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LIFTING ERGODICITY IN (G, σ)-EXTENSIONS

Mahesh Nerurkar

Abstract. Given a compact dynamical system (X, T, m) and a pair (G, σ)

consisting of a compact group G and a continuous group automorphism σ
of G, we consider the twisted skew-product transformation on G×X given

by
Tϕ(g, x) = (σ[(ϕ(x)g], Tx),

where ϕ: X → G is a continuous map. If (X, T, m) is ergodic and aperiodic,

we develop a new technique to show that for a large class of groups G, the
set of ϕ’s for which the map Tϕ is ergodic (with respect to the product

measure ν ×m, where ν is the normalized Haar measure on G) is residual

in the space of continuous maps from X to G. The class of groups for which
the result holds contains the class of all connected abelian and the class of

all connected Lie groups. For the class of non-abelian fiber groups, this

result is the only one of its kind.

1. Introduction

By a dynamical system we mean a triple (X,T,m) where X is a compact
metric space, m is a Borel probability measure on X, and T is an m-preserving
homeomorphism of X. Let G be a compact metric topological group and let σ
be a continuous group automorphism of G. Given a continuous map ϕ:X → G,
define a σ-skew-product transformation Tϕ:G×X → G×X by the rule

Tϕ(g, x) = (σ[ϕ(x)g], T y), (g, x) ∈ G×X.
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Let ν denote the Haar measure on G, normalized so that ν(G) = 1. Then ν×m
is invariant under Tϕ. The dynamical system (G × X,Tϕ, ν × m) is called a
(G, σ)-extension or an affine extension of (X,T,m). The more commonly studied
“group extension” is a special case when σ = I — the identity automorphism
of G.

Such skew-product extensions have been extensively studied in ergodic theory
and topological dynamics. However, inspite of the vast literature on the subject,
several basic questions remain unanswered, particularly when the fiber group G
is non-abelian. One such question is: Is the set

Cerg(X,G) ≡ {ϕ ∈ C(X,G) : (G×X,Tϕ, ν ×m) is ergodic}

non-empty? and if so, how “big” is it? In this paper we shall show that for large
class of compact groups G, this set residual in C(X,G) — the metric space of
continuous maps from X to G with the supremum metric.

Before starting with the proof, we briefly describe related results and tech-
niques known so far. In the class of group extensions, there are basically two
main techniques to prove such generic lifting of minimality and ergodicity. The
first one is due to R. Ellis which proves generic lifting of minimality in compact,
connected Lie group extensions (cf. [1]). Later H. Keynes and D. Newton (cf. [3])
extended this technique to lift minimality in affine extensions as well. The sec-
ond technique is what is now called the “conjugation approximation technique”.
This method first appeared in the works of D. Anosov and A. Katok, then used
by A. Fathi and M. Herman and the subsequently refined by S. Glasner and
B. Weiss. This technique allows one to lift minimality as well as ergodicity but
in a rather special class of “closures of coboundaries” (and not in the class of
all cocycles). Using a version of this technique we proved a generic ergodicity
lifting result in the class of “closures of σ-coboundaries” when the fiber group is
the n-torus (cf. [2]). Still a proper “ergodic analog” of Ellis’s technique to lift
minimality was not yet known even for group extensions. For group extensions,
this was developed in a joint work with H. Sussmann (cf. [7]) and in the present
paper we extend that method to lift ergodicity in affine extensions. We remark
that a “smooth version” of Ellis’s technique and (ours as well) is yet to be de-
veloped and it seems there are some fundamental obstructions to doing this in
general.

Now we shall begin by describing the conditions we need to impose on the
pair (G, σ).

Definition 1.1. Consider a pair (G, σ), where G is a compact metric group
with metric d and σ is a continuous group automorphism of G.

(a) The pair (G, σ) has Property A if given a neighbourhood W of the
identity eG, there exist a positive integer κ such that, if W0, . . . ,Wκ−1
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are any κ right translates of W , then

κ−1∏
i=0

σi(Wi)
def= σ(Wκ−1) · σ2(Wκ−2) · . . . · σκ(W0) = G.

(b) The pair (G, σ) has Property B if given a compact metric space X and
a ϕ ∈ C(X,G) and ε > 0, there exists a δ > 0 such that if F is a finite
subset of X and ψ:F → G is a function that satisfies d(ϕ(x), ψ(x)) < δ

for all x ∈ F , then ψ can be extended to a continuous map on X such
that d(ϕ(x), ψ(x)) < ε for all x ∈ X.

Following [5], we shall call the pair (G, σ) admissible if it satisfies both Proper-
ties A and B.

We refer to [3] and [5] for the proof of the following.

Proposition 1.2. If G is either

(a) a compact, metric connected abelian group or
(b) a compact, connected Lie group or
(c) a compact connected metric group with finite center.

Then (G, σ) is admissible for any continuous automorphism σ.

Before stating the main theorem, we recall that (X,T,m) aperiodic if

m({x ∈ X : T kx = x for some k ∈ N}) = 0

and ergodic if every T -invariant Borel subset of X has m measure either zero
or one.

Theorem 1.3. Let (X,T,m) be a dynamical system and (G, σ) be a pair
where G is a compact group and σ its continuous automorphism. Suppose that

(a) (X,T,m) is a ergodic and aperiodic, and
(b) (G, σ) is admissible.

Then the set

Cerg(X,G) = {ϕ ∈ C(X,G) : (G×X,Tϕ, νG ×m) is ergodic} ,

is a residual subset of C(X,G).

2. Reduction of the proof

First we describe a crucial result (Proposition 2.2, which is Corollary 2.4 in
[4]) that reduces the problem of lifting ergodicity from the case of a general σ to
the case when σ is equicontinuous. (An automorphism σ is equicontinuous if the
family of map {σi : i ∈ N} is an equicontinuous family of maps from G to G.)
First we begin with some notation.
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Definition 2.1. Consider a given pair (G, σ) with G compact.

(a) Let Ĝ denote the “dual object” i.e. the set of equivalence classes of
finite dimensional irreducible representations of G. A typical element
of Ĝ will be denoted by [γ] where γ denotes a representative of the
class [γ].

