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INDEX BUNDLE, LERAY–SCHAUDER REDUCTION
AND BIFURCATION OF SOLUTIONS OF NONLINEAR

ELLIPTIC BOUNDARY VALUE PROBLEMS
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Dedicated to Andrzej Granas

Abstract. We show that a family Fp; p ∈ P of nonlinear elliptic boundary
value problems of index 0 parametrized by a compact manifold admits

a reduction to a family of compact vector fields parametrized by P if and

only if its index bundle Ind F vanishes. Our second conclusion is that, in
the presence of bounds for the solutions of the boundary value problem,

the non vanishing of the image of the index bundle under generalized J-
homomorphism produces restrictions on the possible values of the degree

of Fp. The most striking manifestation of this arises when the first Stiefel–

Whitney class of the index bundle is nontrivial. In this case, the degree
of Fp must vanish! From this we obtain a number of corollaries about

bifurcation from infinity for solutions of nonlinear elliptic boundary value

problems.

Introduction

The degree theory for compact perturbations of identity, compact vector
fields in Granas terminology, was introduced by Leray and Schauder in their
celebrated paper [20] as a fundamental tool for the study of the existence of
solutions of nonlinear elliptic boundary value problems. Their purpose was to
improve the well-known continuation method of Bernstein. The use of the de-
gree theory leads to a sharp improvement of this technique. One embeds the
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nonlinear operator F associated with a given boundary value problem into a
one-parameter family Ft, 0 ≤ t ≤ 1 with F1 = F and such that F0 is much
simpler to deal with; say a linear isomorphism. If the problem Ft(x) = 0 can be
restated in terms of the existence of zeroes of a family of compact vector fields
then assuming that the vector field associated with F0 has nonzero degree and
using the homotopy invariance, the existence of solutions of F (x) = 0 becomes
a consequence of the existence of a priori bounds for the solutions of Ft(u) = 0,
0 ≤ t ≤ 1. In this way they get rid of the condition of having invertible Frechet
derivative of Ft at any point, which was necessary in the Bernstein method.
Later, in [17], Granas introduced a more elementary approach to continuation
based on homotopy extension property for compact vector fields.

Using Schauder estimates, Leray and Schauder were able to show that the
nonlinear operators in Hölder spaces associated with the Dirichlet boundary
value problem for second order quasilinear elliptic equations can be reduced,
in quite an explicit way, to a compact vector field whose zeroes are in one to
one correspondence with the solutions of the problem. In the same paper they
considered also the Dirichlet problem for fully nonlinear second order elliptic
equations and introduced a second type of reduction. This later reduction was
further developed under the name of intertwined representation by Browder,
Browder–Nussbaum in [12], [11] and by Krasnosel’skĭı–Zabrĕıko in [18]. For the
oblique derivative problem on the two-disk, for quasilinear second order elliptic
equations, the direct application of Leray–Schauder’s method does not produce
a compact vector field (cf. [19]). In the survey article [21] Nirenberg raised the
question of whether the existence of solutions for general nonlinear elliptic bound-
ary value problems on bounded domains can be reduced to the existence of zeroes
of compact vector fields. What should be understood by a reduction was not
specified. In [14] Fitzpatrick and Pejsachowicz, using results of Schnirelman [28]
and Babin [8], proved that an appropriate modification of the Leray–Schauder
method allows to recast to a compact vector field any fully nonlinear elliptic
operator subjected to general boundary conditions of the Shapiro–Lopatinskĭı
type, provided that the data are smooth enough and the problem is Fredholm
of index 0. More precisely, in [14] was shown that the map F induced by the
nonlinear differential operator in Hölder and Sobolev spaces can be reduced to a
compact vector field by composing on the left with a compact family of isomor-
phisms.

The purpose of this paper is to examine the existence of the reduction and the
continuation property for solutions of nonlinear elliptic boundary value problems
when a topologically nontrivial parameter space comes into play. Our results can
be summarized as follows:

Not every family {Fp : p ∈ P} of elliptic boundary value problems, depending
smoothly on a parameter belonging to a compact connected manifold P , admits
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a reduction of the type described above to a parametrized family of compact
vector fields. The obstruction to this is a homotopy invariant of the family of
linearized equations at a given point, called analytical index or index bundle.

Our second result is that in the presence of bounds for the solutions, the non-
vanishing of the image of the index bundle under generalized J-homomorphism
produces restrictions on the possible values of the degree of Fp. The most striking
manifestation of this arises when the first Stiefel–Whitney class of the index
bundle is nontrivial. In this case, if the solutions are bounded, then the degree
of Fp must vanish! From this we obtain a number of corollaries about bifurcation
from infinity for solutions of elliptic boundary value problems.

In the very special case of compact perturbations of a fixed linear Fredholm
map (e.g. for semilinear equations) the above results were announced in [22]
with the proofs sketched only. The proof for the general elliptic boundary value
problems goes through a reduction to this special case. However, for the sake
of completeness, we included the full proofs here. Therefore this paper is inde-
pendent of [22]. Considerable improvements of the results in [22] were obtained
by Bartsch [9] for the semilinear case. Among other things he proved that the
bifurcating branches are global. I don’t know whether the techniques used in [9]
for the semilinear case can be extended to fully nonlinear problems.

The paper is organized as follows: the main results of the paper are stated
in Section 1 together with some consequences regarding bifurcation. Section 2 is
devoted to proofs of the main theorems. In Section 3 we compute our invariant
in a very particular case; the oblique derivative problem for second order elliptic
equation on the disk with constant vector field on the boundary regarded as
parameter. This result was obtained in collaboration with P. M. Fitzpatrick.
Finally we give some applications to bifurcation from infinity of solutions of
boundary value problems of positive index.

Section 1

1.1. Reduction and degree. Let Ω be an open bounded subset of Rn with
smooth boundary. A nonlinear elliptic boundary value problem is a nonlinear
partial differential equation of the form

(1.1)

{
f(x, u(x), . . . , D2ku(x)) = 0, x ∈ Ω,

gi(x, u(x), . . . , Dmiu(x)) = 0, x ∈ ∂Ω, 1 ≤ i ≤ k, mi ≤ 2k − 1,

such that, for any u ∈ C∞(Ω) the (formal) linearization of (f, g1, . . . , gk) at u
given by
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(1.2)


L(u)v =

∑
|α|≤2k

∂αf(x, u(x), . . . , D2ku(x))Dαv(x) x ∈ Ω,

Bi(u)v =
∑

|α|≤mi

∂αgi(x, u(x), . . . , Dmiu(x))Dαv(x) x ∈ ∂Ω, 1 ≤ i ≤ k.

has the following two properties:

(i) the linear operator L(u) is uniformly elliptic in Ω,
(ii) the boundary operators Bi(u); 1 ≤ i ≤ k verify the Shapiro–Lopatinskĭı

covering conditions with respect to the differential operator L(u)

Here f(x, η), gi(x, η) are assumed smooth on all arguments, α = (α1, . . . , αn)
is a multi-index, ∂j denotes the first partial derivative with respect to the j-th
variable. Dα =

∏n
i=1(∂i)αi is the α-th partial derivative. Let us recall (cf. [14])

that a linear partial differential operator L given by

Lu(x) =
∑
|α|≤2k

aα(x)Dαu(x)

is called uniformly elliptic if its principal symbol

p0(x, ξ) ≡
∑
|α|=2k

aα(x)(iξ)α

verifies the following property: there is some c > 0 such that

|p0(x, ξ)| ≥ c|ξ|2k for all x ∈ Ω, ξ ∈ Rn.

Given a uniformly elliptic operator L of order 2k on Ω and given a set of k
boundary operators

Biu(x) =
∑

|α|≤mi

biα(x)Dαu(x); 0 ≤ mi ≤ 2k − 1, 1 ≤ i ≤ k.

