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SPECTRAL SEQUENCES
AND DETAILED CONNECTION MATRICES

Piotr Bart lomiejczyk

Abstract. We introduce detailed connection matrices. We prove that the
spectral sequence can be reconstructed from a detailed connection matrix

in the category of filtered differential vector spaces.

1. Introduction

Both spectral sequences and connection matrices are a generalization of exact
sequences. They express the relationship between certain homology or cohomol-
ogy groups. The idea of the connection matrix was due to Charles Conley. In
[7]–[9], [12] the connection matrix theory was developed for both continuous
and discrete dynamical systems. From some point of view, connection matrices
can be seen as algebraic representations of the dynamical system. In this paper
we introduce detailed connection matrices for filtered differential vector spaces.
A filtered differential vector space is a finite increasing filtration of a given vector
space together with an endomorphism d such that d2 = 0 and d preserves the
filtration. Roughly speaking, a detailed connection matrix is a bigraded sub-
space of the filtered differential vector space which provides information on some
homology groups associated with the filtered differential vector space. It is well
known that similar information is contained in spectral sequences. Therefore,
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the main goal of our paper is to establish the clear and purely algebraic relation
between detailed connection matrices and spectral sequences. More precisely,
we prove that for a given filtered differential vector space there exist a detailed
connection matrix that fully reconstructs its spectral sequence.

The organization of the paper is as follows. Section 2 provides a brief expo-
sition of the theory of spectral sequences (see [14] for more details). In Section 3
we introduce detailed connection matrices for filtered differential vector spaces.
Section 3 contains also our main result concerning the relation between spectral
sequences and detailed connection matrices. This result is proved in Section 4.
Section 5 presents a graphic and intuitive approach to detailed connection ma-
trices, especially to the proof of our main theorem. Finally, Section 6 contains
a simple example illustrating possible applications of the theory to dynamical
systems. For more references to the material presented here, see [1]–[5] and [13].

2. Spectral sequences

It is natural to give the definition of spectral sequences in the category of
modules or abelian groups. But since our aim is to compare spectral sequences to
detailed connection matrices defined in the category of vector spaces, we restrict
ourselves to the case of vector spaces.

Recall that a filtered vector space is a vector space A equipped with a finite
increasing filtration, that is, a sequence {Ap}n

0 of subspaces of A such that

0 = A0 ⊂ A1 ⊂ . . . ⊂ An = A.

We will use the following convenient notation

Ap = A for p ≥ n,

Ap = 0 for p ≤ 0.

Similarly, a (bi)graded vector space is, by definition, a vector space A that
has a direct sum decomposition

A =
n⊕

p=1

Ap

(
A =

n⊕
p,q=1

Ap,q

)
.

The sequences {Ap}n
1 and {Ap,q}n

1 are called a grading and bigrading, re-
spectively. Moreover, a grading {Ap}n

1 of A is called a splitting for the filtration
{Ap}n

0 of A if

Ap =
p⊕

k=1

Ak

for any 1 ≤ p ≤ n. Of course, the splitting is not unique.
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Definition 2.1. A filtered differential vector space (f-d space for short) is
a filtered vector space A together with an endomorphism d such that d2 = 0 and
d preserves the filtration, i.e. dAp ⊂ Ap.

Observe that we have two natural finite filtrations associated with the filtered
differential vector space. Namely,

0 = A0 ⊂ A1 ⊂ . . . ⊂ An = A,

0 = dA0 ⊂ dA1 ⊂ . . . ⊂ dA ⊂ d−10 ⊂ d−1A1 ⊂ . . . ⊂ d−1An = A.

If {Ap}n
1 is a splitting of the f-d space, then the condition that d is filtration

preserving is equivalent to the fact that the components of the differential d in
the direct sum decomposition form a triangular matrix.

A homomorphism of f-d spaces is any homomorphism of vector spaces h:A →
Â such that d̂h = hd and h preserves the filtration, i.e. hAp ⊂ Âp. It is easy
to see that f-d spaces and their homomorphisms form a category, which will be
denoted by FDV. Of course, if h:A → Â is a homomorphism of f-d spaces, then
h induces homology homomorphisms

h:H (Ap/Aq) → H(Âp/Âq)

for any p ≤ q. Furthermore, it follows from the five lemma that if h:H(A) →
H(Â) is an isomorphism, then so are all h:H(Ap/Aq) → H(Âp/Âq).

Now we are ready to define spectral sequences of f-d spaces. We introduce
the following notation. Let

Zr
p := Ap ∩ d−1Ap−r, Br

p := Ap ∩ dAp+r

for any r ∈ Z+ and p ∈ Z. Since, as is easy to see, Zr−1
p−1 ⊂ Zr

p and Br−1
p ⊂ Zr

p ,
the quotient vector space

Er
p :=

Zr
p

Zr−1
p−1 + Br−1

p

is well defined. Moreover, since the differential d induces homomorphisms

Zr
p → Zr

p−r, Zr−1
p−1 + Br−1

p → Zr−1
p−r−1 + Br−1

p−r ,

it also induces the homomorphism of quotient vector spaces, which we will denote
by dr

p:
dr

p:E
r
p → Er

p−r.

Observe that dr
p([z]) = [dz], where [ · ] denotes the respective equivalence class.