(b) Let σ̂: Ĝ→ Ĝ be the map induced by σ, i.e. σ̂[γ] = [γ ◦ σ].
(c) Given a [γ] ∈ Ĝ, let Z[γ] denote the stabilizer subgroup of [γ]. More

precisely,

Z[γ]
def= {n ∈ Z : (σ̂)n[γ] = [γ]}.

Let
Ĝeq = {[γ] ∈ Ĝ : Z[γ] has finite index in Z},

and let Geq be the annihilator of Ĝeq, i.e.

Geq
def= Ann Ĝeq

def=
⋂

[γ]∈ bG

ker γ.

Then the set Geq is in fact a closed normal σ invariant subgroup of G.
The subgroup Geq is the obstruction to σ being equicontinuous, (hence
the suffix “eq”).

(d) Set G∗ = G/Geq and σ∗ denote the automorphism induced by σ on G∗.
(e) Let π:G → G∗ ≡ G/Geq be the canonical homomorphism (which is a

continuous and open map). A typical element of G∗ will be denoted
by g∗

def= π(g). In the language of topological dynamics, (G∗, σ∗) is a
maximal equicontinuous factor of the dynamical system (G, σ) under
the factor map π.

(f) Let ν∗ denote the normalized Haar measure on G∗. Observe that
π∗(ν) = ν∗.

(g) Given a ϕ ∈ C(X,G), set ϕ∗ = π ◦ϕ. Thus ϕ→ ϕ∗ defines a continuous
map from C(X,G) → C(X,G∗).

(h) For a given ϕ ∈ C(X,G), define transformation Tϕ∗ on G∗ × X by
setting

Tϕ∗(g∗, x) = (σ∗[ϕ∗(x)g], Tx) .

Metrics on all the underlying spaces (such as X, G and G∗) will be
denoted by d.

The following theorem essentially allows one to reduce the proof to the case
when σ is equicontinuous (cf. [4]).

Proposition 2.2. With the notation as above, given ϕ ∈ C(X,G), the dy-
namical system (G × X,Tϕ, ν × m) is ergodic if and only if the system (G∗ ×
X,Tϕ∗ , ν∗ ×m) is ergodic.
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This proposition implies that

Cerg(X,G) = {ϕ ∈ C(X,G) : (G∗ ×X,Tϕ∗ , ν∗ ×m) is ergodic}.

We will in fact prove a slightly stronger result, of which Theorem 1.3 is a di-
rect consequence. We begin by introducing some notation. If f ∈ L2(G∗, ν∗),
we use 〈f〉 to denote the average of f over G∗ with respect to ν∗, so 〈f〉 =∫
G∗ f(g) dν∗(g). If f belongs to L2(G∗ × X, ν∗ ×m) and x ∈ X, we use fx to

denote the function G∗ 3 g∗ 7→ f(g∗, x) ∈ C. Then fx ∈ L2(G∗, ν∗) for almost
all x ∈ X and

∫
X
‖fx‖2

L2 dm(x) ≤ ‖f‖2
L2 . For f ∈ L2(G∗ ×X, ν∗ ×m) set

f̂(g∗, x) def= 〈fx〉 def=
∫
G∗
f(g∗, x) dν∗(g∗).

Then f̂ is in fact the orthogonal projection of f on the space of square-integrable
functions on G∗ ×X that are functions of x only. We let

H =L2(G∗ ×X, ν∗ ×m),

H0 =
{
f ∈ H :

∫
G∗×X

f d(ν∗ ×m) = 0
}
,

H0,av = {f ∈ H : f̂ ≡ 0}.

Given ϕ ∈ C(X,G), define a unitary operator Uϕ∗ on H by setting

Uϕ∗f = f ◦ Tϕ∗ = f ◦ Tϕ◦π.

Furthermore, let

Wn,ϕ∗ =
n−1∑
i=0

U iϕ∗ .

We will then prove the following.

Theorem 2.3. Let (X,T,m) be a discrete dynamical system and G be a com-
pact metric group. Suppose that

(a) (X,T,m) is ergodic and aperiodic, and
(b) (G, σ) is admissible.

Then the set

Cerg,av(X,G) =
{
ϕ ∈ C(X,G) : lim

n→∞

1
n
Wn,ϕ∗f = 0 for all f ∈ H0,av

}
,

is a residual subset of C(X,G).

Proof of Theorem 1.3. The assumptions of Theorem 1.3 allow us to
apply Theorem 2.3. Let ϕ ∈ Cerg,av(X,G). If f ∈ H0, then f̃ def= f − f̂ ∈ H0,av.
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Hence (1/n)Wn,ϕ∗ f̃ → 0 as n→∞. Let h(x) def= 〈fx〉, then
∫
X
h(x) dm(x) = 0.

Since T is ergodic,
1
n
Wnh

def=
1
n

n−1∑
i=0

h ◦ T i → 0.

Observe that Wnh = Wn,ϕ∗ f̂ . Therefore

1
n
Wn,ϕ∗f =

1
n

(Wn,ϕ∗ f̃ +Wn,ϕ∗ f̂) → 0 as n→∞.

Since this is true for all f ∈ H0, it follows that (G∗×X,Tϕ∗ , ν∗×m) is ergodic.
Thus Proposition 2.2 shows that Cerg,av(X,G) ⊆ Cerg(X,G) and consequently
Cerg(X,G) is residual. �

3. Proof of Theorem 2.3

Given f ∈ H0,av, ε > 0 and n ∈ N, define a set E(f, ε, n) as follows:

E(f, ε, n) =
{
ϕ ∈ C(X,G) :

1
n
||Wn,ϕ∗f ||2 < ε

for some n ∈ N such that n > n

}
.

Lemma 3.1. Let ϕ ∈ C(X,G), and let F be a dense subset of H0,av. If
ϕ ∈ E(f, (1/n), n) for all f ∈ F , n ∈ N, n ∈ N, then ϕ ∈ Cerg,av(X,G).