For each x ∈ ∂Ω, for each , η ∈ Rn\{0} normal to ∂Ω at x and ξ ∈ Rn\{0} with
〈ξ, η〉 = 0, consider the (k + 1) polynomials of a single complex variable τ

(1.3)


τ 7→ p0(x, ξ + τη),

τ 7→
∑

|α|=mi

biα(x)iα(ξ + τη)α ≡ qi(τ) for 1 ≤ i ≤ k.

Let τ1, . . . , τk be the k complex zeros of p0(x, ξ+τη) with positive imaginary part.
The family Bi, 1 ≤ i ≤ k verifies the Shapiro–Lopatinskĭı covering condition with
respect to L provided that the polynomials {qi}k

i=1 are linearly independent
modulo the ideal generated by q(τ) =

∏k
i=1(τ − τi).

Let X ′ be either the Hölder space C2k+2,α(Ω), 0 ≤ α ≤ 1 or the Sobolev
space H2k+2+s(Ω), s ≥ 0 and Y ′ be either C2,α(Ω) ×

∏k
i=1 C

2k+2−mi,α(∂Ω)
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or H2+s(Ω) ×
∏k

1 H
2k+s−mi+3/2(∂Ω). Any nonlinear elliptic boundary value

problem (f, g1, . . . , gk) induces a map F :X ′ → Y ′ defined by

F (u) = (f(x, . . . ,D2ku), γg1(x, . . . ,Dm1u), . . . , γgk(x, . . . ,Dmku)),

where γ is the restriction to the boundary ∂Ω. It is well known that for smooth
data {f, g1, . . . , gk} the map F is smooth on Hölder spaces and can be made
differentiable of any order on the Sobolev spaces provided one take the exponent
s large enough. Its Frechet derivative DF (u) at a given point u is the map
induced on the same spaces by the linearized partial differential operators (1.2).
By elliptic regularity (e.g. Agmon–Douglis–Nirenberg estimates), DF (u) is a
Fredholm operator for any u ∈ X ′ and hence F is a Fredholm map. As such it
has an index ind F defined as the index of the Frechet derivative DF (u) at any
u ∈ X ′, because indDF (u) = dim kerDF (u)− dim coker DF (u) is independent
of the choice of u.

It was shown in [14] (cf. Proposition 2.8, Theorem 10.15 and 10.19 ) that
any F as above with ind F = 0 is equivalent to a compact vector field in the
following sense: there exist a compact map M from X ′ into the set GL(X ′, Y ′)
of all isomorphisms from X ′ to Y ′ and a compact map C:X ′ → Y ′ such that

(1.4) F (u) = M(u)(Id + C)(u).

Notice that the spacesX ′, Y ′ are not the natural spaces on which an operator
of order 2k acts. We require the order of differentiability of functions in our
spaces raised by two. This is due to the method in proof of (1.4). Only with
this extra differentiability requirement we were able to prove that the map F

induced by the nonlinear boundary value problem is a quasilinear Fredholm map
(see Section 2). We will keep this condition everywhere in the paper.

Since the method in [14] is rather abstract the reduction obtained there is
less explicit than the one given by Leray and Schauder in the second order case.
However it is clear from the form of (1.4) that bounds for the solutions of the
equation F (u) = 0 give bounds for the zeroes of the compact vector field Id+C.
Moreover, one can show easily that if U is an open bounded subset of X ′ with
no solutions of the equation F (u) = 0 on the boundary then the Leray–Schauder
degrees degLS( Id+C,U, 0) of two different compact vector fields equivalent to F
in the sense of (1.4) will necessarily coincide up to a sign. In [14] after introducing
a function ε: GL(X ′, Y ′) → {1,−1}, called orientation, it was proved that the
number deg(F,U, 0) = ε(M)degLS(Id + C,U, 0) is independent of the choice of
representation (1.4). In this way it is possible to assign a well defined degree
directly to the map F . This degree verifies all the axioms of degree theory
except for the homotopy invariance which holds in a weaker form. We shall not
go any further into the details of the construction since here we will need only the
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absolute value of deg(F,U, 0), which is independent of the choice of orientation
and is homotopy invariant.

1.2. The index bundle. Let us introduce some notation. In what follows
and when confusion does not arise, a family of maps parametrized by a topologi-
cal space P (or simply a parametrized family) will mean either a continuous map
from P into a space of maps or a continuous map F :P ×X → Y of a product
space into another topological space. In both cases, in order to distinguish pa-
rameters, we will use the parameter variable p as a subscript. Thus Fp:X → Y is
the map defined by Fp(x) = F (p, x). Also from now and except when explicitly
stated Fredholm means Fredholm of index 0. Accordingly a family L of Fredholm
operators parametrized by P is a continuous map L:P → Φ0(X,Y ), where X,
Y are Banach spaces and Φ0(X,Y ) is the space of all Fredholm operators of
index 0 with the relative topology. Coherently with our notation Lp ∈ Φ0(X,Y )
will denote the value of L at the point p.

If the parameter space P is compact then, following Atiyah and Janich [5],
to each family L as above we can assign a homotopy invariant called analytical
index or index bundle. The index bundle is not a bundle but rather a stable
equivalence class of vector bundles. Let us recall that two finite dimensional
vector bundles are stable equivalent if they become isomorphic after an addition
(direct sum) of a trivial bundle on both sides. The stable equivalence classes
of vector bundles over P form a group K̃O(P ) called the reduced Grothendieck
group of virtual bundles of rank 0.

Given a family L:P → Φ0(X,Y ), its index bundle IndL ∈ K̃O(P ) is defined
as follows: using compactness of P one can find a finite dimensional subspace
V of Y such that ImLp + V = Y for any p in P . It follows then that the
family of finite dimensional spaces Ep = L−1

p (V ) form a vector bundle E over P .
By definition IndL ∈ K̃O(P ) is the stable equivalence class of E. It is easy to
see that IndL is well defined and that it depends only on the homotopy class
of the family L. In particular it is invariant under perturbation by families of
compact operators. Moreover, IndL = 0 if and only if the map L is homotopic
to a map with values in GL(X,Y ). More generally if L:P → Φ(X,Y ) is a
family of Fredholm operators of any index, then the Atiyah–Janich construction
assign an index IndL in the full Grothendieck group KO(P ). This later is the
group completion of the abelian semigroup Vect (P ) of all isomorphisms classes
of vector bundles over P . Its elements are called virtual vector bundles because
every element on KO(P ) can be written as difference [E] − [F ] where E,F are
vector bundles over P and [E] denotes the equivalence class. Assigning to each
stable equivalence class of a vector bundle E the element [E] − [Θn] where n
is the rank of E and Θn = P × Rn is the trivial bundle of rank n one get an
inclusion of K̃O(P ) in KO(P ).
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The index bundle in the general case is given by the same construction.
Chosen an finite dimensional subspace V of Y transverse to ImLp the index
bundle or analytical index of the family is defined as the virtual bundle IndL =
[E] − [Θ(V )] ∈ KO(P ), where E is the same as before and Θ(V ) is the trivial
bundle over P with fiber V . IndL is invariant by Fredholm homotopies and
verifies the following additivity property: given L:P → Φ(X,Y ) and M :P →
Φ(Y,Z) then IndML = IndM + IndL (cf. [10]).

1.3. The Generalized J-homomorphism. Endowing a vector bundle E
with a norm, we can consider the associated unit sphere bundle S(E) over P
with fiber at p ∈ P given by Sp(E) = {v ∈ Ep/‖v‖p = 1}. A vector bundle
is called stably homotopy trivial if there is a trivial bundle Θ such that the
sphere bundle of S(E ⊕Θ) is fiber-wise homotopy equivalent to a trivial sphere
bundle. Stably homotopy trivial bundles form a subgroup of K̃O(P ). The group
J(P ) is defined as the quotient of K̃O(P ) by this subgroup. The generalized J

homomorphism, J : K̃O(P ) → J(P ) is the projection to the quotient. The groups
J(P ) were introduced by Atiyah in [6] who also proved that the J group of a
compact CW-complex is finite by relating this group to the image of the classical
J-homomorphism of Whitehead. Earlier, Thom showed that the Stiefel–Whitney
characteristic classes of a vector bundle depend only on the fiber homotopy type
of the associated sphere bundle. Since the first Stiefel–Whitney characteristic
class ω1 ∈ H1(P,Z2) and the total class ω = 1+ω1+. . .+ωn ∈ H∗(P,Z2) are also
stable in the sense that they do not change after addition of the trivial bundle,
it follows that both classes factor through K̃O(P ) and even through J(P ). In
other words, they are well defined for elements of J(P ).

