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COMBINATORIAL LEMMAS FOR ORIENTED COMPLEXES

ADAM IDZIK — KONSTANTY JUNOSZA-SZANIAWSKI

80 years of the Sperner lemma

ABSTRACT. A solid combinatorial theory is presented. The generalized
Sperner lemma for chains is derived from the combinatorial Stokes for-
mula. Many other generalizations follow from applications of an n-index of
a labelling defined on chains with values in primoids. Primoids appear as
the most general structure for which Sperner type theorems can be formu-
lated. Their properties and various examples are given. New combinatorial
theorems for primoids are proved. Applying them to different primoids
the well-known classic results of Sperner, Fan, Shapley, Lee and Shih are
obtained.

1. Introduction

In 1928 Emanuel Sperner [29] published a very simple and useful combina-
torial lemma. This lemma establishes the existence of a simplex in triangulation
of the n-dimensional simplex with vertices labelled by numbers from 0 to n,
if some boundary conditions are satisfied. The Sperner theorem on a covering
of the simplex directly follows from this lemma. Through almost eighty years
this combinatorial lemma found lots of applications in various fields of mathema-
tics, among others in nonlinear analysis, combinatorics, mathematical economics,
game theory and topology. Many of its generalizations also appeared.
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One of the well-known applications of the Sperner lemma and a generaliza-
tion of the Sperner covering theorem is the Knaster, Kuratowski and Mazur-
kiewicz [17] covering lemma published in 1929. It gives a simple proof of the
Brouwer fixed point theorem.

Another version of the Sperner lemma is based on an orientation of a simplex.
If the assumptions of the classic Sperner lemma are satisfied, then there exists
not only a completely labelled simplex, but the difference between a number of
positively oriented and negatively oriented completely labelled simplexes equals
to one.

Most of generalizations went in two directions: one is due to a set of labels
and the other is due to a labelled set.

Shapley [26] labelled vertices of triangulation of the simplex by subsets
of the set of vertices of the simplex. His theorem was generalized by Ichi-
ishi and Idzik [10]-[12] for labelling by vectors. Lovdsz [23] labelled vertices
of triangulation of the simplex by elements of the matroid. Idzik [13] proved
a theorem on covering of the simplex, which follows from the Lovasz theorem.
Tucker [35] labelled vertices of triangulation of the n-dimensional cube by num-
bers: —n,...,—1,1,... ,n. His lemma allowed to present a simple proof of the
Borsuk—Ulam theorem [4]. In a similar way Kulpa, Turzariski i Socha [19], [20]
used numbers: —n,... ,—1,1,... ,n, to label vertices of triangulation of the n-
cube, but with different boundary conditions. A parametric generalization of
the Poincaré theorem follows from their result. Ky Fan [5]-[7] used the same
labels to label pseudomanifolds and van der Laan, Talman and Yang [21] labelled
vertices of triangulation of polyhedrons by vectors. Todd [32], [33] and Bapat [1]
used primoids to label n-pseudomanifolds.

Further generalizations involved not only pseudomanifolds, but also chains
(Lindstrom [22]). At the conference organized to celebrate fifty years of publi-
cation of the classic Sperner lemma in Amsterdam, Sperner [30], [31] presented
a generalized Sperner lemma for chains. All these previous theorems on labellings
follow from this lemma.

Another step in development of this theory was made by Bapat [2]. He
introduced a multilabelling by numbers. Lee and Shih [27] also studied a multi-
labelling. They used vectors for labels.

Many generalizations of the Sperner lemma follow from an index theory of
a labelling of chains with values in primoids. New combinatorial theorems, which
generalize the well-known results of Bapat [1], [2], Ichiishi and Idzik [10]-[12],
Lee and Shih [27], [28], Linstrém [22], Lovasz [23], Shapley [26], Todd [32], [33]
are presented in this paper.
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Related problems are considered in the paper of Bjorner [3]. Some proofs
of related theorems known in the literature are presented for convenience of the
reader.

2. Preliminaries

By N, Z, R we denote the set of natural numbers, integer numbers and reals
respectively and by Zs we denote the ring ({0,1}, +mod2, - ). For n € N, let
I, ={0,...,n}. Let V be a finite set. P(V) is the family of all subsets of V
and P, (V) is the family of all subsets of V of the cardinality n+ 1 (n € N). An
element of P, (V) is called an n-simplex on the set V and a nonempty family
C" C P,(V) of n-simplexes on V is called an n-complex on the set V. For a
set A, we write (4)"*! to denote the Cartesian product [] A;, where A; = A
for ¢ € I, (for (R)™, we write R™).

Let R be a commutative ring with the unity, 7 be a permutation of the

i€l,

set I, and sgn7 = 1 (sgn7 = —1) if the permutation 7 is even (odd) (1 is
the unity in R). For an n-simplex S™ = {vg,... ,v,} € P,(V), let loS™ =
{(v(0),...,v(n)) : v:I, — S™is a one-to-one function} denote the set of all
linear orders of the set S™ and for an n-complex C"* C P, (V) let loC" =
Ugnecn 10S™. An orientation of an n-simpler S™ = {vo,... ,v,} € P, (V) is
a function orgn: (™)1 — {—1,0,1} fulfilling the condition org= (wy, . .. ,w,) =
SgN T-0rsn (Wr(0), - - - » Wr(ny) for a permutation 7 (w; € S™ fori € I,,, {—1,0,1} C
R). In fact there are only two such functions except the zero function if the ring R
has at least three elements. If the ring R = Zs, then there is exactly one nonzero
orientation. Notice that orgn (v, ... ,v,) = 0if v; = v; for some ¢ # j, i,j € I,.
An orientation of an n-complez C™ is a function orgn: (V)" — {-1,0, 1} such
that orgn|(S™)"*! is an orientation of each S™ € C™ and orcn (v, ... ,v,) = 0
for {vg,...,vn} ¢ C™. We call a pair (5™, orgn), (C", orgn) an oriented n-
simplex, an oriented n-complezx, respectively.

There are many ways to define an orientation of an n-complex C™. One of
them is to choose a linear order " € lo S™ for every S™ € C". Let C* = {S" :
S™ e C"}. A function defined by

sgn7 if there exists 5" €Cmand a permutation 7
OrGn (woy ... ,Wy) = of I, such that (’LUT(Q), e ,w.,-(n)) = gn,
0 if {wp,...,w,} ¢ C™,

is well-defined and it is an orientation of the n-complex C™. We say that the set
C" defines the orientation org. and it is a representation of the orientation org,, .
And we say that C” is oriented by C" instead of org,. For an orientation orcn
of an n-complex C” we may choose a representation C™ such that orgn = Or'Gn -
The choice of the representation is not necessarily unique.
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From now on, for S® € C" we denote the unique element in C"Nlo S™ by 5"

Let S € P,(V), v € S® and S"~! = 8"\ {v}. The (n — 1)-simplex
S"1 is called a facet of the n-simplex S™ opposite to the vertex v. A function
orgn 4: (S"71)" — {—1,0,1} defined by

orgn »(W1,...,wy) = orgn(vV,wi,...,Wwy)

for (w1, ... ,wy,) € (S"71)" is an induced orientation of the (n—1)-simplex S™~*
by an orientation orgn. If the orientation org» is defined by gn, then we write
orgn , instead of orgn ,.

An n-complex C™ on V is called an n-pseudomanifold if any (n — 1)-simplex
on V is contained in at most two n-simplexes of C™. An n-pseudo-manifold can
be also defined as n-complex on the set V fulfilling the condition: for every n-
simplex S™ € C™ and for every v € S™ there exists at most one v’ € V'\ 8§ such
that an n-simplex S™\ {v} U {v'} € C". An n-pseudomanifold C" is coherently
oriented by an orientation orga if for (v,vy,...,v,), (V' v1,...,v,) € loC™,
(v # ') we have

orgn (V,v1, ... ,vp) = —orcn (V/, 01, ... ,U,).

Notice that the condition above is equivalent to the condition: for ¢ € I,, and for
(V0y -+, Vim1, U, U1y - -, Up)y (U0, - v s Vi—1, 0 011, o Uy) € 10C™ (v £ 0) we

have

/
Orcn(l}o,... s Vi—1, Uy Vjg1y e - ,Un) = —OI‘Cn(Uo,... yVi—1,U 3 Uit1y .- ,Un).

In other words, for any two n-simplexes of C"™ with a common facet, orgn
induce the opposite orientation on their common facet. Observe that an n-
pseudomanifold may be not coherently orientable if the ring R has at least three
elements. In the case R = Zs every n-pseudomanifold is coherently orientable
since 1 = —1 in Zs.

EXAMPLE 2.1 (discrete M&bius strip). The family

{{1,2,4},{1,3,4},{3,4,6},{3,5,6},{1,5,6},{1,2,5}}

is 2-pseudomanifold and there is no coherent orientation of it if the ring R has
at least three elements.

For a set A C R™, coA = {apap+ ...+ @mam : a; € A, Z;ioai =1, a >
0 for i € I,,,, m € N} is the convex hull of A, af A = {apap + ... + amam :
St =1, a; € A, «; € Rfori € I,,, m € N} is the affine hull of A,
cone(A4,b) = {ap(ao—b)+... 4+ am(am —b):a; € A, a; >0 for i € I,,,, m € N}

is the cone pointed at b € R™ and span by the set A, ri A is the relative interior
of A, bd A is the boundary of A and clA is the closure of A. Observe that aff A
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is a linear subspace of R™. A finite set A = {ag,...,am} C R™ is an affinely
independent set if the dimension of aff A is m (m < n).