Proof. Fix an f ∈F . By the L2 ergodic theorem, the sequence (1/n)Wn,ϕ∗f

converges in H as n → ∞ to some f∗ ∈ H. Since ϕ ∈ E(f, (1/n), n) for all
n, n ∈ N, f∗ must be the zero function. So (1/n)Wn,ϕ∗f → 0 for every f ∈ F .
Since F is dense in H0,av, and ‖(1/n)Wn,ϕ∗‖ ≤ 1 for all n, it follows that
(1/n)Wn,ϕ∗f → 0 as n→∞ for all f ∈ H0,av, so ϕ ∈ Cerg,av(X,G). �

In view of Lemma 3.1, Theorem 1.3 will follow from the Baire category
theorem — together with the facts that

(a) C(X,G) is a complete metric space, because G is a compact metric
group,

(b) C(G∗ ×X) ∩H0,av is dense H0,av, and
(c) C(G∗ ×X) is separable,

if we prove following lemma.

Lemma 3.2. Let f ∈ C(G∗ ×X) ∩ H0,av. Then E(f, (1/n), n) is open and
dense in C(X,G).

The openness of the set E(f, ε, n) is easily checked and we shall establish its
density. The proof of density involves a series of constructions begining with an
application of the following general result about approximating the integral of a
function over a compact group by average of its translates. For the proof of next
lemma we refer to Proposition 6.1 of [7].
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Lemma 3.3. Let G be a compact metric group. If K ⊆ C(X,G) is compact
and η > 0, then there exists a positive integer P , and members γ1, . . . , γP of G,
such that ∥∥∥∥〈h〉 − 1

P

P∑
r=1

Tγrh

∥∥∥∥
sup

≤ η for all h ∈ K,

where (Tgh)(x) = h(gx) is the isometry on C(G) generated by the left translation
on the group.

Density of E(f, ε, n). So we turn to the proof of the density of E(f, ε, n).
First, a word about notation. For this purpose, we fix the following objects:

(a) an f ∈ C(G∗ ×X) ∩H0,av;
(b) a ϕ ∈ C(X,G);
(c) a positive number ε;
(d) U -a symmetric neighbourhood of e-the identity of G;
(e) a positive integer n.

In a series of steps we shall construct a function ψ ∈ E(f, ε, n) such that
ψ(x)ϕ(x)−1 ∈ U for all x ∈ X. While going through these steps, for clarity, the
reader may also refer to the outline of the procedure summarized at the end of
the paper.

Step 1. For the given ϕ and ε, let δ be as in Property B and without loss of
generality we shall assume that Bδ

def= {g ∈ G : d(g, eG) < δ} ⊆ U . Set

V(ϕ,U) = {ψ ∈ C(X,G) : ψ(x)ϕ(x)−1 ∈ U for all x ∈ X}.

We shall construct a map ψ ∈ V(ϕ,U)∩E(f, ε, n) which shows that the later set
is non-empty. It follows that E(f, ε, n) is dense in C(X,G), concluding our proof.
Before starting with the construction of ψ, we introduce some more notation and
make a few observations.

For ϕ ∈ C(X,G), the iterates of Tϕ are given by

T jϕf(g, x) = f(ϕ(x, j)σj(g), T jx),

where by the abuse of notation we use the same letter ϕ to denote the map (i.e.
the cocycle): X × Z → G generated by ϕ. Note that,

(3.1) ϕ(x, j) = σ(ϕ(T j−1x)) · σ2(ϕ(T j−2x)) · . . . · σj(ϕ(x)) for j > 0,

and we let ϕ(x, 0) = e. Note that ϕ satisfies the following “σ-cocycle identity”

(3.2) ϕ(x,m+ n) = ϕ(Tmx, n)σn[ϕ(x,m)], m, n ∈ N.

Note that identities (3.1) and (3.2) remain valid when ϕ and σ are replaced by
ϕ∗ and σ∗, respectively.
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For h ∈ C(G∗) and g∗ ∈ G∗ define functions Tg∗(h) and Tσ∗(h) by setting

(Tg∗h)y∗ =h(g∗y∗),

(Tσ∗h)(y∗) = h(σ∗(y∗)) y∗ ∈ G∗.

As before Tg∗ is an isometry on C(G∗) and since σ∗ is equicontinuous on G∗,
without loss of generality we can assume that Tσ∗ is an isometry as well. Now
we continue with the construction of a map ψ ∈ V(ϕ,U) ∩ E(f, ε, n) in a series
of steps.

Step 2. Let K to be the closed convex hull (in C(G∗)) of the set of all
functions given by

{T iσ∗(Tg∗fx) : g∗ ∈ G∗, i ∈ N ∪ {0}, x ∈ X}.

(We recall that fx(h∗) = f(h∗, x).) Since σ∗ is equicontinuous on G∗, K is a
compact, convex subset of C(G∗). Moreover, K is invariant under Tσ∗ and Tg∗
for all g∗ ∈ G∗, furthermore 〈h〉 =

∫
G∗ h dν

∗ = 0 for every h ∈ K.
Next, we fix a finite subset K0 of K such that every h ∈ K satisfies the

following inequality
‖h− h0‖sup <

ε

16
for some h0 ∈ K0. We let κ̂ be the cardinality of K0. We let

(3.3) β =
ε

8κ̂
.

Next, let δ1 > 0 be such that

(3.4) if g1∗, g2∗ ∈ G∗ and d(g1∗, g2∗) < δ1,

then |H(g1∗)−H(g2∗)| <
β

2
, for all H ∈ K.

Step 3. Now applying Lemma 3.3 to the group G∗, with K as above and with
η = β, we get a positive integer P and γ1

∗, . . . , γP
∗ ∈ G∗ such that

(3.5)
∣∣∣∣ 1
P

P∑
r=1

Tγr
∗h

∣∣∣∣
sup

≤ β for all h ∈ K.

Step 4. For the given neighbourhood U of e, using Property A, we get a
positive integer κ such that for any κ right translates U0, . . . , Uκ−1 of U we
have,

(3.6) σ(Uκ−1)σ2(Uκ−2) . . . σκ(U0) = G.

