent subsequence, whose limit must correspond
to the principal eigenvalue for the k-Hessian operator; thus |u| = Ao.

Next, we need to verify the unequal degree condition (5.6). The same argu-
ment above shows that for balls of large enough radius, we may ignore the goo(u)
term for purposes of degree calculation. Thus, one sees that condition (5.6) is
equivalent to showing

d(id — Ay Ak (), Br(0),0) # d(id — MpAx(-), Br(0),0),
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for all R > 0, sufficiently large. However, this is precisely the conclusion of
Lemma 4.4.
Therefore, by Theorem 4.3, there exists a continuum C* of solutions to (5.5)
that is unbounded in [Ag, Ap] X E and is either
(1) unbounded in the A direction, or else,
(2) there exists an interval [c,d] such that (Mg, \y) N (¢,d) = 0 and C*
bifurcates from infinity in [¢, d] x E.
By Lemma 5.3, the continuum is bounded in the A direction; hence, hence
must also bifurcate to infinity at —Aq. O

In the dual setting, where g = gg, we have the following lemma.
LEMMA 5.5. For g = go, (0,0) is not a bifurcation point for (5.4).

Proor. If (0,0) is a bifurcation point for (5.4), then by the homogenization
procedure we obtain a sequence of unit vectors {v,,} satisfying

go (um)

[

(5.8) Sk(D*v) = [Amvm|® +
We may rewrite the right-hand side of (5.8) as

|/\mvm|k + ¢k(um)|vm|k-

Consequently, by property (1) of gg, the right-hand side of (5.8) tends to 0 as
m — oo, and by Lemma 5.2, we may conclude ||v,,|| — 0; a contradiction, as

[lvm || =1 for all m. O

THEOREM 5.6. For g = go, the point (1, 0) is a bifurcation point for (5.4) if
and only if |u| = Ao. Furthermore, there exists a global continuum of nontrivial
solutions to (5.4) which bifurcates from (X\o,0) and lies in the strip {(A\u) :
X <A< Ao}

PRrROOF. By the same arguments employed in Theorem 4.5, together with
Lemma 5.5, it is readily established that (£, 0) are the only possible bifurcation
points for (5.4). Similarly, it is readily shown that Theorem 4.2 applies in this
setting, establishing that the points (£, 0) are bifurcation points for (5.4).
Thus, there exists a continuum of nontrivial solutions to (5.2), which bifurcates
from (Mg, 0) and is either unbounded in R x E or meets another bifurcation point,
which in our case, must be (—\g,0). However, by Lemma 5.3, the continuum
must be bounded in R. This completes the proof. (|

Therefore, we have established the existence of global branches of nontrivial
solutions to (5.2) in both cases g = go and g = goo. We next refine the behavior
of these continua in an effort to exhibit nontrivial solutions to (5.1).
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5.2. The k-sublinear case, g = g. In this section we refine our analysis
of the global continua to (5.2) in the sublinear case g = goo. We begin with a
lemma.

LEMMA 5.7. Let (A u) correspond to a solution of (5.4) with w # 0. Then
there exists € > 0 such that ||u|| > e.

PROOF. If not, then we may construct a sequence (A, um) — (1,0), such
that

Sk(D*um) = [Amtim|* + goo (tm).-

By homogenization, we obtain unit vectors v,, satisfying
Sk(DQUm) = |>\mvm|k + ¢k(um)|vm|k Z ¢k(um)|vm|k~

Let ' cC . On € the functions vy, = um/||um| are bounded away from 0
and the functions wu,, — 0 uniformly; hence by property (4) of goo, the functions
ok (Um) — oo uniformly on ') as m — oo. Therefore, by Lemma 5.1 we must

have ||v,, || — oo, a contradiction, as ||v,,|| = 1 for all m € N. O

We now turn to the statement and proof of the existence theorem for (5.1)
when g = g (see Figure 5.1).