1.4. The main results. Let P be a compact connected manifold and let

f ∈ C∞(P × Ω× R2k), gi ∈ C∞(P × Ω× Rmi), 1 ≤ i ≤ k,

be such that for each p ∈ P the data (fp, gp,1, . . . , gp,k) define an elliptic bound-
ary value problem in the sense of (1.1) and (1.2). If X ′, Y ′ are either the Hölder
spaces or the Sobolev spaces defined at the beginning of this Section then our
data define a differentiable map F :P ×X ′ → Y ′ such that for each p ∈ P the
map Fp:X ′ → Y ′ is Fredholm. Fix some u ∈ X ′ and let Lp = DFp(u) be the
Frechet derivative of Fp at u. Each Lp is the operator induced in the Hölder
spaces by the linear partial differential operators (1, 2) and by assumption these
are Fredholm of index 0. Thus we have a family L:P → Φ0(X ′, Y ′) and this
family has a well-defined index bundle IndL in K̃O(P ). From the homotopy
invariance of the index bundle it follows that IndL is independent of the choice
of the point u ∈ X ′. We will denote this element by IndF and refer to it as the
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index bundle of F . Let
L̃p(0)v =

∑
|α|=2k

∂αf(p, x, 0, . . . , 0)Dαv(x) x ∈ Ω,

B̃p,i(0)v =
∑

|α|=mi

∂αgi(p, x, 0, . . . , 0)Dαv(x) x ∈ ∂Ω, 1 ≤ i ≤ k.

be the principal part (i.e. top order terms) of the linearization of (1.2) at the
point 0. Then IndF depends only on (L̃p(0), B̃p,1(0), . . . , B̃p,k(0))p∈P . This is
due to the fact that lower order term perturbations of partial differential oper-
ators defined on bounded domains are compact and hence the family L is ho-
motopic to the family of operators in Φ0(X ′, Y ′) induced by (L̃p(0), B̃p,1(0), . . . ,
B̃p,k(0))p∈P .

Under favorable circumstances, the determination of the index bundle of a
family of elliptic boundary value problems can be transformed into a similar
problem but for a family of pseudo-differential operators on the boundary by
means of the Agranovich–Dynin reduction [3]. In this case there is an explicit
formula for IndF in terms of the principal symbols of the family of pseudo-
differential operators given by the Atiyah–Singer theorem for families [7].

Theorem 1.1. If F :P ×X ′ → Y ′ is as above then there exists a family of
M :P ×X → GL(Y ′, X ′) and a compact map C:P ×X ′ → Y ′ such that

(1.5) M(p, u)F (p, u) = u+ C(p, u)

if and only if IndF = 0 in K̃O(P ).

Remark. As we mentioned before a different type of reduction to compact
vector fields based on the so-called intertwining representation was obtained by
various authors. In particular the reductions of the Dirichlet problem for strongly
elliptic equations obtained by [20] and [27] are far more explicit that (3.1). In the
abstract setting the question is studied in [11], [18] and [26] using an approach
based on reduction to compact vector fields by smooth change of coordinates
on the domain of the map. This is called global right equivalence in singularity
theory. Sapronov proved that if F is a proper, smooth enough Fredholm map
defined on an open subset U of X then IndF is essentially the only obstruction
for the right equivalence of F with a compact vector field [26].

Our next result describes the restrictions on the degree of the map Fp imposed
by non vanishing of the image of IndF under the generalized J-homomorphism.

Theorem 1.2. Assume that there are bounds of the form ‖u‖ < R for the
solutions of the nonlinear elliptic boundary value problem{

fp(p, x, u(x), . . . , D2ku(x)) = 0 x ∈ Ω,

gp,i(p, x, u(x), . . . , Dmiu(x)) = 0 x ∈ ∂Ω, 1 ≤ i ≤ k, mi ≤ 2k − 1.
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Let d = |deg(Fp, B(0, R), 0)| (d is independent of p by the homotopy property if
the degree). Then:

(i) There exist a natural number m such that dm · J(IndF ) = 0 in J(P ).
(ii) Moreover, d vanishes if ω1(IndF ) 6= 0, i.e. whenever the index bundle

IndF is non orientable.

As was mentioned in the introduction, the Leray–Schauder continuation
method based on the homotopy invariance of degree reduces the proof of the
existence of solutions of a given boundary value problem to finding a priori
bounds for solutions of one-parameter families of problems.

The assertion (ii) of above theorem says that for families parametrized by
non-contractible spaces the two conditions on which the method is based may
not be always compatible; one cannot have at the same time a priori bounds
and non trivial degree of Fp. The obstruction being given by the nonvanishing
of ω1(IndF ). On the other hand, since the groups J(P ) are finite, by (i) the
nonvanishing of J(Ind f) always imposes restrictions on the value of the degree d.

Corollary 1.1. Under the assumptions of Theorem 1.2, if J(IndF ) 6= 0
then d cannot be prime to the order of J(P ) (in particular d 6= 1).

Proof. Since both dn and the order of J(P ) are multiples of the order of
J(IndF ) 6= 0 it follows that d and the order of J(P ) cannot be coprime. �

There is an alternative but closely related way to describe the restrictions
on the degree arising from the nontriviality of the image of the index bundle
under the generalized J homomorphism. This was explored by Bartsch [9] for
the semilinear case. He described the restrictions in terms of the codegree of
the index bundle. This has some advantage, since the notion of codegree easily
extends to general parameter spaces. The disadvantage consist in that codegree
is not easy to compute. On the other hand the order of J(IndF ) and the codegree
of IndF have the same primes in the prime decomposition arising perhaps with
different powers. Here we prefer to use the order of J(P ) because this invariant
has been computed in a number of interesting cases.

Corollary 1.2. Under the assumptions of Theorem 1.2, if J(IndF ) 6= 0
and the homology of P is free of 2-torsion then d cannot be prime to

j =
∞∏

q=0

order [Hq(P,Z)⊗ J(Sq)].

Proof. By [25, Theorem 2] the order of J(P ) divides k. �

The groups J(Sn) have been determined for any n. They vanish for n ≡ 3, 5, 7
mod−8. For n ≡ 1, 2 mod − 8, J(Sn) is cyclic of order 2 and for n = 4k it
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is cyclic of order given by the denominator of Bk/4k expressed in lowest terms,
where Bk is the k-th Bernoulli number. Thus the restriction on the degree
provided by Corollary 1.2 is perfectly computable.

Let us recall that a bifurcation point from infinity for solutions of (1.6) is
a point p0 ∈ P such that there exists a sequence (pn, un) of solutions of the
equation F (p, u) = 0 such that pn → p0 and ‖un‖ → ∞.

Corollary 1.3. Assume that J(IndF ) 6= 0 and that for some q ∈ P

there are bounds for the solutions of the equation Fq(u) = 0. If the degree
d = limR→∞ deg(Fq, B(0, R), 0) is prime to the order of J(P ), then there exist
at least one point of bifurcation from infinity for the solutions of the bound-
ary value problem (1.6). In particular bifurcation from infinity arises whenever
d = ±1.

Proof. If F does not have any bifurcation point from infinity then, us-
ing the compactness of P , one can produce bounds for solutions contradicting
Corollary 1.2.

The order of J(P ) is a power of two in the case of Sn; n ≡ 1, 2 mod − 8
and in the case of real projective spaces RPn, n ≥ 1. Moreover, in all those
cases the J-homomorphism is injective. It follows from the above corollary that
bifurcation from infinity arises whenever IndF 6= 0 and d is odd. �

Corollary 1.4. Assume that for some q ∈ P there are bounds for the
solutions of the equation Fq(u) = 0.