Step 5. Next, we want to apply Rokhlin’s lemma to get a Rokhlin stack of
height N . We want to have this N large and of the form N = (κ + µ)λ, where
κ is as in the previous step and µ and λ are chosen as follows. Recall that we
need to produce a positive integer n, (n > n) so that the function ψ that we
are going to construct satisfies ||Wn,ψ∗f ||2/n < ε, (where ψ∗ = π ◦ ψ). This n
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will be of the form n = (κ + µ)ρ, where ρ is another large positive integer (but
much smaller than λ) to be chosen. Now we describe how (and in what order)
the choice of these integers is made.

First select ρ so that

(3.7)
||f ||sup

ρ
≤ ε

16
and

Pκ̂||f ||sup

ρ
≤ ε

8
.

Next, select λ so that

(3.8)
ρ

λ
||f ||2sup ≤

ε2

64
,

Finally choose µ so that

(3.9)
κ||f ||sup

µ
≤ ε

8
, n

def= (κ+ µ)ρ > n,

and

(3.10) d(σ∗i(κ+µ)(g∗), g∗) < δ1, for all g∗ ∈ G∗ and all i ∈ {1, . . . , λ},

where δ1 is as in Step 2 (see equation (3.4)). By the equicontinuity of σ∗ such
choice of µ is possible. Let

N = (κ+ µ)λ.

Step 6. For this N , Using Rokhlin’s lemma, pick a Borel subset Ê of X with
the property that the sets Ê, T Ê, . . . , TN−1Ê are pairwise disjoint, and

m(Ê ∪ TÊ ∪ . . . ∪ TN−1Ê) ≥ 1− c1,

where c1 is a positive constant such that

(3.11) c1||f ||2sup ≤
ε2

64
.

Next, we need to partition each Ê into “small pieces” (see Step 10). The
next three steps describe how fine this partition must be.

Step 7. Using uniformly continuity of f on G∗ ×X, choose

(a) a positive number c2 such that |f(g∗, y) − f(g∗, z)| ≤ ε/8 whenever
g∗ ∈ G∗, y, z ∈ X, and d(y, z) ≤ c2,

(b) a neighbourhood V of the identity e∗ of G∗ such that |f(g∗, x)−f(h∗, x)|
≤ ε/8 whenever g∗, h∗ ∈ G∗, x ∈ X, and g∗(h∗)−1 ∈ V .

Step 8. Let ΦN be the subset of C(X,G) consisting of all functions η:X → G

of the form

(3.12) η(x) = gr · σ
(
ϕ(T rx)

)
· gr−1 · σ2(ϕ(T r−1x)

)
· · · · · σr+1

(
ϕ(x)

)
· g0,

as r ranges over {0, . . . , N − 1} and (g0, . . . , gr) ranges over the set of all r+ 1-
tuples of members of G. Then ΦN is compact, because the right-hand side of
(3.12), regarded as a function of x, depends continuously on the r + 1-tuple
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(g0, . . . , gr), which takes values in the compact space Gr+1. It follows that
the family ΦN is equicontinuous, so corresponding to the neighborhood V of
e∗ chosen in Step 7, there exists a constant ω(N,V ) with the property that
π(η(y)η(z)−1) ∈ V whenever η ∈ ΦN , y, z ∈ X, and d(y, z) ≤ ω(N,V ).

Step 9. Write J = {0, . . . , N − 1}. Using the continuity of maps T j , (j ∈ J),
pick a positive c3 such that

(a) d(T jy, T jz) ≤ c2 whenever d(y, z) ≤ c3 and j ∈ J ,
(b) c3 ≤ ω(N,V ).

Step 10. We partition X into finitely many Borel-measurable sets X1, . . . , Xs

of diameter less than c3, and let Êi = Ê ∩ Xi for i = 1, . . . , s. Write I =
{1, . . . , s}. Using the fact that m is regular, pick compact sets Ei such that
Ei ⊆ Êi and m(Êi \ Ei) < (c1/sN). Write Eij = T jEi for i ∈ I, j ∈ J (so
Ei0 = Ei). Then the sets Eij are pairwise disjoint, and

m

( ⋃
i∈I

⋃
j∈J

Eij

)
≥ 1− 2c1.

We discard any Ei’s that have measure zero, so m(Eij) > 0 for all i ∈ I, j ∈ J .
Step 11. We pick points xi ∈ Ei for each i ∈ I, and then let xi,j = T jxi, so

xi,j ∈ Eij .
Step 12. Now we are going to define the map ψ belonging to V(ϕ,U). For

this purpose, we begin by dividing the integer interval J = [0, 2, . . . , N − 1] into
λ blocks J1, . . . , Jλ of length κ+ µ, given by

(3.13) J` = {(`− 1)(κ+ µ), (`− 1)(κ+ µ) + 1, . . . , `(κ+ µ)− 1} for ` ∈ L,

where L = {1, . . . , λ}. We then split each block J` into two blocks J1
` , J

2
` , of

lengths κ and µ, by letting

J1
` = {(`− 1)(κ+ µ), (`− 1)(κ+ µ) + 1, . . . , `κ+ (`− 1)µ− 1},
J2
` = {`κ+ (`− 1)µ, `κ+ (`− 1)µ+ 1, . . . , `(κ+ µ)− 1}.

The map ψ will satisfy

ψ(xi,j) = ϕ(xi,j) if j ∈ J2
` ,(3.14)

ψ(xi,j) = gijϕ(xi,j) if j ∈ J1
` ,(3.15)

where the gij are members of U whose choice will be described later. By Property
B there exists a continuous map θ:X → U such that θ(xi,j) = gij for j ∈ J1

` and
θ(xi,j) = e for j ∈ J2

` . If we then define ψ(x) = θ(x)ϕ(x), then ψ satisfies (3.14)
and (3.15) and furthermore ψ ∈ V(ϕ,U).
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Estimating (1/n)‖Wn,ψ∗f‖L2 . Now we are now going to estimate the norm
‖Wn,ψ∗f‖L2where n is chosen as in (3.9). We let

A =
N−n−1⋃
j=0

s⋃
i=1

Eij .