THEOREM 5.8. Letk € {1,... ,n}, and suppose § is a strictly (k—1)-convex
domain in R™. Then there exists a global continuum of nontrivial solutions to

(5.17), which crosses the A = 0 axis nontrivially. Therefore, the equation

{ Sk(D*u) = goo(u) €,

5.9
(5:9) u=0 x € 08,

has a nontrivial k-convex solution.

PRrROOF. The existence of the global continuum of nontrivial solutions follows
from Theorem 5.4. By Lemma 5.7, the continuum cannot pass through the
origin. Furthermore, by Theorem 5.4, it also follows that 0 is not an asymptotic
bifurcation value for (5.17). Therefore, the continuum must cross the A = 0 axis
nontrivially, demonstrating that (5.9) has a nontrivial k-convex solution. O

As an application, we obtain a nontrivial solution to the k-Hessian equation

Sk(D?u) = [dulP = € Q,
(5.10)
u=0 x € 082,
for all 6 € R and 0 < p < k. Moreover, we can also conclude uniqueness:

THEOREM 5.9. There exists a unique nontrivial solution to (5.10).

PROOF. The essential ingredients in the proof are due to Oliker [33], who
considered the case k = n and g(u) = |u/(n — 1) in R™ (n > 2). Suppose u,v
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flwll

A

A
Y

7)\0 >\0

FIGURE 5.1. Possible continuum for (5.2) in the k-sublinear case

are two nontrivial admissible solutions to (5.10), with u # v. By relabeling if
necessary, we may assume that there exist points in  such that v(z) < u(z).
Let d, > 0 be maximal such that u(z) < (6,v)(x) < 0 for all z € . Note that
J. < 1 and there exists ¢ € Q such that u(zrg) = d.v(zp). The computation

SkD2(62Fv) = 6P Sy (D) = 67|6v|” < |5ulP = Sp(D?u),
implies that u(z) < (67/%v)(z) for all z € Q. In particular,
0.v(xg) = u(zg) < (6f/kv)($0).
However, if p < k, 0. < 1, and v(zg) < 0, then 6f/k > 0, and
S.0(z0) = ulzo) < 6 %v(w0) < 8,0(20),
a contradiction. Thus, u = v. O

Theorems of this type for the k-Hessian operators were first considered by
Tso [47], where solutions are established in the radially symmetric case (€2 a ball)
using variational methods. This theorem extends the existence result of [47] (in
the case p < k) to the class of k-convex domains, however, it is worth remarking
that the existence results of [47] also include the cases where k < p < ~(k),
which are not available at this time, via these methods.
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As mentioned in the introduction, this theorem also includes a results due to
Oliker [33], in the case k = n, g(u) = |u/(n —1)|, and Q is a bounded, strictly
convex domain in R, with n > 2.

5.3. The k-superlinear case, g = go. The behavior of the continua to (5.2)
in the k-superlinear case turns out to be a bit more delicate. This distinction
becomes apparent when one considers the case k¥ = 1 and g(u) = u? for p
large. The well-known nonexistence results of Pohozaev [37] demonstrate that
the continua of solutions to (5.2) may not cross the A = 0 axis nontrivially.

In the k-sublinear case, we make assumptions on g., near infinity to obtain
a global branch of solutions to (5.2) which bifurcates to infinity at Ag. We then
use information about g., near the origin to get the branch to turn. In the k-
superlinear case, we make assumptions on gy near the origin to obtain bifurcation
from the trivial branch and then use information about gy near infinity to get
the branch to bend. These estimates near infinity provide the delicacy in these
arguments. This is best illustrated by first considering the Monge—Ampere case.

5.8.1. The Monge—Ampere case. Let us now consider the Monge—Ampere
case of (5.1) defined by
det D?u = go(u) 2 € 9Q,

(5.11) go(u)
u=20 x € 010,

We begin with some auxiliary lemmas. The first lemma is a basic estimate
for convex functions.

LEMMA 5.10. Q be a convex domain in R™. If u : Q@ — R is a convex
function such that ulpq = 0, then the inequality

dist(x, 09)

5.12 > P\ 7R
(512) ()] > S

holds for all x in Q, where ||u|| is the supremum norm of u € C(Q).