(i) If the degree d 6= 0 and the index bundle IndF is non orientable then
the Lebesgue covering dimension of the set B of all bifurcation points
from infinity for solutions of F (p, u) = 0 must be at least n− 1.

(ii) If the degree d = ±1 and the total Stiefel–Whitney class ω(IndF ) does
not vanish then the Lebesgue covering dimension of the set B o f all
bifurcation points from infinity for solutions of F (p, u) = 0 must be at
least dimP −min{k/ωk(IndF ) 6= 0}.

Proof. Since the first Stiefel–Whitney class of the index bundle does not
vanish one can find a closed path γ in P passing through q and such that
ω1(Ind f) evaluated on α = γ∗(generator of H1(S1, Z2)) is nonzero. From this it
follows easily that, in the exact sequence of a pair of spaces, α is mapped into a
nontrivial class in H1(P, P −B,Z2) and hence determines by duality a nonzero
class in the (n − 1)-Cěch cohomology group of Bif (F ). By the cohomological
characterization of dimension it follows that dim B ≥ n− 1.

The proof of (ii) is similar using the the fact that any homology class in
Hk(P,Z2) is the image of the fundamental class of a submanifold. �
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The assertion (i) in the above Corollary was proved by other means in [15].
Related results were also obtained by Alexander and Antman in [4], for compact
vector-fields parametrized by Rn, but under different type of assumptions, and
for semilinear Fredholm maps by Bartsch in [9].

Remark. A standard approach to bifurcation from infinity, see for exam-
ple [23], is to look at the spectrum of the asymptotic derivative. Notice the
absence in the above corollaries of any assumption about even the existence of
asymptotic derivative at infinity. Here the bifurcation is forced by the nontrivi-
ality of a topological invariant associated to the linearization of the problem at
a given point of X ′.

If F (p, 0) ≡ 0 and for some q ∈ P we have that 0 is an isolated solution of
Fq(u) = 0, then taking d = limR→0 deg(Fq, B(0, R), 0) we obtain parallel results
for bifurcation of solutions of the nonlinear equation F (p, u) = 0 from the trivial
branch. As in the case of bifurcation from infinity, in presence of a topologicaly
nontrivial parameter space, the appearance of bifurcation points here is caused
by the non vanishing of invariants that depends only on the top-order coefficients
of the linearized operator. This type of results are of a different nature from the
ones that can be obtained using the classical approcach.

Section 2

2.1. Proof of Theorem 1.1. In the following definition we shall assume
that the Banach space X is compactly embedded in a Banach space X1. For
spaces defined in Section 1 one can take as X1 C2k+1,α(Ω) and H2k+1+s(Ω).
Given D ⊆ X, when we refer to its topological properties we will be referring to
the topology induced by X, unless explicitly stated.

Definition. Let the parameter space P be as before. A mapping F :P×X→
Y is called a family of quasilinear Fredholm maps parametrized by P provided
that F has a representation of the form

(2.1) F (p, x) = L(p,x)x+ C(p, x)

where L:P ×X → Φ(X,Y ) is given by the restriction to X of a continuous map
L:P ×X1 → Φ(X,Y ) and C:P ×X → Y is compact.

We will refer to formula (2.1) as a representation of the family F . The family
of Fredholm operators L:P ×X → Φ(X,Y ) will be called the principal part of F
in the the corresponding representation. While the representation is not unique
the principal parts corresponding to two different representations of the same
family of quasilinear Fredholm maps differ by a family of compact operators. In
what follows, except when explicitly stated, we shall consider quasilinear maps of
index 0 only. In this case the principal part L take values in Φ0(X,Y ). A family
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of quasilinear Fredholm maps having a representation whose principal part is
independent of x ∈ X will be called semilinear. Thus, a semilinear Fredholm
family of index 0 can be represented in the form F (p, x) = Lp(x) +C(p, x) with
L:P → Φ0(X,Y ) continuous and C:P ×X → Y compact.

Theorem 1.1 will be deduced from Lemma 2.1, Proposition 2.2 bellow and
the following result proved in [14, Theorem 10.15, 10.19].

Theorem 2.1. Let f ∈ C∞(P×Ω×R2k), gi ∈ C∞(P×Ω×Rmi); 1 ≤ i ≤ k

be such that for each p ∈ P the above data define an elliptic boundary value
problem on Ω. If X ′, Y ′ are the function spaces introduced in Section 1, then the
family F :P ×X ′ → Y ′ induced by (fp, gp,1, . . . , , gp,k) is a family of quasilinear
Fredholm maps.

Our first step will consists on a reduction of quasilinear Fredholm families to
semilinear families.

Definition. Let T be a metric space and let F :T → Y and G:T → Z be
continuous maps from T into Banach spaces Y,Z. We will say that F and G

are compactly equivalent if there exist a compact family of linear isomorphism
M :T → GL(Z, Y ) such that F (t) = Mt(G(t)). (Recall that a map is compact if
it sends bounded sets of the domain into relatively compact sets of the range.)

Lemma 2.1. Any quasilinear family of Fredholm maps F :P × X → Y is
compactly equivalent to a semilinear family G:P × X → Y . Moreover, if F
has a representation F (p, x) = L(p,x)(x) + C̃(p, x) then G can be represented as
G(p, x) = Lp(x) + C(p, x) with Lp = L(p,0) and Mp,0 = IdY .

Remark. It follows easily from the above that if each Fp is differentiable
and such that Fp(0) = 0 then also Gp(0) = 0 and DFp(0) = DGp(0).

In order to prove Lemma 2.1 we will need some properties of continuous
families of linear Fredholm operators parametrized by compact spaces.

A (two sided) parametrix of a Fredholm operator S:X → Y is a Fredholm
operator R:Y → X such that RS − IdX and SR − IdY are compact operators.
The existence of parametrix characterizes Fredholm operators (of any index)
among all linear bounded operators. Since the set of all invertible elements of
a topological algebra is open, using partition of unity arguments one can easily
prove the following proposition (see [29, Theorem 2.8]).

Proposition 2.1. Given any continuous family L:T → Φ(X,Y ) parame-
trized by a paracompact space T there exist a continuous family R:T → Φ(Y,X)
such that Rt is a parametrix of Lt for each t ∈ T .

Such a family is called a parametrix of L. A strong parametrix of a family of
Fredholm operators of index 0 is a parametrix R such that Rt is an isomorhism
for each t ∈ T .
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Proposition 2.2. Let T be a compact space. Then a family L:T → Φ0(X,Y )
admits a strong parametrix if and only if IndL = 0 in K̃O(T ).

Proof. This is well-known (cf. [5], [29]). We will give the proof here for
completeness since in [5] and [29], is used a different construction of the index
bundle.

Assume IndL = 0. Let V be a finite dimensional subspace of Y such that
ImLt+V = Y . Being the bundle E =

⋃
t∈T L

−1
t (V ) stably trivial by assumption,

there exists some trivial bundle Θk of rank k, such that E ⊕ Θk is trivial.
Let Ṽ be any finite dimensional subspace of Y containing V and such that
dim Ṽ = dim V +k. It follows from the transversality assumption that Lt induces
an isomorphism between E ⊕ Θk and the vector bundle Ẽ =

⋃
t∈T L

−1
t (Ṽ ).

Hence Ẽ is trivial and therefore there exists an isomorphism say A between Ẽ

and the trivial bundle Θ(Ṽ ) with fiber Ṽ . Let P :T → L(X) be a continuous
family such that Pt is a projector with ImPt = Ẽt. (The existence of such a
family follows easily from partition of unity arguments and the convexity of the
set of all bounded projectors with a given image.) Let Q be a projector on Y

with ImQ = Ṽ . Then the family M defined by Mt = (Id Y −Q)Lt + AtPt is a
compact perturbation of the family L (in the sense that Lt −Mt are compact
operators). Moreover, for each t, Mt is an isomorphism. From this it follows
that the family R = M−1 is the desired strong parametrix of L. The only if part
follows easily from the additivity property of the index bundle (cf. [10]). �

Proposition 2.3. Let T be compact and let L,N :T → Φ0(X,Y ) be two
continuous families parametrized by T then IndL = IndN if and only if there
exists a family of isomorphisms M :T → GL(Y ) such that Lt−MtNt is compact.