Since m
( ⋃N−1

j=N−n
⋃s
i=1Eij

)
≤ (n/N) = (ρ/λ), (because m

( ⋃s
i=1Eij

)
≤ (1/N)

for each j), the set A satisfies

m(A) ≥ 1− 2c1 −
ρ

λ
.

Outside G∗ × A, the function (1/n)Wn,ψ∗f is bounded pointwise by ‖f‖sup, so
using (3.11) and the estimate on m(A) obtained above, we have

(3.16)
∫
G∗×(X\A)

| 1
n
Wn,ψ∗f(g∗)|2dν∗(g∗) ≤ ‖f‖2

sup

(
2c1 +

ρ

λ

)
≤ 3ε2

64
.

If (g∗, x) ∈ G∗×A, then there exists unique i ∈ I, j ∈ J , such that j ≤ N−n−1
and x ∈ Eij . Write

(3.17) Wn,ψ∗;i,jf(g∗) def= Wn,ψ∗f(g∗, xi,j) =
n−1∑
k=0

f(ψ∗(xi,j , k)σ∗
k(g∗), T kxi,j).

Since both x and xi,j belong to Eij , the distance d(x, xi,j) is not larger than c3.
Then d(T kx, T kxi,j) ≤ c2 for all 0 ≤ k ≤ n − 1. Therefore (by (b) of Steps 7
and 9),

(3.18) |f(ψ∗(x, k)h∗, T kx)− f(ψ∗(x, k)h∗, T kxi,j)| ≤
ε

8
,

for all 0 ≤ k ≤ n − 1 and h∗ ∈ G∗. Now notice that for each 0 ≤ k ≤ n,
the function x → ψ(x, k) restricted to set A “belongs to ΦN” (i.e. equals the
restriction to A of some member of ΦN ). Since c3 ≤ ω(N,V ), we conclude that

π(ψ(x, k)h(ψ(xi,j , k)h)−1) = ψ∗(x, k)ψ∗(xi,j , k) ∈ V,

for all x ∈ A, h ∈ G and 0 ≤ k ≤ n− 1. Therefore

(3.19) |f(ψ∗(x, k)h∗, T kxi,j)− f(ψ∗(xi,j , k)h∗, T kxi,j)| ≤
ε

8
.

By taking h∗ = σ∗k(g∗), and using (3.18) and (3.19) we have:

(3.20) |Wn,ψ∗;i,jf(g∗)−Wn,ψ∗f(g∗, x)| ≤ ε

4
whenever g∗ ∈ G∗, x ∈ Eij .

Now fix an i ∈ I and j ∈ J such that j ≤ N − n − 1. Then for each
k ∈ {0, . . . , n − 1}, T kxi,j = xi,j+k ∈ Ei,j+k. As k varies from 0 to n − 1, the
index j + k takes all values in the integer interval Γn(j) = {j, . . . , j + n − 1},
which is a subset of J ≡ {0, . . . , N − 1} because j ≤ N − n − 1. We can then
write Γn(j) = Γcn(j) ∪ Γbn(j), where the “central” part Γcn(j) is a disjoint union
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of intervals J` (see (3.13)) with ` such that J` ⊆ Γn(j), and the “bad” (or the
“end”) part Γbn(j) which has at most 2(κ+ µ) members. Thus,

Wn,ψ∗;i,jf(g∗) = W c
n,ψ∗;i,jf(g∗) +W b

n,ψ∗;i,jf(g∗),

where W c
n,ψ∗;i,jf(g∗) and W b

n,ψ∗;i,jf(g∗) are the contributions to the right-hand
side of (3.17) by the terms for which k+j ∈ Γcn(j) and k+j ∈ Γbn(j), respectively.
Thus,

W c
n,ψ∗;i,jf(g∗) =

∑
k+j∈Γc

n(j)

f(ψ∗(xi,j , k)σ∗
k(g∗), xi,j+k).

W b
n,ψ∗;i,jf(g∗) =

∑
k+j∈Γb

n(j)

f(ψ∗(xi,j , k)σ∗
k(g∗), xi,j+k).

Since Γbn(j) has at most 2(κ+ µ) indices, we get the bound

(3.21)
∣∣∣∣ 1
n
W b
n,ψ∗;i,jf(g∗)

∣∣∣∣ ≤ 2(κ+ µ)‖f‖sup

n
=

2‖f‖sup

ρ
.

Now let us analyze the term W c
n,ψ∗;i,jf(g∗). Let ∆n(j) = {` ∈ J` ⊆ Γn(j)}, then

W c
n,ψ∗;i,jf(g∗) =

∑
`∈∆n(j)

∑
k+j∈J`

f(ψ∗(xi,j , k)σ∗
k(g∗), xi,j+k).

This expression allows us to write W c
n,ψ∗;i,jf(g∗) as a sum of contributions from

the individual terms W c
n,ψ∗;i,j;`f(g∗), (` ∈ ∆n(j)), defined by

W c
n,ψ∗;i,j;`f(g∗) =

∑
k+j∈J`

f(ψ∗(xi,j , k)σ∗
k(g∗), xi,j+k)

=
∑
u∈J`

f(ψ∗(xi,j , u− j)σ∗(u−j)(g∗), xi,u) .

Let J`={a`, a`+1, . . . , a`+κ+µ−1}. Rewriting the summation with u=a`+v
and using the cocycle identity (3.2) we get

W c
n,ψ∗;i,j;`f(g∗)=

κ+µ−1∑
v=0

f(ψ∗(xi,j , v + a`−j)σ∗(v+a`−j)(g∗), xi,a`+v)

=
κ+µ−1∑
v=0

f(ψ∗(xi,a`
, v)σ∗v[ψ∗(xi,j , a`−j)]σ∗(v+a`−j)(g∗), xi,a`+v)

=
κ+µ−1∑
v=0

f(ψ∗(xi,a`
, v)σ∗v[ψ∗(xi,j , a`−j)σ∗(a`−j)(g∗)], xi,a`+v).

