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POSITIVE SOLUTIONS OF A NEUMANN PROBLEM
WITH COMPETING CRITICAL NONLINEARITIES

JAN CHABROWSKI — STATHIS FILIPPAS — ACHILLES TERTIKAS

ABSTRACT. We present existence results for a Neumann problem involving
critical Sobolev nonlinearities both on the right hand side of the equation
and at the boundary condition. Positive solutions are obtained through
constrained minimization on the Nehari manifold. Our approach is based
on the concentration compactness principle of P. L. Lions and M. Struwe.

1. Introduction

In this paper we are concerned with the Neumann problem

—Au+ M= N(N —2)Q(z)uN+2/(N=2) in Q

(1.1) u>0 in Q,
% = P(z)u™/N=2) on 01,
v

where © C RY is a bounded domain with smooth boundary and A > 0 is a
parameter. The constant N(N — 2) appearing in (1.1) has been introduced
for technical convenience and can be absorbed in Q(z). We denote by 2* =
2N/(N —2) and ¢ = 2(N —1)/(N —2) the critical Sobolev exponents for the
embedding of H'(Q) into L2 (Q2), and H*(Q) into L9(dN), respectively, for N >3.
Both embeddings are continuous but not compact. Throughout the paper we
assume that @@ and P are continuous functions on  and 92 respectively. In
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addition, @ is a positive function on Q. Further assumptions on @ and P will
be formulated later.

Semilinear elliptic problems with critical Sobolev nonlinearities have received
considerable attention after the pioneering work of Brezis and Nirenberg [9] on
the constant coefficient Dirichlet counterpart of (1.1), but also in connection with
the Yamabe problem, see e.g. [18], [21] and references therein.

If P(z) =0, then solutions of (1.1) are obtained as minimizers of the varia-
tional problem

- Jo(IVul* + Au?) da
1mn .
weH (Q\{0} (N(N —2) [, Q(z)|ul?" dz)?/?

If N(N —2)Q(x) =1 and P(x) = 0, problem (1.1) has an extensive literature,
see e.g. [1]-]6], [11]-][12], [14], [28]. The first existence results in this case were
obtained by Adimurthi-Mancini [1], Adimurthi-Yadava [5] and X. J. Wang [28].
If S denotes the best Sobolev constant, and

(1.2) S\ =

(1.3) Sy < §/22/N

for some A > 0, then problem (1.1) admits a least energy solution. The validity of
this inequality can be verified by using a special family of functions, namely, the
Talenti instantons centered at a point on the boundary 02 with positive mean
curvature. It turns out that solutions exist for any A > 0, under the assumption
that 0f) has at least one point with positive mean curvature.

If Q(z) # constant and P(xz) = 0, problem (1.1) has been studied by
Chabrowski and Willem [13]. Assuming that Q(z) > 0, and setting Q,, :=
max,eon Q(r) and Qpr := max, g Q(x), the authors showed that if

(14) Sy < (/22N min{2/N /(N (N = 2)Qu)*'*, 1/(N(N = 2)Qm)**'},

then a least energy solution exists. If N(N — 2)Q(x) = 1 then (1.4) reduces
to (1.3). Condition (1.4) ensures that no concentration due to the presence of
the critical exponent can occur in a minimizing sequence of (1.2), and therefore
one can extract a subsequence that converges to a solution of (1.1). In case
Qu < 22/N=2)Q, . inequality (1.4) is satisfied for any A\ > 0 provided Q,, is
attained at a point x¢ € 02 with positive mean curvature. On the other hand,
if Qu > 2% (N=2)Q,,, then least energy solutions exist for A € (0, \g), for some
Ao > 0, and in general, no least energy solutions exist for large values of \.

Our purpose in this work is to obtain existence results in the case where
Q(z) # constant and P(z) # 0. Since P is not anymore identically zero, the
critical nonlinearity on the boundary comes into play. We note that, in the case
where (Q and P are nonzero constants, some existence results for A = 0 are
provided by Pierotti and Terracini [24], among other things.
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Elliptic problems that resemble to (1.1), involving two critical exponents,
arise in a natural way in geometry, see Escobar [19], Han and Li [20], [21],
Ambrosetti, Li, Malchiodi [7], and Djadli, Malchiodi, Ould Ahmedou [17] and
references therein. Consider for instance the problem of prescribing the scalar
curvature and the boundary mean curvature of the standard half three sphere,
by conformally deforming its standard metric. After a conformal transformation
that sends the half sphere to the upper half space, the problem is reduced to
finding positive solutions (with finite energy) of

—1
—4%Au = K (z)uNF2/N=2) iy RN
—m%:}[(l’)u on 8R+,

with K, H smooth functions and K(z) > 0. Problems (1.1) and (1.5) are the
same if we identify 2 with Rf , we note however that in our case the geometry
of 99 plays an important role. In [17] the authors among other things proved
the existence of positive solutions for (1.5) in the case N = 3, under suitable
conditions on K and H. Their method is based on Bahri’s theory of the critical
points at infinity.

Our approach is based on the concentration compactness principle of Lions
[23] and Struwe [25]. We will obtain solutions of (1.1) as critical points of the
functional

(1.6) In(u) = 1/Q(\Vu\z—i—)\ug)dx

2
_NW-2) » gy L
7 [ Q@ de =2 | P@uras,,

which is a O functional on H'(§). The Fréchet derivative of Jy is given by
(Fi0),0) = [ (Tu- V64 hug) do-
Q

N(N72)/S)Q(x)|u|2**2u¢dmf/m P(x)|u|"2u¢ dS,,

for every ¢ € H'(Q2). To find critical points we consider the following constrained
minimization problem

(1.7) o uéﬁi TIn(w), My={ueH (Q):u#0, (Ji(u),u) =0}

We note that the use of constrained minimization techniques have already been
employed to other problems involving competing nonlinearities, see e.g. [11], [27].
An easy calculation shows that in the special case P(z) = 0 the two infima in
(1.2) and (1.7) are related by

1

L gnre

C)\:N)‘
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In order to determine the energy level of 7, below which the Palais—Smale
condition holds, we use the Neumann problem in a half space:

—Au=N(N —2)uN+2/(N=2) jn RY,

(18) u >0 in Rf,
/
_ Ou(a',0) — o V/(N-2) on ORY = RN-L,
8(EN

where ¢ is a constant. In what follows we shall use the notation z = (z/,zn),
2’ € RVN~L. Tt is known (see [15], [22]) that all nonnegative non-zero solutions of
(1.8) are given by

(N-2)/2
u(z) = ( c >
e + o' — x| + (xn +ec(N —2)71)2 ’

with & > 0, o), € RN¥~!. For simplicity we assume that z{, = 0.

