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APPROXIMATION AND LERAY-SCHAUDER
TYPE RESULTS FOR U MAPS

NASEER SHAHZAD

ABSTRACT. The paper presents new approximation and fixed point results
for U maps in Hausdorff locally convex spaces.

1. Introduction

In 1969, Ky Fan [2] proved an interesting result that combined fixed point
theory with the study of proximity maps. Its normed space version is stated as
follows:

Let C' be a nonempty, compact, conver subset of a normed space E. Then
for any continuous mapping [ from C to E, there exists an o € C with

lzo = f(zo)ll = inf ||f(z0) —yll

During the last three decades, various multi-valued and single-valued ver-
sions of Fan’s result have been established by a number of authors; see, for
instance, [1], [3], [5]-[7], [9], [10], [12], [13], [18], [19]. Recently, Lin and Park in
[7] obtained a multivalued version of Ky Fan’s result for a-condensing U/ maps
defined on a closed ball in a Banach space. More recently, O’'Regan and Shahzad
in [12] extended their result to countably condensing maps. The purpose of this
paper is to prove some Ky Fan type approximation results for ®-condensing
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UF multimaps, where C' is a closed convex subset of a Hausdorff locally con-
vex space E with 0 € int(C). Since every a-condensing map F:C — 2F is
®-condensing if C' is complete, the results of Lin and Park (see [7]) can be con-
sidered as special cases of our work. We also derive, as an application, the
Leray—Schauder principle for & multimaps, which was proved by Lin and Yu
in [8]. The Leray—Schauder type results for compact admissible multimaps and
approximable multimaps were obtained in [15] and [16].

2. Preliminaries

Let E be a Hausdorff locally convex space. For a nonempty set Y C FE, 2Y
denotes the family of nonempty subsets of Y. If L is a lattice with a minimal ele-
ment 0, a mapping ®: 2% — L is called a generalized measure of noncompactness
provided that the following conditions hold:

(a) ®(A) =0 if and only if A is compact.
(b) ®(co(A)) = ®(A); here o(A) denotes the closed convex hull of A.
(¢c) ®(AU B) = max{®(A),®(B)}.

It is clear that if A C B, then ®(A) < ®(B). Examples of the generalized
measure of noncompactness are the Kuratowskii measure and the Hausdorff mea-
sure of noncompactness (see [15]), which are defined below. Let C be a nonempty
subset of a Banach space X. The Kuratowskii measure of noncompactness is the
map o:2¢ — L defined by

a(A) = inf{e > 0| A can be covered by a finite number of sets

each of diamter less than e},

for A € 2¢. The Hausdorff measure of noncompactness is the map x:2¢ — L
defined by

X(A) = inf{e > 0| A can be covered by a finite number of balls

with radius less than e},

for A € 2¢.

Let C' be a nonempty subset of a Hausdorff locally convex space FE and
F:C — 2F. Then F is called ®-condensing provided that ®(A) = 0 for any
A C C with ®(F(A)) > ®(A). Note that any compact map or any map defined
on a compact set is $-condensing.

Let X and Y be subsets of Hausdorff topological vector spaces F, and Ey
respectively. Let F: X — K(Y); here K(Y) denotes the family of nonempty
compact subsets of Y. Then F' is Kakutani if F' is upper semicontinuous with
convex values. A nonempty topological space is called acyclic if all its reduced
Cech homology groups over the rationals are trivial. Now F is acyclic if F is up-
per semicontinuous with acyclic values. The map F' is said to be an O’Neill map
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if F'is continuous and if the values of F' consist of one or m acyclic components
(here m is fixed).

For our next definition let X and Y be metric spaces. A continuous single
valued map p:Y — X is called a Vietoris map if the following two conditions
hold:

(a) for each z € X, the set p~!(x) is acyclic,
(b) p is a proper map i.e., for every compact A C X we have that p~1(A)
is compact.

A multifunction ¢: X — K(Y) is admissible (strongly) in the sense of Gér-
niewicz [4], if there exists a metric space Z and two continuous maps p: Z — X
and ¢: Z — Y such that

(a) p is a Vietoris map, and
(b) ¢(x) = q(p~t(x)), for any x € X.

Let X be a nonempty convex subset of a Hausdorff topological vector space E
and Y a topological space. A ploytope P in X is any convex hull of a nonempty
finite subset of X; or a nonempty compact convex subset of X contained in
a finite dimentional subpace of E. Given a class X of maps, X(X,Y") denotes
the set of maps F: X — 2¥ belonging to X, and X, the set of finite compositions
of maps in X. A class U of maps is defined by the following properties:

(a) U contains the class C of single valued continuous functions,

(b) each F' € U, is upper semicontinuous and compact valued,

(c) for any polytope P, F' € U.(P, P) has a fixed point, where the interme-
diate spaces of composites are suitably chosen for each U.