We now split the above sum once more, by separating out the first κ terms from
the remaining µ ones. We get

W c
n,ψ∗;i,j;`f(g∗) = W c,−

n,ψ∗;i,j;`f(g∗) +W c,+
n,ψ∗;i,j;`f(g∗),



Lifting Ergodicity in (G, σ)-Extensions 205

where

W c,−
n,ψ∗;i,j;`f(g∗) =

κ−1∑
v=0

f(ψ∗(xi,a`
, v)σ∗v[ψ∗(xi,j , a`−j)σ∗(a`−j)(g∗)], xi,a`+v),

W c,+
n,ψ∗;i,j;`f(g∗)

=
µ−1∑
w=0

f(ψ∗(xi,a`
, κ+ w)σ∗(κ+w)[ψ∗(xi,j , a` − j)σ∗(a`−j)(g∗)], xi,a`+κ+w).

Clearly, each function W c,−
n,ψ∗;i,j;`f is pointwise bounded by κ‖f‖sup. More-

over, it is clear that the number of members of ∆n(j) is at most ρ. Therefore

(3.22)
1
n

∣∣∣∣ ∑
`∈∆n(j)

W c,−
n,ψ∗;i,j;`f(g∗)

∣∣∣∣ ≤ ρκ‖f‖sup

n
=
κ‖f‖sup

κ+ µ
.

We now turn to the crucial estimate, namely, the bound for the functions
W c,+
n,ψ∗;i,j;`f . Recall that xi,j = T jxi then the cocycle identity (3.2) yields

ψ∗(xi,j , a` − j) = ψ∗(xi, a`)σ∗
(a`−j)[ψ∗(xi, j)−1].

Now, consider the expression forW c,+
n,ψ∗;i,j;`f , using the cocycle identity we obtain

ψ∗(xi,a`
, κ+ w)σ∗(κ+w)[ψ∗(xi,j , a` − j)σ∗(a`−j)(g∗)]

=ψ∗(xi,a`+κ, w)σ∗w[ψ∗(xi,a`
, κ)]σ∗(κ+w)[ψ∗(xi,j , a` − j)σ∗(a`−j)(g∗)]

=ψ∗(xi,a`+κ, w)σ∗w(ψ∗(xi,a`
, κ)σ∗κ[ψ∗(xi,j , a` − j)]σ∗(κ+a`−j)(g∗))

=ψ∗(xi,a`+κ, w)σ∗w(ψ∗(xi,a`
, κ)σ∗κ

· [ψ∗(xi, a`)σ∗(a`−j)(ψ∗(xi, j))−1]σ∗(κ+a`−j)(g∗))

=ψ∗(xi,a`+κ, w)σ∗w(ξ`,iσ∗
(κ+a`−j)(ψ∗(xi, j))−1g∗)),

where
ξ`,i = ψ∗(xi,a`

, κ)σ∗κ[ψ∗(xi, a`)].

It is at this point that we will describe the choice of gij ’s. For this purpose, we will
want to assign to each index ` ∈ L and each i ∈ I an integer r(`, i) ∈ {1, . . . , P}.
We let Fi,` be the function on G∗ defined by

Fi,`(g∗) =
1
µ

µ−1∑
w=0

f(ψ∗(xi,a`+κ, w)σ∗w(g∗), xi,a`+κ+w).

Our first observation is that the functions Fi,` do not depend on ψ at all, i.e. on
the choice of gij ’s, in fact

Fi,`(g∗) =
1
µ

µ−1∑
w=0

f(ϕ∗(xi,a`+κ, w)σ∗w(g∗), xi,a`+κ+w).
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Next, observe that

W c,+
n,ψ∗;i,j;`f(g∗) = µFi,`(ξ`,iσ∗

(κ+a`−j)[ψ∗(xi, j)−1g∗)]).

Clearly, each Fi,` is a convex combination of elements of the set

{(T iσ∗ ◦ Tg∗)fx : g∗ ∈ G∗, i ∈ N ∪ {0}, x ∈ X}.

Hence Fi,` belong to K. So for each i, ` we can choose Hi,` ∈ K0 such that
‖Fi,` −Hi,`‖sup ≤ (ε/8). We fix one such choice from now on.

For each i ∈ I, H ∈ K0, let A(i,H) be the set of those indices ` ∈ L such
that Hi,` = H. Enumerate the members of A(i,H), from left to right, so

A(i,H) = {αi,H,1, . . . , αi,H,Λ(i,H)},

with αi,H,1 < αi,H,2 < . . . < αi,H,Λ(i,H). Then for each i ∈ I, ` ∈ L, there exists
a unique k = k(i, `) ∈ {1, . . . ,Λ(i,Hi,`)} such that ` = αi,Hi,`,k. We then define
r(i, `) to be the remainder of k(i, `) modulo P , so k(i, `) = k̂(i, `)P + r(i, `),
where k̂(i, `) and r(i, `) are nonnegative integers and 0 ≤ r(i, `) < P .

We now define the gij for i ∈ I, j ∈ J . As explained above, we let gij = e if
j ∈

⋃
` J

2
` . We then define the family {gij}i∈I,j∈J1

`
for each j ∈ J1

` , inductively
with respect to `.

Fix an `, and assume that the gij have already been chosen for j ∈ J1
`′ for all

`′ such that `′ < `, but not yet for j ∈ J1
` . Then the gij are in fact determined

for all j such that j < a`. For any i ∈ I, we have

ψ∗(xi,a`
,κ) · σ∗κ[ψ∗(xi, a`)]

=σ∗[ψ∗(xi,a`+κ−1)]σ∗
2[ψ∗(xi,a`+κ−2)] · · · σ∗κ[ψ∗(xi,a`

)]σ∗κ[ψ∗(xi, a`)]

=σ∗[g∗i,a`+κ−1 · z∗κ−1] · σ∗
2[g∗i,a`+κ−2 · z∗κ−2] · . . . · σ∗

k[g∗i,a`
· z0∗],

where zk = ϕ(xi,a`+k) for 0 < k < κ, z0 = ϕ(xi,a`
) · ψ(xi, a`), (and recall that

z∗ = π(z), ψ∗ = ψ ◦π). Note that z0 is determined, because the gij have already
been selected for j < a`. Now (3.6) guarantees that σ[Uzκ−1] · σ2[Uzκ−2] · . . . ·
σκ[Uz0] = G. Since the map π:G → G∗ ≡ G/Geq is onto, we can choose
gi0, . . . , gi,κ−1 such that

ψ∗(xi,a`
, κ) · σ∗κ[ψ∗(xi, a`)] = γ∗r(`,i).