3. Chains

Let (R,+, -,1) be a commutative ring with the unity, V' be a finite set
and P, (V), P,_1(V) be oriented by representations V,, V,_1, respectively.
A function ¢™: (V)"*! — R fulfilling the condition ¢"(vo,...,v,) = sgnt -
0" (Vr(0ys - -+ 5 Vr(ny) for all (vg, ... ,v,) € (V)" and for all permutations 7 of
the set I, is called an n-chain on the set V. All n-chains considered in this paper
have values in the ring R. The n-chain on V is a generalization of the orientation
of P, (V).

We define operations of the sum and the multiplication by an element of
the ring R for n-chains in the following way: for n-chains 7,05, o € R and
(Vo,...,v,) € (V)HL

(0T ®5)(vg, .. yvn) = L7 (vo,... ,vn) + €5 (Vo - ,0p),

(@) (voy ... yvn) = a-LF(voy... , V).

Any n-chain on V' can be formally written in the form
én = @ O{gn @Xgn’
S"eV,
where V,, is the representation of an orientation of P, (V), agn € R, for S eV,
and xg»: (V)" — {-1,0,1} ({-1,0,1} C R) is an n-chain defined by
sgn7 if there exists a permutation 7 of the set I,
Xz (Vo, ... s vn) = such that (v,(o), ... Vr(n)) = s,
0 in other cases.
The set of all n-chains on V' is denoted by £L™(V).
It is easy to prove that (L™(V),®,®, R) is a module over the ring R.
Notice that a function 17, := gy, 1 © xgr is the orientation org; and
more generally a function 1g, = @?"eén 1 ® xg» is the orientation org, for
any representation C" (C" C P, (V), 1 € R).

DEFINITION 3.1. An n-index of n-chains {" = Pgr 57 agr © Xz, 5 =
®§"evn Bgn © xg» on the set V is an element of the ring R and it is equal to
én o, Eg = Z O[gn . 5?”7
g’” ev'll

where V,, is a representation of an orientation of P, (V).

The n-index is a generalization of the Kronecker index (see [9, p. 301]).
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For S" € (V)n*+l and Sn-le (V)™ an incidence number [g)" ?”71] is an
element of R defined by

—
sgn7 if S™ = (vo,...,v,) € loP,(V) and there exists
[?n ?n_l] a permutation 7 of the set I,, such that
. - —_—
Sn=l = (UT(1)7 cee 7UT(n));
0 in other cases.

PROPOSITION 3.2. If 8™ € P,(V), v € 87, S»! = 8"\ {v}, S" € loS”
and S™1 € lo S™=1. then the incidence number [?" ?"’1] defines whether
the orientation given by 'S7=1 s the same or opposite to the induced ori-
entation Oz, - Notice, that if orientations of S™ and S™ ! are given by

—n—1

5" eV, and R (wy,. .., w,) € V_1, respectively, then [?n S ] =

ory (v, wi,. .. ,wy).

A boundary operator 0,: L™(V) — L7 1(V) is defined in the following way:
for S € V,, we define 9, xg» = D ERE ?nil] ® xgn—1 and for an
n-chain £" € L™(V') we define

3n€" = 8n< @ agn @Xsn) = @ Ctgn ®8nX§"~

5"V, 5"eV,

Evn -1

Observe that the boundary operator 0, is linear and that it does not depend
on the representation Vn_l nor the representation Vn.
A coboundary operator §Y_1: LP~Y(V) — L™(V) is defined in the following

way:

v " —n—1
5 xgir= P [ 5" Joxs,
S"eV,
(5;{;16”_1 = (57‘{71 < @ Ogn—1 O] Xsnl> = @ Qgn—1 © 6,}{71X§n71.
5" eV 5T eV,

Observe that the coboundary operator §,, is linear and that it does not depend
on the orientation ory; nor representation of the orientation ory; . We write
8,1 instead of §Y_; for brevity.

Now, the combinatorial Stokes theorem can be formulated as

THEOREM 3.3 (see J. G. Hocking, G. S. Young [9, p. 301]). For an n-chain
0" and an (n — 1)-chain 05~ having values in the same ring R, the following
equality is true
(Opl™) @1 1571 = 1" 0, (6,157 1),

PROOF. Let V be a finite set and P,,(V) and P,,_1 (V') be complexes oriented
by V,, and V,,_1, respectively. Because of the linearity of the boundary operator
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Oy it is sufficient to prove the theorem for the n-chain of the form ¢" = X3m

where Sy € V,, is fixed. For /37! = D1 _, Bgn-1 © xgn—1 the left-hand

side of the equality is

@uxsy) o (

D Gy o Xs’“)

5" eV
—n—1
= ( @ [Eg : Sn ]®X5n1> o, 1 < @ %n,—l @Xsn1>
§"7levn_1 3"*1evn_1
— [So : 5" - Bgns.
§"_1€Vn,1

And the right-hand side of the equality is

X?g o, (677,1 @ /Bgn—l © Xsn_1>

§"_1€Vn,1

:XEQ' ., ( ﬁgn—l ® 5n1XSn1)
n—1

—n  —=n—1
= a1 .n< ﬁgnl@< P 5":5 ]QXS”))
sV, 5"ev,
n n—1
=Xg" *n ( ﬂg“*1 © ([S S ] © XS")>
S"eV, TV,
—n —=n—1
= ﬂgn—l [SO S ]. D
5 eV,

Let U be a finite set, P, (U) be oriented by a representation U,, and I: V —
U be a function. The function [ is called a labelling. For each n € N, let
N
Lp: (V)" — (U)"*! be a function defined by

—

In(oy .. yon) = (L(vo), ..., 1(vy)).
PROPOSITION 3.4. For the finite sets V and U, let S™ € P,(V), St eV,,

n

S e P, (V), 5" € Vo_y, T" € Po(U). If S"' C S™ and a labelling
[: 8™ — T™ is one-to-one, then

S5 =[S Thos(S

DEFINITION 3.5. Let h" = @z g, Bz © X7~ be an n-chain on U, where

U,, is some representation of an orientation of P, (U). We define an operator
lp: L7(U) — L™(V) by

~ — —n
(") = P m"(1(S") © xz.

5"ev,
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Observe that the operator an does not depend on the representations V,, and
U,,. The operator [, is linear, i.e. for n-chains A7, i3 on U and a € R we have:

L(Br ®HY) = L,(B) © 1, (h)  and  In(a©AY) = a ® b, (}).
LEMMA 3.6. Let:V — U be a labelling and h"~! be an (n —1)-chain on U.
Then
Zn(‘sg—lﬁnil) = 57‘;—1771—1(%”71)-

PROOF. For finite sets V and U, let P,,(V), P,_1(V), P,(U), P,,_1(U) be
oriented by representations V,,, V,_1, Uy, U,_1, respectively. Because of the
linearity of operators l,, l,,_1, 6 ; and 6Y_; it is enough to prove our theorem

—n—1 —
for the case A"~ ! = Xen=1 where Tg € U,_; only.

7 =—n =n—1
6 ) =0 D T e )

Il
7N 3
3

~
3
N
o3
©)
>
k!
N———
s
nn
N
®©
>
0|
3

5"evV, ‘T'eu,
- —=n n—1
= P [I(5): Ty 1oxg

Ss"ev,
And for the right-hand side of the equality we have
g - —n—1
5xf1ln71(XTg—1) = 57‘1/1< @ ng—l( (S 7)) © XS"—1>
§"_1evn,1

- —n—1
= D Xgn-1(1n=1(S8" ) © 6 xgn

§n71€v7L71
e —n—1 —n —=n—1
- D (B ))@( D[S ]@xsn)
5" eV, 5"eV,

- P P (@ N5 o)

S"eV, §" eV, 1

_ @( 3 XTg_l(T;1(3”_1)>-[S":5"_1])®><s“'

S"eV, §T'eV._,
Now we show that:

31 [T@E): Ty 1= Y xp (LS )55,

There are three cases:
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n n—1

Case 1. T TP ¢ 1(S™), then [ 1,(S™) : Ty

- —n—1 —n —=n—1
> X (a8 ) [8": 5" #0,
?”716771,,1

] =0. And if

then there exists ST~ C S™ such that Tg~' = 1(S7™1), but I(S7~1) C I(S™)
and T3~ " would be contained in I(S™).

Case 2. If Ty~ = 1(S™), then the left-hand side of (3.1) is equal to zero.
There exists vg,v; € S™ such that I(vg) = I(v1) and thus for S§—* = S™\ {vo}
and S7~t = S™\ {v;} the right-hand side of (3.1) is

—

i —n—1 —n —=n—1 —n—1 —n —=n—1
ng—l( ln-1(Sy ) [S 8o ]"‘ng—l( ln-1(S7 7)) -[S7 87 .

Let 5371 = (v1,...,0,). Therefore, by Proposition 3.2

—n —n—1
[§":S, ] = oryy (v, V1, -+ ,Un)
—n  —n—1
= 70rvn(vlv'00av2w oy Up) = —€ - [Sn : S’f ],
where ¢ = 1 (—1) if ??71 is even (odd) permutation of (vg,vs,...,v,) and

—n—1

I(S; )=¢e- l(ggfl). Thus the right-hand-side of (3.1) is

- —n—1
ln—

e Xgr 1 (Tama (1) - (== [§": 57 7))

—n—1

))-[8":5) ]=0.