An important class related to U.(X,Y) is given below.

F € UF(X,Y) if for any compact subset K of X, there is a G € U.(K,Y)
with G(z) C F(z) for each x € K.

Examples of U maps are the Kakutani maps, the acyclic maps, the O’Neill
maps, and the maps admissible in the sense of Gérniewicz. Note that U(X,Y") C
U(X,Y) CUF(X,Y),

Let Q be a subset of a Hausdorff topological space X. We let @ (respectively,
9(Q), int(Q)) to denote the closure (respectively, boundary, interior) of Q.

Let C be a subset of a Hausdorff topological vector space £ and = € X.
Then the inward set Io(x) is defined by

Ic(x)={z+r(y—x)|ye€C, r >0}
If C'is convex and x € C, then
Io(z) =2+ {rly— o) |y € C, > 1}.

We shall need the following results in the sequel.
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LEMMA 2.1 ([14]). Let C be a nonempty, convex subset of a Hausdorff locally
convex space E. Suppose F € UF(C,C) is a compact map. Then F has a fized
point in C.

LEMMA 2.2 ([11]). Let C be a nonempty, closed, convex subset of a Hausdorff
topological vector space E. Suppose G:C — 2 is a ®-condensing map. Then
there exists a nonempty compact convex subset K of C such that G(K) C K.

Let C be a convex subset of a Hausdorff locally convex space E with 0 €
int(C'). The Minkowski functional p of C is defined by

p(z) =inf{r > 0|z € rC}.

Now, we list some properties of the Minkowski functional:

(a) p is continuous on E,
(

() p(z)=1,if z € OC.
For z € E, set dp(z,C) =inf{p(x —y) |y € C}.

3. Main results

THEOREM 3.1. Let C be a closed, convez subset of a Hausdorff locally convex
space E with 0 € C and U a convexr open neighbourhood of 0. Suppose F €
U(UNC, C) is a ®-condensing map. Then there exist xg € UNC and yo € F(z0)
with

p(yo — x0) = dp(y0, U N C) = dy(yo, I7(z0) N C),
here p is the Minkowski functional of U. More precisely, either

(a) F has a fived point xo € UNC, or
(b) there exist xg € Oc(U) and yo € F(xg) with

0 < p(yo — z0) = dp(y0, U N C) = dy(yo, I7(z0) N C).

Here 0 (U) denotes the boundary of U relative to C.
PROOF. Let r: E — U be defined by
T ifxeU,
r(z) = —
x/p(z) ifxgU,

that is
r(x S — for x € E.

max{1, p(z)}’
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Since 0 € U = int(U), p is continuous and so r is continuous. Let f be the
restriction of 7 to C. Since C' is convex and 0 € C, it follows that f(C) CUNC.
Also f € C(C,UNC). Since U is closed under composition, f o F € U(U N
C,UNC). Let G = f o F. We show that G is ®-condensing. Let A be a subset
of U N C such that ®(A) < ®(G(A)). Then G(A) C co({0} U F(A)) and so

?(A4) < (G(A)) < @(co({0} U F(A))) < 2({0} U F(A))
= max{®({0}), B(F(A))} = ©(F(A)),

which gives A is compact. This shows that G is ®-condensing and so, by
Lemma, 2.2, there exists a nonempty compact convex subset K of U N C such
that G(K) C K. Since G € US(UN C,UNC) and K is compact, there exists
T € U(K,UNC) such that T(z) C G(x) for all x € K. This implies that
T(K) C G(K) C K and T is compact. Since T' € U (K, K), by Lemma 2.1, T
has a fixed point zg € K, that is, 29 € T(x9) C G(wg). Clearly 2o € U N C.
Therefore, there exists some yo € F(xg) with 29 = f(yo). Now, we consider two
cases:

(a) yo € UNC or
(b) yo € C\U.

Suppose 3o € UNC. Then zo = f(yo) = yo. As a result
P(yo — o) =0 = dy(yo, U NC)

and ¢ is a fixed point of F. On the other hand, if yo € C'\ U, then

Yo
p(yo)’

zo = f(yo) =

So, for any z € UNC,
)= Y\ _ (ply) -1
Plyo ~ @) =p (yo p(yo)) ( p(yo) ) Plvo)
=p(yo) — 1 < p(yo) — p(z) = p((yo — ) + =) — p(x) < p(yo — z),

which gives
p(yo — x0) = inf{p(yo — 2) | 2 € UNC} =dp(yo,UNC).