A simple scaling argument shows that the problem

—Au = N(N - 2)auN+2/(N=2) i RY

(19) u >0 in R-lj\‘[’
/
7811,(1' 30) _ buN/(N72) on aRf —_ RNfl’
aa?N

where a > 0 and b are constants, has solutions of the form

(N—2)/2
1.10) U.(z) =a~N=2/4 <
(110) U:(z)=a S T (o T a2 )2 ;

— i e > O
:u - \/a) .
Note that

Uec(z) = e~ WN=2/21, .
€

The functional, as well as the solution manifold associated with problem (1.9),
are given respectively by

(1.11) Ja,b(u)zl/ Vul? da
RN

2
3
N(N -2
_M/ |u
2* ]RN

+

* b
2 dm—f/ |u(z,0)|? dz’,
q Jry-1

and
Map={ue Dl’Q(Rf) cu# 0, (Jgp(u),u) =0}
Here DY2(RY) is the Sobolev space

DY2(RY) = {u: Vu € LA(RY), uwe L* (RY)},
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equipped with the norm
2 Vul?
= d .
HUHDLZ(Rf) /]Ri’ [Vul|” dz

The paper is organized as follows. In Section 2 we find the energy level of
Jxr, A > 0, below which a least energy solution exists (see Theorem 2.4). This
theorem gives the existence of solutions provided the infimum of the functional
Jx on the Nehari manifold satisfies condition (2.16) Condition (2.16) is the ana-
logue of (1.4) and is reduced to that when P(x) = 0. Section 3 is devoted to the
verification of (2.16). In Theorem 3.1 we formulate conditions guaranteeing the
existence of least energy solutions for every A > 0 whereas in Theorem 3.3 con-
ditions are provided under which least energy solutions exist for small positive
values of A. Finally Section 4 is devoted to establishing existence of least energy
solutions in the case A = 0, see Theorem 4.4.

Acknowledgments. This work started when J. C. visited the Departments
of Mathematics and Applied Mathematics of University of Crete. Their hospital-
ity and support are acknowledged. SF and AT acknowledge partial support by
the RTN European network Fronts—Singularities, HPRN-CT-2002-00274. S. F.
acknowledges additional support by RTN European network HYKE, HPRN-CT-
2002-00282.

2. Constrained minimization

For future use we need to compute the infimum of J, p(u) when v € M, .
We then have

LEMMA 2.1. There holds

IT b
2.1 inf = —a W22 ( —
(2.1) o Jap(u) = a 7 )

where the constant 11 is given by

(2 2) I ._/ d.’)ﬁl o 7TN/2
’ © e (L4 2N 2N=2D(N/2)

and the function K(-) is defined by

00 dt " 12 —(N-1)/2
K = (N -2 1 ;
(w) ( )L/(Nz) (1 +252)(N+1)/2 + N _ 1( + (N—2)2> )

we note that K () is strictly decreasing in p € (—00,00).

PROOF. Since all solutions to problem (1.9) are given by U.(z) (see (1.10)),
the infimum (2.1) is equal to J, 5 (Uc). Since (J, ,(Ue), Ue) = 0, we have that for
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any € > 0,

(2.3) / |VU.|? dz = aN(N — 2)/ |U|?" da + b/ |U.(2',0)|9 d’.
REY RY RN-1

In view of this, we can write J, »(Us) (see (1.11)) as

(2.4)  Jup(U.) = a(N —2) / U2 dw + U.(x,0)|7 da.

N
]R+

We first compute the last integral in (2.4).

(2.5) / U. (', 0)| do’
RN-1

:a—(N—l)/2€N—1/ da’
ry—1 (€2 + (xy +epu(N —2)~"1 + |1‘/|2)N_1
d /
—q WN=D/2(1 4 2(N —92)2 —(N—l)/2/ . ay
a (14 p=( )7) v (L+ [y )N T

:af(Nfl)/Q(l + MQ(N o 2)72)7(1\[71)/21_[.

We next compute the first integral in (2.4)

/ U dx:a*N/Q/Oo/ eV da' dey
RY o Jrvor (€2 + (@n +ep(N —2) 1) + [ PN

To proceed we use the following identity which is easily proved using polar co-

ordinates followed by an integration by parts:

dx’ 1 dz! I
" (N2 Y —(N+1)/2
/]RN—l (c+ [z'[)N 2°¢ _/RN_1 1+ /)N 1 5 ¢ ; ¢>0.

Using this identity with ¢ = &2 + (x5 +eu(N — 2)71)2 > 0 we obtain

. I o dt
(2.6) / U2 de = Lq N2 / A
R | € 9 ) (N—2) (1 + t2)(N+1)/2

Relation (2.1) then follows from (2.4)—(2.6). Finally, differentiating K (1) we find

that (N-1))2
N -2 12 I
K'(p) = ——~—= (14 #H__ 0
() N—l( +(N_2)2) <0,

which proves its monotonicity. An easy calculation shows that
2NN — 2)T2(N/2)

2.7)  K(—o0) = 2K(0), K(0)= ) , K(o)=0. O

We next prove a variant of Lemma 2.1. Let D C R be a bounded domain
with smooth boundary such that RY N D # () we denote by V{ (RY, D) the
Sobolev space defined by

Vi(RY,D)={ue H(RY ND):u=0onRYNID}.
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For u € Vi (RY, D) we set

1 N(N —2 . b
JRN’Dmb(u):f/ \Vu\zdme*)/ Ju|? dx"/ |9 dz’|
* 2 Jr¥np 2 RYND 4 JorYnD

and

MRf,D;a,b ={ue Vol(Rf»D) cuZ 0, ( n%f7p;a7b(u)au> = 0}.
We then have

LEMMA 2.2. Let D C RY be a bounded domain with a smooth boundary such
that ORY N D # 0. Then
I b

inf  Jen p. =—a N=22K( —).
UEM;I&,D;Q,b M,D,a,b(u) 2‘1 NG

PROOF. By standard arguments we have (see, e.g. Lemma 2.1 of [27] for a
quite similar argument)
inf JrN pogp(w) = inf max Jrn p.gp(tw).
ueMRf,D;a,b RY ,D,a,b( ) wevi (Rf,D) >0 RY ,D,a,b( )
Given any such domain D, it is clear that there exist balls B,. and Bpg, of radii r,

R respectively, centered at xg € 3Rﬁ such that Rf NB, C Rf NnD C Rf N Bg.
It follows easily that Vi (RY, B,) C Vi (RY, D) C Vi (RY, Bg) and

inf JRf,BT.;a,b(u) > inf JRf,D;a,b(u)
uEMyN g o UEMEN poay
. Bria, Y. Dsa,
> inf JRf,BR;aJ)(U‘)'
ueM]Rﬁ,BR;a,b

By a simple scaling argument

Minf JRf,BT;a,b(u): Minf J]Rf,BR;a,b(u)'
u€ Rf,BT;a,b u€ ]Ri’,BR;a,b

Indeed, if u(x) is a test function for the first infimum, then
ux(z) = AN/ ()

is a test function for the second infimum, with A = r/R, and both functionals
take on the same value. The result then follows from Lemma 2.1. 0

We next establish an inequality which will allow us to control the concentra-
tion on 0N of Palais-Smale sequences for J (see (1.6)).

First, we introduce some notation analogous to the case with constant coef-
ficients. If ¥ € RY and D C R¥ are domains with smooth boundaries such that
0¥ N D # () we denote by V' (3, D) the Sobolev space defined by

Vo (2,D) ={ue H(XND):u=0o0nXNAaD}.