- —n—1
+ ng*( ln-1(5;
Case 3. If T)~' C I(S") and Ty~' # 1(S™), then there exists vy € S™
such that S7~' = S\ {vo} and I(S§~') = T~ *. By Proposition 3.4 on the
right-hand side of (3.1), we have

xap (Ta (5 )-8+ 557
= XTS‘l(77171(33_1))-[7”(?) : 7;71(3';_1)] _ [Z’l(gn) :78_1]. .

Let C" C P,(V) be an n-complex oriented by a representation C" C V,,.
For an n-chain ¢™: (V)"*!1 — R on V if €(§)") =0 forall S" ¢ lo C™, then we
say that the n-chain ¢" is defined on the n-complez C™. Let K™ C P, (U) be an
n-complex oriented by a representation K" cU,.

DEFINITION 3.7. Let £™ be an n-chain on V' and A" be an n-chain on U. An
n-index of a function I: V — U for an n-chain £ and an n-chain A" is defined
by

ind, L, (67, 5") = 0" o, L, (A",
where [,,: £L"(V) — £"(V) is defined by Definition 3.5.
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DEFINITION 3.8. An n-index of a function I: V — U for oriented n-comp-
leves C" and K is considered as the index of the function I for the chains len
and lg~, and it is equal to

ind,l(1gn, 1gn) = Ign ®n bn(1gn).

The combinatorial Stokes theorem (Theorem 3.3) and the n-index of the
function [ are closely related to the generalized Sperner lemma, which was in-
troduced by Sperner at the conference in Hamburg 1980. This conference was
organized on the occasion of fifty years of the classic Sperner lemma.

THEOREM 3.9 (Sperner, [31]). For finite sets V and U, let P,,(V), Pp,_1(V),
P,.(U), P,,_1(U) be oriented by representations V., V,_1, Uyp, U,_1, respec-
tively. Let I: V — U be a labelling. Let £™ be an n-chain on V and A"~ ' be an
(n —1)-chain on U. Then

ind,,_11(8,™, A" 1) = ind, 1(¢", 6Y_ A" 7).
PROOF. The theorem directly follows from Theorem 3.3 and Lemma 3.6. [J

In the case the function [ is the identity function the generalized Sperner
lemma reduces to the combinatorial Stokes theorem. Tompkins [34] defined the
index of a labelling function in case K"~ '={{v1,... ,v,}}, K"={{vo,... ,vn}}
and C™ is an n-pseudomanifold, only. For this case Theorem 3.9 says that
ind,l(€", 1gr) = indp—11(0pl", 1ggn-1), for some representations K' and K"
of orientations of K™ and K" !, respectively.

4. Primoids

Let U be a finite set. An n-primoid LY on U is a nonempty n-complex on
U fulfilling the following condition: for every n-simplex 7" € LY and for every
u € U there exists exactly one v/ € T™ such that an n-simplex 7™\ {uv'} U{u} €
LY. An n-simplex belonging to LY is called a complete n-simplex. For brevity
we write L,, instead of LY.

An n-primoid L,, can be also defined as the family of n-simplexes on U such
that every (n+1)-simplex on U contains either none or two n-simplexes belonging
to the n-primoid L,,.

An n-primoid L, is properly oriented by an orientation ory,:(U)" Tt —
{-1,0,1} if for (u,u1,... ,upn), (W, u1,... ,u,) € loL, we have

ory, (U, u1, ... ,uy) =org, (W, ug, ... upy).

Notice that the above condition is equivalent to the condition: for i € I,, and for
(u07 sy Ug—1, Uy Ut 1, - - - ,’Ltn), (’LLQ, s ,Ui,17ul,u7;+]_, s ;un) € IOL’I’L we have

/
orp, (U0, -« s Uiy Uy Uit 1y vy Up) = OTL, (U, v oy Ui 1, W Ui 1y e e Upy).
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In other words any two n-simplexes of L,, induce the same orientation on their
common facet. It is exactly the opposite situation to the case of a coherent orien-
tation of the n-pseudomanifold. An n-primoid need not be properly orientable
if the ring R has at least three elements. If R is isomorphic to Zg, then any
n-primoid is properly oriented since 1 = —1 in this ring.

ExaMPLE 4.1. The family {{1,2,6},{2,3,6},{3,4,6},{4,5,6},{1,5,6}, {1,
2,4},{2,3,5},{1,3,4},{2,4,5},{1,3,5}} is a 2-primoid on {1,2,3,4,5,6} and
there is no proper orientation of it.

EXAMPLE 4.2. Let U = I,. Ll» = {{0,... ,n}} is an n-primoid on I,
properly oriented by L,, = {(0,... ,n)}.

THEOREM 4.3. Let U and U’ be finite sets, let L, be an n-primoid on U
properly oriented by ory,, and let g:U’" — U be an onto function. Then a fam-
ily L(Lyp,g9) = {{uo,.-. ,unt C U : g{uo,-.. ,un}) € Ly} is nonempty and
it is an n-primoid on U’ properly oriented by a function oryw, ) defined by

OrL(L,L,g) (UE), e au;l) = Oan (g(u6)7 e 7g(u’ll’b))

PROOF. We proved ([14, Theorem 3.2]) that L(L,, g) is an n-primoid on U".

Now we prove that it is properly oriented by oryy,, ¢)-
Take (z,ul,... ,ul), (y,u),... ,ul,) € loL(L,,g). By the proper orientation
of L,, we have
OrL(Ln,g)(aj’ ulla s ’U;L) = orL,, (g($>7g(u/1)7 S 79(”%))
= org,, (g(y)a g(ul1)7 e 7g(uln)) = OrL(Ln,g)(y7 ul17 e 7uln)' O
COROLLARY 4.4. Let My be a matroid with a fized base {vy,... ,vn}. Letr

be the rank function of the matroid My and denote span A = {x € My : r(A U
{z}) =7r(A)}. Let Fy = span{vg} and F; = span{vy, ... ,v;}\span{vo,... ,v;-1}
fori € I,. Observe, that My = U?:o F; and F;NF; = 0 fori # j. Let g: My — I,
be a function defined by g(a) = i for a € F;. The function g is well-defined
and the family LMa = {{ug,... ,u,} : g({uo,... ,un}) = I} is an n-primoid
on My properly oriented by a function or
orgr (9(u0), - 9(un))-

PROOF. From Theorem 4.3 and Example 4.2 we have LM¢ = L(LI» g). O

M defined by orp my(uo, ... un) =

PROPOSITION 4.5. Let U be a finite set and Ly be a 1-primoid on U. There
exists a function g:U — Iy such that Ly = L(L{l,g).

PRrROOF. Notice that 1-complexes are graphs. Our thesis states that 1-primo-
ids are complete bipartite graphs. Any graph is bipartite if and only if it contains
no cycles of odd length. We show that 1-primoids contains no odd cycles. Assume
that there is an odd cycle in 1-primoid L;. Let C be the shortest odd cycle in L.
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The cycle C' cannot be a triangle in the primoid: for {uy,us} € Ly and uw € U
exactly one of two possibilities is true: {u,u;} € Ly or {u,us} € Ly. Consider
{u1,us2} € C and u € U such that {u, u; } and {u, us} do not belong to the cycle
C. Such vertex u exists since C' is of length at least 5. Exactly one of the edges
{u,u1} or {u,us} belongs to L. This edge creates two cycles in Ly and one of
them would be an odd cycle and shorter than C.

Now we prove that L is a complete bipartite graph. Consider {uy,us} € Ly.
Let X ={ueU:{uu} €elq}andY = {u €U : {u,u1} € L1}. The sets X
and Y are nonempty by definition and disjoint since L; is bipartite. We show
that for us € X and uqy € Y {us,us} € Ly. If u; = ug or ug = uy, then it is
obvious. Otherwise, by definition of the primoid, for {u;,us} € Ly and ug € U
exactly one of the possibilities holds: {ug,us} € Ly or {u1,us} € Ly. The second
one is impossible because u1, us, u3 would form a triangle. O

Let U7 = {(ug,... ,un) : {to,-.. un} C {—k,...,—1,1,.. .k} : |ug| <
lur] < ..o <Jug|,u; - uwip1 < 0 and if |u;| = Juig1|, then u; <0 for i € I,_;} for
n,keN, 2k >n>1.

EXAMPLE 4.6 (Bapat, [1, Lemma 4.1]). Let U = {—k,...,—1,1,... ,k} for
some k, 2k > n > 1. We define an n-primoid L¥ on U as follows: {ug, ... ,u,} €
L’ if and only if there exists a permutation 7 such that (Ur(0)s -+ > Ur(n)) € ﬁ)z

The n-primoid L is properly oriented by a function
sgn T if {uo, ... ,u,} € Lk and u, () > 0,
orge (ug, ... up) =14 (=1)"-sgnt if {ug,...,u,} € LF and uro) <0,
0 if {ug,...,u,} ¢ LF

_
where the permutation 7 is such, that (u-(),... ,urm)) € U},

Proor. Take {ug,...,u,} € LX and u € U. Without loss of generality we
—
assume that (ug,...,un) € U7P. If there exists such k € I,, that u = uy, then
{uo, -+ Up_1,U, Uy, ,Upn} € LE. Otherwise we have three cases:

Case 1. |u| < |upl|. If w and up have the same signs, then {u, w1, ... ,Un—_1, Un}
€ Lk and orp (o, Uty -+« Un—1,Un) = OrLk (U, UL, ... ,Up—1,Up). If they have
opposite signs, then {u,ug,u1,... ,u,_1} € LE and orpk (Uo, Uty - -+ 5 Un—1,Un)
= (=1)" - orpk (u, ug, U1, - - -, Up—1) = OrLk (U, U, - -+, Un—1,U).

