
Topological Methods in Nonlinear Analysis
Journal of the Juliusz Schauder Center
Volume 28, 2006, 1–31

POSITIVE SOLUTIONS OF A NEUMANN PROBLEM
WITH COMPETING CRITICAL NONLINEARITIES

Jan Chabrowski — Stathis Filippas — Achilles Tertikas

Abstract. We present existence results for a Neumann problem involving

critical Sobolev nonlinearities both on the right hand side of the equation
and at the boundary condition. Positive solutions are obtained through

constrained minimization on the Nehari manifold. Our approach is based

on the concentration compactness principle of P. L. Lions and M. Struwe.

1. Introduction

In this paper we are concerned with the Neumann problem

(1.1)


−∆u + λu = N(N − 2)Q(x)u(N+2)/(N−2) in Ω,

u > 0 in Ω,

∂u

∂ν
= P (x)uN/(N−2) on ∂Ω,

where Ω ⊂ RN is a bounded domain with smooth boundary and λ ≥ 0 is a
parameter. The constant N(N − 2) appearing in (1.1) has been introduced
for technical convenience and can be absorbed in Q(x). We denote by 2∗ =
2N/(N − 2) and q = 2(N − 1)/(N − 2) the critical Sobolev exponents for the
embedding of H1(Ω) into L2∗(Ω), and H1(Ω) into Lq(∂Ω), respectively, for N≥3.
Both embeddings are continuous but not compact. Throughout the paper we
assume that Q and P are continuous functions on Ω and ∂Ω respectively. In
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addition, Q is a positive function on Ω. Further assumptions on Q and P will
be formulated later.

Semilinear elliptic problems with critical Sobolev nonlinearities have received
considerable attention after the pioneering work of Brezis and Nirenberg [9] on
the constant coefficient Dirichlet counterpart of (1.1), but also in connection with
the Yamabe problem, see e.g. [18], [21] and references therein.

If P (x) ≡ 0, then solutions of (1.1) are obtained as minimizers of the varia-
tional problem

(1.2) Sλ = inf
u∈H1(Ω)\{0}

∫
Ω
(|∇u|2 + λu2) dx

(N(N − 2)
∫
Ω

Q(x)|u|2∗ dx)2/2∗
.

If N(N − 2)Q(x) ≡ 1 and P (x) ≡ 0, problem (1.1) has an extensive literature,
see e.g. [1]–[6], [11]–[12], [14], [28]. The first existence results in this case were
obtained by Adimurthi–Mancini [1], Adimurthi–Yadava [5] and X. J. Wang [28].
If S denotes the best Sobolev constant, and

(1.3) Sλ < S/22/N ,

for some λ > 0, then problem (1.1) admits a least energy solution. The validity of
this inequality can be verified by using a special family of functions, namely, the
Talenti instantons centered at a point on the boundary ∂Ω with positive mean
curvature. It turns out that solutions exist for any λ > 0, under the assumption
that ∂Ω has at least one point with positive mean curvature.

If Q(x) 6≡ constant and P (x) ≡ 0, problem (1.1) has been studied by
Chabrowski and Willem [13]. Assuming that Q(x) > 0, and setting Qm :=
maxx∈∂Ω Q(x) and QM := maxx∈Ω Q(x), the authors showed that if

(1.4) Sλ < (S/22/N ) min{22/N/(N(N − 2)QM )2/2∗ , 1/(N(N − 2)Qm)2/2∗},

then a least energy solution exists. If N(N − 2)Q(x) ≡ 1 then (1.4) reduces
to (1.3). Condition (1.4) ensures that no concentration due to the presence of
the critical exponent can occur in a minimizing sequence of (1.2), and therefore
one can extract a subsequence that converges to a solution of (1.1). In case
QM ≤ 22/(N−2)Qm, inequality (1.4) is satisfied for any λ ≥ 0 provided Qm is
attained at a point x0 ∈ ∂Ω with positive mean curvature. On the other hand,
if QM > 22/(N−2)Qm, then least energy solutions exist for λ ∈ (0, λ0), for some
λ0 > 0, and in general, no least energy solutions exist for large values of λ.

Our purpose in this work is to obtain existence results in the case where
Q(x) 6≡ constant and P (x) 6≡ 0. Since P is not anymore identically zero, the
critical nonlinearity on the boundary comes into play. We note that, in the case
where Q and P are nonzero constants, some existence results for λ = 0 are
provided by Pierotti and Terracini [24], among other things.
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Elliptic problems that resemble to (1.1), involving two critical exponents,
arise in a natural way in geometry, see Escobar [19], Han and Li [20], [21],
Ambrosetti, Li, Malchiodi [7], and Djadli, Malchiodi, Ould Ahmedou [17] and
references therein. Consider for instance the problem of prescribing the scalar
curvature and the boundary mean curvature of the standard half three sphere,
by conformally deforming its standard metric. After a conformal transformation
that sends the half sphere to the upper half space, the problem is reduced to
finding positive solutions (with finite energy) of

(1.5)


−4

N − 1
N − 2

∆u = K(x)u(N+2)/(N−2) in RN
+ ,

− N

N − 2
∂u

∂xN
= H(x)uN/(N−2) on ∂RN

+ ,

with K, H smooth functions and K(x) > 0. Problems (1.1) and (1.5) are the
same if we identify Ω with RN

+ , we note however that in our case the geometry
of ∂Ω plays an important role. In [17] the authors among other things proved
the existence of positive solutions for (1.5) in the case N = 3, under suitable
conditions on K and H. Their method is based on Bahri’s theory of the critical
points at infinity.

Our approach is based on the concentration compactness principle of Lions
[23] and Struwe [25]. We will obtain solutions of (1.1) as critical points of the
functional

(1.6) Jλ(u) =
1
2

∫
Ω

(|∇u|2 + λu2) dx

− N(N − 2)
2∗

∫
Ω

Q(x)|u|2
∗
dx− 1

q

∫
∂Ω

P (x)|u|q dSx,

which is a C1 functional on H1(Ω). The Fréchet derivative of Jλ is given by

〈J ′
λ(u), φ〉 =

∫
Ω

(∇u · ∇φ + λuφ) dx−

N(N − 2)
∫

Ω

Q(x)|u|2
∗−2uφ dx−

∫
∂Ω

P (x)|u|q−2uφ dSx,

for every φ ∈ H1(Ω). To find critical points we consider the following constrained
minimization problem

(1.7) cλ = inf
u∈Mλ

Jλ(u), Mλ = {u ∈ H1(Ω) : u 6≡ 0, 〈J ′
λ(u), u〉 = 0}.

We note that the use of constrained minimization techniques have already been
employed to other problems involving competing nonlinearities, see e.g. [11], [27].
An easy calculation shows that in the special case P (x) ≡ 0 the two infima in
(1.2) and (1.7) are related by

cλ =
1
N

S
N/2
λ .
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In order to determine the energy level of Jλ below which the Palais–Smale
condition holds, we use the Neumann problem in a half space:

(1.8)


−∆u = N(N − 2)u(N+2)/(N−2) in RN

+ ,

u > 0 in RN
+ ,

−∂u(x′, 0)
∂xN

= cuN/(N−2) on ∂RN
+ = RN−1,

where c is a constant. In what follows we shall use the notation x = (x′, xN ),
x′ ∈ RN−1. It is known (see [15], [22]) that all nonnegative non-zero solutions of
(1.8) are given by

u(x) =
(

ε

ε2 + |x′ − x′0|2 + (xN + εc(N − 2)−1)2

)(N−2)/2

,

with ε > 0, x′0 ∈ RN−1. For simplicity we assume that x′0 = 0.
A simple scaling argument shows that the problem

(1.9)


−∆u = N(N − 2)au(N+2)/(N−2) in RN

+ ,

u > 0 in RN
+ ,

−∂u(x′, 0)
∂xN

= buN/(N−2) on ∂RN
+ = RN−1,

where a > 0 and b are constants, has solutions of the form

(1.10) Uε(x) = a−(N−2)/4

(
ε

ε2 + |x′|2 + (xN + εµ(N − 2)−1)2

)(N−2)/2

,

µ =
b√
a
, ε > 0.

Note that

Uε(x) = ε−(N−2)/2U1

(
x

ε

)
.

The functional, as well as the solution manifold associated with problem (1.9),
are given respectively by

(1.11) Ja,b(u) =
1
2

∫
RN

+

|∇u|2 dx

− aN(N − 2)
2∗

∫
RN

+

|u|2
∗
dx− b

q

∫
RN−1

|u(x′, 0)|q dx′,

and

Ma,b = {u ∈ D1,2(RN
+ ) : u 6≡ 0, 〈J ′a,b(u), u〉 = 0}.

Here D1,2(RN
+ ) is the Sobolev space

D1,2(RN
+ ) = {u : ∇u ∈ L2(RN

+ ), u ∈ L2∗(RN
+ )},
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equipped with the norm

‖u‖2D1,2(RN
+ ) =

∫
RN

+

|∇u|2 dx.