PROOF. The inequality is trivial in the case ||u|| = 0; thus let us assume
lu|| # 0. Tt follows from the convexity of Q that u € C(2); thus since u|sq = 0,
there must exist z € Q such that u(z) = mingu = —|ju|| < 0. Let T' denote

the geometric cone in R"*! with vertex (z,u(z)) and base Q. Let v: Q — R
represent the function whose graph is I'. By convexity of u, we have u(x) < v(z)
for all z € Q.

Let x € Q\{z} be arbitrary and consider the line segment starting at z,
passing through z, hitting 99 at the point n = n(z). By considering similar
triangles in the plane defined by this line segment and the point (z,u(z)), we

obtain
y(x) _ dist(z,n)
u(z)  dist(z,n)
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Since dist(z, 9) < dist(x,n) and dist(z,n) < diam(2), we have
dist(x, 09) < dist(x,n) < dist(z,n)  ~v(z)

diam(Q) — diam(Q2) — dist(z,n) u(z)’
Multiplying by u(z) and recalling u(z) < 0 we obtain

(o) g 2 2(0)

Finally, as —u(z) = |||, we have
dist(x, 00)
=— > > AP
)] = —u(e) > () > T

which is the desired result. O

[Jull,

As a consequence of this we have the following lemma:

LEMMA 5.11. Let Q be a bounded, conver domain in R™. Let {un,} C C()
be a sequence of convex functions with umloq =0 for all k =1,2,.... Further-
more, suppose ||um| — oco. Then |um,| — oo uniformly on compacta; that is,

uniformly on compact subsets of 2.

The a priori convexity of solutions to (5.2) in the Monge—Ampere case provide
the key to the following lemma, which is essential to our analysis of (5.11).

LEMMA 5.12. If (A, u) is a zero of (5.4), then there exists M > 0, sufficiently
large such that ||ul] < M.

PROOF. If not, then there exists a sequence {(Am,um)}, with ||um,| — oco.
By Lemma 5.3, the sequence {\;,} C [—Xo, Ao]; hence, without loss of generality,
we may assume A, — i € [—Ao, Ao]. In other words, u is an asymptotic bifurca-
tion value for (5.4). By homogenization, we obtain unit vectors vy, = tm /| tm||
satisfying the equation
9o (Um) > go(um)

llm ™~ ™

(5.13) det D?v,, = [ Ao |™ +

As before, we may rewrite the right-hand side of (4.11) as

where ¢, is defined by (5.13). Let Q' CcC Q. On ' the functions v, are bounded
away from 0 and by Lemma 5.11, the functions w,, satisfy |u,,| — oo uniformly.
Therefore, by property (2) of go, the functions ¢y, (u,,) — oo uniformly on Q' as
m — o0o. Combining (5.13) with Lemma 5.1 we may conclude ||v,,| — oo, which

yields a contradiction as ||v,, || = 1. O

It is instructive to see where this proof fails in the analogous situation con-
sidered previously in Theorem 4.5 in Section 4. Namely, in that section, there
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was a multiplicative factor of A, in front of the term ¢, (uy,), in which case the
above argument would fail if A,,, — 0 as |u.,|| — oo, which is precisely the case.

The ideas above establish the existence of a nontrivial solution to (5.11) (see
Figure 5.2):

THEOREM 5.13. The global bifurcation branch crosses the A = 0 axis non-
trivially.

PROOF. By Theorem 5.6, there exists a continuum of nontrivial solutions to
(5.2) which bifurcates from (A, 0). The a priori bounds of Lemma 5.12 establish
that the continuum must cross the axis A = 0 nontrivially. (|

flll

A
\j

—)\0 )\0

FIGURE 5.2. Possible continuum for (5.2) in the n-superlinear case

As one application of this theorem, we obtain a nontrivial solution to the
equation

det D?u = |6ulP z € Q,
(5.14)

u=0 x € 082,

for all § € R and p > n. In particular, we see that there is no critical exponent
for the Monge—Ampere operator. Solutions to problems of this type have been
previously established using variational methods by Tso [46].