Case 2. There exists i € {0,...,n — 1} such that |u;| < |u| < |ujp1]- If u
and u; have the same signs, then {ug, ... ,%i_1,% Uit1,--- ,Un_1,U,} € LE and
orpk (Uo, -+« Un) = Orpk (Uo, - -+ 5 Uim1, Uy Wi 1, -+ s Un—1,Up). If they have the
opposite signs, then {ug, w1, ... , %, U, Uir2, ... , Uy} € LF and
orpk (Ugy -+ ++ 5 Un) = OTLk (U, - oy Wiy Uy Uiy 2y o+ 5 Un—1, Un)-

Case 3. The case |u,| < |u| is analogous to the Case 1. O
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From Example 4.6 and Theorem 4.3 we have the following

COROLLARY 4.7. Let U be a finite set and let for some k, 2k > n > 1
U — {=k,...,—1,1,... ,k} be an onto function. We define an n-complex
L%* as follows: {ug,... ,u,} € LI if and only if there evists a permutation
7 such that (g(ur(0)),--- ,9(Urn))) € ﬁ}; Then L&* is an n-primoid on the
set U. The n-primoid L9* is properly oriented by a function

sgn T if {ug, ... ,u,} € LI* and 9(ur(0)) >0,
ory gk (Uo, ... up) =4 (=1)"-sgn7 if {uo,... ,un} € L%* and g(u,()) <0,
0 if {uo, ... un} & LI,
. . ->n
where the permutation T is such that (g(ur(0)),--. ,9(urm))) € Uj.
PROOF. Observe that L% = L(LE, g). O

ExXAMPLE 4.8 (Bapat, [1, Lemma 4.2]). Let U C R™ be a finite set with
|[U| > n+1 and let b € R™ be a point, which is not a convex combination of less
than n+1 elements of U. If the family L% = {{ug,... ,u,} : b € co{ug,... ,u,}}
is nonempty, then it is an n-primoid on U. The n-primoid L is properly oriented
by

1 1 1
uy  e..oup o ...ouy,
oryy (o, - - . ,up) = det - ’ - ’ e
upy .u! ull
1 ... 1 1

where u is an j-th coordinate of the vector u;.

DEFINITION 4.9. Let A = {ao, ... ,a,} C R™ be a set of affinely independent

points. Let mg = > _,a/|A]. We say that a function m: P(4) — R is in a

acA
general position if:

(a) m(B) €rico{a;: i€ B} for each B C A,

(b) my ¢ aff {w(D)} for each D C P(A) such that |[D| < |A|.
A family D C P(A) is said to be m-balanced if |D| = |A|, ma € co{n(D)} and
7 is in the general position.

PROPOSITION 4.10. The set of all m-balanced families is an n-primoid on
P(A), we denote it by L.

Proor. This follows from Theorem 4.3 and Example 4.8, because L

L(LY%, 7) for b=m4. The primoid L7 is properly oriented by orp- (Ao, ... , Ay)
= oryy (7(Ao), ... ,m(Ay)) where A; C A for i € I,. O

Let L,, be an n-primoid on a set U (JU| > n+ 1). A function p: P(U) —
{0,...,n+ 1} defined by p(A) = max{|ANT|:T € L,} for A € P(U) is called
a rank function of Ly,.
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Notice that the number k = n + 1 — p(A) is the minimal number such that
there exists a set {u1,...,ur} C U and the set AU{uy,...,ur} contains a com-
plete n-simplex.

Observe that a function defined by:

e p(A) = |A] for A C U is the rank function of LI (see Example 4.2),

o p(A) =|{g(u): u € A}| for A C U is the rank function of the n-primoid
L(LI», g) on U (see Theorem 4.3),

® prw,.g)(A) = pL,({g(u) : u € A}) (A C U) is the rank function of the
n-primoid L(L,, g) for the rank function pr,, of the n-primoid L,, (see
Theorem 4.3).

The rank function p of L,, has the following

PROPERTIES 4.11. For A,B € P(U):
a) p(B)=|B| for BC A€ L,,

(
p(A) < p(B) for AC B,
p(AU B) < p(A) + p(B),
p({u}) =1 foruel.

PROOF. Properties (a)—(c) follow directly from the definition of n-primoid.
For the proof of property (d) see [14, Properties 4.1]. The property (e) says
that any element of the set U belongs to some complete n-simplex. Consider
T eL,. Ifué¢T, then by definition of the n-primoid there exists v’ € T such
that T\ {u'} U {u} € L,. O

Let p be the rank function of L,,. A set B C U is a mazximal set of the
rank k (k € N) if p(B) = k and for each u € U\ B, p(BU{u}) = k+ 1. Now
we define a subset spA C U spanned by elements of A C U in the sense of the
n-primoid L,,. For A C U a spanned set by a set A is spA=({B:AC B C
U and B is a maximal set of the rank p(A)}.

Observe that the spanned set by a set A is defined:

e sp A = A for the n-primoid L!» (see Example 4.2),

e spA={u:g(u) € g(A)} for the n-primoid L(L%", g) (see Theorem 4.3),

® spLwL,.g)A = {u: g(u) € spr,g(A)} for the n-primoid L(L,, g), where
spr, is in the sense of the n-primoid L,, (see Theorem 4.3).

THEOREM 4.12. Let U C R” be a finite set, b € R™ a point such that it does
not belong to a convex hull of less than n+ 1 elements of U. For A C U we have
U N cone(b, A) C spyy A.

PROOF. Let p(A) = k. It is enough to show, that for u € U N cone(b, A) we
have u € sppy A or equivalently u belongs to every maximal set of the rank k
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containing A. Assume, there exists a maximal set D of the rank k containing
A and such that p(D U {u}) = k + 1. Thus there exists a set T C U such that
T|=n+1—(k+1)=n—Fkand b€ co(TUDU {u}). Since u € cone(b, A)
and A C D then b € co(T'UD). Hence p(T UD) =n+1 and p(D) =k + 1,
contradicting our assumption. O

PROPERTIES 4.13. For the n-primoid L, and A C U:
(a) ACspA,

(b) p(A) = p(sp A),
(¢c) if a set A contains a complete n-simplex, then sp A =U.

For proofs see [14, Properties 4.2].

An m-simplex T™ € P,,,(U) (m < n) is called M-complete for M C U, if
T™UM € L,. In the case M = {z} (x € U) we write z-complete instead of
{z}-complete. Let L, (x) denote the family of all z-complete (n — 1)-simplexes.
A function org, (,y: (U)" — {—1,0,1} defined by

ory,, () (U1, ... ,Un) = ory, (T, U1, ... ,up)
is an orientation of L, (x) and we call it an induced orientation by ory,, .

THEOREM 4.14. Let U be a finite set, P, (U) be oriented by a representation
U,,. LetL, be a primoid on U properly oriented by a representation L, C U,
and let the family Ly, (x) = {T""* € P,,_1(U) : T" ' U{x} € L, } be oriented by
the induced orientation O'L, (4)- Then

5n_11fn(1) = ].f .

n

ProoOF.
6n—11fn(z) :6n_1 @ X*n 1= @ (Sn 1X*n 1
T" €L, (z) T”Hefn(w)
- O QT e
T 'eL,(z) T"€U,
—n—1
T eLn(:c)

n —=n—1

Let us count yzn = 371 g [T":T ']. IfT" € L, then by definition
of the primoid there is exactly one element v € T™ such that 7"\ {u} U{z} € L,
hence T™ \ {u} is the only (n — 1)-simplex from L, (x) contained in 7" and
T - Tn_l] = 1 by definition of ory, (). Thus in this case yz» = 1.

Consider now T™ ¢ L,,. By the definition of the primoid, the set 7" U {z}
contains either no complete n-simplexes or exactly two of them. If 7" U {z}
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contains no complete n-simplexes, then T contains no z-complete (n — 1)-
simplexes and thus yz» = 0. If 7™ U {z} contains two complete n-simplexes,
then T™ contains two xz-complete (n — 1)-simplexes say 77!, Ty'~!. In this

— —n—1 — n—1 . =
case we have vz = [T : Ty |+ [T : T, ]. We will show that [T
=n—1 — =n—1 =n—1 =n—1
T, |1 = —-[T : Ty ]. Let T, = (Upy...yUp), Ty = (wy,...,wy)
and ug € T*\ T and T3 ~' = 7"\ {u;} for some i € {1,...,n}. Thus
{wy, ... ,wp} ={u1,... ,ui—1, U, Uit1,... ,Uy}. Since orientations of T{“l and
T2”71 are induced orientations by T" and L, is properly oriented by org =we
have
ory,, (o) (Wi, ... ,wp) =1 =ory, (z)(u1,... ,up) = orﬁ”(z,ul, T
= Orﬁn(xauh sy Ui—1, U, Uit 15 - - - 7un)
= OrL,L(w) (Ul, ey Up—1,UQy Uit1y - - - ,un).
=n—1 . .
So Ty ° is even permutation of (u1,... ,%;—1,Ug, Uit1, ... ,Upy) and
—n =n—1
[T :T; ] =org (uo,u1,...,un)
= *Orﬁ”(uz’,ul,--- s Wi 15 U0s Ui 15 - -+ Un)
—n =n—1
= —org, (Ui, W1,... ,wp) ==[T" : Ty 7]
Hence vz~ = 1 if and only if T" € L,,. |

5. Labelling

Let V, U be finite sets, C™ be an n-complex on V oriented by some repre-
sentation C™ and let C™ ! be a complex consisting of all facets of n-simplexes
of C™ oriented by some representation T Let L, be an n-primoid on
a set U properly oriented by some representation L,. Let 2 € U and let
L,(z) = {T"' € P, 1(U) : T""' U {z} € L,} be oriented by L, (), where
Org, () is an induced orientation by org, . Let I: V — U be a labelling.