The paper is organized as follows. In Section 2 we find the energy level of
Jλ, λ > 0, below which a least energy solution exists (see Theorem 2.4). This
theorem gives the existence of solutions provided the infimum of the functional
Jλ on the Nehari manifold satisfies condition (2.16) Condition (2.16) is the ana-
logue of (1.4) and is reduced to that when P (x) ≡ 0. Section 3 is devoted to the
verification of (2.16). In Theorem 3.1 we formulate conditions guaranteeing the
existence of least energy solutions for every λ > 0 whereas in Theorem 3.3 con-
ditions are provided under which least energy solutions exist for small positive
values of λ. Finally Section 4 is devoted to establishing existence of least energy
solutions in the case λ = 0, see Theorem 4.4.

Acknowledgments. This work started when J. C. visited the Departments
of Mathematics and Applied Mathematics of University of Crete. Their hospital-
ity and support are acknowledged. SF and AT acknowledge partial support by
the RTN European network Fronts–Singularities, HPRN-CT-2002-00274. S. F.
acknowledges additional support by RTN European network HYKE, HPRN-CT-
2002-00282.

2. Constrained minimization

For future use we need to compute the infimum of Ja,b(u) when u ∈ Ma,b.
We then have

Lemma 2.1. There holds

(2.1) inf
u∈Ma,b

Ja,b(u) =
Π
2

a−(N−2)/2K

(
b√
a

)
,

where the constant Π is given by

(2.2) Π :=
∫

RN−1

dx′

(1 + |x′|2)N−1
=

πN/2

2N−2Γ(N/2)
,

and the function K( · ) is defined by

K(µ) := (N − 2)
∫ ∞

µ/(N−2)

dt

(1 + t2)(N+1)/2
+

µ

N − 1

(
1 +

µ2

(N − 2)2

)−(N−1)/2

;

we note that K(µ) is strictly decreasing in µ ∈ (−∞,∞).

Proof. Since all solutions to problem (1.9) are given by Uε(x) (see (1.10)),
the infimum (2.1) is equal to Ja,b(Uε). Since 〈J ′a,b(Uε), Uε〉 = 0, we have that for
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any ε > 0,

(2.3)
∫

RN
+

|∇Uε|2 dx = aN(N − 2)
∫

RN
+

|Uε|2
∗
dx + b

∫
RN−1

|Uε(x′, 0)|q dx′.

In view of this, we can write Ja,b(Uε) (see (1.11)) as

(2.4) Ja,b(Uε) = a(N − 2)
∫

RN
+

|Uε|2
∗
dx +

b

2(N − 1)

∫
RN−1

|Uε(x′, 0)|q dx′.

We first compute the last integral in (2.4).

(2.5)
∫

RN−1
|Uε(x′, 0)|q dx′

=a−(N−1)/2εN−1

∫
RN−1

dx′

(ε2 + (xN + εµ(N − 2)−1 + |x′|2)N−1

= a−(N−1)/2(1 + µ2(N − 2)−2)−(N−1)/2

∫
RN−1

dy′

(1 + |y′|2)N−1

= a−(N−1)/2(1 + µ2(N − 2)−2)−(N−1)/2Π.

We next compute the first integral in (2.4)∫
RN

+

|Uε|2
∗
dx = a−N/2

∫ ∞

0

∫
RN−1

εN dx′ dxN

(ε2 + (xN + εµ(N − 2)−1)2 + |x′|2)N
.

To proceed we use the following identity which is easily proved using polar co-
ordinates followed by an integration by parts:∫

RN−1

dx′

(c + |x′|2)N
=

1
2
c−(N+1)/2

∫
RN−1

dz′

(1 + |z′|2)N−1
=

Π
2

c−(N+1)/2, c > 0.

Using this identity with c = ε2 + (xN + εµ(N − 2)−1)2 > 0 we obtain

(2.6)
∫

RN
+

|Uε|2
∗
dx =

Π
2

a−N/2

∫ ∞

µ/(N−2)

dt

(1 + t2)(N+1)/2
.

Relation (2.1) then follows from (2.4)–(2.6). Finally, differentiating K(µ) we find
that

K ′(µ) = −N − 2
N − 1

(
1 +

µ2

(N − 2)2

)−(N−1)/2

< 0,

which proves its monotonicity. An easy calculation shows that

(2.7) K(−∞) = 2K(0), K(0) =
2N−2(N − 2)Γ2(N/2)

Γ(N)
, K(∞) = 0. �

We next prove a variant of Lemma 2.1. Let D ⊂ RN be a bounded domain
with smooth boundary such that ∂RN

+ ∩ D 6= ∅ we denote by V 1
0 (RN

+ , D) the
Sobolev space defined by

V 1
0 (RN

+ , D) = {u ∈ H1(RN
+ ∩D) : u = 0 on RN

+ ∩ ∂D}.
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For u ∈ V 1
0 (RN

+ , D) we set

JRN
+ ,D;a,b(u) =

1
2

∫
RN

+∩D

|∇u|2 dx− aN(N − 2)
2∗

∫
RN

+∩D

|u|2
∗
dx− b

q

∫
∂RN

+∩D

|u|q dx′,

and
MRN

+ ,D;a,b = {u ∈ V 1
0 (RN

+ , D) : u 6≡ 0, 〈J ′RN
+ ,D;a,b(u), u〉 = 0}.

We then have

Lemma 2.2. Let D ⊂ RN be a bounded domain with a smooth boundary such
that ∂RN

+ ∩D 6= ∅. Then

inf
u∈MRN

+ ,D;a,b

JRN
+ ,D;a,b(u) =

Π
2

a−(N−2)/2K

(
b√
a

)
.

Proof. By standard arguments we have (see, e.g. Lemma 2.1 of [27] for a
quite similar argument)

inf
u∈MRN

+ ,D;a,b

JRN
+ ,D;a,b(u) = inf

u∈V 1
0 (RN

+ ,D)
max
t≥0

JRN
+ ,D;a,b(tu).

Given any such domain D, it is clear that there exist balls Br and BR, of radii r,
R respectively, centered at x0 ∈ ∂RN

+ such that RN
+ ∩Br ⊂ RN

+ ∩D ⊂ RN
+ ∩BR.

It follows easily that V 1
0 (RN

+ , Br) ⊂ V 1
0 (RN

+ , D) ⊂ V 1
0 (RN

+ , BR) and

inf
u∈MRN

+ ,Br ;a,b

JRN
+ ,Br;a,b(u) ≥ inf

u∈MRN
+ ,D;a,b

JRN
+ ,D;a,b(u)

≥ inf
u∈MRN

+ ,BR;a,b

JRN
+ ,BR;a,b(u).

By a simple scaling argument

inf
u∈MRN

+ ,Br ;a,b

JRN
+ ,Br;a,b(u) = inf

u∈MRN
+ ,BR;a,b

JRN
+ ,BR;a,b(u).

Indeed, if u(x) is a test function for the first infimum, then

uλ(x) = λ(N−2)/2u(λx)

is a test function for the second infimum, with λ = r/R, and both functionals
take on the same value. The result then follows from Lemma 2.1. �

We next establish an inequality which will allow us to control the concentra-
tion on ∂Ω of Palais–Smale sequences for Jλ (see (1.6)).

First, we introduce some notation analogous to the case with constant coef-
ficients. If Σ ⊂ RN and D ⊂ RN are domains with smooth boundaries such that
∂Σ ∩D 6= ∅ we denote by V 1

0 (Σ, D) the Sobolev space defined by

V 1
0 (Σ, D) = {u ∈ H1(Σ ∩D) : u = 0 on Σ ∩ ∂D}.
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For u ∈ V 1
0 (Σ, D) we set

(2.8) JΣ,D;λ(u) =
1
2

∫
Σ∩D

(|∇u|2 + λu2) dx

− N(N − 2)
2∗

∫
Σ∩D

Q(x)|u|2
∗
dx− 1

q

∫
∂Σ∩D

P (x)|u|q dSx.

In the special case λ = 0, we write JΣ,D;0(u) = JΣ,D(u). We also set

(2.9)
MΣ,D;λ = {u ∈ V 1

0 (Σ, D) : u 6≡ 0, 〈J ′
Σ,D;λ(u), u〉 = 0},

MΣ,D = MΣ,D;0.

We finally set

(2.10) C(x) :=
Π
2

(Q(x))−(N−2)/2K

(
P (x)√
Q(x)

)
.

We then have

Proposition 2.3. Let x ∈ ∂Ω and denote by Br(x) the ball of radius r

centered at x. Then

lim
r↓0

inf
u∈MΩ,Br(x);λ

JΩ,Br(x);λ(u) = C(x),

where JΩ,Br(x);λ, MΩ,Br(x);λ and C(x) are defined in (2.8)–(2.10), respectively.