By combining the results of the previous sections, we obtain the following
concise theorem for Monge—Ampere equations:



122 J. JACOBSEN

THEOREM 5.14. Let  C R"™ be a strictly convez, bounded domain. Then
the Monge—Ampere equation

{ det D?u = |[6ulP 2z € Q,

(5.15)
u=20 x € 0N,

has a nontrivial admissible solution for all p #mn, p >0, and § € R. In the case
p < n, the solution is unique. Furthermore, in the case p =n, (5.15) has a line

of solutions corresponding to the unique eigenvalue § = Ag > 0.

5.8.2. The general case 1 < k < n. Let us now consider the general case of
(5.1) defined by

(5.16)

Sk(D%u) = go(u) =€ Q,
u=0 x € 0.

By Theorem 5.6, there exists a global branch of nontrivial solutions to the equa-
tion

(5.17) { Si(D?u) = Pl + go(u) z €,

u=0 x € 0N.

However, we no longer have precise control on the long-term behavior of the
continua. For instance, we may no longer conclude a continuum is bounded
in E (see Lemma 5.12). The essential ingredient that allowed us to bound the
continuum in F was the convexity of the solutions wu, which in particular, allowed
us to appeal to Lemma 5.11, which would force the nonlinear perturbations
to vanish in the limit. Thus in the general case 1 < k < n, the continuum
may bifurcate to infinity, in which case we may not conclude the bifurcation
branch crosses the A = 0 axis nontrivially. In fact, for certain cases (e.g. k =1,
g(u) = uP for p > (n+2)/(n — 2)), the continuum must not cross the A = 0 axis
nontrivially, in which case we may conclude (5.16) has an asymptotic bifurcation
value 0 < p < Ag. This contrast further implies that in R™ for n > 3, there
exists a sequence of 1-convex (continuous and subharmonic) functions such that
|ug]] — oo, but |ug| does not converge to infinity, uniformly on compacta.

For any values of k such that the k-convex functions satisfy Lemma 5.11,
then the techniques above would allow one to establish the same conclusions as
Theorem 5.13. In particular, the continuum will cross the A = 0 axis nontrivially.
Hence we are led to the natural question: For which values of k do the k-convex
functions satisfy the convergence property of Lemma 5.117 Furthermore, one has
the directly related question: For which values of k does the k-Hessian operator
have a critical exponent?

In [47], Tso uses an identity due to Pucci and Serrin [38] to answer the second

question:
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THEOREM 5.15 (Tso [47]). Let Q be a ball and let v(k) be defined by

(n+2)k
— 1<
{ T <k<n/2,

0o n/2 <k <n.

v(k) =

Then (5.16) has no admissible solution u € C1(2) N C*(Q) when p > (k).

Recently, the authors of [9] use similar techniques, attributed to Rellich [39]
and Pohozaev [37], to prove a similar nonexistence result for a large class of
ordinary differential operators, which includes the radial case of the k-Hessian
and the p-Laplace operators.

Corresponding existence results are also shown in [47], [8], in the comple-
mentary case p < y(k), in harmony with our results in the previous section.

One interesting outcome of this, which is obtained by mixing the nonexistence
result above with our techniques, is the following proposition which sheds some
light onto the geometry of k-convex functions:

PROPOSITION 5.16. Let 1 < k < n/2. Then there exists a sequence of
(continuous) k-convex functions such that |ug| — oo, but the functions |ug| do
not tend to infinity uniformly on compacta.

It is not clear at this time if this proposition fails in the remaining cases
n/2 < k < n. However, the nonexistence of critical exponents in these cases
provides strong evidence on its behalf. It is also not clear at this time how to
determine the critical exponents via our technique. The evidence above points
to developing a better understanding of k-convex functions in the intermediate
cases. For instance, there is strong evidence for the following conjecture:

CONJECTURE 5.17. For each integer k with n/2 < k < n, if {un} is a
sequence of k-convex functions in E such that ||um| — oo, then |upm| — oo

uniformly on compacta.

If this conjecture is true, then our techniques will establish the existence of
a nontrivial solution to (5.16) for any k£ > n/2 and p > 0 with p # n. However,
at this time, it remains to prove this conjecture.