Since p(yo — o) = p(yo) — 1, we have p(yo — o) > 0.
Let z € I(z9) N C\ (U N C). Then there exists y € U and ¢ > 1 with
z =z + c(y — xg). Suppose that

p(yo — 2) < p(yo — o).

The convexity of C' implies that

1 1
—z+ (1—)950 eC.
c c
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Since
1

1 _
z+(1>x0y€U,
c c

it follows that

1 1
p(Yo —y) = p[c(yo —2)+ (1 - c) (o — 900)]
1 1
< —plyo —2) + (1 - C)p(yo — o) < p(yo — To)-
This contradicts the choice of yg. Consequently, we have

(Yo — x0) < p(yo — 2z) for all z € Iz(xo) N C.

The continuity of p further implies that

p(yo — o) < p(yo — 2) for all z € Iz(xo) N C.

Hence

0 < p(yo — w0) = dy(yo, U N C) = dy(yo, Iz (w0) N C).

If 2o € U, then I7(z) = E and so d,(yo, Ii7(xo) N C) = 0. Thus x¢ € 0c(U). O
Essentially the same reasoning as before yields the following result.

THEOREM 3.2. Let C' be a closed, conver subset of a Hausdorff locally spa-
ce E with 0 € int(C). Suppose F € UF(C,E) is a ®-condensing map. Then
there exist xg € C' and yo € F(xo) with

p(yo — x0) = dp(yo, C) = dp(yo, Ic(20)),
here p is the Minkowski functional of C' in E. More precisely, either

(a) F has a fized point xog € C, or
(b) there exist xg € O(C) and yo € F(xo) with

0 < p(yo — wo) = dp(y0,C) = dp(yo, Ic(w0))-

Since p(z) = ||z||/R is the Minkowski functional on B, we have the following
result.

COROLLARY 3.3. Let E be a normed space. Suppose F' € UF(Bg, E) is a
®-condensing map. Then there exist xo € Br and yo € F(xo) with

lyo — zoll = d(yo, Br) = d(yo, Iy (w0))-
More precisely, either

(a) F has a fized point xo € Br or
(b) there exist xo € O(Br) and yo € F(xo) with

0 < [lyo — zo|| = d(yo, Br) = d(yo, 1B (x0)).



APPROXIMATION RESULTS 343

REMARK 3.1. Theorem 1 of Lin and Park [7] and a result of Lin [6] can be
considered as special cases of Corollary 3.3.

As applications of our approximation theorems, we now derive some fixed
point results.

THEOREM 3.4. Let C be a closed, conver subset of a Hausdorff locally convex
space E with 0 € C and U a convex open neighbourhood of 0. Suppose F €
URU N C,C) is a ®-condensing map. If F satisfies any one of the following
conditions for any x € 0c(U) \ F(x):

(a) for eachy € F(x), ply — z) < p(y — x) for some z € Iz(x) N C,
(b) for each y € F(x), there exists A with |A| < 1 such that Az + (1 — Ny €
Ig(z )00
F(z) C Ig(z) N C,
Fl@)yn{xx | A>1} =10,
for each y € F(z), ply — ) # p(y) — 1,
or each y € F(x), there exists o € (1,00) such that

()
(d)
()
() f

p*(y) —1 < p*(y — x),

(g) for eachy € F(x), there exists 3 € (0,1) such that p®(y)—1 > pP(y—x),
then F has a fized point.

PRrROOF. Theorem 3.1 guarantees that either

(1) F has a fixed point in U N C or
(2) there exist xg € 0c(U) and yo € F(xo) with 29 = f(yo) such that

0 < p(yo) — 1 =p(yo — x0) = dp(y0, U N C) = dp(yo, Ir(z0) N C),

where p is the Minkowski functional of U and f is the restriction of the
continuous retraction r to C.

Suppose (2) holds (with some xo and yo) and z¢ ¢ F(xo). We shall show
contradictions in all conditions (a)—(g).

If F satisfies condition (a), then we have p(yo — 2) < p(yo — 2p), for some
z € I7(w9) N C. This contradicts the choice of .

If F satisfies condition (b), then there exists A with |A| < 1 such that Az +
(1 = Nyo € I7(xo) N C. This implies that

P(yo — z0) < p(yo — (Azo + (1 = N)yo)) = p(AMyo — z0))
= [Alp(yo — 20) < p(yo — o),

which is a contradiction.