Proof. Let R be any parametrix of L. Then, by the additivity of the index
bundle, IndR = −IndL and hence IndNR = 0. By the above proposition NR

has a strong parametrix M :T → GL(Y ). Since IdY −MtNtRt is compact by
composing on the right with L it follows that Lt−MtNt is compact as well. The
converse is clear. �

Proposition 2.4. Let S ⊂ T be a pair of compact spaces such that S is a
deformation retract of T (i.e. there exists a map r:T → S such that if i:S → T is
the inclusion then ri = IdS and ir is homotopic to IdT ). Let L,N :T → Φ0(X,Y )
be two continuous families parametrized by T such that the restriction of L−N

to S is a family of compact operators. Then there exists a continuous family of
isomorphisms M :T → GL(Y ) such that Lt −MtNt ∈ K(X,Y ), for any t ∈ T

and such that Mt = IdY for each t ∈ S.

Proof. In order to shorten notation let us introduce the equivalence relation
L ∼ N if Lt−Nt is compact for any t ∈ T . Notice that∼ is additive and preserved
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by composition on both sides. Also, in accordance with the previous notation,
we shall denote by Li:S → Φ0(X,Y ) the family obtained by composing i:S → T

with L:T → Φ0(X,Y ).
Since ir is homotopic to IdT , by the homotopy invariance of the index bundle,

IndLir = IndL and IndNir = IndN . By Proposition 2.3 we can choose families
P,Q:T → GL(Y ) such that PLir ∼ L and QNir ∼ N . Composing on the
right with ir:T → T we obtain also PirLir ∼ Lir ∼ QirNir, since Li ∼ Ni.
Consider M :T → GL(Y ) defined by M = PP−1

ir QirQ
−1. Clearly, Mi = IdY

and MN ∼ L, by the previous discussion. This proves the proposition. �

Proof of the Lemma 2.1. Let i:P × X → P × X1 be the embedding
induced by the inclusion of X into X1. Let N :P ×X1 → Φ0(X,Y ) be defined by
N(p,x) = L(p,0). In order to prove the lemma it is enough to produce a compact
family M :P ×X → GL(Y ) such that

(2.2) MLi ∼ Ni and M(p,0) = IdY .

Indeed, if (2.2) holds then K = MLi−Ni is a compact family of compact opera-
tors and M(p,x)F (p, x)) = L(p,0)(x)+C(p, x) with C(p, x)=Kp,x+M(p,x)C̃(P,X)
a compact map.

We build the family M inductively using Proposition 2.4. For each n ≥ 0
define Cn as the closure in X1 of the ball B(0, n) of X and let Tn = P×Cn. Since
for each n, Cn is compact and convex it follows that each Tn is a deformation
retract of Tn+1. Let Ln andNn be the restrictions to Tn of L andN , respectively.
Using Proposition 2.4 one gets a family M

1
:T1 → GL(Y ) such that M

1
L1 ∼

N1 and M
1

restricted to T 0 is the constant family IdY . Assuming we have
constructed M

n
:Tn → GL(Y ) such that M

n
Ln ∼ Nn and M

n|Tn−1 = M
n−1

,
we will produce M

n+1
:Tn+1 → GL(Y ) with the same properties.

Let r:Tn+1 → Tn be a retraction. Then M
n

rL
n+1|Tn

= M
n
Ln ∼ Nn =

Nn+1|Tn and hence by Proposition 2.4 there exists M̃ :Tn+1 → GL(Y ) with
M̃ |Tn

= IdY and such that M̃M
n

rL
n+1 ∼ Nn+1. Now M

n+1
= M̃M

n

r has the
desired properties.

Let T =
⋃

n≥0 Tn and let M :T → GL(Y ) be defined by M (p,x) = M
n

(p,x)

if (p, x) ∈ Tn. Then M is a well-defined continuous family and since i(P ×X)
is contained in T the family M = M i is a compact family of isomorphisms
which clearly verifies (2.2). This proves the Lemma and gives al that we need
to conclude the proof of Theorem 1.1. Indeed, by Lemma 2.1, any quasilinear
Fredholm family F is compactly equivalent to a semilinear family G with the
same index bundle. By Proposition 2.2 the map G and hence also F have a
representation of the form (1.5) if and only if IndG = IndF = 0. �

2.2. Proof of Theorem 1.2. Theorem 1.2 is a consequence of Theorem 2.1
and the following
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Theorem 2.2. Let F :P ×X → Y be a family of quasilinear Fredholm maps
of index 0. If {x/F (p, x) = 0} is bounded, then (i) and (ii) of Theorem 1.2 hold
with d = limR→∞ |deg(Fp, B(0, R), 0)|.

Proof. By Lemma 2.1, the family F :P ×X → Y is compactly equivalent
to a semilinear Fredholm family G:P ×X → Y . Thus

M(p,x)F (p, x) = G(p, x) = Lp(x) + C(p, x)

with Lp = DGp(0) = L̃p,0 = DFp(0) and M(p,0) = IdY . It follows that IndF =
IndL = IndG. Clearly, there are bounds for the solutions of F (p, x) = 0 if
and only if the same holds for solutions of G(p, x) = 0. Moreover, for any fixed
p ∈ P , the homotopy H: [0, 1]×X → Y defined by H(t, x) = M(p,tx)Fp(x) is an
admissible homotopy between Fp and Gp on a ball of sufficiently large radius in
X. Therefore d = |deg(F,B(0, R), 0)| = |deg(G,B(0, R), 0)| for R large enough.
In conclusion, we can assume, without loss of generality, that our family F has
a semilinear representation of the form F (p, x) = Lp(x) +C(p, x) with L and C
as before. Since the map Fp is a compact perturbation of a Fredholm operator
we have that each Fp is proper on closed bounded sets of X. It follows from this
and compactness of P that if the restriction of Fp to B(0, R) has no zeroes on
the boundary ∂B(0, R) for any p then the same will be true for any map close
enough to F in norm. Straight segment homotopy will ensure that the degree on
B(0, R) of the map Fp and any close enough compact perturbation of Fp will be
the same. Since the map C can be arbitrarely approximated by a map with finite
dimensional range we can further assume that C (P ×B(0, R)) is contained in a
finite dimensional subspace V of Y . Moreover, V can be chosen big enough for
the transversality condition ImLp + V = Y to hold for any p ∈ P . �

Proposition 2.5. Let f :X → Y be a semilinear map of the form f(x) =
L(x) +C(x). Assume that for some ball B = B(0, r), 0 6∈ f(∂B) and that C(B)
is contained in a finite dimensional subspace V such that ImL + V = Y . Let
W = L−1(V ) and let g be the restriction of f to W ∩ B = D viewed as a map
from D into V . Then deg(f,B, 0) = ±degB(g,D, 0) where the right hand side
is the Brouwer degree of a map between finite dimensional vector spaces of the
same dimension.

Proof. Let P , Q be projectors with ImP = W and ImQ = V and let
A:W → V be any isomorphism (dimV = dimW by the transversality assump-
tion). Consider the isomorphism M :X → Y defined by M = (I − Q)L + AP .
Clearly M ∼ L. Moreover, M |W = A and hence M−1|V = A−1. By definition
of the degree in Section 1, deg(f,B, 0) = ±degL.S(M−1f,B, 0), where degLS

stands for the Leray–Schauder degree. But L = M +QL−AP and hence

M−1f = IdX +M−1QL−M−1AP +M−1C = IdC +A−1QL− P +A−1C.
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As [A−1QL − P + A−1C](B) is contained in W , by the reduction property of
the Leray–Schauder degree we have that

degL·S(M−1f,B, 0) = degB(M−1f |B∩W , B ∩W, 0).