An n-simplex S™ = {vg,... ,v,} € C" is called completely labelled (c.l. n-
simplex for short) if (S™) € L,. A signum of a c.l. n-simplex S™ (denoted by

sign S™) is an element of the ring R which is equal to sign S = org. (vo, ... ,vn)-
OI‘fn (l(’Uo), N ,l(vn))
For z € U, an (n — 1)-simplex S"~! = {v1,... ,v,} € C""! is called an z-

completely labelled (n — 1)-simplex (z-c.l. (n — 1)-simplex for short) if [(S"~1) €
L, (z). A signum of an z-c.l. (n — 1)-simplex S"~! is an element of the ring R
which is equal to sign S"~! = orgn-1(v1, ... ,vn) - org, (,y ([(v1),. .., U(vn)).

For z € U, S™ € C" and v € S™ a pair (S",v) is called an z-completely
labelled facet (z-c.l. facet for short) if 1(S™\ {v}) € Ly (z). A signum of an z-c.l.
facet is an element of the ring R which is equal to sign (S™,v) = [?n,gnil] .

—n—1

Org, (g In1(S" 1), where 5" € C" and 8" ' =57\ {v} € C
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Observe that the definition of the signum of an c.l. n-simplex S", an z-c.l.
(n — 1)-simplex S"~! and an z-c.l. facet do not depend on the linear order of
elements {vg, ... ,v,} of S, {v1,... v} of S*~1 {wg,...,v,} of S, respec-
tively.

A cl. n-simplex, an z-cl. (n — 1)-simplex and an z-c.l. facet is called a
positive c.l. n-simplex, an x-c.l. (n — 1)-simplex and an x-c.l. facet (a negative
c.l. n-simplez, an z-c.l. (n — 1)-simplex and an x-c.l. facet) if sign S™ = 1,
sign S"71 = 1, sign (S™,v) = 1 (signS™ = —1, sign S"~! = —1, sign (S",v) =
—1), respectively.

Definitions of the c.l. labelled n-simplex and the z-c.l. facet are equivalent to
the definitions of the “matched pair” and the “unmatched pair” given by Bapat
([1, Definition 2.2]) and Todd [32], [33], respectively. The signum of the c.l.
n-simplex S™ ((n — 1)-simplex S™~!) informs us whether labelling [ transforms
S™ onto [(S™) (S™~1 onto [(S™~1)) preserving or reversing the orientation.

Now we present a new proof of the Bapat theorem. This theorem is a gener-
alization of the Todd theorem ([33, Theorem 2.6]).

THEOREM 5.1 (Bapat, [1, Theorem 2.6]). Let V, U be finite sets, C™ be
a nonempty n-complex on a set V oriented by C" and let C"~! be a complex
consisting of all facets of n-simplexes of C" oriented by some representation
C"'. Let L,, be an n-primoid on a set U properly oriented by L, and I: V — U,
x € U. Let a™ and o= (BT and B7) denote the number of c.l. n-simplexes
in C" (z-c.l. facets in C™) that are positive and negative, respectively. Then
at —a==pt—-p3".

To prove his theorem Bapat used elementary methods concerning directed
graphs. Similar methods were used by Ky Fan in [6]. We present another proof
to show how this theorem is related to theorems of the previous section.

PrROOF OF THEOREM 5.1. In the case the ring R is equal to Z the n-index
of a labelling ! for C" and L,: ind,!(1g., If ) = lgn o Tén(lfn) is equal to
a™ — a~ since every positive (negative) c.l. n-simplex appears as 1 (—1) in the
sum ind,/(1g., 1f, ) = > 5~cen O, 7,;(3”)

Let C"~! be an (n — 1)-complex consisting of all facets of all n-simplexes
belonging to C™ oriented by some representation c"' An (n — 1)-index of the

function [ for 0,15, and 1, (x) 18 equal to
indp11(Onln, 1g, (z)) = Onlgn -1 lgnr (g, () = BT = B~

since every positive (negative) z-c.l. facet appears as 1 (—1) in the sum

ind,—11(0nlGn, f”(z)) Z ( Z S . q" 1)®0an(z)7:l—1(S"_1)_

S lev, ., S"eCr
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From Theorem 4.14 and from Theorem 3.9 we have
at —a” =indul(lg., 1 ) = indnl(lén,ég_llfn(m))

= indn,ll(anlén, 1fn(l)) = ﬂ+ - ﬂi’ O

In the case the ring R is equal to Zs Theorem 5.1 reduces to non-oriented

version:

THEOREM 5.2 (Idzik and Junosza-Szaniawski, [14, Theorem 5.3]). Let V, U
be finite sets, C™ be an n-complex on V. Let L, be an n-primoid on U. Let
I:V = U be a fized labelling and let x € U be a fixed element. Then the number
of c.l. simplexes is equal to the number of x-c.l. facets modulo 2.

An (n — 1)-simplex S™"~! is a boundary (n — 1)-simplex of an n-complex
C" if there is exactly one n-simplex S™ € C" such that S"~! C S™. For an
n-pseudomanifold C" we denote 9,,C™ the (n — 1)-complex consisting of all
boundary (n — 1)-simplexes of n-simplexes of C™. An orientation of OC™ is
called an induced orientation by org, if every (n — 1)-simplex is oriented by
an induced orientation from the unique n-simplex containing it. Observe that
Onlen = 1y,cn. Now applying Theorem 5.1 to an n-complex which is an n-
pseudomanifold we get

THEOREM 5.3 (Bapat, [1, Theorem 3.3]). Let V, U be finite sets, C™ be
a nonempty n-pseudomanifold on V., coherently oriented by C™. Let L,, be an n-
primoid on a set U, Ly, be properly oriented by L,,, I:V — U, x € U. Let a and
a” (vt and v) denote the number of c.l. n-simplezes in C™ (x-c.l. boundary
(n — 1)-simplexes in 0,,C™) which are positive and negative, respectively. Then
at —a” =4t —q7.

PROOF. An n-index ind,/(1gn, 1g, ) is equal to a® — o™ and (n — 1)-index
ind,—11(0nlGn, 13”@)) is equal to v© — y~. From the general Sperner lemma
(Theorem 3.9) and Theorem 4.14 we have

at —a” =ind,l(lgn, 1g,) = indul(Ign, 0,115, ()

n—1

= ind,,[(OnlGn, lfn(z)) =4t -5, O

In the case the ring R is equal to Zy, Theorem 5.3 reduces to a non-oriented
version:

THEOREM 5.4 (Idzik and Junosza-Szaniawski [14, Theorem 6.1]). Let V, U
be finite sets, C™ be an n-pseudomanifold on V, L, be an n-primoid on the set
U and x € U be a fized element. Let I:V — U be a labelling. Then the number
of c.l. simplexes is equal to the number of boundary x-c.l. (n — 1)-simplezes
modulo 2.
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THEOREM 5.5 (Lindstrom [22], see also Krynski [18, Theorem 6]). Let V
be a finite set, P, (V) be oriented by V,, and {™ be an n-chain on V such that
O™ = 0, My be a matroid on U of the rank n+1 and let I: V — U be a labelling.
If there is an n-simplex S™ € P, (V), such that £*(S") # 0 and 1(S™) is a
base of the matroid My, then there is another n-simplex S¥ € P, (V) such that
"(S5) #0.

ProoF. From Corollary 4.4, Theorem 3.9 and Theorem 4.14 we have

ind, (6", 1 av,) = i1 (D", 1 )= 0. 0

L' (x)

For an n-pseudomanifold C™ on V, coherently oriented by C", (k > n)
and a labelling I: V' — {—k,... ,—=1,1,... ;k} let a™(Jo,--- ,4n) (@™ (Joy--- »5n))
denote the number of elements (v, . . . ,v,) in lo C™ such that {(v;) = j; fori € I,
and org,(vo,...,vn) = 1 (orga(vo,...,v,) = —1) and let B (jo,... ,Jn-1)
(6~ (Jo,--- ,Jn—1)) denote the number of elements (vg, ... ,v,—1) in lodC™ such
that {(v;) = j; for i € I, and org.(vo,... ,0p—1) = 1 (org.(vo,... ,Un_1) =
—1). Let a(jo,--- ,jn) = a*(Jo, -+, Jn) = (Jo, -+, Jn) and B(jo, - - ;jn-1) =
/8+(j07 e 7jn71) - ﬁ_(joa e 7jn71)'

If we apply Theorem 5.3 to the primoid L¥ (see Example 4.6), then we get

THEOREM 5.6 (Fan [6, Theorem 1]). Let C™ be a coherently oriented n-
pseudomanifold on V (k > n) and let a labelling 1.V — {—k,... ,—1,1,...  k}
satisfy the condition l(v) + 1(v") # 0 for v and V' belonging to some n-simplex
of C™. Then we have

Z (Oé(—ko, klv _k27 k37 R (_1)n+1kn) =+ Oé(]{io, _klv k27 _k37 sy (_1)nkn))
0<ko<...<kn

= > Blho,—ki, ko, —ks, ... (=1)" k).
0<ko<...<kp—1

COROLLARY 5.7. Applying Theorem 5.3 to the n-primoid:

(a) L(Lir, g), we get an oriented version of the Gould and Tolle theorem
([8, Theorem 5.2.5]),

(b) LMa_ we get an oriented version of the Lovdsz theorem [23], (see also

Kryniski [18, Theorem 3)).