8 J. CHABROWSKI S. FILIPPAS A. TERTIKAS

For u € Vi (X%, D) we set

1
(2.8) Ju.pa(u) = 5/ (|Vul? + Mu?) dz
snD
N(N —2 « 1
NN =2 [ )l de - f/ P(a)[ul? dS,.
2 D q Josnp
In the special case A = 0, we write Jx. p.o(u) = T, p(u). We also set
(2 9) MZ,DV\ = {u € ‘/Ol(zaD) cu # 0, <\7X/1,D;)\(u)7u> = 0}7
Ms p = Ms po.
We finally set

(2.10) C(z) =

S=

@ -k (L),

We then have

PROPOSITION 2.3. Let © € 9 and denote by B,.(x) the ball of radius r
centered at x. Then

I inf e =C(z),
rlﬁ)l uerIZr,lBr(I);k T8, @A (0) (=)

where Jq B, (z);x, Ma,B,(x);x and C(x) are defined in (2.8)—(2.10), respectively.

PrOOF. We will divide the proof into several steps. Let us fix z¢ € 0€2.
Step 1. As usual we have that

inf . = inf . .
o™ Ja,B, (z0):r (1) wev (0 oy X T, B, (z0):x (t0)
Clearly,
£ 1= Jo,, aoya(tu) = 22— P =D nynz) T i
q
with
(2.11) o' :/ (|Vul? + \u?) du,
QQBT(I())
(2.12) B =/ Q(x)[ul* dz,
QOBT(Q:O)
(2.13) o :/ P(z)|u|?dS,.
8QﬂBr(zo)

An elementary analysis shows that f(0) = 0, f(co) = —oo and that f(¢) has a
unique positive maximum at a point ¢y = tpr(c, 8,7). We denote the maximum
value of £(t) by ¢(a,3,7) == f(tar(a, 5,7)). Hence,

I?Zag( k7SZ,BT(ac);)\(tu) = d)(aa ﬁ?’}/)a
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with a, 8, v as defined in (2.11)—(2.13). It is easy to check that the function ¢
is increasing in « and decreasing in § and ~.

Step 2. Since wu is zero on 2 N IB,.(x) we have by the Poincaré inequality

that
/ u?dr < cr2/ |Vu|? da,
QNB,.(zo) QN B, (xo)

for some constant ¢ > 0 independent of r. Also, from the continuity of P
and @ we have Q(zg) —e(r) < Q(z) < Q(xo) + &(r) for x € QN B,.(z) and
|P(z) — P(x0)| < e(r) for x € 9Q N B,.(x), with e(r) — 0 as r — 0. In view of
these inequalities and the monotonicity properties of ¢, we have

p(a™,87,77) < d(a, B,7) < plat, Y, 4T),

with
ot =(1 :I:cr2)/ |Vul|? dz,
QNB,(x)
5% = (Q(ao) T () / fuf? da,
QNB,(x)
v = (P(x0) F £(r) / [l dS,
OQNB,.(z)

Step 3. To relate QN B,.(zg) for small » with the half space, we use a change
of variables that straightens the boundary. We may assume for convenience that
2o = 0 and that the part B(0,7) NI of the boundary is given by

N-1
1
h(z") = 3 Z a;z? +o(|2'|?) for |2/ <,
i=1

where a;,7=1,... ,N — 1, denote the principal curvatures of 92 at 0. Let T" be
a transformation y' = z’, yy = xy — h(z’), which is smooth and invertible. We
denote by v(y) and by B, the images of B, and u under T, respectively. After
some standard calculations we find that

@ ,7,77) < ¢(a, B,7) < p(@*, BH,7),

with

@t (e [ (VePa

]Rf NB,

5 = @0 FE0) [ P dy,

RYNBy

75 = (P(z0) TE(r) / o] dy

NS
ORYNB;
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Here &(r) is some positive function such that () — 0 as » — 0. Consequently,

inf a ,07,77) < inf a, 3,
uevol(Rf,é,,,)¢< ) uevol(Q,B,.(wo))¢( 7)

< f _ @t gtah).
veVy (RY,B;)

Step 4. To complete the proof we will show that

(2.14) lim  inf _ ¢(@t,BT,5T) =C(x),
m10 vevy) (RY,B,)

and similarly for ¢(a~, B_, v7).
We let (1 +&(r))"?v(y) = w(y). Then

& = [ Vel
[

YNB,.
B = Qo) =) +E0F 2 [l .
7= (Plao) 2D+ E) [ eltay

Then, using Lemma 2.2 with D = B,, a = (Q(z¢) — &(r))(1 + &(r))¥/2 and
b= (P(x0) +&(r))(1 +&(r))¥/? we get

inf _ ¢(@", g3 = inf _ e@", 5"
veVy (RY,B,) weVe (RY,B,)
= inf max J, (tw)

= RY ,Br;a,b
’wGVOl(Rf,Br) t>0 + a

1 b
= 1 f J ~ _ - 7(N72)/2K LAY
wEM;i]\}yEr;a,b Rif’Brﬂl,b(w) B a \/a

Taking now the limit as r — 0 and noting that a — Q(z¢) and b — P(zy), (2.14)
follows and this completes the proof. O

Let S denote the best constant for the for the critical Sobolev imbedding in
RN, N > 3, that is

v [Vul? .
S:inf{wzui—é& ue L? (RY), VuELQ(RN)}.
RN

It is known from [26] that

2/N
(2.15) S =naN(N—2) (W} .
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We now prove our main existence theorem. We set Qns := max, g5 Q(z)
and, for C(x) as defined in (2.10),
SN/2
Soo := min <I1€rngC(x), NN(N = Z)QM)(N_Q)/Q)'

We then have
THEOREM 2.4. If for some positive constant A,

2.1 — inf .
(2.16) e ug/lwkjk(u)<5’

then cy is achieved and in particular problem (1.1) has a solution.
PrROOF. Step 1. Positivity of ¢y > 0 and boundedness of the minimizing
sequence.

First we check that ¢y > 0. The Sobolev space H!(Q) is equipped with the
norm

|ul? = / (IVul> + u?) dz, X > 0.
Q
Let u € M. Then, by the Sobolev inequalities,

[ull* = N(N — 2)/£2Q(x)lu(x>l2* dx + /{m P(@)|ul?dS, < C(Jul* + |Ju]9).
This implies that there exists § > 0 such that
|ull > 6 for every u € M.

Therefore for u € M) we have

Ta(w) = T () — ém’(u), )
1 5, (N —2)2 e &
= s+ = / Q" dr > 5

and hence ¢y > 0. Let {u,,} be a minimizing sequence for c¢). By standard
arguments (see e.g. Theorem 2.2 in [9]) we have that

(2.17) In(um) — ¢y, and  J{(um) — 0 inH—l(Q).

We claim that the sequence {u,,} is bounded in H'(2). To see this, we first
note that

1 i _ 1 2 (N — 2)2 2*
(2.18) jA(um)_§<J/\(um)a Um) = m\lum\l +m/ﬁ@\um| dx.
It then follows from (2.17), (2.18) that (as m — o0)

_9)2 .
219) gl + Sy [ Qlunl® do

1
< oxt I (um) = @ lluml] + o(1).
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Since @ > 0, we necessarily have that |lu,,| < C, as claimed. As a consequence
we obtain

(2.20) m||um||2 + m /Q Qlum|? dz = ¢x + o(1).