Proof. We will divide the proof into several steps. Let us fix x0 ∈ ∂Ω.
Step 1. As usual we have that

inf
u∈MΩ,Br(x0);λ

JΩ,Br(x0);λ(u) = inf
u∈V 1

0 (Ω,Br(x0))
max
t≥0

JΩ,Br(x0);λ(tu).

Clearly,

f(t) := JΩ,Br(x0);λ(tu) =
α

2
t2 − βN(N − 2)

2∗
t2N/(N−2) − γ

q
t2(N−1)/(N−2)

with

α =
∫

Ω∩Br(x0)

(|∇u|2 + λu2) dx,(2.11)

β =
∫

Ω∩Br(x0)

Q(x)|u|2
∗
dx,(2.12)

γ =
∫

∂Ω∩Br(x0)

P (x)|u|q dSx.(2.13)

An elementary analysis shows that f(0) = 0, f(∞) = −∞ and that f(t) has a
unique positive maximum at a point tM = tM (α, β, γ). We denote the maximum
value of f(t) by φ(α, β, γ) := f(tM (α, β, γ)). Hence,

max
t≥0

JΩ,Br(x);λ(tu) = φ(α, β, γ),
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with α, β, γ as defined in (2.11)–(2.13). It is easy to check that the function φ

is increasing in α and decreasing in β and γ.
Step 2. Since u is zero on Ω ∩ ∂Br(x0) we have by the Poincaré inequality

that ∫
Ω∩Br(x0)

u2 dx ≤ cr2

∫
Ω∩Br(x0)

|∇u|2 dx,

for some constant c > 0 independent of r. Also, from the continuity of P

and Q we have Q(x0) − ε(r) ≤ Q(x) ≤ Q(x0) + ε(r) for x ∈ Ω ∩ Br(x) and
|P (x) − P (x0)| ≤ ε(r) for x ∈ ∂Ω ∩ Br(x), with ε(r) → 0 as r → 0. In view of
these inequalities and the monotonicity properties of φ, we have

φ(α−, β−, γ−) ≤ φ(α, β, γ) ≤ φ(α+, β+, γ+),

with

α± = (1± cr2)
∫

Ω∩Br(x)

|∇u|2 dx,

β± = (Q(x0)∓ ε(r))
∫

Ω∩Br(x)

|u|2
∗
dx,

γ± = (P (x0)∓ ε(r))
∫

∂Ω∩Br(x)

|u|q dSx.

Step 3. To relate Ω∩Br(x0) for small r with the half space, we use a change
of variables that straightens the boundary. We may assume for convenience that
x0 = 0 and that the part B(0, r) ∩ ∂Ω of the boundary is given by

h(x′) =
1
2

N−1∑
i=1

aix
2
i + o(|x′|2) for |x′| < r,

where ai, i = 1, . . . , N − 1, denote the principal curvatures of ∂Ω at 0. Let T be
a transformation y′ = x′, yN = xN − h(x′), which is smooth and invertible. We
denote by v(y) and by B̃r the images of Br and u under T , respectively. After
some standard calculations we find that

φ(α̃−, β̃−, γ̃−) ≤ φ(α, β, γ) ≤ φ(α̃+, β̃+, γ̃+),

with

α̃± = (1± ε̃(r))
∫

RN
+∩ eBr

|∇v|2 dy,

β̃± = (Q(x0)∓ ε̃(r))
∫

RN
+∩ eBr

|v|2
∗
dy,

γ̃± = (P (x0)∓ ε̃(r))
∫

∂RN
+∩ eBr

|v|q dy′.
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Here ε̃(r) is some positive function such that ε̃(r) → 0 as r → 0. Consequently,

inf
v∈V 1

0 (RN
+ , eBr)

φ(α̃−, β̃−, γ̃−) ≤ inf
u∈V 1

0 (Ω,Br(x0))
φ(α, β, γ)

≤ inf
v∈V 1

0 (RN
+ , eBr)

φ(α̃+, β̃+, γ̃+).

Step 4. To complete the proof we will show that

(2.14) lim
r↓0

inf
v∈V 1

0 (RN
+ , eBr)

φ(α̃+, β̃+, γ̃+) = C(x0),

and similarly for φ(α̃−, β̃−, γ̃−).
We let (1 + ε̃(r))1/2v(y) = w(y). Then

α̃+ =
∫

RN
+∩ eBr

|∇w|2 dy,

β̃+ = (Q(x0)− ε̃(r))(1 + ε̃(r))2
∗/2

∫
RN

+∩ eBr

|w|2
∗
dy,

γ̃+ = (P (x0)− ε̃(r))(1 + ε̃(r))q/2

∫
∂RN

+∩ eBr

|w|q dy′.

Then, using Lemma 2.2 with D = B̃r, a = (Q(x0) − ε̃(r))(1 + ε̃(r))2
∗/2 and

b = (P (x0) + ε̃(r))(1 + ε̃(r))q/2 we get

inf
v∈V 1

0 (RN
+ , eBr)

φ(α̃+, β̃+, γ̃+) = inf
w∈V 1

0 (RN
+ , eBr)

φ(α̃+, β̃+, γ̃+)

= inf
w∈V 1

0 (RN
+ , eBr)

max
t≥0

JRN
+ , eBr;a,b(tw)

= inf
w∈MRN

+ ,eBr ;a,b

JRN
+ , eBr;a,b(w) =

Π
2

a−(N−2)/2K

(
b√
a

)
.

Taking now the limit as r → 0 and noting that a → Q(x0) and b → P (x0), (2.14)
follows and this completes the proof. �

Let S denote the best constant for the for the critical Sobolev imbedding in
RN , N ≥ 3, that is

S = inf
{ ∫

RN |∇u|2

(
∫

RN |u|2∗)2/2∗
: u 6≡ 0, u ∈ L2∗(RN ), ∇u ∈ L2(RN )

}
.

It is known from [26] that

(2.15) S = πN(N − 2)
(

Γ(N/2)
Γ(N)

)2/N

.
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We now prove our main existence theorem. We set QM := maxx∈Ω Q(x)
and, for C(x) as defined in (2.10),

S∞ := min
(

inf
x∈∂Ω

C(x),
SN/2

N(N(N − 2)QM )(N−2)/2

)
.

We then have

Theorem 2.4. If for some positive constant λ,

(2.16) cλ = inf
u∈Mλ

Jλ(u) < S∞,

then cλ is achieved and in particular problem (1.1) has a solution.

Proof. Step 1. Positivity of cλ > 0 and boundedness of the minimizing
sequence.

First we check that cλ > 0. The Sobolev space H1(Ω) is equipped with the
norm

‖u‖2 =
∫

Ω

(|∇u|2 + λu2) dx, λ > 0.

Let u ∈Mλ. Then, by the Sobolev inequalities,

‖u‖2 = N(N − 2)
∫

Ω

Q(x)|u(x)|2
∗
dx +

∫
∂Ω

P (x)|u|q dSx ≤ C(‖u‖2
∗

+ ‖u‖q).

This implies that there exists δ > 0 such that

‖u‖ ≥ δ for every u ∈Mλ.

Therefore for u ∈Mλ we have

Jλ(u) =Jλ(u)− 1
q
〈J ′

λ(u), u〉

=
1

2(N − 1)
‖u‖2 +

(N − 2)2

2(N − 1)

∫
Ω

Q(x)|u|2
∗
dx ≥ δ2

2(N − 1)

and hence cλ > 0. Let {um} be a minimizing sequence for cλ. By standard
arguments (see e.g. Theorem 2.2 in [9]) we have that

(2.17) Jλ(um) → cλ, and J ′
λ(um) → 0 in H−1(Ω).

We claim that the sequence {um} is bounded in H1(Ω). To see this, we first
note that

(2.18) Jλ(um)− 1
q
〈J ′

λ(um), um〉 =
1

2(N − 1)
‖um‖2 +

(N − 2)2

2(N − 1)

∫
Ω

Q|um|2
∗
dx.

It then follows from (2.17), (2.18) that (as m →∞)

(2.19)
1

2(N − 1)
‖um‖2 +

(N − 2)2

2(N − 1)

∫
Ω

Q|um|2
∗
dx

≤ cλ +
1
q
‖J ′

λ(um)‖H−1(Ω)‖um‖+ o(1).
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Since Q > 0, we necessarily have that ‖um‖ ≤ C, as claimed. As a consequence
we obtain

(2.20)
1

2(N − 1)
‖um‖2 +

(N − 2)2

2(N − 1)

∫
Ω

Q|um|2
∗
dx = cλ + o(1).

Step 2. Concentration–compactness properties of minimizing sequence.
Since {um} is bounded in H1(Ω), passing to a subsequence (still denoted by

{um}), we have, for some u ∈ H1(Ω),

um ⇀ u weakly in H1(Ω),

um → u a.e. in Ω,

um → u in Lp(Ω), for 2 ≤ p < 2∗,

um → u in Lr(∂Ω), for 2 ≤ r < q.