The proof for condition (c) is obvious.
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If F' satisfies condition (d), then Azo # yo for each A > 1. But we have
o = f(y¥0) = Yo/p(yo). Therefore, yo = Aoxo With \g = p(yo) > 1, which is a
contradiction.

If F satisfies condition (e), then p(yo — o) # p(yo) — 1 and this contradicts
p(yo — o) = p(yo) — 1.

If F satisfies condition (f), then there exists a € (1,00) with p®(yg) — 1 <
p*(yo — o). Set Ao = 1/p(yo). Then Ay € (0,1) and

(p(yo) — >

p*(yo) =1 _ p*(yo — o)
=(1=X)¥<1=)\S= < .
p*(yo) (1= 2) 0

p*(yo) ~—  p*(%)

This implies that p(yo — zo) > p(yo) — 1. This contradicts the fact that p(yo —
z0) = p(yo) — 1.

Finally if F' satisfies condition (g), then, as above (see the proof of (f)), we
can get a contradiction to p(yo — o) = p(yo) — 1. O

REMARK 3.2. We have derived the Leray—Schauder principle as an applica-
tion of Theorem 3.1 (see Theorem 3.4(d)), which was established by Lin and Yu
in [8].

Essentially the same reasoning as in Theorem 3.4 (with Theorem 3.2 replacing
Theorem 3.1) yields the following result.

THEOREM 3.5. Let C' be a closed, conver subset of a Hausdorff locally convex
space E with 0 € int(C). Suppose F € UF(C, E) is a ®-condensing map. If F
satisfies any one of the following conditions for any x € 9(C) \ F(z):

(a) for eachy € F(z), p(y — 2) < p(y — ), for some z € Ic(x),
(b) for each y € F(x), there exists A with |A| < 1 such that

Az + (1 =Ny € Io(z),

(c) F(z) C Ic(x),

(d) Fl@)yn{ x| A>1} =10,

(e) for eachy € F(x), p(y — ) # p(y) — 1,

(f) for each y € F(x), there exists o € (1,00) such that

F
F

p(y) -1 <p*(y — ),
(g) for eachy € F(x), there exists 3 € (0,1) such that pP(y)—1 > pP(y—x),
then F has a fized point.

COROLLARY 3.6. Let E be a normed space. Suppose F € UF(Bg, E) is a
®-condensing map. If F satisfies any one of the following conditions for any

x € 0(Bgr)\ F(x):
(a) for eachy € F(x), |ly — 2|l < lly — 2|, for some z € Ip,(x),
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(b) for each y € F(x), there exists X\ with |\| < 1 such that Ax + (1 — Ny €
IBR(x)7
(¢) F(z) C Ip,(2),
(d) Flz)yn{xz | A>1} =0,
(e) for eachy € F(x), |ly — x| # [yl - R,
(f)
)

f) for eachy € F(x), there exists o € (1,00) such that ||ly||*—R < |ly—z||*,
(g) for eachy € F(x), there exists 8 € (0,1) such that ||y||® — R > ||y —=|?,

then F has a fized point.

z),
z),

REMARK 3.3. Corollary 3.6 contains, as special cases, Theorem 2 of Lin and
Park [7] as well as a result of Lin [6].

Essentially the same reasoning as above gives the following results in Hilbert
spaces (here the retraction r is replaced by the proximity map p), which extend
Theorem 3 and Theorem 4 of Lin and Park [7].

THEOREM 3.7. Let C be a nonempty, closed, convex subset of a Hilbert
space H. Suppose F € U*(C,H) is a ®-condensing map. Then there exist x
and yo € F(xo) with

||y0 - .’IJQH = d(yoa C) = d(y07IC(‘r0))a
here || - || is the norm induced by the inner product. More precisely, either

(a) F has a fixved point 9 € C or
(b) there exist xg € O(C) and yo € F(xo) with

0 < |lyo — 2ol = d(yo,C) = d(yo, Ic(x0)).

THEOREM 3.8. Let C' be a nonempty, closed, conver subset of a Hilbert
space H. Suppose F € UY(C, H) is a ®-condensing map. If F satisfies any one
of the following conditions for any x € 9(C) \ F(z):

(a) for eachy € F(z), |y — 2| < lly - all, for some = € To(),

(b) for each y € F(x), there exists A with |A| < 1 such that Az + (1 — Ny €
Io(z),

(c) F(z) € Ic(x),
then F has a fized point.
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