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CORRECTION OF
“MORIN SINGULARITIES AND GLOBAL GEOMETRY

IN A CLASS OF ORDINARY DIFFERENTIAL OPERATORS”
(TOPOL. METHODS NONLINEAR ANAL. 10 (1997), 37–169)

Iaci Malta — Nicolau C. Saldanha — Carlos Tomei

Theorem 1.2, page 142, is wrong as stated. We give a counterexample and
present a convenient hypothesis on the nonlinearity f under which the theorem
and its proof are correct. The hypothesis is satisfied by all examples in the rest
of the paper.

The proof of the last sentence of Lemma 3.5 is missing: “Also, Ŝk 6= ∅ implies
Sk 6= ∅.”.

About Theorem 1.2

We begin with a counterexample. Let f(t, u) = 2π cos(2πt) cosh2(u). Then
there are no periodic functions u for which u′(t) + f(t, u(t)) is constant. In
particular, the point 0 ∈ B0 is not in the image of the map Ψ constructed in
Theorem 1.2.

Proof. The solutions of the equation u′(t) + f(t, u(t)) = 0 are

u = −arctanh(sin(2πt) + C), C ∈ (−2, 2).

For C = 0, consider the solutions u− and u+ on disjoint domains (−1/4, 1/4)
and (1/4, 3/4). Notice that u− (resp. u+) is strictly decreasing (resp. increasing)
with absolute value tending to infinity at the endpoints of the domain.
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Figure 1. Solutions for C = 0 and C = ±0.3

The graph of any periodic function uν must cross the graphs of both u− and
u+ at times t− and t+, respectively, for which u′ν(t−) + f(t−, uν(t−)) ≥ 0 and
u′ν(t+) + f(t+, uν(t+)) ≤ 0. If u′ν(t) + f(t, uν(t)) = ν for all t then, from the
conditions above, ν = 0. This, however, implies that uν must equal both u− and
u+, a contradiction. �

A function f : S1 × R → R is wild at ∞ (resp. −∞) if∫
I

ds

max(1, supt∈S1 f(t, s))
< ∞,

∫
I

ds

max(1, supt∈S1(−f(t, s)))
< ∞

for I = [0,+∞) (resp. I = (−∞, 0]). We show that if f is tame (i.e. not
wild at ±∞) then Theorem 1.2 and Lemma 1.3 hold, with the same proof.
Furthermore, autonomous functions (i.e. which do not depend on t), proper
functions and functions f which are non-decreasing in the second variable are
all tame. This makes all other arguments and statements in the paper correct
as written. Loosely, f being tame implies that a solution u can not go very far
and come back in bounded time.

The offending sentence in the proof of Theorem 1.2 is “By continuous depen-
dence on parameters, both (A+ and A−) are closed” (page 143, lines 18 and 19):
in the above example A+ is an open half-line. Let f : S1 × R → R, ṽ ∈ B0 ⊂ L1

and uν be the maximal solution of u′ν(t) + f(t, uν(t)) = ṽ(t) + ν, uν(0) = c. Set
ν0 = supA− = inf A+: if ν0 ∈ A− ∩ A+ then uν0 is periodic. We show that
ν0 /∈ A∓ implies that f is wild at ±∞. We consider the case ν0 /∈ A−.

Proof. If uν0 is defined in [0, 1] with uν0(1) > c then continuous dependence
implies that some open neighbourhood of ν0 is contained in A+, a contradiction.
Define tc ∈ (0, 1] by

lim
t→tc

uν0(t) = ∞.

If tc = 1, continuous dependence again implies that ν0 is in the interior of A+;
we therefore have tc < 1. Thus, for every M ∈ R there exists ν < ν0 and tν > tc
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such that uν(tc) > M , uν(tν) < c. Set

I
ev = {t ∈ [0, tc] | −f(t, uν(t)) ≤ ṽ(t) + ν}.

For t ∈ I
ev we have u′ν(t) ≤ 2ṽ(t) + 2ν and the Lebesgue measure µ(uν(Iv)) is

bounded above by 2|ν| + 2||ṽ||L1 . Define h: [c,M ] → [0, tc] by h(s) = inf{t ∈
[0, tc] | uν(t) = s}. Even though h may have discontinuities, it is strictly increas-
ing and then, for almost all s, h is differentiable with h′(s) = 1/u′ν(h(s)). Let
Jf = [c,M ] \uν(Iv): for s ∈ Jf , we have h(s) /∈ I

ev and h′(s) ≥ −1/(2f(h(s), s)).
Thus,

tc ≥ µ(h(Jf )) ≥
∫

Jf

h′(s) ds ≥ 1
2

∫
Jf

ds

max(1, supt∈S1(−f(t, s)))

and therefore∫ M

c

ds

max(1, supt∈S1(−f(t, s)))
≤ 2tc + 2|ν|+ 2||ṽ||L1 .

Since this estimate holds for arbitrarily large M ,∫ +∞

0

ds

max(1, supt∈S1(−f(t, s)))
< ∞.

A similar argument for the interval [tc, tν ] yields∫ +∞

0

ds

max(1, supt∈S1(f(t, s)))
< ∞,

implying that f is wild at ∞.

About Lemma 3.5

Proof. Assume Ŝk 6= ∅. Following the notation of the proof of Lemma 3.5,
use the space V and the function φ to obtain r > 0 and a function H: Bk → B1

with ∫
γ̂k(H(s)(t)) dt = rs

for s ∈ Bk where Bk ⊂ Rk is the unit ball.
Define the N -replicator to be the isomorphism RN :Bi → RN (Bi) ⊂ Bi,

(RN (u))(t) = u(Nt), i = 0, 1. Clearly, (RN (u))′ = NRN (u′). We claim that
given ε > 0 there exists N such that

|(wΦ(RN (H(s))), . . . , wkΦ(RN (H(s))))− rs| < ε

for all s ∈ Bk and the proof is completed by a standard degree theory argument.
At this point it is convenient to make explicit the dependence of w = w(u) in

terms of u. From Proposition 1.1, λ =
∫

f ′(u(t))dt is the same for u and RN (u)
and we have

(w(RN (u)))′(t) + f ′(RN (u(t)))w(RN (u))(t) = λw(RN (u))(t).
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Define wN (u) by RN (wN (u)) = w(RN (u)) so that

(wN (u))′(t) +
f ′(u(t))

N
wN (u)(t) =

λ

N
wN (u)(t)

and, from the formula for w in Proposition 1.1, wN (u)(t) = (w(u)(t))(1/N).
Recall that Φ(u) =

∫
f(u(t))dt and therefore Φ(RN (u)) = Φ(u) and

(wΦ(RN (u)), . . . , wkΦ(RN (u))) = (wNΦ(u), . . . , wk
NΦ(u)).

The sequence (wN ) of vector fields tends to the constant vector field 1 (i.e. the
constant function 1 at every point u) in the Cn-metric (for any n). Also,

(1Φ(RN (u)), . . . ,1kΦ(RN (u))) =
∫

γ̂k(u(t))dt,

proving the claim. �

It also follows from the above argument that D((wΦ, . . . , wkΦ) ◦ RN ◦ H)
tends to the identity matrix when N goes to infinity, establishing condition (c)
in Proposition 2.1. Condition (b) follows from the additional hypothesis of f

being (k + 1)-good, thus proving the existence of Morin singularities of order k.
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