Step 2. Concentration—compactness properties of minimizing sequence.
Since {u,,} is bounded in H!(Q2), passing to a subsequence (still denoted by
{um}), we have, for some u € H(Q),

Uy, — u  weakly in H'(Q),
Uy — U a.e. in £,

Um — u in LP(Q), for 2 <p < 2%,
Um — u  in LT(0Q), for 2 <r < q.

By the concentration—compactness principle ([23]) there also exists an at most
countable set of points {z;}, j € J, such that the following convergence results
(in the sense of measures) hold

[ |? dz — dv = |u|* dz + Z(Swjl/j, z; €Q,

jeJ
|t |7 dS, = dv = |ul?dS, + > 6a,7;,  x; € 0D,
jeJ
|Vum|2dx —du > |Vu|2dx + Zéwj,uj, xj € Q.
jeJ

Here 4., denotes the Dirac mass centered at z; and v;, 7; and u; are nonnegative
constants. In addition, the following inequality holds

(2.21) SvYF <y, ifzyeQ,

with S as in (2.15).

We next derive some relations between v;, 7; and p;. Let ¢5(z) be a smooth
cutoff function such that 0 < ¢5(z) <1, ¢ps(x) = 1 for |z —z,| < 6 and ¢5(z) =0
for |z — x;| > 2.

Since J{ (um) — 0 in H=1(Q) and ||uy,|| < C, it follows that (T3 (tm), umd3)
— 0, that is, as m — oo,

(2.22) / (IVtm [* 95 + 2umds Vi, - Vs + Au,¢3) do
Q

:N(N—2)/QQ(:1:)|um|2*¢§dx+/ P(a:)\um|ng§d5w—|—o(1).

o



POSITIVE SOLUTIONS OF A NEUMANN PROBLEM 13

Using the previous convergence results and letting m — oo first, and then § — 0

we get
(2.23) pj = N(N = 2)Q(z;)v;, ifz; €,
(2.24) wi = N(N —2)Q(z;)v; + P(z;)v;, if z; € 0Q.

Step 3. Here we will show that no concentration of {u,,} occurs. That is, we
will show that v; =7; = pu; =0, for all j € J.

Passing to the limit (m — o0) in (2.20) and using the convergence properties
of {um} we get

92 .
1 (N —2)2
T 2 M Ty 2 Qv

xj € zj cQ
We first show that there is no concentration at interior points. Assuming that
v, > 0 for some z3, € Q we will reach a contradiction. From (2.25) we get that

(V —2)
2.26 > .
(2.26) e 2 2(N_1)Mk+2(N_1)Q($k)Vk
From (2.23) and (2.26) we get that

1
(227) C) 2 N,uk.
On the other hand, from (2.16) and (2.23) we have

N2 ) (N-2)/2
(2.28) ex < 5 = —gN/2 (”’“) .
N QNN —2)7272 ~ N\,

From (2.27) and (2.28) we obtain Syi/z* > g, which contradicts (2.21). Hence,
p; =v; =0 for all x; € {2 and concentration at interior points is excluded.

We next assume that concentration occurs at a boundary point xj € 0.
Let B,(xk) be a ball centered at zj of radius r, with r sufficiently small, and
Q. = QN B,(zk). Also let ¢s, 20 < r, be the test function used before, centered
at Tk.

It is clear that for each m and r there exist constants ¢,,, > 0, depending
also on §, such that

(2.29) / (IV (Um®s)|* + Mtmds)?) do

r

:tgj;2N(N—2)/ Qlum|? 62 dx+tgn—3/ Plum 962 dS,.
’ Q. ©JoanB, (xy)

In the notation of Proposition 2.3, (2.29) is equivalent to t,, »um®s € Maq, B, (2,):7-
We claim that there exist constants A and B such that 0 < A < t,,, < B.
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Indeed, if we let m — oo and then r — 0, the left hand side of (2.29) tends to
a constant My, > ur > 0, whereas the integrals in the right hand side remain
bounded. Hence, t,, , cannot approach zero. Since 2* —2 > ¢ —2 > 0 and @ is
positive, t,, , cannot tend to infinity either and the claim is proved.

We may therefore assume that ¢,,, — ¢, 0 <t < 0o, as m — oo and r — 0.
Taking the limits in (2.29) we get

2

(2.30) W = 52*7 N(N — 2)Q(mk)uk + ¥q72p($k)5k.

Combining this with (2.24), we conclude that ¢ = 1.

Since t, rum@s € Mo, B, (2):n, it follows from Proposition 2.3, that as r — 0,

(231) jQ,BT(xk);/\(tm,rquS&) > inf N jQ,BT(xk);/\(u) = C(xk) + 0(1)

UEMGQ B, ()}

Letting first m — oo and then r — 0 in (2.31) (see (2.8) for the definition of
J,B, (z):x» and using the convergence properties of {u,,} and {t,, .} we get:

1 N(N -2 1
(2.32) SHIk %Q(xk)wﬂ — gp(xk)yk > C(xr).
Replacing P(z)7 from (2.30) (with £ = 1, there) in (2.32), we get that
1 (N —2)?
> .
o — 1t gy =y Qe = Clan)

It then follows from (2.25) that ¢y > C(zx), which contradicts (2.16). Hence
concentration at boundary points is also excluded and v; =7; = pu; = 0, for all
jedJ.

Step 4. Completion of the proof.

We have that

(233) ex +0(1) = Jr1tm) — 5 (TK(tm), )

X 1
:N—Q/Qumzdx—l—i/ Plu,,|*dS,.
¥ =2) [ Qlun? do+ s [ Pl

Since v; =7; = 0, both terms in the right hand side of (2.33) converge strongly,
and

. 1
c) = N—2/ ul? dx—l—i/ Plu|?dS,.
2= =2) | Qi dr+ g | Pl

Recalling that c) is strictly positive we conclude that v # 0. On the other
hand, we have (J{(um), u) — 0, whence (J;(u), u) = 0. Consequently u is on
the Nehari manifold, that is u € M. It then follows easily from (2.25) (with
pj = vj = 0 there) that u is a minimizer for ¢y and {u,,} converges strongly in
HY(Q) to u.

Clearly, |u| is also a minimizer and therefore we may assume that u > 0,
whereas by regularity theory it is a classical solution. By the maximum principle
u > 0 in Q. This completes the proof. O
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REMARK 2.5. If P(z) =0 on 91, then

C(x) = %HK(O)Q(J:)‘(N‘Q)/2 = %(N — Z)wN/211£Z(V](T§)Q($)—(N—2)/2
_l SN/2 o )—(N—2)/2 B SN/2
2 NN/2(N —2)(N-2)/2 v T 2N(N(N —2)Q(z))N-2)/2"
Hence
. SN/Q
Ile%fQC(l‘) T ON(N(N —2)Q,)®-2/2°

where @Q,,, = mingcyo Q(z). In this case condition (2.16) takes the form

= i f
cx ug/l\@ I (u)

SV/2 gN/2
= <2N(N(N —2)Qu)N=2/2" N(N(N — 2)QM)(N—2)/2>’

and we recover the result from the paper [13].
In Theorem 2.6 below, we examine the dependence of ¢y on .