By the concentration–compactness principle ([23]) there also exists an at most
countable set of points {xj}, j ∈ J , such that the following convergence results
(in the sense of measures) hold

|um|2
∗
dx ⇀ dν = |u|2

∗
dx +

∑
j∈J

δxj νj , xj ∈ Ω,

|um|q dSx ⇀ dν = |u|q dSx +
∑
j∈J

δxj νj , xj ∈ ∂Ω,

|∇um|2 dx ⇀ dµ ≥ |∇u|2 dx +
∑
j∈J

δxj µj , xj ∈ Ω.

Here δxj
denotes the Dirac mass centered at xj and νj , νj and µj are nonnegative

constants. In addition, the following inequality holds

(2.21) Sν
2/2∗

j ≤ µj , if xj ∈ Ω,

with S as in (2.15).
We next derive some relations between νj , νj and µj . Let φδ(x) be a smooth

cutoff function such that 0 ≤ φδ(x) ≤ 1, φδ(x) = 1 for |x−xj | < δ and φδ(x) = 0
for |x− xj | > 2δ.

Since J ′
λ(um) → 0 in H−1(Ω) and ‖um‖ < C, it follows that 〈J ′

λ(um), umφ2
δ〉

→ 0, that is, as m →∞,

(2.22)
∫

Ω

(|∇um|2φ2
δ + 2umφδ∇um · ∇φδ + λu2

mφ2
δ) dx

= N(N − 2)
∫

Ω

Q(x)|um|2
∗
φ2

δ dx +
∫

∂Ω

P (x)|um|qφ2
δ dSx + o(1).
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Using the previous convergence results and letting m →∞ first, and then δ → 0
we get

µj = N(N − 2)Q(xj)νj , if xj ∈ Ω,(2.23)

µj = N(N − 2)Q(xj)νj + P (xj)νj , if xj ∈ ∂Ω.(2.24)

Step 3. Here we will show that no concentration of {um} occurs. That is, we
will show that νj = νj = µj = 0, for all j ∈ J .

Passing to the limit (m →∞) in (2.20) and using the convergence properties
of {um} we get

(2.25) cλ ≥
1

2(N − 1)

∫
Ω

(|∇u|2 + λu2) dx +
(N − 2)2

2(N − 1)

∫
Ω

Q(x)|u|2
∗
dx

+
1

2(N − 1)

∑
xj∈Ω

µj +
(N − 2)2

2(N − 1)

∑
xj∈Ω

Q(xj)νj .

We first show that there is no concentration at interior points. Assuming that
νk > 0 for some xk ∈ Ω we will reach a contradiction. From (2.25) we get that

(2.26) cλ ≥
1

2(N − 1)
µk +

(N − 2)2

2(N − 1)
Q(xk)νk.

From (2.23) and (2.26) we get that

(2.27) cλ ≥
1
N

µk.

On the other hand, from (2.16) and (2.23) we have

(2.28) cλ <
SN/2

N(Q(xk)N(N − 2))(N−2)/2
=

1
N

SN/2

(
νk

µk

)(N−2)/2

.

From (2.27) and (2.28) we obtain Sν
2/2∗

k > µk, which contradicts (2.21). Hence,
µj = νj = 0 for all xj ∈ Ω and concentration at interior points is excluded.

We next assume that concentration occurs at a boundary point xk ∈ ∂Ω.
Let Br(xk) be a ball centered at xk of radius r, with r sufficiently small, and
Ωr = Ω∩Br(xk). Also let φδ, 2δ < r, be the test function used before, centered
at xk.

It is clear that for each m and r there exist constants tm,r > 0, depending
also on δ, such that

(2.29)
∫

Ωr

(|∇(umφδ)|2 + λ(umφδ)2) dx

= t2
∗−2

m,r N(N − 2)
∫

Ωr

Q|um|2
∗
φ2∗

δ dx + tq−2
m,r

∫
∂Ω∩Br(xk)

P |um|qφq
δ dSx.

In the notation of Proposition 2.3, (2.29) is equivalent to tm,rumφδ∈MΩ,Br(xk);λ.
We claim that there exist constants A and B such that 0 < A < tm,r < B.
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Indeed, if we let m → ∞ and then r → 0, the left hand side of (2.29) tends to
a constant Mk ≥ µk > 0, whereas the integrals in the right hand side remain
bounded. Hence, tm,r cannot approach zero. Since 2∗ − 2 > q − 2 > 0 and Q is
positive, tm,r cannot tend to infinity either and the claim is proved.

We may therefore assume that tm,r → t, 0 < t < ∞, as m →∞ and r → 0.
Taking the limits in (2.29) we get

(2.30) µk = t
2∗−2

N(N − 2)Q(xk)νk + t
q−2

P (xk)νk.

Combining this with (2.24), we conclude that t = 1.
Since tm,rumφδ ∈MΩ,Br(x);λ, it follows from Proposition 2.3, that as r → 0,

(2.31) JΩ,Br(xk);λ(tm,rumφδ) ≥ inf
u∈MΩ,Br(xk);λ

JΩ,Br(xk);λ(u) = C(xk) + o(1).

Letting first m → ∞ and then r → 0 in (2.31) (see (2.8) for the definition of
JΩ,Br(xk);λ, and using the convergence properties of {um} and {tm,r} we get:

(2.32)
1
2
µk −

N(N − 2)
2∗

Q(xk)νk −
1
q
P (xk)νk ≥ C(xk).

Replacing P (xk)νk from (2.30) (with t = 1, there) in (2.32), we get that

1
2(N − 1)

µk +
(N − 2)2

2(N − 1)
Q(xk)νk ≥ C(xk).

It then follows from (2.25) that cλ ≥ C(xk), which contradicts (2.16). Hence
concentration at boundary points is also excluded and νj = νj = µj = 0, for all
j ∈ J .

Step 4. Completion of the proof.
We have that

(2.33) cλ + o(1) =Jλ(um)− 1
2
〈J ′

λ(um), um〉

=(N − 2)
∫

Ω

Q|um|2
∗
dx +

1
2(N − 1)

∫
∂Ω

P |um|q dSx.

Since νj = νj = 0, both terms in the right hand side of (2.33) converge strongly,
and

cλ = (N − 2)
∫

Ω

Q|u|2
∗
dx +

1
2(N − 1)

∫
∂Ω

P |u|q dSx.

Recalling that cλ is strictly positive we conclude that u 6≡ 0. On the other
hand, we have 〈J ′

λ(um), u〉 → 0, whence 〈J ′
λ(u), u〉 = 0. Consequently u is on

the Nehari manifold, that is u ∈ Mλ. It then follows easily from (2.25) (with
µj = νj = 0 there) that u is a minimizer for cλ and {um} converges strongly in
H1(Ω) to u.

Clearly, |u| is also a minimizer and therefore we may assume that u ≥ 0,
whereas by regularity theory it is a classical solution. By the maximum principle
u > 0 in Ω. This completes the proof. �
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Remark 2.5. If P (x) ≡ 0 on ∂Ω, then

C(x) =
1
2
ΠK(0)Q(x)−(N−2)/2 =

1
2
(N − 2)πN/2 Γ(N/2)

Γ(N)
Q(x)−(N−2)/2

=
1
2

SN/2

NN/2(N − 2)(N−2)/2
Q(x)−(N−2)/2 =

SN/2

2N(N(N − 2)Q(x))(N−2)/2
.

Hence

inf
x∈∂Ω

C(x) =
SN/2

2N(N(N − 2)Qm)(N−2)/2
,

where Qm = minx∈∂Ω Q(x). In this case condition (2.16) takes the form

cλ = inf
u∈Mλ

Jλ(u)

< min
(

SN/2

2N(N(N − 2)Qm)(N−2)/2
,

SN/2

N(N(N − 2)QM )(N−2)/2

)
,

and we recover the result from the paper [13].

In Theorem 2.6 below, we examine the dependence of cλ on λ.

Theorem 2.6. For λ > 0, cλ is a nondecreasing function such that 0 <

cλ ≤ S∞, and in addition, limλ→∞ cλ = S∞.

Proof. Let 0 < λ1 < λ2 and u ∈ Mλ2 . Then, there exists s ∈ (0, 1) such
that su ∈Mλ1 . We then have

cλ1 ≤ Jλ1(su)

=
s2

2(N − 1)

∫
Ω

(
|∇u|2 + λ1u

2

)
dx +

(N − 2)2s2∗

2(N − 1)

∫
Ω

Q(x)|u|2
∗
dx

≤ Jλ1(u) ≤ Jλ2(u).