6. Case of the geometric simplex
For a real number r € R we define:
1 for r > 0,
signumr = ¢ —1 for r <0,

0 for r = 0.
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Let {do,...,d,} be a fixed set of affinely independent vectors in R™, such that
g ... df ... d
det | - C T > 0,
g ... 4y ... dl
1 ... 1 ... 1

where d/ is the j-th coordinate of the vector d;. For M C I,, we denote AM =
co{d; :i € M}. Let Tr be a triangulation of A». Let Tr(AM) (M C I,,) be the
induced triangulation of the face AM | i.e. the family of (|M| — 1)-dimensional
simplexes 0 N AM for o € Tr.

For every simplex o in Tr, let V(o) denote the set of its vertices and V =
U,em V(o). The family C* = {V (o) : o € Tr} is a pseudomanifold on V. An
orientation org, defined by

0 T ) SR 12
org. (vo, ... ,vp) = signumdet | - o o,
vy v (K
O 1 11
1 ... 1 ... 1

where v/ is the j-th coordinate of the vector v;, is the coherent orientation since
for {v,v1,...,0.},{v,01,... ,0,} € C™ vertices v and v’ lies on the opposite
sides of the hyperplane aff {vy,... ,v,}. Thus

orgn (0,01, .. ,Uy) = —orga (V', v1,... ,vp).

This orientation we call a geometric orientation of the pseudomanifold C™.

We will say that a geometric simplex ¢ is completely labelled (c.l. simplex
for short) or z-completely labelled (z-c.l. simplex) if the set of its vertices V(o)
is the c.l. n-simplex or the z-c.l. (n — 1)-simplex, respectively.

THEOREM 6.1. Let Tr be a triangulation of the simplex A", the n-complex
C" = {V(0) : 0 € Tr} be oriented by the geometric orientation, V=], .1, V(0),
L,, be an n-primoid on a set U, properly oriented by L, (ug, ... ,u,) € loL, and
1.V — U. If for M G I,, a simplex 0 C AM s not the {u; : i ¢ M }-completely
labelled simplez, then ind,l(1g.,1g, ) = (=1)" - org (uo, ... ,un).

PROOF. We embed the simplex A" = co{dy,...,d,} in a larger simplex
using the Scarf method [25, p. 192]. Without loss of generality we may assume
that 0 € ri A». Let Jz = —a-d; for i € I,,, where a > 0 is so large that A" C
ri co {Jo, .. ,Jn} Let us denote Al = co {Jo, .. ,Jn} For every i € I, d; and
d; lie on the two different sides of the hyperplane aff {dy, ... ,d;—1,dit1,... ,dn}.
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Observe that

dj d} d},
ors, (Jo, e ,J) = signum det | . L
© " g ...odr ... 4
1 1 1
—ad§ ... —ad! ... —ad}
= signum det
—ady ... —ad} ... —ad]
1 1 e 1
dy d; dy,
= (=1)"signum | a"det| * =(=n"
O L
1 1 1

(org. is the geometric orientation).

Now we extend the triangulation of A" by joining every vertex v € V N
AT\ with the vertex d; and we get a triangulation of Al»:

Tr=mu |J U co(V(e)u{di:i¢ ).

MGI, oc€Tr(AM)
For the case n = 2 see Picture 1.

dg dl
do

dy da

PICTURE 1
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Let C" = {V(0) : 0 € Tr}. We define a labelling [ as an extension of I on
U,eq V(o) by 1(d;) = u; for alli € I,,.

We prove that for this new triangulation Tr of Al and the labelling 1 there is
no c.l. n-simplexes, which do not belong to C". Consider an n-simplex o € ﬁ\
Tr. Let S = V(o) and let AM (M C I,,) be the smallest face of A» containing
the set Aln Ng. The set S is of the form S = {w; € AM :ie MyU{d; :i ¢ M}.
By our assumption S N AM is not {u; : i ¢ M }-completely labelled and thus S
is not a c.l. n-simplex. Hence iIldnzv(léz, g ) = ind,l(lg., 1, )-

By Theorem 5.3, applied to C”, for x = ug we know that indni(léi g ) is
equal to mdn_{f(maz , 1§ (uo)) and indn_lf(aléz 1%, (uo)) 18 equal to the num-
ber of positive boundary ug-c.l. (n — 1)-simplexes minus the number of negative
boundary ug-c.l. (n — 1)-simplexes. Observe that the only ug-c.l. (n —1)-simplex
on the boundary of Aln is {dy,... ,d,}. The orientation of {di,...,d,} is the

induced orientation by the geometric orientation and thus sign (di,... ,d,) =
(=1)". Hence ind,l(1g.,1g, ) = (=1)" - org, (uo, ... , un). O

Let L,, be an n-primoid on a set U, properly oriented by L,, and p be the
rank of L,,.
We say that a labelling I: V' — U satisfies a p-boundary condition for (ug,... ,
u,) € loL, if:
e [(d;)) =u,; forie€I,,
o p(l(VNAM)) =|M| for M C I,,.

THEOREM 6.2. Let Tr be a triangulation of A the n-complex C*={V (o) :
or very V(o) and Ly, be
an n-primoid on a set U, properly oriented by Ly, and let (ug,... ,u,) € loL,.

o € Tr} be oriented by the geometric orientation, V. = |J

If a labelling I: V' — U satisfies the p-boundary condition for (ug,... ,u,), then
ind,!(1gn, 1fn> = org, (uo,- .- s Up).

PROOF. It is sufficient to show that [ satisfies the conditions of Theorem 6.1
for (uq,...un,up), because

ind,l(1gn, Iy ) = (=1)"org (u1,... ,un,uo) = org, (uo,--. ,un).

Assume that there exists a {u;rq : i ¢ M}-cl. simplex 0 C AM for some
M ¢ I, (upy1 = ug). Hence I(V (o)) U{uir1 : i ¢ M} € Ly, (upy1 = ug) and
p(I(V(0))) = |M|. There exists j ¢ M such that j + 04 (n+1) 1 € M and thus

p((V(0)) U{uja}) = [M]|+1.
But I(dj41) = ujs1, {V (o)) U{ujy1} C L(V N AM) and by Property 4.11(c)
p(I(V N AM)) > |M| +1.

This contradicts the p-boundary condition. (]
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We say that I: V' — U satisfies sp-boundary condition for (ug,... ,u,) € loL,
if:
e [(d;)) =wu; fori€I,,
e for every M C I,, and for every v € (VN AM) I(v) € sp{u; : i € M}.

THEOREM 6.3. Let Tr be a triangulation of A the n-complex C*={V (o) :
o € Tr} be oriented by the geometric orientation, V = \J, cq, V(o) and L, be
an n-primoid on a set U, properly oriented by L,, and let (ug,... ,u,) € loL,.
If a labelling I: V' — U satisfies the sp-boundary condition for (ug,...u,), then

ind,l(1gn, 15, ) = org, (uo, ... ,un).

PROOF. By Property 4.13(b) we have p(I(AM NV)) = p(sp{u; :i € M}) =
p({u; :i € M}) = |M)| for every M C I,, and the conditions of Theorem 6.2 are
satisfied. 0

COROLLARY 6.4. Applying Theorem 6.3 to the n-primoid:
(a) L

n

we get an oriented version of the Sperner lemma [29],

(b) LMa we get an oriented version of the Lovdsz corollary [23], (see also
Kryniski [18, Theorem 3)),

(¢) LT, we get an oriented version of the Shapley lemma (|26, Lemma 7.2]).

From Theorem 6.3 applied to the n-primoid L’ and from Theorem 4.12 we
get

THEOREM 6.5. Let Tr be a triangulation of Al the n-complex C*={V (o) :
o € Tr} be oriented by the geometric orientation org,, V =, e V(0), U CR"
be a finite set, b € 1i Aln be a point, which does not belong to the convexr hull
of less than n + 1 elements of the set U. Let I:V — U be a labelling such
that for M C I, if v € VN AM then I(v) € cone(b,{d; : i € M}). Then
ind,l(1gn, 10 ) = 1.

We say that [ satisfies dual sp-boundary condition (dsp-boundary condition
for short) for (ug,...,u) € loL,, if for every M ¢ I, and for every v €
VNriAM I(v) € sp{u; :i ¢ M}.