Then, for any i, j,∑
`∈∆n(j)

W c,+
n,ψ∗;i,j;`f(g∗) = µ

∑
`∈∆n(j)

Fi,`(γ∗r(`,i)σ
∗(κ+a`−j)[ψ∗(xi, j)−1g∗])

= µ
∑
H∈K0

∑
`∈A(i,H)∩∆n(j)

Tγ∗
r(`,i)

Fi,`(σ∗
(κ+a`−j)[ψ∗(xi, j)−1g∗]).
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Now let,

W σ
n,ψ∗;i,j(g

∗) def= µ
∑
H∈K0

∑
`∈A(i,H)∩∆n(j)

Tγ∗
r(`,i)

H(σ∗a`(g∗)).

Now fix a g∗ ∈ G∗ and set t∗ij = σ∗(κ−j)[ψ∗(xi, j)−1g∗]. Since ‖Hi,` − Fi,`‖sup ≤
ε/16 whenever ` ∈ A(i,H), we have the bound∣∣∣∣W σ

n,ψ∗;i,j(t
∗
ij)−

∑
`∈∆n(j)

W c,+
n,ψ∗;i,j;`f(g∗)

∣∣∣∣ ≤ µρε

16
,

using the fact that ∆n(j) has at most ρ members. Observing that (µρ/n) ≤ 1,
we get

(3.23)
1
n

∣∣∣∣W σ
n,ψ∗;i,j(t

∗
ij)−

∑
`∈∆n(j)

W c,+
n,ψ∗;i,j;`f(g∗)

∣∣∣∣ ≤ ε

16
,

because n = (κ+ µ)ρ.
We now turn to the final task of estimating W σ

n,ψ∗;i,j . First, notice that when
σ = I-the identity automorphism, we have

W I
n,ψ∗;i,j(g

∗) = µ
∑
H∈K0

∑
`∈A(i,H)∩∆n(j)

Tγ∗
r(`,i)

H(g∗).

Let us also write

W σ
n,ψ∗;i,j;H(g∗) def=

∑
`∈A(i,H)∩∆n(j)

Tγ∗
r(`,i)

H(σ∗a`g∗) and

(3.24)

W I
n,ψ∗;i,j;H(g∗) def=

∑
`∈A(i,H)∩∆n(j)

Tγ∗
r(`,i)

H(g∗).

(3.25)

Then we have

W σ
n,ψ∗;i,j(g

∗) =µ
∑
H∈K0

W σ
n,ψ∗;i,j;H(g∗),(3.26)

W I
n,ψ∗;i,j(g

∗) =µ
∑
H∈K0

Wn,ψ∗;i,j;H(g∗).(3.27)

Since ∆n(j) has at most ρ members and a` = `(κ + µ), our choice of κ + µ in
Step 5 (see (3.10)) gives

|W σ
n,ψ∗;i,j;H(g∗)−W I

n,ψ∗;i,j;H(g∗)| < ρβ

2
for all g∗ ∈ G∗ and H ∈ K.

Since the cardinality of K0 is κ̂, using (3.3) we have

|W σ
n,ψ∗;i,j(g

∗)−W I
n,ψ∗;i,j(g

∗)| < µκρβ

2
=
εµρ

8
for all g∗ ∈ G∗.
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Combining this with (3.23) and recalling that (µρ/n) ≤ 1 yields,

(3.28)
1
n

∣∣∣∣ ∑
`∈∆n(j)

W c,+
n,ψ∗;i,j;`f(g∗)−W I

n,ψ∗;i,j(t
∗
ij)

∣∣∣∣ ≤ ε

8
,

(recall that t∗ij = σ∗(κ−j)[ψ∗(xi, j)−1g∗]). Now we estimate W I
n,ψ∗;i,j(g

∗). Recall
that

W I
n,ψ∗;i,j(g

∗) = µ
∑
H∈K0

∑
`∈A(i,H)∩∆n(j)

(Tγ∗
r(`,i)

H)(g∗).

Now suppose that A(i,H) ∩ ∆n(j) has qi,j,HP + pi,j,H members, where qi,j,H
and pi,j,H are integers such that qi,j,H ≥ 0 and 0 ≤ pi,j,H < P . Then the sum of
the first qi,j,HP terms of the above expression is equal to qi,j,H

∑P
r=1 Tγr

H(g∗),
whose absolute value is bounded by Pβqi,j,H , because

∫
G∗ Hdν

∗ = 0.The sum
of the remaining pi,j,H terms is bounded by pi,j,H‖f‖sup. Thus

|W I
n,ψ∗;i,j;H(g∗)| ≤ Pβqi,j,H + pi,j,H‖f‖sup.

Each number qi,j,H is bounded by ρ/P , and pi,j,H ≤ P . So

|W I
n,ψ∗;i,j;H(g∗)| ≤ ρβ + P‖f‖sup.

Therefore

(3.29) ‖W I
n,ψ∗;i,j‖sup ≤ µκ̂ρβ + µκ̂P‖f‖sup.

If we combine (3.29) and (3.28) we find

1
n

∥∥∥∥ ∑
`∈∆n(j)

W c,+
n,ψ∗;i,j;`f(g∗)

∥∥∥∥
sup

≤ ε

8
+
µκ̂ρβ

n
+
µκ̂P

n
‖f‖sup,

We now use (3.22) and get

1
n
|W c

n,ψ∗;i,j |sup =
1
n

∣∣∣∣ ∑
`∈∆n(j)

W c
n,ψ∗;i,j;`

∣∣∣∣
sup

≤ κ‖f‖sup

κ+ µ
+
ε

8
+
µκ̂ρβ

n
+
µκ̂P

n
‖f‖sup.