THEOREM 2.6. For A > 0, c) is a nondecreasing function such that 0 <
cx < Soo, and in addition, limy_, o €y = Soo-

PROOF. Let 0 < A\ < Ay and u € M,,. Then, there exists s € (0,1) such
that su € M,,. We then have

Cxy < \7)\1 (su)

_L wl? u? ) dx M z)[ul* da
= gy f, (vl vat ) a+ Lg 2 [ @t a
< j)q (U) < ‘7)‘2 (’LL)

Since this holds for every u € M,,, we get ¢y, < cy,.

To establish the second part of our assertion we argue by contradiction. Let
{Am} be an increasing sequence of positive numbers with lim,, . Ay = 0.
Assume that lim,, .o cy,, < Soo. Then for every ), there exists a least energy
solution u,, = uy,, of (1.1) such that cy, = Jx,, (um) < Soo and J5 (um) = 0.
Then, the sequence {u,,} is bounded in H*(£)) and we may assume that u,, — u
in H'(Q). Also, [u2, dz = O(1/\y,), and therefore u, — 0 in L*(Q2) and
Um — 0 in HY(Q).

The rest of the proof is quite similar to the proof of Theorem 2.4 with the
following modifications. Relation (2.22) remains the same, but relations (2.23)
and (2.24) are true as inequalities:

iy < N(N — 2)Q(£Uj)yj, if T; € Q,
i < NN =2)Q(z;)v; + P(x;)v;, if z; € 0Q.



16 J. CHABROWSKI S. FILIPPAS A. TERTIKAS

This difference stems from the fact that we have no longer “good” control on the
term A, [u?,. The rest of the argument that excludes concentration at interior
points remains the same.

To exclude concentration at a boundary point, we first note that (2.29) re-
mains valid whereas (2.30) becomes the inequality,

2

e < T NN = 2)Q(en)wn + 1 Play) .

To establish that ¢ = 1, we subtract (2.22) from (2.29) (in order to get rid of the
bad term) and then pass to the limits to arrive at

2

0 < N(N —2)Q(zr)v + Pxy)vp = e N(N - 2)Q(zx)vk +Eq72p(1’k)pk7

from which it follows that ¢ = 1.
For u € M, we will use the following expression for the functional Jy(u):

In(u) = (N =2) [ Qlu)* dz + Plu|?dS,.
Q

1
2(N —1) Joo

Starting from ¢y, = J»,, (un,) and taking the limit m — oo, we conclude that

(2.34) C(xg) > Ss > lim Cx,,
1 _
=(N-2) ) Q(xj)Vj+m > P(x;)v;.
;€00 ;€09

Using the monotonicity of inquMQ,BMm,C);A Jo,B, (zx):x (1) with respect to A, we
obtain the analogue of (2.31) for large m such that A, > A,

J0,B, (z1)ixm (e Um®s) > inf Jo.B, (z)x(w) = C(x) + o(1).
UEMQ,Br(zk);)‘

Taking now the limits m — oo and r — 0 we get

(N —2)Q(xp)vg + P(xp)vr > C(xg),

1
2(N — 1)

which contradicts (2.34). Thus, concentration at the boundary is also excluded.

It follows that {u,,} converges strongly in H'() to zero. This in turn
implies that cy,, — 0, as A, — 00, contradicting the fact that ¢, is positive and
nondecreasing. O

3. Existence for A > 0

This Section is devoted to the verification of the inequality (2.16) of Theo-
rem 2.4. First we consider the case where

SN/Q
. i <
3.1) W) S NG NN 2o
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and therefore So, = mingegn C(x). Using the values of II, K and S (see (2.2),
(2.7), (2.15)), we see that
SN/2 N-2)/2
NQuN(N 22 ~ 2 (~o0).

Hence, recalling the definition of C(z) (see (2.10)), inequality (3.1) is equivalent
to

(32)  min [Q<x><N2>/2K< Pla) )} < (max Q(x)) VD2 K (~o0),

zEIN Q(x) z€Q

with K (u) defined in Lemma 2.1. Since K (i) is a decreasing function, it is easy

to see that if Q(z) takes its maximum value on the boundary 952, then (3.2) is
always satisfied. In particular if @ is constant, (3.2) is satisfied.
We next have

THEOREM 3.1. Suppose that (3.2) (or, equivalently, (3.1)) holds and let
xo € 0N, the point where C(x) takes on its minimum value, that is, C(xg) =
mingcgo C(x). We assume that both the functions @ and P are differentiable at
the point xo and we denote by IQ(xo)/Ov the outward normal derivative and by
H(zg) the mean curvature of O at xo. Then, problem (1.1) has a solution for
every A > 0, provided that:

(a) in case N =3, H(zg) >0,
(b) in case N >4, H(xg) > 0, 0Q(x0)/0v < 0 and H(xo)—0Q(x0)/0v > 0.

ProoF. For simplicity we may assume that zo = 0. Let U, (x) be the solution
of (1.9) given by (1.10) with a = Q(0) and b = P(0). It is enough to show that
for a fixed A > 0, max;>o Jx(tU:) < mingepq C(x) = C(0).

Since @, P are differentiable at g = 0 we have that as x — 0, x € €,

(3-3) |Q(x) = Q(0) = VQ(0) - x| = o(|z]),

and a similar relation for P.
Using the explicit form of U, as well as (3.3) we compute

2
(3.4) max Jy(tU:) = I (t:Ue) = L / (|VU8|2 + )\Uf) dx
t>0 2 Ja

2 _ . q
—W/Q(m)Uf do— B2 P(2)U4dS,
q Joa
ZN(N -2 )
/\VU |2dm+—80( 3 - 7%27*)@(0)/@2 dx
Q

N(N —2)
7/VQ )-xU? dx

td [
— —EP(O)/ vgds, — = VP(0) - zUZ dS,
q GlY) q Joo
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NN -2)

o /Q(Q(f@ —Q(0) = VQ(0) - 2)U? dx

_ ﬁ/ (P(x) — P(0) — VP(0) - 2)US dS,

q Jon
12 2’ N(N — 2 .
:—5/ \VUEFdx—#Q(O)/ U? dx
2 Ja 2% o
tq

t2N(N -2 .
_k (0)/ Usquzf#/VQ(O)wUf dz
q o0 2% Q
td

" / VP(0) - 2U3dS, + (t2 + 1) o(e) + M20(?).
o

In the above calculations we used the estimate [, U, 2dx = O(£?) as well as
65 [ (@)~ Q) - VQO) D) dr=ofe). ase 0,
Q

and a similar estimate for the boundary term. The L? norm of U, is quite easily
estimated using the scaling property of U.(z) = e~ (N=2/2U,(x/e). We next
show how the estimate (3.5) is obtained. The corresponding estimate for the
boundary integral is quite similar.