THEOREM 6.6. Let Tr be a triangulation of AT the n-complex C*={V (o) :
o € Tr} be oriented by the geometric orientation, V = U, ey, V(0), for M & I,
and o C AM there exists j € M such that o N AM\UY = ( and L,, be an n-
primoid on a set U, properly oriented by L,,. If a labelling 1:V — U satisfies
the dsp-boundary condition for some (uo, ... uy,) € loLy, then ind,l(1g.,1g ) =

(—1)"0rfn (ug, ... Up).

PROOF. It is enough to show that the conditions of Theorem 6.1 are satisfied.
For M ¢ I,, and a simplex ¢ C AM there exists j € M such that e NAM\I} = ¢)
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and thus I(V (o)) C sp{u; : @ € I,,i # j}. Hence o is not {u; : i ¢ M}-c.l.
simplex since I(V (o)) U{u; : i ¢ M} C sp{u; : i € I,,7 # j} and in the set
sp{u; : 1 € I,,,i # j} there is no complete n-simplex. |

A diameter of a triangulation Tr of An is the maximal diameter of a simplex
in Tr. Observe that if the diameter of a triangulation is small enough, then the
condition, for each o € AM (M ¢ I,,) there exists j € I,, such that cNAM\U} =
(0, is satisfied.

Observe that Theorem 6.6 applied to the ring R = Zs and to the primoid
Ll» is a generalization of the Scarf lemma ([24]; see also [21, Theorem 3.4]).

THEOREM 6.7. Let Tr be a triangulation of A™ = co{do,... ,d,} and the
n-complex C™ = {V (o) : o € Tr} be oriented by the geometric orientation, V =
Uper V(o). Let 1:V — R™ be a labelling such that for M C I,,, if v e VNAM,
then l(v) € aff{d; : i € M}. Let b € ri Al" be a point which is not a convex
combination of less than n+ 1 elements of (V). Then ind,l(1gn, 1fz;) =1.

PROOF. Observe that the assumptions of Theorem 6.2 applied to the primoid
LY are satisfied. O

THEOREM 6.8. Let Tr be a triangulation of A" and the complexr C" =
{V(o) : o € Tr} be oriented by the geometric orientation, V =, V(o) and
for M C I, and o C AM there exists j € M such that o N AM\MIY = @, Let
I:V — R" be a labelling such that for M G I, if v € VN1riAM | then I(v) €
aff {d; : i ¢ M}. Let b € 1i A" be a point which is not a convex combination of
less than n + 1 elements of I(V'). Then ind,l(1g., lfi) =(=1".

PRrOOF. Conditions of Theorem 6.1 are satisfied and the proof proceeds in
a similar way as in the case of Theorem 6.6. O

Applying Theorem 6.1 to the primoid LI» (see Example 4.2 for definition)
and (ug,...,u,) = (0,...,n) we get

THEOREM 6.9. Let Tr be a triangulation of A the n-complex C*={V (o) :
o € Tr} be oriented by the geometric orientation, V = |J,cn V(0), LV —
L,. If for M & I,, and for a simplex 0 C AM we have I(V (o)) # M, then
ind, /(1gn, 1ff;”) = (-1

Theorem 6.9 applied to the ring R = Z, is equivalent to the van der Laan,
Talman and Yang theorem ([21, Theorem 3.6]).

Applying Theorem 6.1 to the primoid LI» (see Example 4.2 for definition)
and (ug,...,u,) = (1,...,n,0) we get

THEOREM 6.10. Let Tr be a triangulation of A", the n-complex C" =
{V(o) : 0 € Tr} be oriented by the geometric orientation, V = J,cr, V(0),
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L.V — I,. If for M & I, and for a simplex o0 C AM we have I(V(0)) #

{(’L + 1) mod (n+1) ) S M}, thC'I'L mdnl(lén, 1fin) =1.

Theorem 6.10 is a generalization of the oriented version of the Sperner lemma
[29] since for every M ¢ I,,, there is i € M such that (i + 1) nod (nt1) &€ M.

In the case the ring R = Z, the index ind,/(1g., 1 ) defines whether the
number of c.l. n-simplexes is even or odd. Hence, if we consider R = Zs in
theorems of this section, we define an odd number of c.l. n-simplexes. This
implies the existence of at least one such simplex. Some of these theorems were
published in [14]-[16].

7. Multilabelling

Now we extend our definitions on n labellings. Let C™ be an n-complex on
a finite set V' (|[V| > n) and let C"~! be an (n — 1)-complex consisting of all
(n — 1)-simplexes contained in some n-simplex of C™. Let L,, be an n-primoid
on a finite set U (|U| > n) properly oriented by U,,. For i € I, let I::V — U
be a labelling.

Let 8™ = {vg,...,v,} € C" and a:S™ — I, be a one-to-one function.
A pair (S™,a) is called a completely labelled n-pair (c.l. n-pair for short) if
{19o) (o), ..., 1%Wn) (v,)} € L,. A signum of a c.l. n-pair (S, a) is an ele-
ment of the ring R equal to

sign (5", a) = orga (vo, ... ,vn) - O1g, (190%0) (1), ..., 190D (0,).

Let S" ' = {vy,...,v,} € C" ! and a:S"~! — I, be a one-to-one function.
A pair (S"71a) is called an x-completely labelled (n — 1)-pair (z-c.l. (n — 1)-
pair for short) if {1%1)(vy),...,1%)(v,)} € Ly(z). A signum of an z-c.l.
(n —1)-pair (S"71,a) is an element of the ring R equal to

sign (S" 1, a) = orgn-1(v1,... ,Un) orfnx(l“(”l)(vl), 1) (vy)).

Observe that the definition of the signum of a c.l. n-pair (5™, a) (z-c.l. (n—1)-
pair (S"71,a)) does not depend on the linear order of elements {v,... ,v,} of
S™ ({v1,...,v,} of S*71). A cl. n-pair and an z-c.l. (n — 1)-pair are called
a positive c.l. n-pair and a positive x-c.l. (n — 1)-pair (a negative c.l. n-pair
and a negative x-c.l. (n — 1)-pair) if sign (S",a) = 1 and sign (S" 1,a) = 1
(sign (S™,a) = —1 and sign (S"~1,a) = —1), respectively.

An (n—1)-pair (S"~1, a) is called a boundary (n—1)-pair if S*~1 is a bound-
ary (n — 1)-simplex of C".

We formulate a generalization of the Bapat theorem (Theorem 5.3 of this
paper) on n + 1 labellings:
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THEOREM 7.1. Let C" be a nonempty n-pseudomanifold on a set V' coher-
ently oriented by C™. Let L, be an n-primoid on a set U properly oriented by
L,, z€Uandl“:V — U fori € I,. Let ot and a~ (y© and v~) denote the
number of c.l. n-pairs in C™ (x-c.l. boundary pairs in C™) which are positive

and negative, respectively. Then ot —a~™ =T —~~.

PROOF. We construct an n-complex C7 on a set U x I, in the following way
{(vo,i0),--- s (vn,in)} € C} if and only if S™ = {vo,...v,} € C" and i; # iy,
for j # k, j,k € I,. A function orcp defined by

orgy. ((v0,0);s - - (Un,in)) = orgn (vVo, . .. ,Vp)

for ((vo,i0),--- ;(Vn,in)) € loC} is an orientation of C7} .
Now we will show that C7 is an n-pseudo-manifold coherently oriented
by orgr . Consider {(v1,91)s--- s (Vn,in)} € Pp(U x I,) such that i; # iy

for j 7é" k, j,k € {1,...n}. If there exists an n-simplex in C™ containing

Sl = {v1,... ,v,}, then there exist at most two such n-simplexes, say S7,
SZ. Thus there exist at most two n-simplexes {(w1,7), (v1,91),-.., (Un,in)},
{(wa,7), (v1,01), ., (Un,in)} € C},, where wy; € SF\ S" !, wy € S5\ S* 71,

j €L, j#ix for k € {1,... ,n} that they induce opposite orientation on their
common face. Thus C7 is a coherently oriented pseudomanifold. Now, ob-
serve that an n-pair ({vo,...,v,},a), where a: S™ — I,, is a one-to-one function
(boundary (n — 1)-pair ({v1,...,v,},a), where a: S"~! — I,, is a one-to-one
function) in C™ is an n-simplex {(vo, a(vg)), ... , (vn,a(v,))} (boundary (n—1)-
simplex {(v1,a(v1)),...,(vn,a(vs))}) in C} . Hence our theorem follows from
Theorem 5.3 immediately. O

If we apply Theorem 7.1 to the primoid L* (see Example 4.6 for definition)
we receive the Lee and Shih theorem ([28]), which is a generalization of the Fan
theorem on n + 1 labellings (Theorem 5.6).