Since this holds for every u ∈Mλ2 , we get cλ1 ≤ cλ2 .
To establish the second part of our assertion we argue by contradiction. Let

{λm} be an increasing sequence of positive numbers with limm→∞ λm = ∞.
Assume that limm→∞ cλm < S∞. Then for every λm there exists a least energy
solution um = uλm

of (1.1) such that cλm
= Jλm

(um) < S∞ and J ′
λm

(um) = 0.
Then, the sequence {um} is bounded in H1(Ω) and we may assume that um ⇀ u

in H1(Ω). Also,
∫
Ω

u2
m dx = O(1/λm), and therefore um → 0 in L2(Ω) and

um ⇀ 0 in H1(Ω).
The rest of the proof is quite similar to the proof of Theorem 2.4 with the

following modifications. Relation (2.22) remains the same, but relations (2.23)
and (2.24) are true as inequalities:

µj ≤ N(N − 2)Q(xj)νj , if xj ∈ Ω,

µj ≤ N(N − 2)Q(xj)νj + P (xj)νj , if xj ∈ ∂Ω.
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This difference stems from the fact that we have no longer “good” control on the
term λm

∫
u2

m. The rest of the argument that excludes concentration at interior
points remains the same.

To exclude concentration at a boundary point, we first note that (2.29) re-
mains valid whereas (2.30) becomes the inequality,

µk ≤ t
2∗−2

N(N − 2)Q(xk)νk + t
q−2

P (xk)νk.

To establish that t = 1, we subtract (2.22) from (2.29) (in order to get rid of the
bad term) and then pass to the limits to arrive at

0 ≤ N(N − 2)Q(xk)νk + P (xk)νk = t
2∗−2

N(N − 2)Q(xk)νk + t
q−2

P (xk)νk,

from which it follows that t = 1.
For u ∈Mλ, we will use the following expression for the functional Jλ(u):

Jλ(u) = (N − 2)
∫

Ω

Q|u|2
∗
dx +

1
2(N − 1)

∫
∂Ω

P |u|q dSx.

Starting from cλm
= Jλm

(um) and taking the limit m →∞, we conclude that

(2.34) C(xk) ≥S∞ > lim
m→∞

cλm

=(N − 2)
∑

xj∈∂Ω

Q(xj)νj +
1

2(N − 1)

∑
xj∈∂Ω

P (xj)νj .

Using the monotonicity of infu∈MΩ,Br(xk);λ JΩ,Br(xk);λ(u) with respect to λ, we
obtain the analogue of (2.31) for large m such that λm ≥ λ,

JΩ,Br(xk);λm
(tm,rumφδ) ≥ inf

u∈MΩ,Br(xk);λ
JΩ,Br(xk);λ(u) = C(xk) + o(1).

Taking now the limits m →∞ and r → 0 we get

(N − 2)Q(xk)νk +
1

2(N − 1)
P (xk)νk ≥ C(xk),

which contradicts (2.34). Thus, concentration at the boundary is also excluded.
It follows that {um} converges strongly in H1(Ω) to zero. This in turn

implies that cλm → 0, as λm →∞, contradicting the fact that cλ is positive and
nondecreasing. �

3. Existence for λ > 0

This Section is devoted to the verification of the inequality (2.16) of Theo-
rem 2.4. First we consider the case where

(3.1) min
x∈∂Ω

C(x) ≤ SN/2

N(QMN(N − 2))(N−2)/2
,
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and therefore S∞ = minx∈∂Ω C(x). Using the values of Π, K and S (see (2.2),
(2.7), (2.15)), we see that

SN/2

N(QMN(N − 2))(N−2)/2
=

Π
2

Q
−(N−2)/2
M K(−∞).

Hence, recalling the definition of C(x) (see (2.10)), inequality (3.1) is equivalent
to

(3.2) min
x∈∂Ω

[
Q(x)−(N−2)/2K

(
P (x)√
Q(x)

)]
≤ (max

x∈Ω
Q(x))−(N−2)/2K(−∞),

with K(µ) defined in Lemma 2.1. Since K(µ) is a decreasing function, it is easy
to see that if Q(x) takes its maximum value on the boundary ∂Ω, then (3.2) is
always satisfied. In particular if Q is constant, (3.2) is satisfied.

We next have

Theorem 3.1. Suppose that (3.2) (or, equivalently, (3.1)) holds and let
x0 ∈ ∂Ω, the point where C(x) takes on its minimum value, that is, C(x0) =
minx∈∂Ω C(x). We assume that both the functions Q and P are differentiable at
the point x0 and we denote by ∂Q(x0)/∂ν the outward normal derivative and by
H(x0) the mean curvature of ∂Ω at x0. Then, problem (1.1) has a solution for
every λ > 0, provided that:

(a) in case N = 3, H(x0) > 0,
(b) in case N ≥ 4, H(x0) ≥ 0, ∂Q(x0)/∂ν ≤ 0 and H(x0)−∂Q(x0)/∂ν > 0.

Proof. For simplicity we may assume that x0 = 0. Let Uε(x) be the solution
of (1.9) given by (1.10) with a = Q(0) and b = P (0). It is enough to show that
for a fixed λ > 0, maxt≥0 Jλ(tUε) < minx∈∂Ω C(x) = C(0).

Since Q, P are differentiable at x0 = 0 we have that as x → 0, x ∈ Ω,

(3.3) |Q(x)−Q(0)−∇Q(0) · x| = o(|x|),

and a similar relation for P .
Using the explicit form of Uε as well as (3.3) we compute

(3.4) max
t≥0

Jλ(tUε) = Jλ(tεUε) =
t2ε
2

∫
Ω

(|∇Uε|2 + λU2
ε ) dx

− t2
∗

ε N(N − 2)
2∗

∫
Ω

Q(x)U2∗

ε dx− tqε
q

∫
∂Ω

P (x)Uq
ε dSx

=
t2ε
2

∫
Ω

|∇Uε|2 dx +
λt2ε
2

O(ε2)− t2
∗

ε N(N − 2)
2∗

Q(0)
∫

Ω

U2∗

ε dx

− t2
∗

ε N(N − 2)
2∗

∫
Ω

∇Q(0) · xU2∗

ε dx

− tqε
q

P (0)
∫

∂Ω

Uq
ε dSx −

tqε
q

∫
∂Ω

∇P (0) · xUq
ε dSx
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− t2
∗

ε N(N − 2)
2∗

∫
Ω

(Q(x)−Q(0)−∇Q(0) · x)U2∗

ε dx

− tqε
q

∫
∂Ω

(P (x)− P (0)−∇P (0) · x)Uq
ε dSx

=
t2ε
2

∫
Ω

|∇Uε|2 dx− t2
∗

ε N(N − 2)
2∗

Q(0)
∫

Ω

U2∗

ε dx

− tqε
q

P (0)
∫

∂Ω

Uq
ε dSx −

t2
∗

ε N(N − 2)
2∗

∫
Ω

∇Q(0) · xU2∗

ε dx

− tqε
q

∫
∂Ω

∇P (0) · xUq
ε dSx + (t2

∗

ε + tqε) o(ε) + λt2εO(ε2).

In the above calculations we used the estimate
∫
Ω

U2
ε dx = O(ε2) as well as

(3.5)
∫

Ω

(Q(x)−Q(0)−∇Q(0) · x)U2∗

ε dx = o(ε), as ε → 0,

and a similar estimate for the boundary term. The L2 norm of Uε is quite easily
estimated using the scaling property of Uε(x) = ε−(N−2)/2U1(x/ε). We next
show how the estimate (3.5) is obtained. The corresponding estimate for the
boundary integral is quite similar.

Given η > 0 we choose δ(η) > 0 so that |Q(x)−Q(0)−∇Q(0) · x| ≤ η|x| for
|x| ≤ δ(η). Then∫

Ω

|Q(x) −Q(0)−∇Q(0) · x|U2∗

ε dx

≤ η

∫
Ω∩(|x|<δ(η))

|x|U2∗

ε dx + C

∫
Ω∩(|x|≥δ(η))

U2∗

ε dx

≤C

(
εη + εN

∫ ∞

δ(η)

rN−1

r2N
dr

)
= C

(
εη +

εN

δ(η)N

)
.

Hence
lim sup

ε→0

1
ε

∫
Ω

|Q(x)−Q(0)−∇Q(0) · x|U2∗

ε dx ≤ Cη.

Since η is arbitrary, this limit is equal to 0 and (3.5) follows.
Since tεUε ∈Mλ, we similarly have that∫

Ω

(|∇Uε|2 + λU2
ε ) dx(3.6)

= t2
∗−2

ε N(N − 2)
∫

Ω

Q(x)U2∗

ε dx + tq−2
ε

∫
∂Ω

P (x)Uq
ε dSx

= t2
∗−2

ε N(N − 2)Q(0)
∫

Ω

U2∗

ε dx + tq−2
ε P (0)

∫
∂Ω

Uq
ε dSx

+ t2
∗−2

ε N(N − 2)
∫

Ω

∇Q(0) · xU2∗

ε dx

+ tq−2
ε

∫
∂Ω

∇P (0) · xUq
ε dSx + (1 + t2

∗−2
ε ) o(ε).
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Now it follows easily from this that as ε → 0, tε stays bounded away from zero
and infinity, and consequently we may assume that tε → t > 0. Letting ε → 0
in (3.6) we get∫

RN
+

|∇U1|2 = t
2∗−2

N(N − 2)Q(0)
∫

RN
+

U2∗

1 dx + t
q−2

P (0)
∫

RN−1
Uq

1 dx′.