Given n > 0 we choose 6(n) > 0 so that |Q(z) — Q(0) — VQ(0) - z| < n|x| for
|z] < é(n). Then

/Q Q) — Q(0) — VQ(O0) - 2[UZ dx
gn/ 2|U?" dz+ C U? dx
an(lz|<3(n)) Qn(lz|>35(n))
N e’} TN_l 6N
<Clen+e / dr)zC’(en—!—).
( sy T S(m™N

lim sup - / Q) - Q(0) — VQ(O) - 2U2" dax < O,
Q

e—0 €

Hence

Since 7 is arbitrary, this limit is equal to 0 and (3.5) follows.
Since t.U. € M), we similarly have that

(3.6) /(|VU8|2 +AU2) da
Q
=t 2NN -2) | Q@)U de+t"% | P(x)U2dS,
Q o0
=t¥ 2N(N — 2)@(0)/ U2 da + 772 P(0) / Utds,
Q o0
+ 2 2N(N - 2)/ vQ(0) - zU? dx
Q

+1272 [ VP(0) - 2UZdS, + (1+2 ) o(e).
(o9}
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Now it follows easily from this that as ¢ — 0, ¢. stays bounded away from zero
and infinity, and consequently we may assume that t. — ¢ > 0. Letting ¢ — 0
in (3.6) we get

J

Combining this with (2.3) we conclude that ¢ =1 and ¢t. =1+ o(1) as e — 0.
We now continue with the estimate of Jy(t.U:). We rewrite (3.4) as

VU2 =7 ANV - 2)Q(0) /

U dz + 172 P(0) / Ul da.
R

N N N-—-1
+ + R

2 2%
(3.7)  Ia(tU.) = % / |VU.|? dz — Z%N(N —2)Q(0) / U2 da
Rf R

N
+

4
— —EP(O)/ U.(2',0)? da’
RN-1

q
2 N(N — 2 .
_ # vQ(0) - ng dr
2* RN
N
e t2
_E / VP(0) - 2U% de’ — E K (e)
q JrN-1 2
t2* tq
+ 25 Q(O)N (N —2)Ks(e) + §P(0)K3(€),
2" t4
+ ;—*N(N —2)As(e) + ;EA;),(E) + o(e),
where
Ki(e) = / VU2 da —/ VU2 da,
RY Q
Ks(e) : / U d:z:f/ U? dr,
RY Q
Ks(e) ::/ Ue(x’,())qu’f/ U2dS,,
RN-1 o0
and

As(e) = /RN VQ(0) - zU? dx —/QVQ(O) 2U? da,

As(e) == / VP(0) - zU(2',0)?dz’ — VP(0)-2U2dS,.
RN -1 a0
We next estimate the integrals K;(e), A;(g). We represent 02 near zo = 0
as xy = h(a’) = (1/2) vaz_ll a;x? + o(|2'|?) = g(a) + o(|2'|?), where the a;
are the principal curvatures of 92 at 0. By our assumptions we have that
H(0) = (1/(N = 1) =5 ai > 0.
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We first estimate K7 (g). We will use the following easily verifiable relations

h(z") ) o(e) for N > 4,
‘/ das'/ |VU.|? dey dz'| =
|2]<é g9(z")

| o(e|lng|) for N =3.
/ |VU.|?dz = O(eN~%), N >3.
RN N {|2/| >3}

Then we have, for N > 4,

Ki(e) :/ |VU5|2dx—/ |VU. | dz
RY Q

+

g(z")
- / da’ / VU2 doy + ofe)
lz’| <8 0

g(=")
- / iz’ / VU2 dzx + ofc)
RN-1 0
eg(z’)
:/ dx'/ |VU, |2 dzy + ofe).
RN-1 0

From this we deduce by L’Hospital’s rule that

Also,

(38) Kl(e’:‘) = Kie+ 0(8), N >4,
where

B9 Kma Oy [

L N2 on2 (Jo'|> +m)|«')?
~ L (N — 2)2H(0) /RM Ay
and
__ PO
(N —2)4/Q(0)

We next obtain a more explicit form for the integral in (3.9). We set
Jav o (2" + 7)) 2" P/(1+ |2 + 7*)N) da’
Jav (j2/2/ (1 + |22 + 72)N) da’
The integral in the denominator can be easily computed and is given by
|='|? ;I —2\—(N-1
dr' = —=(1 (N-1)/2
foo TR = 0 )
with I as defined in Lemma 2.1. We then have
S+ rN /A + 2+ )N dr
SN /(42 + @)V dr
1) fo (rN+2 /(1 4+ 72)N) dr L
fo (rN/(1+72)N)dr

D =

D=
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An integration by parts (see [28, p. 297]) shows that
N

oo gN+2 N+1 [* s
ds = d N > 4.
/0 1+s5)N > N—3/ 1tV =
Hence N1
D=(1+m)~ "=
(147§ 3+u,

and therefore, for N > 4,
O _ N+1 2(N-1) N
—a~WN=D/2(N=2)2H(0 il e (N=1)/2,
1 (N2 HO) gyt —5 7 |14

(3.10) K, =
We now consider the case N = 3. We split the term |VU,|? as follows
a—1/2¢ a—1/2¢3

VU.|? =
VU = G o T @y T 22

@+ |22+ (an +en)2)d

We then have
g(z")
Ki(e) = / dx'/ |VU. | dzs + o(¢|Ine])
R2

9(a") a” e
d d
Azxf (& + P+ (o + ) i
3

g(a’) a"3e
dx’ 3 dw3 + o(e|Inel)
R2 €2+|xl|2 (z3+€u) )

=:As(e )—A2( )+ o(e|Ine|).

Since |g(z')| < c|2’|?, we have
/|2 |.Z‘/|2

< 3 |I r_ /
4201 02 || oy 7 = O | o

Concerning A; we have that

dz’ = O(e).

et (mtemp)

1 g9(z")
—-A Al(e) = —4 *1/2/ d /

- 1(e) + Ay (e) a . z & + |22 + (x5 + eh0)2)3

4 —-1/2 eg(z’) 1 —\—
_4a / e’ / 7L2($3+u)u72 s
e Jre 0 (1 +[2']? + (z3 + 1)?)

From this we get that
1 —2 /
(I+7%)g(=) des.

1
li —-A A =—4 71/2/ —_—
b ( - 1(e) + 1(5)) a e (L+ [/ + 2)3
It follows now easily that lim._.g A1/(¢)e = 0o, and by L’Hospital’s rule we have
Ai(e)/e _ . < 1 / > 1 2/ (1 +7)g(z")

SR —lim [ — —Ai(e) + Al(e) ) = —4a™V —— L dxs.
c 1( ) 1( ) R2 (1+‘$/‘2+ﬁ2)3 3

lim
e—0

e—0 Ine

Whence
(3.11) Ki(e) = Kye|Ine| + o(e|Ine|), N =3,
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where

= _ 1+7°)g(a")
3.12 K1 =4a 1/2/ (—
(3.12) : oo (L1 [ + 2P

1 —2 /|2
:2(1_1/2H(0)/ %dm'.
r2 (1+ |22 +77)

dz’

We will similarly estimate Ks(e). Using the relations,

9=y | .
'/ das’/ U? da:N‘ =o(e) and U2 dx = O(eN),
|lz’| <8 h

(')

we write for N > 3,

RNN{|z’|>6}

g(=') |
Kale) = / da’ / U2 day + o(e)
|z’ |<8 0

’

9(=") |
:/ dx’/ UZ dry + o(e)
RN -1 0

eg(z’)
:a*N/z/ d:c// din —
RN -1 0 I+ |2 +mH)»

Hence

(3.13) Ks(e) = Kae 4+ 0(e), N >3,
where

/

3.14 Ky = —N/Q/ 9(&’) da’
(314 2 rvo1 (Lt [+ )N

/|2

+ o(e).