On the other hand we have that

M−1f |B∩W = A−1(L+ C)|B∩W = A−1g

and therefore

deg(f,B, 0) = ±degB(A−1g,D, 0) = ±degB(g,D, 0).

The last equality holds because A is an isomorphism. This finishes the proof of
the proposition. �

We will need also the following well-known fact:

Proposition 2.6. Let B = B(0, r) be a ball in Rn and let g: (B, ∂B) →
(Rn,Rn − {0}) be a continuous map. Let g: ∂B → Sn−1 be defined by g(x) =
‖g(x)‖−1g(x). Then the homomorphism g∗:Hn−1(Sn−1, Zk) → Hn−1(∂B,Zk),
induced by g in singular cohomology groups with coefficients in Zk, coincides
with the multiplication by ±d = degB(g,B, 0).

Proof. Using the homotopy h(t, x) = tg(x)+(1−t)‖g(x)‖−1g(x) one easily
shows that the following diagram is commutative.

(2.7)

Hn−1(∂B,Z)
g∗−−−−→ Hn−1(Sn−1, Z)y y

Hn(B,B −K,Z) −−−−→
g∗

Hn(Rn, Rn − {0}, Z)

Here the vertical arrows are the natural inclusions composed with the inverse of
the connecting homomorphism in the exact sequence of a pair and K = g−1(0).

Let oK ∈ Hn(B,B − K,Z) and o0 ∈ Hn(Rn,Rn − {0}, Z) be the funda-
mental classes of K and {0} respectively (cf. [13, Chapter 8]). By naturality,
one easily shows that the vertical maps send generators of Hn−1(∂B,Z) and
Hn−1(Sn−1, Z) into oK and o0, respectively. On the other hand, by the homo-
logical characterization of the degree (cf. [13, Chapter 8, Proposition 4.3]) one
has g∗(oK) = ±do0. By commutativity of the diagram (2.7) the homomorphism
g∗:Hn−1(Sn−1, Z) → Hn−1(∂B,Z) coincides with multiplication by ±d. Now
the Proposition follows from the universal coefficients theorem for cohomology.�

Proof of theorem 2.2, continued. By the transversality assumption
that E = {(p, x)/Lp(x) ∈ V } is the total space of a vector bundle over P and
IndF is the class of this bundle in K̃O(P ). Let us consider

B(E) = {(p, x) ∈ E/‖x‖p ≤ r} and S(E) = {(p, x) ∈ E/‖x‖p = r}.
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Let us denote by g the restriction of F to B(E) viewed as a map into the
finite dimensional space V . Let dimV = n. Since, for a fixed p the map Fp

verifies all the hypothesis of Proposition 2.5 it follows from this proposition
that the degree, degB(gp, B(Ep), 0), of the restriction gp of g to the fiber B(Ep)
coincides with ±d, for each p ∈ P . On the other hand g induces a map g

from the sphere bundle S(E) to the unit sphere Sn−1 of V defined by g(p, x) =
‖g(p, x)‖−1g(p, x). Assume that d 6= 0. Let k 6= 2 any number prime to d.
If c ∈ Hn−1(Sn−1, Zk) ≈ Zk is any generator, then the cohomology class u =
g∗(c) ∈ Hn−1(S(E), Zk) has the property that its restriction to each fiber S(Ep)
is a generator of Hn−1(S(Ep), Zk). This follows from the Proposition 2.6 since, if
ip is the inclusion of the fiber at p then i∗p(u) = g∗p(c) in Hn−1(S(Ep), Zk) and k is
prime to d. This shows that u is an orientation class for E = IndF over Zk. But
any vector bundle orientable over Zk; k 6= 2 is orientable over Z as well. This
can easily be seen as follows: the existence of an orientation class is equivalent
to the following fact: the natural action of the first homotopy group π1(P ) on
the cohomology of the fiber Hn−1(S(Ep), Zk) is trivial (cf. [24]). But the only
automorphisms of Z are multiplications by ±1. Hence if the action is trivial
on Hn−1(S(Ep), Zk) ∼ Zk then it must be trivial on Hn−1(S(Ep), Z) ∼ Z. In
conclusion, if d does not vanish then the index bundle IndF must be orientable
or, what is the same, ω1(IndF ) = 0 in H1(P,Z2). This proves the second
assertion of Theorem 2.2.

The first assertion follows from Proposition 2.5 and the mod−k Dold’s the-
orem of Adams [1]. Indeed [1, Theorem 1.1] states that if E is an orientable
vector bundle and g:S(E) → S(Θn) is a map over P from the sphere bundle
S(E) into the sphere bundle of a trivial n-dimensional bundle Θn such that
gp:S(Ep) → S(Θn

p ) is of degree ±d, then for some m, S(dmE) is fiber-wise
homotopy equivalent to S(dmΘn). In other words

dm · J([E]) = dm · J(Ind (F ) = 0 in J(P ). �

Section 3

3.1. Examples and applications. Let us consider a particular case of the
oblique derivative problem for nonlinear second-order elliptic equation on the
plane of the form:

(3.1)

{
f

(
x, u(x), Du(x), D2u(x)

)
= 0, x ∈ Ω,

Dv(u) = 0, x ∈ ∂Ω.

Here Ω is the open disk |x| < 1 in R2, u is a real valued function, v is a vector
field on ∂Ω of norm |v(x)| = 1 and Dv(u)(x) = 〈v(x),∇u(x)〉 is the directional
derivative of u in direction v.
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We identify the plane R2 with the complex plane C and consequently we
will use the complex notation z = x1 + ix2 and v(z) = v1(z) + iv2(z) as well.
Introducing the conjugate gradient ∇u = ∂1u − i∂2u the boundary condition
in (3.1) can be written in the following complex form <(v∇u(z)) = 0 for |z| = 1,
where < denotes the real part.

The linearization of (3.1) is given by

L(u)h(x) =
∑
|α|≤2

∂αf(x, . . . ,D2u(x))Dαh(x)

with boundary operator B = γDv(h). L is a real, elliptic, second order operator.
In this case the polynomial p0(x, ξ+τη) of (1.3) has two complex conjugate roots
with nonzero imaginary part while the corresponding equation for the symbol
of the boundary condition has a real root. It follows then that the boundary
condition Dvu = g verifies the Shapiro–Lopatinkĭı condition with respect to any
second order elliptic operator and therefore (3.1) is a nonlinear elliptic boundary
value problem in the sense of Section 1. Notice that v can be tangent ∂Ω at some
points. That the BVP (3.1) is elliptic in spite of this happens only in dimension
two.

The map G:H4+s(Ω) → H2+s(Ω)×H5/2+s(∂Ω) defined by

G(u) = (f(x, u,Du,D2u), Dvu)

is Fredholm and, by the results in [14], it is a quasilinear Fredholm map. We
will study the map G when the boundary condition is given a constant vector
field v(z) ≡ v1 + iv2. In this case DG(u) has index 2 as the following discussion
shows:

DG(u) is the map induced by the linear boundary value problem L(u)h =
f ; Dvh = g. Since the boundary condition Dvh = g is compatible with any
elliptic operator of second order, the path {sL(u) + (1− s)∆, Dv}0≤s≤1 induces
a homotopy of linear Fredholm operators in the corresponding spaces. Thus
in order to find the index of DG(u) it is enough to compute the index of the
operator ∆v:H4+s(Ω) → H2+s(Ω) × H5/2+s(∂Ω) induced by the linear BVP
[∆h = f ; Dvh = g]. By elementary means one can show that ∆v is surjective
with two dimensional kernel (cf. [10]). We review the proof here since we will
need a part of the proof later.