6. Liouville-Gelfand problem
The classical Liouville-Gelfand problem is the following boundary value prob-
lem:
—Au= X" z €,
(6.1) u>0 x €,
u=0 x € 01,
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for A € R. If Q@ = Bg(0) is the open ball of radius R centered at the origin in R™,
then by the well-known results of Gidas—Ni—Nirenberg [14], all possible solutions
to (6.1) are radially symmetric; hence (6.1) becomes the ordinary differential
equation

n—1

"

. u' =X re€(0,R),
(6.2) u>0 r e [0,r),
u'(0) = u(R) = 0.

This problem was studied by Liouville [30] in the case n = 1, Bratu [4] in the
case n = 2, and later, Gelfand [13] for higher dimensions.

Of particular interest is the relation between dimension and multiplicity re-
sults for (6.2) observed by Joseph and Lundgren [20] which we recalled in the
introduction.

6.1. The Monge—Ampeére case. Here we consider the analogous problem
to (6.1) for the Monge—Ampere operator; namely, we consider the equation

(6.3)

det D2u=Xe ™ z€Q,
u=0 x € 0L,

“ is natural

on a strictly convex bounded domain 2 C R™. The choice of e~
as solutions to the general Monge—Ampere equation with Dirichlet boundary
conditions are negative in the elliptic case. However, one can also consider the
choice of ¢* and obtain similar results.

We will show that, in contrast to the problem (6.1), the qualitative nature of
the solution continua for (6.3) does not depend on the space dimension n. This
will use, in an essential way, the convexity of solutions to elliptic Monge—Ampere
equations.

Define G : Rx E — E by G(\,u) = |A\[Y"T,,(e~*), where T,,(e”*) = z is the

unique admissible solution to the equation
det D>z =e™™ 1z €9,
(6.4)

z=0 x € 0f.

The compactness of the solution operator T, for elliptic Monge—Ampere
equations (Proposition 3.2) implies the mapping G is completely continuous on
R x E. Furthermore as G(0, - ) = 0, we have

d(id — G(0, - ), B(0),0) = d(id, B,(0),0) = 1,

for any » > 0. Therefore by the continuum property of the Leray—Schauder
degree (see Theorem 4.1), there exists an unbounded continuum of solutions to

(6.5) u— G\ u) =0,
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whose components satisfy (6.3). Note that u = 0 is the unique solution corre-
sponding to A = 0; hence the continuum cannot meet the axis A = 0 except at
the point (0,0). Notice also, that for A > 0, the solution u = 0 is not a solution
to (6.3).

We seek to further refine the behavior of this continuum. First, we show the
continuum is bounded in the A direction.

LEMMA 6.1. Let (A, u) be a solution of (6.3) with A > 0. Then A < nl Ay,
where Ao is the principal eigenvalue associated with the Monge—Ampére operator
for the domain 2.

PROOF. Assume (A, u) is a solution of (6.5) and let up be an eigenfunction
for \g. By scaling if necessary, we may assume u(z) < ug(z) for all z € Q. Let
0* be maximal such that u — §*ug < 0 for all x € Q and consider the linear
second order elliptic operator

L= Fij (Dzw)Dij,
where w = §*ug. As w € ®"(Q), we may apply Lemma 1.7 to conclude

1/n

(6.6) L(u - w) > F(D?*u) — F(D*w) = [Ae ™™ — [[Aouw|"]"/™.

The inequalities
e~ uE) > gmw(@) > (—w(z))™/n!

follow from the fact that u,w are negative functions and u(z) < w(x) on Q.
Therefore

(—w)"

n!

<e ™ and Aj(—w)" <nlAje ™™ < AeTY,

which combined with (6.6), imply L(u — w) > 0. Therefore, by the maximum

principle, we must have u = w for all z € 2. Since u = w we have
Ae ™™ = | dow|™ = |Aou|”,

in which case

(—w)"
A n!