Then (3.21) implies

1
n
|Wn,ψ∗;i,j(g∗)| ≤

2‖f‖sup

ρ
+
κ‖f‖sup

κ+ µ
+
ε

8
+
µκ̂ρβ

n
+
µκ̂P

n
‖f‖sup.

Finally, we use (3.20) and get the pointwise estimate

1
n
|Wn,ψ∗f(g∗, x)| ≤ ε

4
+

2‖f‖sup

ρ
+
κ‖f‖sup

κ+ µ
+
ε

8
+
µκ̂ρβ

n
+
µκ̂P

n
‖f‖sup,

valid whenever g∗ ∈ G∗ and x ∈ A. Note that each term on the right hand side
of above inequality except the first one is less than or equal to ε/8 (this follows
from equations (3.3) (3.7), (3.8) and (3.10)). Futhermore n > n. Thus we have



Lifting Ergodicity in (G, σ)-Extensions 209

shown that depending on the initial given data (i.e. f , ε, ϕ, U and n we have
found n such that

|Wn,ψ∗f(g∗, x)| ≤ 7ε
8

whenever g∗ ∈ G∗ and x ∈ A.

This, together with (3.16), implies that∫
G∗×X

|Wn,ψ∗f |2dν∗ ×m ≤ 49ε2

64
+

(
2c1 +

3ε2

64

)
< ε2,

and we conclude that ‖Wn,ψ∗f‖L2 < ε. Since n > n, we have proved that
ψ ∈ E(f, ε, n). We have already checked that ϕ ∈ E(f, ε, n)∩V(ϕ,U), concluding
the proof of Lemma 3.2 and subsequently the proof of Theorem 2.3 as well. �

Finally, for the readers convinience we briefly outline the steps taken in
getting a pointwise estimate for Wn,ψ∗f . First, we remark that the levels of our
Rokhlin tower (of height N and with base

⋃
i∈I Ei) are grouped into λ blocks

J`, (1 ≤ ` ≤ Λ). Levels in each λ block J` are further grouped into first κ steps
and later µ steps, (where N = (κ+ µ)λ). After fixing a g∗ ∈ G∗ and x ∈ Eij we
begin by:

(a) approximating (pointwise) Wn,ψ∗f by the quantity Wn,σ∗;i,jf (see (3.17)
and (3.20)).

(b) Contribution to each Wn,ψ∗;i,j comes from the “central terms” W c
n,ψ∗;i,jf

and the “end terms” or the “bad terms” W b
n,ψ∗;i,jf . Since n is much larger than

κ+ µ, the term |W b
n,ψ∗;i,jf |/n is small (see (3.21)).

(c) Next, we write W c
n,ψ∗;i,j as a sum of contributions from the individual

terms W c
n,ψ∗;i,j;`f , (` ∈ ∆n(j)) and each sumW c

n,ψ∗;i,j;`f(g∗) is then further split
as a sum of terms W c,−

n,ψ∗;i,j;`f(g∗) and W c,+
n,ψ∗;i,j;`f(g∗) corresponding to the first

κ terms and the remaining µ ones, respectively. Since κ is small compared to n,
|W c,−

n,ψ∗;i,j;`f(g∗)|/n is small, (see (3.22)).
(d) For each i, ` we think ofW c,+

n,ψ∗;i,j;`f as a function onG∗, namely µFi`. For
each i, `, we approximate each Fi` byHi` ∈ K0. Then the sum ofW c,+

n,ψ∗;i,j;`f(g∗),
as ` varies over ∆n(j), can be approximated by the quantityW σ

n,ψ∗;i,j (see (3.23)).
Next, W σ

n,ψ∗;i,j itself is a sum of terms W σ
n,ψ∗;i,j;H as H varies over K0 (see

(3.26)–(3.27)). Now the term W σ
n,ψ∗;i,j;H involves sum of the translates Tg∗H of

H ≡ Hi,`, for eachH in K0, (see (3.24)). (Here we remark that the functions Fi`’s
and hence Hi`’s themselves do not depend on the choice of gij ’s, their translates
involve gij ’s.) Our choice of the gij ’s was such that the average (over P terms) of
these translates of H’s in Ko has small supremum norm, uniformly for H ∈ K0

(see (3.5)). Since P is much smaller than n we can make ||Wn,ψ∗f ||L2/n as small
as we desire.

(e) The only problem left now is that the sum W σ
n,ψ∗;i,j;H involves translates

of H ∈ K0 at σ∗a`(g∗) rather an at g∗. But again the equicontinuity of σ∗ has
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allowed us to choose a`’s in such a way (see (3.10)) that W σ
n,ψ∗;i,j;H(g∗) is close

to W I
n,ψ∗;i,j;H(g∗).

References

[1] R. Ellis, The construction of minimal discrete flows, Amer. J. Math. LXXXVII

(1965), no. 3, 564–574.

[2] H. Keynes and M. Nerurkar, Ergodicity in affine skew product toral extensions,

Pacific J. Math. 123 (1986), no. 1, 115–126.

[3] H. Keynes and D. Newton, Minimal (G, σ) extensions, Pacific J. Math. 77 (1978),

145–163.

[4] , Ergodicity in (G, σ) extensions, Lecture Notes in Math. 819, Springer–Verlag,

265–290.

[5] , Minimality for non-abelian (G, σ)-extensions, Lecture Notes in Math. 668

(1977), Springer–Verlag, 173–178.

[6] M. Nerurkar and H. Sussmann, Construction of minimal cocycles arising from spe-

cific differential equations, Israel J. Math. 100 (1997), 309–326.

[7] , Construction of ergodic cocycles arising from specific differential equations,

J. Modern Dynamics 1 (2007), no. 2 (to appear).

Manuscript received February 8, 2007

Mahesh Nerurkar

Rutgers University
Camden, NJ 08102, USA

E-mail address: nmahesh@crab.rutgers.edu

TMNA : Volume 30 – 2007 – No 1