Let us compute first of all ker ∆v. If ∆h = 0, h is harmonic. Since the
skew-gradient of an harmonic function is analytic we have that also

φ = v∇h = (v1 + iv2)(∂1h− i∂2h)

is analytic on the disk and verifies <φ = 0 on the boundary. By the maximum
principle <φ(z) = 0 everywhere on the disk and therefore φ(z) = ic, with c a real
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constant. Thus ∂1h−i∂2h = ic(v1−iv2) and from this we get ∇h = c(v2,−v1) =
cv⊥. Therefore

∆v = {h/∇h(x) = cv⊥ for all x ∈ ∂Ω}(3.2)

= {h/h(x1, x2) = c(v2x1 − v1x2) + d}.

In order to prove the surjectivity of ∆v we first prove that the restriction
of Dv to ker ∆ is surjective. For this, given g ∈ H5/2+s(∂Ω) let us choose an
analytic function φ whose real part coincide with g on the boundary of the disc
(take any harmonic u function which restricts to g on the boundary and then
take φ = u + iu∗ where u∗ is any harmonic conjugate to u). Then ψ = vφ is
analytic and verifies <(vψ) = 0 on the boundary. But the Cauchy–Riemann
equations imply that an analytic function is always equal to ∇(u) for some
harmonic function u and this prove the surjectivity of Dv restricted to ker ∆.
The surjectivity of ∆v now follows from the following Lemma whose proof is left
to the reader.

Lemma 3.1. Let L:X → Y be a bounded operator with closed range and
let V be a closed subspace of Y such that ImL+V = Y Let E = L−1(V ) and let
L′:E → V be given by the restriction of L to E. Then

(i) kerL = kerL′, ImL′ = ImL∩F , CokerL′ = F/ ImL∩F ≡ CokerL ∼=
Y/ ImL,

(ii) L is Fredholm, surjective or injective if and only if L′ is. Moreover,
indL = indL′.

We apply Lemma 3.1 to

∆v = (∆, Dv):H4+s(Ω) → H2+s(Ω)×H5/2+s(∂Ω)

with V = {0} × H5/2+s(∂Ω) which verifies the transversality condition in the
hypothesis because ∆:H4+s(Ω) → H2+s(Ω) is surjective. Then L′ is the restric-
tion of γDv to ker ∆ which is surjective by the previous discussion and hence ∆v

is surjective as well.
Therefore the map G is a quasilinear Fredholm map (qlf-map) of index 2. In

order to obtain a problem of index 0 it is enough to restrict G to a subspace of
codimension 2 by imposing two linearly independent conditions on u. We will fur-
ther impose u(±1/2, 0) = 0. Another reasonable condition could be∇u(0, 0) = 0.
Clearly the restriction of a qlf-map to a finite codimensional subspace is a qlf-
map with index decreased by the codimension of the subspace. We then have
that the restriction of G to the subspace H̃(Ω) = {u ∈ H4+s(Ω)/u(±1/2, 0) = 0}
is a qlf-map of index 0. If we consider the constant vectorfield v as a parame-
ter we have a family of qlf-maps of index zero parametrized by S1. Since our
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boundary conditions are linear homogenous the problem can be simplified fur-
ther by restricting the map to the subspace of functions verifying the boundary
conditions. Namely for each v we consider the subspace Xv of H4+s(Ω) given by

Xv = {u ∈ H4+s(Ω)/u(±1/2, 0) = 0 and Dvu = 0 on ∂Ω}

and consider the map Fv:Xv → H2+s(Ω) defined by

Fv(u) = f(x, u,Du,D2u).

Since also Dv is surjective, an easy application of Lemma 3.1 (this time with
V = H5/2+s(∂Ω) shows that each Fv is also a qlf-map of index 0.

Our final observation is that the parametrization by v counts the solutions
of the equation twice, since Fv(u) = 0 and F−v(u) = 0 have exactly the same
solutions. The description of the ker∆v in (3.2) suggest that one can get rid of
the extra count of parameters by associating to each vector v the line through
the origin perpendicular to v. Namely, if l = {w/w = cv⊥, c ∈ R} we introduce
a new space

Xl = {u ∈ H4+s(Ω)/u(±1/2, 0) = 0, ∇u(x) ∈ l for all x ∈ ∂Ω}

and define Fl:Xl → H2+s(Ω) as the restriction of f(x, u,Du,D2u) to Xl. Notice
that Xl = Xv and Fl = Fv but now v and −v count once.

The set of all lines in the plane through the origin is the real projective space
RP 1, a compact manifold diffeomorphic to S1. While each map Fl is quasilinear,
the family {Fl:Xl → H2+s(Ω); l ∈ RP 1} is not quite a family of qlf-maps as
defined in Section 2. However it can be easily recast to that case. This is possible
because the family {Xl; l ∈ RP 1} form a Hilbert bundle over the space RP 1

(we postpone the proof of this for a moment) whose total space is the subspace
X̃ of RP 1 ×H4+s(Ω) given by X̃ = {(l, u)/l ∈ RP 1, u ∈ Xl)}. Moreover, the
family Fl defines a differentiable map F : X̃ → H2+s(Ω) (equivalently a bundle
map F̃ from the bundle X̃ to the trivial bundle RP 1 ×H2+s(Ω)). By Kuiper’s
theorem GL(H) is contractible if H is separable and from this it follows that
every Hilbert bundle with separable fiber has a trivialization, i.e. a vector bundle
isomorphism with a trivial bundle RP 1 × Xl0 . Then composing F with the
trivialization T we obtain a family of qlf-maps as defined in Section 2. Hence
we can apply the results obtained there to F ◦ T which is essentially the same
as F . First of all let us compute the index bundle of this qlf-family. Since
the index bundle is invariant under composition with isomorphisms it is well
defined for Fredholm morphisms between Hilbert bundles. Thus we can work
directly directly with the map F . But one does not need bundles really here,
we just drop the trivialization T from the notation. Let Ll = DFl(0), and
let D̃l be the restriction of ∆:H4+s(Ω) → H2+s(Ω) to Xl. Then as before
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Hl,s = sLl +(1− s)D̃l gives a homotopy between families of Fredholm operators
parametrized by RP 1. Hence IndF = IndL = Ind D̃.

We compute Ind D̃ as follows: we write each D̃l as composition of two Fred-
holm operators. For this let

H4+s
l (Ω) = {u ∈ H4+s(Ω)/∇u(x) ∈ l for all x ∈ ∂Ω}

and let ∆l be the restriction of ∆ to H4+s
l (Ω). Then D̃l = ∆l ◦ Il where Il is the

inclusion of of Xl into H4+s
l (Ω). The index of the family I, Ind (I) ∈ KO(RP 1) is

easy to find since each Il is injective and coker I = {coker Il}l∈RP 1 is isomorphic
to the trivial bundle Θ2 = RP 1 × R2, the isomorphism being induced by the
map u→ (u(−1/2, 0), u(1/2, 0)) ∈ R2. Thus Ind I = −[Θ2]. On the other hand
taking any v perpendicular to l by our previous calculation and Lemma 3.1 we
get:

coker∆l = coker ∆v = 0

and

ker ∆l = ker∆v = {h/∇h = cv⊥} = {h/∇h ∈ l}.

Hence the kernel bundle of ∆̃ = {∆l}l∈RP 1 is isomorphic to the direct sum of
the tautological line bundle ν over RP 1, whose total space is the Möebius band
{(l, w)/l ∈ RP 1, w ∈ l}, with the trivial line bundle Θ1. The isomorphism
ϕ: ker ∆̃ → ν ⊕ Θ1 is defined by ϕl(h) = (∇h, h(0)). By additivity property of
the index bundle Ind D̃ = Ind ∆̃ + Ind I = [ν ⊕ Θ1] − [Θ2] = [ν] − [Θ1]. This
element is a generator of K̃O(RP 1) ∼= Z2 with ω1([ν]−[Θ1]) = 1 in H1(RP 1, Z2).
Therefore we can apply our results obtained in Section 2. Moreover, since our
previous discussion is not affected by introducing the parameter l also in the
nonlinearity f we can consider general families of boundary value problems as
bellow.