1 —N/2 / |x /
¢ HO) AN "

_ %afN/2H(0)(1 +ﬁ2)7(N71)/2'

Analogous calculations show that

(3.15) /R VQ(0) - 2U? dx

N
+

—caN2Q (0){ 1 / dx’
NN D) Jev TP+ RN

*H/R A+ [P +d<i:N +u)2)N}

N
+

H N 1 —O\—(N-1)/2 _ — >
= 50" Quy (0)| = (L +77) -

N -1 o

w

where II is defined in Lemma 2.1. It is easy to check that

/ VP(0) - zUddx =0.
RN-1

1

dt
(1+2)N+D/2 |
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We also obtain that As(e) = o(e), for N > 3.
Finally, we estimate K3(¢):

Ks(e) = / U.(2',0)? dx’
RN—l

— / Uc(2)?dS, — / U.(2)7dS,
oQN(|z’'|<9) QN (|x’|>9)
= / U.(2',0)? d:c'f/ Uo(x)?dS, +O(eN7h).
RN-1 QN (|z’|<9)

We now estimate the surface integral

/ Ue(2)?dS,
N (|z’|<d)
— g~ (N-1)/2 eV + [Vh(2!) )2

d !
wi<s (€ + [+ (@) +em)?) N1
eN- 1 1/2
ot [ (LE[VRE)R)2 o vt
wvs @+ P+ (W) + )V
2\1/2
_—(N-1)/2 (1 +[Vh(ex)]?) da’ N—
“ /RN AT+ () T @ Ok

Combining together the last two relations we get

1
Kale) = - (N-1/2 / !
3(e) = a v (Lt [P+ )N

1 \12\1/2
[ TR ) o

14+ |2'|2 + (e 1h(ex’) + 1)2)N
Since
0|Vh(ex)|?
(1+ 62| Vh(ex')|?)1/?

1+ |Vh(ez")|)V2 =1+

for some 6 = 0(2’) € (0,1), we have

1
K — —(N-1)/2 / d /
sle) =a rvo1 (L [P+ N1
da’ g~ WN-1/2

o T

/ 0|Vh(ex)|? dz
v (P TR () + ) ¥ 11T PR P

=:B(e) — C(e).
Now we observe that |V|h(ez')| < ce|z’| and e~ t|h(ex’)| < cg|a’|?. Hence

lim 2C(c) =

e—0 ¢

23

1).
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Next, we examine the integral B(g). We let L(2') = 1+ |2'|? +7% and M (e, 2’) =
1+ |2'|? + (¢ 'h(ez’) + )?. Then

OM (e, 2’)

e :2(5*1h(8,x/)+ﬁ) (—672h(6$/)+Vh(51'/) ~$I)

and by L’Hospital’s rule, we have

1 o M(E ’I/)Nfl _L(x/)Nfl
oL _ (N—-1)/2 ’ !
6113(1)53(5) gli%a enor eL(@)NTM (e, 2 )N -1 dx
= lim ¢~V -1)/2
e—0

/ (N — I)LMé‘Z’m,) Mg, 2" )N=2da’
BN-1 L(2/)N=1M (g, 2/)N=1 4 (N — 1)L(z/)N-12M2) pro 7 )N-2

Oe
:af(Nq)/z/ —2(N — )pg(z")L(z" )N 2 d’
RN—1 L(I/)QN_Q
/
— _ 9 (N-D/2(N 1 / g(') de!
“ PN f o T + N ™
= — a_(N_l)/2ﬁH(0)(N _ 1)/ |xl|2 dz’.
rv-1 (14 [2/2 + 52N
Consequently we have
(3.16) Ks(e) = —Kze +o(e), N >3,
with

/‘2

dz’

3.17 Ky = (N —1 —<N—1>/2*H0/ i
( ) 3 ( )a /j‘ ( ) ]RN—l (1+‘x,|2+ﬁ2)N

(N = 1a VD2 H©O)R(1 + 7%~ NV,

1I
2
Similar calculations show that Az(e) = o(e) for N > 3.
We can now continue with the estimate of J(¢t-U:), see (3.7). The first three
integrals in the right hand side of (3.7) are bounded above by C(0); cf. Lemma 2.1.
Therefore, recalling also that t. = 1+ o(1) as € — 0, we have for N > 3,

(v —2)?
2 Rf

(N — 2)? N2
5 Q(0)K2(e) + AN-1)

(3.18)  J(t.U.) <C(0) VQ(0) - 2U dz — %(1 +o(1) K1 (&)
P(0)Ks5(g) + o(e).

We first consider the case N > 4. Using the asymptotics of K;(¢), i = 1,2, 3,
(see (3.8), (3.10), (3.13), (3.14), (3.16) and (3.17)) as well as of the gradient term
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n (3.18) (see (3.15)) we obtain after some straightforward calculations

319) (0.0 <C0) - F G gz = DO

(1_’_ﬁ2)—(N71)/2 [ dt
< N-1 “/N (1+t2)(N+1)/2>

+2H(0)(1 4+ (N = 2)m?)(1 + ;E)UVWZ} e+ o(e).

We note that

1+ 2)-(N-1)/2 o0
A = L) —n/ S
N-1 A+ BN

since A(oo) = 0 and A'(fz) < 0 for all T € (—o0,00). Noting that dQ(0)/dv =
—Qazy (0), it follows that under the assumptions of the theorem, Jy(t.U:) < C(0)
for € small, and therefore a solution exists.

We next consider the case N = 3. The result now follows easily by noticing
in (3.18) that the term containing K;(g) (see (3.11) and (3.12)) is negative and
of order O(e|Ine|), whereas with the exception of C(0), the other terms are of
order O(g).

U

REMARK 3.2. When N > 4, (3.19) gives a sharper criterion for obtaining
existence of solutions. For example, when P(x) = 0 (Neumann problem), we
have that b= P(0) =0 and . = 0, and (3.19) takes the form
(N =2)% (v_ay2m [ (N = 3)Quy (0)

—_ — = 4+ 2H .
g e =2 B a4 o)
In order to have Jy(t.U.) < C(0) one needs the quantity in the brackets to be
positive, which is equivalent to

j)\(teUs) S C(O)

0Q(x
2H (20) Qo) — (N~ 37X -
We finally consider the case
SN/Q
(3.20) Soc = < min C(z),

N(QuN(N —2))N=2)/2 " zeo0
and we present sufficient conditions for the existence of a solution to problem
(1.1).

THEOREM 3.3. Assume that (3.20) holds. Suppose that either:

faQ x)dx > 0, or else that
faﬂ x)dx < 0 and in addition

| Jpo P(2) dSa 1N QY™
(Jo Q@) dz)N—1

(3.21) < 2(N —1)NN/?(N — 2)(N=2)/2gN/2,
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Then, there exists a Ao > 0 such that, for 0 < X < Ao,

(3.22) c\ = ugjl\flk Ia(u) < Seo.

In particular, problem (1.1) has a solution for A € (0, Ag).