< o = A5 (—w)”, or A< Agnl,
which completes the proof. O

Next we show that in fact 0 corresponds to the unique asymptotic bifurcation
value for (6.5), in which case (6.3) has at least two nontrivial solutions for all A >
0, sufficiently small. It will be clear from the proof that there is no dependence

on the space dimension n.
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LEMMA 6.2. Let I = [p,nI\j] C R for some p > 0 and suppose that there
exists a sequence (Am,um) of solutions to (6.5) with Ay, € I for all m. Then
there exists a constant M > 0 such that ||um| < M.

PROOF. Suppose (Am,um) is a sequence of solutions such that ||u,| — oo
and {\,} C I. As I is compact, we may assume, by relabeling if necessary,
that A\,, — A € I. By homogenization we obtain the sequence of unit vectors
Um, = U/ ||tm]| such that

e Um eluml

=
T

(6.7) det D%v,, = A

Let ¥ CcC Q. By Lemma 5.11 (convexity of wu,,), we have |u,,| — oo on €.
Furthermore, on ', the values of |v,,| are bounded away from 0. Since the values
of Ap, are also bounded away from 0, the right-hand side of (6.7) must tend
to oo, uniformly on . Therefore, by Lemma 5.1, ||v,,|| — oo, a contradiction
as ||vm|| = 1 for all m. O

In fact, by studying the limiting behavior of (6.7) for sequences {u,,} with
|tm|] — oo, one sees that we would need A,, — 0 to avoid the contradiction
above, namely, ||vn,|| = 1. Moreover, A should tend to zero like z™/e*. This
remark yields the following theorem:

THEOREM 6.3. There exists \* > 0 such that (6.3) has at least two solutions
for all X € (0, A%).

A possible diagram of the continuum is shown in Figure 6.1. Note that,
although the quantitative results indicated by the figure hold in the case n =1,
Theorem 6.3 does not imply that the continuum has this exact shape for n > 2,
and this remains to be studied. For instance, it is natural to ask the following
questions: Is there a unique solution at A = A*7 Are there precisely two solutions
for each A < A*? The precise structure of the solution set to (6.3) remains an
open question, which we hope to address in the future.

By examining the proof above, it is evident that we may replace the expo-
nential term e/“! by any positive continuous function f satisfying

(1) £(0) >0,

(2) f(u) is nonincreasing for u < 0,
(3) f(u) > Clu|™ for some constant C' > 0,
(4) f(u)

4) f(u)/|lu|™ = oo as |u| — oo.

6.2. The general case 1 < k <n. We end with a discussion of the gener-
alization of the Liouville-Gelfand equation (6.1) to k-Hessian operators

{ Sk(D?u) = Xe™* z €,

6.8
(6.8) u=20 x € 09,
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(K'Y

S |

FIGURE 6.1. Possible continuum of solutions to (6.3)

for @ C R, a (k — 1)-convex domain. As above, one can readily establish that
(6.8) has a global branch of nontrivial solutions {(), 1)} such that 0 < X\ < kI\E,
where )¢ is the principal eigenvalue associated with the k-Hessian operator. The
behavior for the solution continua to (6.8) is then understood in the extremal
cases k = 1 and k£ = n. However, arguments used in the case k = n that used
convexity will not extend to the general setting.

In [9], the authors prove that the bifurcation diagram for (6.8) in the case
of radial solutions and k = n/2 satisfies the same properties as (6.1) in the case
n =1 and 2. Namely, there exists a A* > 0 such that there is a unique solution
at A = A* and precisely two nontrivial solutions for A € (0, \*).

If Conjecture 5.17 is true then the methods of Section 6.1 will extend for
(6.8) to establish a theorem similar to Theorem 6.3.

The results of [9] and our results here provide strong motivation for the

following conjecture:

CONJECTURE 6.4. For k > n/2 there exists a constant \* > 0, such that
(6.8) has exactly one solution at \* and precisely two solutions for X € (0, \*).

Perhaps a more interesting desired result would be to know the precise struc-
ture of the solution continua as the parameter k tends to 1, where we know the
precise dependence of the qualitative behavior of the solution continua on the

space dimension n.
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