Combining this with (2.3) we conclude that t = 1 and tε = 1 + o(1) as ε → 0.
We now continue with the estimate of Jλ(tεUε). We rewrite (3.4) as

Jλ(tεUε) =
t2ε
2

∫
RN

+

|∇Uε|2 dx− t2
∗

ε

2∗
N(N − 2)Q(0)

∫
RN

+

U2∗

ε dx(3.7)

− tqε
q

P (0)
∫

RN−1
Uε(x′, 0)q dx′

− t2
∗

ε N(N − 2)
2∗

∫
RN

+

∇Q(0) · xU2∗

ε dx

− tqε
q

∫
RN−1

∇P (0) · xUq
ε dx′ − t2ε

2
K1(ε)

+
t2

∗

ε

2∗
Q(0)N(N − 2)K2(ε) +

tqε
q

P (0)K3(ε),

+
t2

∗

ε

2∗
N(N − 2)Λ2(ε) +

tqε
q

Λ3(ε) + o(ε),

where

K1(ε) :=
∫

RN
+

|∇Uε|2 dx−
∫

Ω

|∇Uε|2 dx,

K2(ε) :=
∫

RN
+

U2∗

ε dx−
∫

Ω

U2∗

ε dx,

K3(ε) :=
∫

RN−1
Uε(x′, 0)q dx′ −

∫
∂Ω

Uq
ε dSx,

and

Λ2(ε) :=
∫

RN
+

∇Q(0) · xU2∗

ε dx−
∫

Ω

∇Q(0) · xU2∗

ε dx,

Λ3(ε) :=
∫

RN−1
∇P (0) · xUε(x′, 0)q dx′ −

∫
∂Ω

∇P (0) · xUq
ε dSx.

We next estimate the integrals Ki(ε),Λi(ε). We represent ∂Ω near x0 = 0
as xN = h(x′) = (1/2)

∑N−1
i=1 aix

2
i + o(|x′|2) = g(x′) + o(|x′|2), where the ai

are the principal curvatures of ∂Ω at 0. By our assumptions we have that
H(0) = (1/(N − 1))

∑N−1
i=1 ai ≥ 0.
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We first estimate K1(ε). We will use the following easily verifiable relations∣∣∣∣ ∫
|x′|<δ

dx′
∫ h(x′)

g(x′)

|∇Uε|2 dxN dx′
∣∣∣∣ =

{
o(ε) for N ≥ 4,

o(ε| ln ε|) for N = 3.

Also, ∫
RN∩{|x′|>δ}

|∇Uε|2 dx = O(εN−2), N ≥ 3.

Then we have, for N ≥ 4,

K1(ε) =
∫

RN
+

|∇Uε|2 dx−
∫

Ω

|∇Uε|2 dx

=
∫
|x′|<δ

dx′
∫ g(x′)

0

|∇Uε|2 dxN + o(ε)

=
∫

RN−1
dx′

∫ g(x′)

0

|∇Uε|2 dxN + o(ε)

=
∫

RN−1
dx′

∫ εg(x′)

0

|∇U1|2 dxN + o(ε).

From this we deduce by L’Hospital’s rule that

(3.8) K1(ε) = K1ε + o(ε), N ≥ 4,

where

K1 = a−(N−2)/2(N − 2)2
∫

RN−1

(|x′|2 + µ2)g(x′)
(1 + |x′|2 + µ2)N

dx′(3.9)

=
1
2
a−(N−2)/2(N − 2)2H(0)

∫
RN−1

(|x′|2 + µ2)|x′|2

(1 + |x′|2 + µ2)N
dx′,

and

µ :=
P (0)

(N − 2)
√

Q(0)
.

We next obtain a more explicit form for the integral in (3.9). We set

D :=

∫
RN−1((|x′|2 + µ2)|x′|2/(1 + |x′|2 + µ2)N ) dx′∫

RN−1(|x′|2/(1 + |x′|2 + µ2)N ) dx′
.

The integral in the denominator can be easily computed and is given by∫
RN−1

|x′|2

(1 + |x′|2 + µ2)N
dx′ =

Π
2

(1 + µ2)−(N−1)/2,

with Π as defined in Lemma 2.1. We then have

D =

∫∞
0

((r2 + µ2)rN/(1 + r2 + µ2)N ) dr∫∞
0

(rN/(1 + r2 + µ2)N ) dr

=(1 + µ2)

∫∞
0

(rN+2/(1 + r2)N ) dr∫∞
0

(rN/(1 + r2)N ) dr
+ µ2.
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An integration by parts (see [28, p. 297]) shows that∫ ∞

0

sN+2

(1 + s2)N
ds =

N + 1
N − 3

∫ ∞

0

sN

(1 + s2)N
ds, N ≥ 4.

Hence
D = (1 + µ2)

N + 1
N − 3

+ µ2,

and therefore, for N ≥ 4,

(3.10) K1 =
Π
4

a−(N−2)/2(N−2)2H(0)
(

N + 1
N − 3

+
2(N − 1)
N − 3

µ2

)
(1+µ2)−(N−1)/2.

We now consider the case N = 3. We split the term |∇Uε|2 as follows

|∇Uε|2 =
a−1/2ε

(ε2 + |x′|2 + (xN + εµ)2)2
− a−1/2ε3

(ε2 + |x′|2 + (xN + εµ)2)3
.

We then have

K1(ε) =
∫

R2
dx′

∫ g(x′)

0

|∇Uε|2 dx3 + o(ε| ln ε|)

=
∫

R2
dx′

∫ g(x′)

0

a−
1
2 ε

(ε2 + |x′|2 + (x3 + εµ)2)2
dx3

−
∫

R2
dx′

∫ g(x′)

0

a−
1
2 ε3(

ε2 + |x′|2 + (x3 + εµ)2
)3 dx3 + o(ε| ln ε|)

=:A1(ε)−A2(ε) + o(ε| ln ε|).

Since |g(x′)| ≤ c|x′|2, we have

|A2(ε)| ≤ Cε3

∫
R2

|x′|2

(ε2 + |x′|2)3
dx′ = Cε

∫
R2

|x′|2

(1 + |x′|2)3
dx′ = O(ε).

Concerning A1 we have that

−1
ε
A1(ε) + A′1(ε) = − 4a−1/2

∫
R2

dx′
∫ g(x′)

0

ε(ε + (x3 + εµ)µ)
(ε2 + |x′|2 + (x3 + εµ)2)3

dx3

= − 4a−1/2

ε

∫
R2

dx′
∫ εg(x′)

0

1 + (x3 + µ)µ
(1 + |x′|2 + (x3 + µ)2)3

dx3.

From this we get that

lim
ε→0

(
− 1

ε
A1(ε) + A′1(ε)

)
= −4a−1/2

∫
R2

(1 + µ2)g(x′)
(1 + |x′|2 + µ2)3

dx3.

It follows now easily that limε→0 A1/(ε)ε = ∞, and by L’Hospital’s rule we have

lim
ε→0

A1(ε)/ε

ln ε
= lim

ε→0

(
− 1

ε
A1(ε) + A′1(ε)

)
= −4a−1/2

∫
R2

(1 + µ2)g(x′)
(1 + |x′|2 + µ2)3

dx3.

Whence

(3.11) K1(ε) = K̂1ε| ln ε|+ o(ε| ln ε|), N = 3,
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where

K̂1 =4a−1/2

∫
R2

(1 + µ2)g(x′)
(1 + |x′|2 + µ2)3

dx′(3.12)

= 2a−1/2H(0)
∫

R2

(1 + µ2)|x′|2

(1 + |x′|2 + µ2)3
dx′.

We will similarly estimate K2(ε). Using the relations,∣∣∣∣ ∫
|x′|<δ

dx′
∫ g(x′)

h(x′)

U2∗

ε dxN

∣∣∣∣ = o(ε) and
∫

RN∩{|x′|>δ}
U2∗

ε dx = O(εN ),

we write for N ≥ 3,

K2(ε) =
∫
|x′|<δ

dx′
∫ g(x′)

0

U2∗

ε dxN + o(ε)

=
∫

RN−1
dx′

∫ g(x′)

0

U2∗

ε dxN + o(ε)

= a−N/2

∫
RN−1

dx′
∫ εg(x′)

0

dxN

(1 + |x′|2|+ µ2)N
+ o(ε).

Hence

(3.13) K2(ε) = K2ε + o(ε), N ≥ 3,

where

K2 = a−N/2

∫
RN−1

g(x′)
(1 + |x′|2 + µ2)N

dx′(3.14)

=
1
2
a−N/2H(0)

∫
RN−1

|x′|2

(1 + |x′|2 + µ2)N
dx′

=
Π
4

a−N/2H(0)(1 + µ2)−(N−1)/2.