PROOF. Since cy = inf, ¢y () maxy>o Jx(tu), we take u = 1 and we will
show that max;>o Jx(t- 1) < Se. We compute

B ,_22_bN(N_2)2*_Eq
70 = 1) = 3 - =D
with
a= Q| >0, b:/Q(x)d;U>0, c:/ P(z)dx.
Q a0

Differentiating once with respect to ¢ we find
"(t) = —t(BN (N — 2)t¥/ (N=2) 4 2/ (N=2) _ ),
f(t) (

The quantity inside the parentheses is quadratic in +*/(N=2) and has a unique
positive root tg given by

tg/(N,Q) - —c+ \/C2 =+ 4abN(N — 2)
0 N 20N(N — 2)

It is easy to check that f(t) has a unique (global) maximum at ¢y, hence

max f(t) = f(to)-

>0
Also,

b(N
2(N

2)2

K

to ,, a 2 — 2N /(N—2)
to) = f(tg) — —f (tg) = t, .
f(to) = f(to) qf(o) 2(N—1)O+ —to
We note that tg(a) and f(a,to(a)) are both increasing functions of a (and there-
fore of \).
Assume that ¢ > 0. Then A — 0, implies tg — 0 and f(t9) — 0, and therefore
for small A (3.22) is true.

Assume now that ¢ < 0. Then A — 0, implies that

2/(N—-2) |C|
t -
0 T AN(N —2)’

and therefore

b(N — 2)2 c N
fito) - WD ()
2(N —1) \bN(N - 2)
The constant in the right hand side is smaller than S if and only if (3.21)
holds. O
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4. Existence for A = 0

In this case problem (1.1) takes the form
—Au = N(N —-2)Q(z)|ul* 2u in Q,

(4.1) u>0 on Q,
? = P(z)|u|"%u on 0N.
v

It is easy to check that if P and @ are both positive, then problem (4.1) does
not have a positive solution. Indeed, assuming that a positive solution u exists,
by Green’s theorem we have

ou
P(z)dS, :/ w2248,
/89 (=) f[9) v

= / u” Y Audr — (g — 1)/ |Vul>u™1 da
Q Q

— N(N - 2)/9@(30)162*-% —(g—1) /Q |Vul|?u=dz < 0.

Therefore the inequality [, P(z)dS, < 0 is a necessary condition for the exis-
tence of a solution. In the sequel we will find some sufficient conditions.

We first establish some preliminary estimates. We recall that the first eigen-
value of

(4.2) ou

5:0 on 39,

is equal to 0 and the corresponding eigenfunctions are constant. We decompose
HY(Q) as H(2) = R@ V, where

V= {v € HY(Q): /Qv(x) dx = 0}.

The subspace V of H'(Q) is continuously embedded into L? () and L9(9%).
We introduce an equivalent norm in H*(£2)

lully = £ + /Q Vof? d,

{ —Au=pu in Q,

if u =t + v. We then have

LEMMA 4.1. Let f{m P(x)dS, < 0. Then there exists a constant n > 0 such
that for everyt € R and v € V the inequality

1/2
( / wzdsz) <],

vas <M [ o
/E)QP(x)|t—|—v(:c)| ds, < 5 /{)QP( )dS,.

implies
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This is a consequence of the continuity of the embedding of V into L%(952)
(see also [8]).

PROPOSITION 4.2. Let [, P(x)dS, < 0. Then there exist constants p > 0
and B > 0 such that Jo(u) > B for every u satisfying ||u|lv = p.

PRrROOF. Let n > 0 be the constant from Lemma 4.1. We distinguish two
cases:
(i) [IVoll2 < nlt|, and
(i) [Voll2 > nlt].
(i) If |[Voll2 < nlt] and ||[Vo|]3 + 2 = p?, then t* > p?/(1 +n?). It follows
from Lemma 4.1 that

/ P@)|t +v(z)|?dS: < —t|%a,
a0

with o = —(1/2) [,, P(x) dS, > 0. Using this and the Sobolev inequality in V'
we estimate Jy from below

2]

* * t * o q qa
Tow) 2 =C(IVellF” + [17) + = -a > =Cip™ + i P

>
qg(1+n?)2/2 = 2q(1+n?)7/2’
for p > 0 sufficiently small, say p < pg and some constants C' > 0 and C; > 0.
In case (ii) we have |Jully < ||[Vov|2(1+1/9%)'/2. By the Sobolev inequalities
we get

2* /2

« . 1 .
[ @l o < ol < Cz<1 n n) IVl
and

1 ‘Z/2
’/ P(z)lul?dS,| < 03(1 - 2) Vol
a0 n
where Cy > 0 and C5 > 0 are constants. Thus

1 9 1 2%/2 o 1 q/2
Bz [[Wolde-ca(1+ ) vl - caf14 ) 1wl
Taking ||Vv||2 < p sufficiently small, we derive from the above inequality that
1
Jo(u) > EHVUH%-

Finally, we observe that if |lul|y = p, then p < ||Vol|2(1 4+ 5?)*/? /5. Therefore

2 2
To(u) > e

T A0+ n?)
We choose
6= mi plo n*p?
= min
2q(1+n2)/2 A1 +n2) )
and the result follows. 0

We are now in position to prove the analogue of Theorem 2.4.
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THEOREM 4.3. Let [y, P(x)dS, <0. If

co = ug}aojo(u) < Soo,

then cq is achieved and problem (4.1) has a solution.
PRrROOF. The proof is quite similar to the proof of Theorem 2.4 except for
Step 1 which we present in detail.

The positivity of ¢y is a consequence of Proposition 4.2 since it follows easily
that max;>o Jo(tu) > 3, and therefore

OB P g e ot 2

Let {un, } be a minimizing sequence for ¢y. Working as in the derivation of (2.19)
we get that (as m — o)

s Vil et S | Qlunl? de < e+ 1) fum i -+ 1)
SN =) /s Uy |” dx SIN= 1) U, r<cy+o Upn || 1 + 0(1),

for A =0, and therefore

(4.3) / \Vy,|?de < C + o(1) |[uml g,
Q

for some constant C' > 0. Also, by Young’s inequality,

2 . 2% — 2

/ufn dx S—*/ [t |* d + — Q]
Q 2" Jo 2
2 / o 2% — 2
<— | Q@)|um|® dz+ Ql,

S =0 ], Qe ]
and therefore
(4.4) / up, dx < C + o(1) [[um|| -

Q

Inequalities (4.3) and (4.4) yield the boundedness of {u,,} in H'(£2). The rest
of the proof is quite similar to the proof of Theorem 2.4 and is omitted. O

We finally state the following existence result.

THEOREM 4.4. Let [y, P(x)dS, <O0.

(a) Suppose that (3.1) holds and let C(xo) = min,cgn C(z). We assume that
both functions Q@ and P are differentiable at the point o and we denote
by 0Q(x0)/0v the outward normal derivative and by H(xzg) the mean
curvature of OQ at xo. Then problem (4.1) has a solution, provided that:
(i) in case N =3, H(zg) >0,

(ii) in case N > 4, H(xg) > 0, 0Q(x0)/0v < 0, H(x9)—0Q(x0)/0v > 0.
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(b) Suppose that (3.20) holds and moreover

| foq Pla) dS,NQY 2/
(J, Q) da)N-1

Then problem (4.1) has a solution.

< 2(N —1)NN3(N — 2)(N=2)/2gN/2,

PrOOF. The proof of part (a) is the same as the proof of Theorem 3.1 (the

positivity of A played no role there). Part (b) is an immediate consequence of

Theorems 3.3 and 4.3. g
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