Theorem 3.1. Let f(l, x, u,Du,D2u) be a family of second order nonlinear
elliptic operators parametrized by l ∈ RP 1

(i) The family of oblique derivative problems

(3.3)


f(l, x, u,Du,D2u) = 0 for x ∈ Ω,

∇u(x) ∈ l for x ∈ ∂Ω,

u(1/2, 0) = 0 = u(−1/2, 0),

cannot be reduced to a parametrized family of compact vector fields.
(ii) If there are a-priori bounds for solutions of (3.3) for all l ∈ RP 1 then for

large R, deg(Fl, B(0, R), 0) must vanish. Equivalently if for some fixed
line l0 there are bounds and deg (Fl0 , B(0, R), 0) 6= 0 then bifurcation
from infinity arise.
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For example if l0 is the y-axis and f(l0, x, u,Du,D2u) = ∆u. Then

deg(Fl0 , B(0, R), 0) = ±1

because ∆ with this boundary conditions is an isomorphism. Hence there must
some l ∈ RP 1 that is bifurcation point from infinity for solutions of (3.3).

Proof. We proved everything in the previous discussion except the fact
that the family Xl is a Hilbert bundle. Since local triviality is a local question
we check this on a small neighborhood of a given line l0. But lines l close to
l0 can be described in a continuous manner in terms of a chosen normal vector
v = v(l) and hence in this neighbourhood Xl = Xv(l). Now the local triviality
follows from the fact that Xv(l) are kernels of a family of surjective maps

Mv:H4+s
v(l) (Ω) → H

5/2+s
v(l) (∂Ω)×R2

defined by

Mv(u) = (〈v,∇u〉, u(1/2, 0), u(−1/2, 0)).

Families of kernels of surjective operators are always locally trivial in Hilbert
spaces. That each Mv is surjective follows from the surjectivity of ∆v proved
above. �

One can think that the failure of having a priori bounds and nontrivial degree
is caused by the presence of the two point conditions for a problem naturally of
index two, but it is not so as one can see considering the parametrized family the
oblique derivative problem for the same type of equation but with the boundary
condition given at each point x ∈ ∂Ω by the derivative in direction of the normal
rotated by an angle θ. In other words the boundary condition is Dvu = 0 but
this time with the vector field given by v(x) = x1 cos θ + x2 sin θ. Here we take
w = (cos θ, sin θ) as parameter.

A calculation similar to the case of constant vectorfield shows that the index
of BVP with this boundary condition is 0 and hence no extra conditions are
needed. Passing to the line perpendicular to w as before we get a family of
BVP parametrized by RP 1. For each line l ∈ RP 1 and z ∈ ∂Ω define the line
λ(l, z) = z · l i.e. the line obtained from l by multiplying all vectors in l by z.
Then we get a family of boundary value problems

(3.4)

{
f(l, z, u,Du,D2u) = 0 for z ∈ Ω,

∇u ∈ λ(l, z) for z ∈ ∂Ω.

Now our nonlinear map Fl is defined by f(l, z, u,Du,D2u) on the space of
maps verifying the boundary conditions

H4+s
λ (Ω) = {u ∈ H4+s(Ω)/∇u(z) ∈ λ(l, z) for z ∈ ∂Ω}.
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A slightly more elaborate argument which we won’t reproduce here shows that
for this F again IndF = [ν] − [Θ1] a generator of K̃O(RP 1) and hence our
conclusions in Theorem 3.1 hold in this case as well.

Considering general boundary conditions of the form ∇u ∈ λ(l, z) for z ∈ ∂Ω,
where λ:RP 1 × ∂Ω → S1 is any map, we get a problem of index 2(1− k) where
k is the winding number of λl: ∂Ω → S1 (c.f. [10]). It is easy to show that for
k ≤ 1 by adding 2(1−k)point conditions we obtain a problem of index 0 for which
the same conclusion hold. Using conformal representation everything extends to
simply-connected domains with smooth boundary and boundary conditions of
the general type described above.

Our next applications deals with a general nonlinear elliptic BVP of positive
index m > 0 on a bounded domain of in Rn with smooth boundary.

(3.5)

{
f(x, u(x), . . . , D2ku(x)) = 0 x ∈ Ω,

gi(x, u(x), . . . , Dmiu(x)) = 0 x ∈ ∂Ω, 1 ≤ i ≤ k, mi ≤ 2k − 1.

Let, as before,

X = H2k+2+s(Ω), s ≥ 0, and Y = H2+s(Ω)×
k∏
1

H2k+s−mi+3/2(∂Ω),

and let F :X → Y be qlf-map induced by (3.5).
For each m-dimensional subspace l of X let Nl = {v/〈v, w〉 = 0 for all w ∈ l}

be its normal inX. The restriction Fl of F toNl is a qlf-map of index 0. It follows
easily from the homotopy invariance of the absolute value of the degree that if for
some l0 we have that F−1

l0
(0) is bounded and deg(Fl0 , B(0, R)∩Nl, 0) 6= 0 then the

set F−1(0) of solutions of (3.5) cannot be bounded. Here we will say something
more about directions in which the solution of (3.5) escape to infinity. Let us
consider the Grassmannian Gm(X) of all m-dimensional subspaces of X with the
distance given by d(l, l′) = ‖πl−πl′‖, where πl is the orthogonal projector onto l.
Gm(X) is an infinite dimensional Banach manifold modeled by L(Rm;X).

Definition. An m-dimensional subspace l of X is a point of bifurcation
from infinity in the normal direction to l if there is a sequence (li) of elements of
Gm(X) converging to l and a sequence ui ∈ Nli of solutions of (3.5) such that
‖ui‖ → ∞.

There are several non equivalent notions of codimension of a closed subset of
an infinite dimensional manifold. We will use the following one: We will say that
the codimension of closed subset B of an manifold M is at most k if there exist
an increasing sequence Mj of of finite dimensional submanifolds whose union is
dense in M such that the Lebesgue covering dimension of B∩Mj is not less than
dim Mj − k. With this we can state our result.
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Theorem 3.2. Given the boundary value problem (3.5) if, for some l0,
F−1

l0
(0) is bounded and for R big enough deg(Fl0 , B(0, R) ∩ Nl, 0) 6= 0 then the

set B ⊂ Gm(X) of bifurcation points of (3.5) in the normal direction is of codi-
mension at most one in Gm(X).

Proof. Take an increasing sequence (Xj) of finite dimensional subspaces of
X such that l0 is contained in X1 and

⋃∞
j=1Xj is dense in X. Let Mj = Gm(Xj).

There is a natural inclusion of Mj into Mj+1 and of Mj into Gm(X). Moreover,
it is easy to see that

⋃∞
j=1Mj is dense in Gm(X). The normal spaces Nl form a

Hilbert bundle N over Gm(X) which is trivial and hence we can consider Fl as
a family of qlf-maps of index zero parametrized by the (non-compact) manifold
M = Gm(X).

Let Ll be the linearization at 0 of Fl. The family {Ll: l ∈M} can be written
as composition of a constant family given by the linearization DF (0) of the full
map F at the point 0 with the family of inclusions il:Nl → X, l ∈ M . Clearly
the same happens with the restriction of the family {Ll} to each Mj . Since Mj

are compact Ind {Ll : l ∈ Mj} is well defined. Since IndDF (0) = [Θm] we have
that

Ind {Ll : l ∈Mj} = [Θm] + Ind {il : l ∈Mj}.
The later is easy to compute since ker il = 0 and coker il = X/Nl ≡ νj where
νj is the tautological m-plane bundle over Mj = Gm(Xj). Thus Ind {Ll : l ∈
Mj} = [Θm] − νj . Since ω1(Θm − νj) 6= 0 in H1(Gm(Xj), Z2) by Corollary 1.4
(which holds for any qlf map of index 0) we get dimB∩Mj ≥ dimMj −1. This
proves the theorem. Related results were obtained in [16]. �
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