Analogous calculations show that

(3.15)
∫

RN
+

∇Q(0) · xU2∗

ε dx

= εa−N/2QxN
(0)

[
1

2(N − 1)

∫
RN−1

dx′

(1 + |x′|2 + µ2)N−1

− µ

∫
RN

+

dx

(1 + |x′|2 + (xN + µ)2)N

]
=

Π
2

εa−N/2QxN
(0)

[
1

N − 1
(1 + µ2)−(N−1)/2 − µ

∫ ∞

µ

dt

(1 + t2)(N+1)/2

]
,

where Π is defined in Lemma 2.1. It is easy to check that∫
RN−1

∇P (0) · xUq
ε dx = 0.
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We also obtain that Λ2(ε) = o(ε), for N ≥ 3.
Finally, we estimate K3(ε):

K3(ε) =
∫

RN−1
Uε(x′, 0)q dx′

−
∫

∂Ω∩(|x′|<δ)

Uε(x)q dSx −
∫

∂Ω∩(|x′|>δ)

Uε(x)q dSx

=
∫

RN−1
Uε(x′, 0)q dx′ −

∫
∂Ω∩(|x′|<δ)

Uε(x)q dSx + O(εN−1).

We now estimate the surface integral∫
∂Ω∩(|x′|<δ)

Uε(x)q dSx

= a−(N−1)/2

∫
|x′|<δ

εN−1(1 + |∇h(x′)|2)1/2

(ε2 + |x′|2 + (h(x′) + εµ)2)N−1
dx′

= a−(N−1)/2

∫
RN−1

εN−1(1 + |∇h(x′)|2)1/2

(ε2 + |x′|2 + (h(x′) + εµ)2)N−1
dx′ + O(εN−1)

= a−(N−1)/2

∫
RN−1

(1 + |∇h(εx′)|2)1/2

(1 + |x′|2 + (ε−1h(εx′) + µ)2)N−1
dx′ + O(εN−1).

Combining together the last two relations we get

K3(ε) = a−(N−1)/2

[ ∫
RN−1

1
(1 + |x′|2 + µ2)N−1

dx′

−
∫

RN−1

(1 + |∇h(εx′)|2)1/2

(1 + |x′|2 + (ε−1h(εx′) + µ)2)N−1
dx′

]
+ O(εN−1).

Since

(1 + |∇h(εx′)|2)1/2 = 1 +
θ|∇h(εx′)|2

(1 + θ2|∇h(εx′)|2)1/2
,

for some θ = θ(x′) ∈ (0, 1), we have

K3(ε) = a−(N−1)/2

[ ∫
RN−1

1
(1 + |x′|2 + µ2)N−1

dx′

−
∫

RN−1

dx′

(1 + |x′|2 + (ε−1h(εx′) + µ)2)N−1

]
− a−(N−1)/2

·
∫

RN−1

θ|∇h(εx′)|2 dx′

(1 + |x′|2 + (ε−1h(εx′) + µ)2)N−1(1 + θ2|∇h(εx′)|2)1/2

=:B(ε)− C(ε).

Now we observe that |∇|h(εx′)| ≤ cε|x′| and ε−1|h(εx′)| ≤ cε|x′|2. Hence

lim
ε→0

1
ε
C(ε) = 0.
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Next, we examine the integral B(ε). We let L(x′) = 1+ |x′|2+µ2 and M(ε, x′) =
1 + |x′|2 + (ε−1h(εx′) + µ)2. Then

∂M(ε, x′)
∂ε

= 2
(
ε−1h(ε, x′) + µ

)(
−ε−2h(εx′) +∇h(εx′) · x′

)
and by L’Hospital’s rule, we have

lim
ε→0

1
ε
B(ε) = lim

ε→0
a−(N−1)/2

∫
RN−1

M(ε, x′)N−1 − L(x′)N−1

εL(x′)N−1M(ε, x′)N−1
dx′

= lim
ε→0

a−(N−1)/2

·
∫

RN−1

(N − 1)∂M(ε,x′)
∂ε M(ε, x′)N−2 dx′

L(x′)N−1M(ε, x′)N−1 + ε(N − 1)L(x′)N−1 ∂M(ε,x′)
∂ε M(ε, x′)N−2

= a−(N−1)/2

∫
RN−1

−2(N − 1)µg(x′)L(x′)N−2

L(x′)2N−2
dx′

= − 2a−(N−1)/2µ(N − 1)
∫

RN−1

g(x′)
(1 + |x′|2 + µ2)N

dx′

= − a−(N−1)/2µH(0)(N − 1)
∫

RN−1

|x′|2

(1 + |x′|2 + µ2)N
dx′.

Consequently we have

(3.16) K3(ε) = −K3ε + o(ε), N ≥ 3,

with

(3.17) K3 = (N − 1)a−(N−1)/2µH(0)
∫

RN−1

|x′|2

(1 + |x′|2 + µ2)N
dx′

=
Π
2

(N − 1)a−(N−1)/2H(0)µ(1 + µ2)−(N−1)/2.

Similar calculations show that Λ3(ε) = o(ε) for N ≥ 3.
We can now continue with the estimate of Jλ(tεUε), see (3.7). The first three

integrals in the right hand side of (3.7) are bounded above by C(0); cf. Lemma 2.1.
Therefore, recalling also that tε = 1 + o(1) as ε → 0, we have for N ≥ 3,

(3.18) Jλ(tεUε) ≤C(0)− (N − 2)2

2

∫
RN

+

∇Q(0) · xU2∗

ε dx− 1
2
(1 + o(1))K1(ε)

+
(N − 2)2

2
Q(0)K2(ε) +

N − 2
2(N − 1)

P (0)K3(ε) + o(ε).

We first consider the case N ≥ 4. Using the asymptotics of Ki(ε), i = 1, 2, 3,
(see (3.8), (3.10), (3.13), (3.14), (3.16) and (3.17)) as well as of the gradient term
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in (3.18) (see (3.15)) we obtain after some straightforward calculations

(3.19) Jλ(tεUε) ≤C(0)− Π
4

(N − 2)2

N − 3
Q−(N−2)/2(0)

[
(N − 3)QxN

(0)
Q(0)

·
(

(1 + µ2)−(N−1)/2

N − 1
− µ

∫ ∞

µ

dt

(1 + t2)(N+1)/2

)
+ 2H(0)(1 + (N − 2)µ2)(1 + µ2)−(N−1)/2

]
ε + o(ε).

We note that

Λ(µ) :=
(1 + µ2)−(N−1)/2

N − 1
− µ

∫ ∞

µ

dt

(1 + µ2)(N+1)/2
> 0,

since Λ(∞) = 0 and Λ′(µ) < 0 for all µ ∈ (−∞,∞). Noting that ∂Q(0)/∂ν =
−QxN

(0), it follows that under the assumptions of the theorem, Jλ(tεUε) < C(0)
for ε small, and therefore a solution exists.

We next consider the case N = 3. The result now follows easily by noticing
in (3.18) that the term containing K1(ε) (see (3.11) and (3.12)) is negative and
of order O(ε| ln ε|), whereas with the exception of C(0), the other terms are of
order O(ε).

�

Remark 3.2. When N ≥ 4, (3.19) gives a sharper criterion for obtaining
existence of solutions. For example, when P (x) ≡ 0 (Neumann problem), we
have that b = P (0) = 0 and µ = 0, and (3.19) takes the form

Jλ(tεUε) ≤ C(0)− Π
4

(N − 2)2

N − 3
Q−(N−2)/2(0)

[
(N − 3)QxN

(0)
Q(0)

+ 2H(0)
]
ε + o(ε).

In order to have Jλ(tεUε) < C(0) one needs the quantity in the brackets to be
positive, which is equivalent to

2H(x0)Q(x0)− (N − 3)
∂Q(x0)

∂ν
> 0.

We finally consider the case

(3.20) S∞ =
SN/2

N(QMN(N − 2))(N−2)/2
< min

x∈∂Ω
C(x),

and we present sufficient conditions for the existence of a solution to problem
(1.1).

Theorem 3.3. Assume that (3.20) holds. Suppose that either:

(a)
∫

∂Ω
P (x)dx ≥ 0, or else that

(b)
∫

∂Ω
P (x)dx < 0 and in addition

(3.21)
|
∫

∂Ω
P (x) dSx|NQ

(N−2)/2
M

(
∫
Ω

Q(x) dx)N−1
< 2(N − 1)NN/2(N − 2)(N−2)/2SN/2.
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Then, there exists a λ0 > 0 such that, for 0 ≤ λ < λ0,

(3.22) cλ = inf
u∈Mλ

Jλ(u) < S∞.

In particular, problem (1.1) has a solution for λ ∈ (0, λ0).

Proof. Since cλ = infu∈H1(Ω) maxt≥0 Jλ(tu), we take u ≡ 1 and we will
show that maxt≥0 Jλ(t · 1) < S∞. We compute

Jλ(t) = f(t) :=
a

2
t2 − bN(N − 2)

2∗
t2

∗
− c

q
tq,

with

a = λ|Ω| > 0, b =
∫

Ω

Q(x) dx > 0, c =
∫

∂Ω

P (x) dx.