THEOREM 7.2 (Lee, Shih [28]). Let C™ be a coherently oriented n-pseudoma-
nifold on V, k > n and n+1 labellings I":V — {—k,... ,—1,1,... [k} fori € I,
satisfying the condition 1*(v) +17 (v') # 0 for vertices v and v' of an n-simplex of
C" andi # j, 1,5 € In. Let a*(jo,--. ,jn) (@ (Jo,--- ,Jjn)) denotes the number
of n-pairs ({vg,...,vn},a) in C", where a:{vg,...v,} — I, is a one-to-one

function, such that
19D (v;) = j;  foriel,
and org.(vo,...,vn) =1 (orga(vo,...,v,) = —1)

and let B (jo, .. ,dn-1) (B~ (Jo,--- ,jn_1)) denote the number of boundary (n—
1)-pairs ({vo, ... ;vn—1},a) inloC} , where a:{vy,... ,v,} — I is one-lto-one
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function such that

la(vi)(vi) = ji fO?"i S
and Orén(IUO;.‘. 7’07171) =1 (Orén(UOV" 71]774*1) = _1)

Let

O‘(jo,'" a]n) = OéJr(jOv"' ,]n) _ai(jOa"' 7jn)a
B(jOa"' 7jn71) :ﬁ+<j07"' 7.7.1'7,71) _ﬁ_(j07"' ajn71)~

Then we have:

Z (Oé(*ko, kla 7k27 k37 HRI) (71)’”4’1]{:”) + Oé(ko, 7]/”'17 kQa 71{337 R (71)nkn))
0<ko<...<kn

= > Blko,—k1,ka, ks, (1) k).

0<ko<...<kn_1

Now we apply Theorem 7.1 to the triangulation of the geometric simplex.

THEOREM 7.3. Let Tr be a triangulation of A the n-complex C*={V (o) :
o € Tr} be oriented by the geometric orientation, V = J ., V(0), Ly, be an n-
primoid on a set U, properly oriented by Ly, (ug, ... ,u,) € loL, and [::V — U
fori € I,. Let a™, a~ denote the numbers of positive, negative c.l. pairs in
C", respectively. If for M G I,, a simplez 0 C AM, V(o) = {vo,... ,vjm} and
a one-to-one function a:V (o) — I, {10 (vg),... ,19®D) (o)} U {u; : i ¢
M} ¢ Ly, then at —a™ = (=1)" -org (v, ... ,un) -0l

PROOF. It is analogous to the proof of Theorem 6.1. We embed the simplex
A in a larger simplex using the Scarf method [25, p. 192]. Without loss of
generality we may assume that 0 € ri Al». Let d; = —a-d; fori € I,,, wherea > 0
is so large that Aln C ri co{dy,... ,d,}. Let us denote Af» = co{dy,... ,d,}.
Observe that org, (do, ... dp) = (=1)" (org. is the geometric orientation).

Now we extend the triangulation of A’» by joining every vertex v € V N
A M with the vertex d; and we get the triangulation of Al

Tr=Tu |J U co(Vie)u{di:ig¢M}).
MGI, o€Tr(AM)

Let C" = {V(0) : o € Tr}. For j € I,, we define a labelling I/ as an extension
of 17 on |J, 5 V(o) by 1(dy) = ug for all 4,5 € I,.

Let at, &~ denote the numbers of positive, negative c.l. pairs in C™, respec-
tively. Because of our assumption on I* for i € I,, there is no c.l. pair for this
new triangulation Tr of A» and for the labellings I (i € I,), which is not a c.l.
pair in Tr. Hence a™ —a~ = at —a™.

By Theorem 7.1 applied to C? and x = ug we know that &a™ — a~ is equal
to ¥* — 57, where ¥© — 5~ is the number of z-c.l. boundary pairs in C™.
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Observe that the only ug-c.l. (n — 1)-pairs on the boundary of Al are of the
type {(d1,a(d1)),...,(dn,a(d,))}, where a:{ds,... ,d,} — I, is a one-to-one

function and there is exactly n! such functions. The orientation of {glvl, . 7(,[”} is
the induced orientation by the geometric orientation and thus sign (dy, ... ,d,) =
(=1)". Hence at —a™ = (=1)" -org,_(uo, ... ,un) - nl. O

THEOREM 7.4. Let Tr be a triangulation of A the n-complex C*={V (o) :
o € Tr} be oriented by the geometric orientation org,, V = J,cn V(o) and L,
be an n-primoid on a set U, properly oriented by Ly, (ug, ... ,u,) € loL,. If for
i € I, a labelling I' : V — U satisfies the p-boundary condition for (ug, ... ,un),
then the number of positive c.l. n-pairs minus the number of negative c.l. n-pairs
18 equal to n!. In particular there is at least n! c.l. n-pairs.

PROOF. The conditions of Theorem 7.3 are satisfied for (uy, ... ,u,,up). The
proof proceeds in a similar way as in the case of Theorem 6.2. O

THEOREM 7.5. Let Tr be a triangulation of A the n-complex C*={V (o) :
o € Tr} be oriented by the geometric orientation, V = J, cq, V(o) and L, be
an n-primoid on a set U, properly oriented by Ly, (ug, ... ,u,) € loL,. If for
i € I, alabellingI' : V — U satisfies the sp-boundary condition for (ug, ... ,un),
then the number of positive c.l. n-pairs minus the number of negative c.l. n-pairs

18 equal to n!. In particular there is at least n! c.l. n-pairs.
ProOF. By Property 4.11(b) conditions of Theorem 7.4 are satisfied. |

COROLLARY 7.6. Applying Theorem 7.5 to the n-primoid:

(a) LI we get the Bapat theorem ([2, Theorem 1]),
(b) LT, we get the Lee and Shih theorem ([27, Theorem 2.1]).

In the case L,, = L% we say a b-balanced n-pair instead of a c.l. n-pair.
From Theorem 7.5 applied to the n-primoid L? and from Theorem 4.12 we
get

COROLLARY 7.7. Let Tr be a triangulation of Al» = co{dy,... ,d,}, the
complex C™ = {V (o) : 0 € Tr} be oriented by the geometric orientation, V =
Upere V(0). Let b € ri A be a point which is not a convex combination of less
than n 41 elements of U;c; 1/(V). Let I*:V — R™ be a labelling (i € 1,,) such
that for M C I, ifv € VNAM | then I’ (v) € cone({d; : i € M},b) for all j € I,.
Let o™, a™ denote the numbers of positive, negative b-balanced n-pairs in C™,
respectively. Then a™ —a~ = nl.

From Theorem 7.3 we have

COROLLARY 7.8. Let Tr be a triangulation of A", the n-complex C" =
{V(o) : 0 € Tr} be oriented by the geometric orientation and V = U, e, V(0).
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Let for M G I, and a simplex o C AM there exists j € M such that cNAM\U}Y =
0 and Ly, be an n-primoid on a set U, properly oriented by L, (ug,...,u,) €
loL,. Let at, a~ denote the numbers of positive, negative c.l. pairs in C™,
respectively. If for every i € I,, a labelling I' : V — U satisfies the dsp-boundary
condition for (ug,...uy), then o™ —a~ = (=1)"-org (ug, ... ,u,) - nl

COROLLARY 7.9. Let Tr be a triangulation of A" = co{dy,... ,d,} and the
complex C™* = {V (o) : 0 € Tr} be oriented by the geometric orientation and
V =U,em V(o). Let1':V — R™ be a labelling (i € I,,) such that for M C I,,, if
v e VNAM thenl(v) € aff{d; : i € M} for all j € I,,. Letb € ri Al be a point
which is not a conver combination of less than n + 1 elements of J;c; ).
Let at, o~ denote the numbers of positive, negative b-balanced n-pairs in C",
respectively. Then the numbers a™ — o~ = nl.

PROOF. Observe that the assumptions of Theorem 7.4 applied to the primoid
L% are satisfied. ]

From Theorem 7.3 we have

COROLLARY 7.10. Let Tr be a triangulation of A and the compler C™ =
{V(o) : 0 € Tr} be oriented by the geometric orientation, V = J cp, V(o) and
for M & I, and a simplex o C AM there exists j € M such that o NAM\UY =,
Let I":V — R™ be a labelling (i € I,)) such that for M G I, if v € V Nri AM,
then l'(v) € aff{d; : i ¢ M} for alli € I,. Letb € ri Al be a point which is
ier, (V). Leta™t, a”
denote the numbers of positive, negative b-balanced n-pairs in C™, respectively.
Then at —a™ = (=1)" - nl.

not a convex combination of less than n+ 1 elements of |

Applying Theorem 7.3 to the primoid LI» (see Example 4.2 for definition)
and (ug, ... ,u,) = (0,...,n) we get

COROLLARY 7.11. Let Tr be a triangulation of A", the n-complex C" =
{V(o) : 0 € Tr} be oriented by the geometric orientation, V = J,cr, V(0),
I':V — 1, fori € I,. Let a™, a~ denote the numbers of positive, negative
c.l. n-pairs in C", respectively. If for M G I,,, a simpler o0 C AM, V(o) =
{v1,...,vm|} and a one-to-one function a:V (o) — I,, we have {1*"V)(vy), ...,
l“(”IM\)(v‘MQ} # M, then a™ —a™ = (=1)" - nl.

Applying Theorem 7.3 to the primoid LI» and (uo,...,u,) = (1,...,n,0)
we get

COROLLARY 7.12. Let Tr be a triangulation of Al», the n-compler C" =
{V(e) : 0 € Tr} be oriented by the geometric orientation, V = {J,cr, V(0),
1V — I, fori € I,. Let at, a~ denote the numbers of positive, negative
c.l. n-pairs in C", respectively. If for M & I, a simplex 0 C AM, V(o) =
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{v1,...,vm|} and a one-to-one function a : V(o) — I, we have {1*"V)(vy), ...,
19D (v} # {(E+ 1) mod (ns1) 1 8 € M}, then ot —a™ =nl.

If I* = [° for every i € I,,, then Theorems and Corollaries 7.4-7.12 reduce to
Theorem 6.2, Theorem 6.3, Theorem 6.6, Theorems 6.7-6.10, respectively.
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