Differentiating once with respect to t we find

f ′(t) = −t(bN(N − 2)t4/(N−2) + ct2/(N−2) − a).

The quantity inside the parentheses is quadratic in t2/(N−2) and has a unique
positive root t0 given by

t
2/(N−2)
0 =

−c +
√

c2 + 4abN(N − 2)
2bN(N − 2)

.

It is easy to check that f(t) has a unique (global) maximum at t0, hence

max
t≥0

f(t) = f(t0).

Also,

f(t0) = f(t0)−
t0
q

f ′(t0) =
a

2(N − 1)
t20 +

b(N − 2)2

2(N − 1)
t
2N/(N−2)
0 .

We note that t0(a) and f(a, t0(a)) are both increasing functions of a (and there-
fore of λ).

Assume that c ≥ 0. Then λ → 0, implies t0 → 0 and f(t0) → 0, and therefore
for small λ (3.22) is true.

Assume now that c < 0. Then λ → 0, implies that

t
2/(N−2)
0 → |c|

bN(N − 2)
,

and therefore

f(t0) →
b(N − 2)2

2(N − 1)

(
|c|

bN(N − 2)

)N

.

The constant in the right hand side is smaller than S∞ if and only if (3.21)
holds. �
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4. Existence for λ = 0

In this case problem (1.1) takes the form

(4.1)


−∆u = N(N − 2)Q(x)|u|2∗−2u in Ω,

u > 0 on Ω,

∂u

∂ν
= P (x)|u|q−2u on ∂Ω.

It is easy to check that if P and Q are both positive, then problem (4.1) does
not have a positive solution. Indeed, assuming that a positive solution u exists,
by Green’s theorem we have∫

∂Ω

P (x) dSx =
∫

∂Ω

u−(q−1) ∂u

∂ν
dSx

=
∫

Ω

u−(q−1)∆u dx− (q − 1)
∫

Ω

|∇u|2u−q dx

= −N(N − 2)
∫

Ω

Q(x)u2∗−q dx− (q − 1)
∫

Ω

|∇u|2u−q dx < 0.

Therefore the inequality
∫
Ω

P (x) dSx < 0 is a necessary condition for the exis-
tence of a solution. In the sequel we will find some sufficient conditions.

We first establish some preliminary estimates. We recall that the first eigen-
value of

(4.2)

{ −∆u = µu in Ω,

∂u

∂ν
= 0 on ∂Ω,

is equal to 0 and the corresponding eigenfunctions are constant. We decompose
H1(Ω) as H1(Ω) = R⊕ V , where

V =
{

v ∈ H1(Ω) :
∫

Ω

v(x) dx = 0
}

.

The subspace V of H1(Ω) is continuously embedded into L2∗(Ω) and Lq(∂Ω).
We introduce an equivalent norm in H1(Ω)

‖u‖2V = t2 +
∫

Ω

|∇v|2 dx,

if u = t + v. We then have

Lemma 4.1. Let
∫

∂Ω
P (x) dSx < 0. Then there exists a constant η > 0 such

that for every t ∈ R and v ∈ V the inequality( ∫
Ω

|∇v|2 dSx

)1/2

≤ η|t|,

implies ∫
∂Ω

P (x)|t + v(x)|q dSx ≤
|t|q

2

∫
∂Ω

P (x) dSx.
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This is a consequence of the continuity of the embedding of V into Lq(∂Ω)
(see also [8]).

Proposition 4.2. Let
∫

∂Ω
P (x) dSx < 0. Then there exist constants ρ > 0

and β > 0 such that J0(u) ≥ β for every u satisfying ‖u‖V = ρ.

Proof. Let η > 0 be the constant from Lemma 4.1. We distinguish two
cases:

(i) ‖∇v‖2 ≤ η|t|, and
(ii) ‖∇v‖2 > η|t|.

(i) If ‖∇v‖2 ≤ η|t| and ‖∇v‖22 + t2 = ρ2, then t2 ≥ ρ2/(1 + η2). It follows
from Lemma 4.1 that ∫

∂Ω

P (x)|t + v(x)|q dSx ≤ −|t|qα,

with α = −(1/2)
∫

∂Ω
P (x) dSx > 0. Using this and the Sobolev inequality in V

we estimate J0 from below

J0(u) ≥ −C(‖∇v‖2
∗

2 + |t|2
∗
) +

|t|q

q
α ≥ −C1ρ

2∗ +
αρq

q(1 + η2)q/2
≥ ρqα

2q(1 + η2)q/2
,

for ρ > 0 sufficiently small, say ρ ≤ ρ0 and some constants C > 0 and C1 > 0.
In case (ii) we have ‖u‖V ≤ ‖∇v‖2(1+1/η2)1/2. By the Sobolev inequalities

we get ∫
Ω

Q(x)|u|2
∗
dx ≤ C2‖u‖2

∗

V ≤ C2

(
1 +

1
η2

)2∗/2

‖∇v‖2
∗

2 ,

and ∣∣∣∣ ∫
∂Ω

P (x)|u|q dSx

∣∣∣∣ ≤ C3

(
1 +

1
η2

)q/2

‖∇v‖q
2,

where C2 > 0 and C3 > 0 are constants. Thus

J0(u) ≥ 1
2

∫
Ω

|∇v|2 dx− C2

(
1 +

1
η2

)2∗/2

‖∇v‖2
∗

2 − C3

(
1 +

1
η2

)q/2

‖∇v‖q
2.

Taking ‖∇v‖2 ≤ ρ sufficiently small, we derive from the above inequality that

J0(u) ≥ 1
4
‖∇v‖22.

Finally, we observe that if ‖u‖V = ρ, then ρ ≤ ‖∇v‖2(1 + η2)1/2/η. Therefore

J0(u) ≥ η2ρ2

4(1 + η2)
.

We choose

β = min
(

ρqα

2q(1 + η2)q/2
,

η2ρ2

4(1 + η2)

)
,

and the result follows. �

We are now in position to prove the analogue of Theorem 2.4.
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Theorem 4.3. Let
∫

∂Ω
P (x) dSx < 0. If

c0 = inf
u∈M0

J0(u) < S∞,

then c0 is achieved and problem (4.1) has a solution.

Proof. The proof is quite similar to the proof of Theorem 2.4 except for
Step 1 which we present in detail.

The positivity of c0 is a consequence of Proposition 4.2 since it follows easily
that maxt≥0 J0(tu) ≥ β, and therefore

c0 = inf
u∈M0

J0(u) = inf
u∈H1(Ω)

max
t≥0

J0(tu) ≥ β > 0.

Let {um} be a minimizing sequence for c0. Working as in the derivation of (2.19)
we get that (as m →∞)

1
2(N − 1)

∫
Ω

|∇um|2 dx +
(N − 2)2

2(N − 1)

∫
Ω

Q|um|2
∗
dx ≤ cλ + o(1) ‖um‖H1 + o(1),

for λ = 0, and therefore

(4.3)
∫

Ω

|∇um|2 dx ≤ C + o(1) ‖um‖H1 ,

for some constant C > 0. Also, by Young’s inequality,∫
Ω

u2
m dx ≤ 2

2∗

∫
Ω

|um|2
∗
dx +

2∗ − 2
2∗

|Ω|

≤ 2
2∗minx∈Ω Q(x)

∫
Ω

Q(x)|um|2
∗
dx +

2∗ − 2
2∗

|Ω|,

and therefore

(4.4)
∫

Ω

u2
m dx ≤ C + o(1) ‖um‖H1 .

Inequalities (4.3) and (4.4) yield the boundedness of {um} in H1(Ω). The rest
of the proof is quite similar to the proof of Theorem 2.4 and is omitted. �

We finally state the following existence result.

Theorem 4.4. Let
∫

∂Ω
P (x) dSx < 0.

(a) Suppose that (3.1) holds and let C(x0) = minx∈∂Ω C(x). We assume that
both functions Q and P are differentiable at the point x0 and we denote
by ∂Q(x0)/∂ν the outward normal derivative and by H(x0) the mean
curvature of ∂Ω at x0. Then problem (4.1) has a solution, provided that:
(i) in case N = 3, H(x0) > 0,
(ii) in case N ≥ 4, H(x0) ≥ 0, ∂Q(x0)/∂ν ≤ 0, H(x0)−∂Q(x0)/∂ν > 0.
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(b) Suppose that (3.20) holds and moreover

|
∫

∂Ω
P (x) dSx|NQ

(N−2)/2
M

(
∫
Ω

Q(x) dx)N−1
< 2(N − 1)NN/2(N − 2)(N−2)/2SN/2.

Then problem (4.1) has a solution.

Proof. The proof of part (a) is the same as the proof of Theorem 3.1 (the
positivity of λ played no role there). Part (b) is an immediate consequence of
Theorems 3.3 and 4.3. �
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