From this we obtain dr
p−rd

r
p[z] = [ddz] = 0 and so dr

p−rd
r
p = 0. For a fixed r

homomorphisms dr
p induce the homomorphism

dr:
⊕

p

Er
p →

⊕
p

Er
p .
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Hence dr is a differential of a vector space Er =
⊕

p Er
p . A sequence of vector

spaces and differentials {Er, dr}, r = 1, 2, . . . , is called the spectral sequence of
the f-d space A. It is easily seen that if the filtration of the f-d space A has
length n, then the spectral sequence stabilizes at the nth term, i.e. Er ' Er+1

for r ≥ n. If h:A → Â is a homomorphism of f-d spaces and Ẑr
p , B̂r

p, Êr
p , denote

the respective vector spaces determined by Â, then h induces homomorphisms
Zr

p → Ẑr
p , Br

p → B̂r
p. Consequently, there exists an induced homomorphism

hr
p:E

r
p → Êr

p

given by hr
p[z] = [hz]. Finally, homomorphisms hr

p define a homomorphism of
vector spaces

hr:Er → Êr

such that d̂rhr = hrdr. It is easily seen that the above construction actually
defines a functor from the category FDV to the category of vector spaces V
which maps an f-d space A to the vector space Er and sends a homomorphism
of f-d spaces h:A → Â to the homomorphism of vector spaces hr:Er → Êr.

3. Detailed connection matrices

It is worth pointing out that we may define the connection matrix for the
filtered differential vector space as an object in various categories. The simplest
definition describes the connection matrix as an f-d space (or its splitting) on
which the differential lowers the filtration. However, to reconstruct fully the
spectral sequence we need a little more complicated version of the connection
matrix, which we call the detailed connection matrix. Below we give all the
mentioned definitions.

Let us recall that a subspace C of the filtered differential vector space A is
called a simple connection matrix for A if

(1) dCp ⊂ Cp−1,
(2) the map i:H(C) → H(A) induced by the inclusion C ⊂ A is an isomor-

phism.

Moreover, any graded vector space constructed as a splitting {Cp}n
1 of the

simple connection matrix C will be called a classical connection matrix. It is
immediate that if C is a classical connection matrix then the components of
the differential d restricted to C form a strictly triangular matrix. Furthermore,
from (2) and the five-lemma, we see at once that if C is a simple connection
matrix for A, then i:H(Cp/Cq) → H(Ap/Aq) are isomorphisms for any q ≤ p.
In particular, if {Cp}n

1 is a classical connection matrix for A, then

H(Ap/Ap−1) = H(Cp/Cp−1) = Cp/Cp−1 = Cp.

It is high time to introduce the crucial definition of this paper.
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Definition 3.1. A bigraded vector space {Cp,q}n
1 is called a detailed con-

nection matrix for the f-d space A if:

(a) Cp,q ⊂ Ap for 1 ≤ p, q ≤ n,
(b) dCp+1,q = 0 for p + q ≤ n and dCp+1,q ⊂ Cp+q−n,n−q+1 for p + q > n,
(c) the map on homology i:H(C) → H(A) induced by the inclusion C =⊕n

p,q=1 Cp,q ⊂ A is an isomorphism.

Of course, a detailed connection matrix may be viewed as a more detailed (i.e.
containing more information) version of a classical connection matrix. Observe
that, using our standard notation Cp =

⊕n
q=1 Cp,q and Cp =

⊕p
k=1 Ck, we

obtain immediately that if {Cp,q}n
1 is a detailed connection matrix for A, then

(1) the inclusion C ⊂ A preserves the filtration, i.e. Cp ⊂ Ap,
(2) {Cp}n

0 ({Cp}n
1 ) is a simple (classical) connection matrix for A; in par-

ticular,

H(Ap/Ap−1) = Cp/Cp−1 = Cp =
n⊕

q=1

Cp,q.

Notation. Let us introduce the notation for some “blocks” in the detailed
connection matrix built from the “bricks” Cp,q. Set

min = min{r, n + 1− p},
max = max{n + 1− p, n + 1− r} = n + 1−min{p, r}

for every p, r = 1, . . . , n. Here and subsequently, we will use the symbol Cr
p to

denote the direct sum

(3.1)
max⊕

q=min

Cp,q.

Let A be a fixed filtered differential vector space.

Definition 3.2. We say that a detailed connection matrix {Cp,q}n
1 for the

f-d space A fully reconstructs its spectral sequence E if there exist a collection
of isomorphisms

{Φr
p:C

r
p → Er

p}n
p,r=1

such that the following diagram commutes

(3.2) Cr
p

d //

Φr
p

��

Cr
p−r

Φr
p−r

��

Er
p

dr
p

// Er
p−r

for every p, r = 1, . . . , n.
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Let us formulate the main result of this paper.

Theorem 3.3 (Main Theorem). There exists a detailed connection matrix
for the filtered differential vector space that fully reconstructs the spectral sequence
of this f-d space.

The significance of the above result comes from the fact that it guarantees
that all information contained in the spectral sequence may be recovered and
studied using some detailed connection matrix.

4. Proof of the main result

The proof will consist of two parts. In the first part we describe the con-
struction of a bigraded vector space {Cp,q}n

1 and additional graded vector spaces
{Bp}n

1 , {Ap}n
1 satisfying conditions:

(1) Ap = Ap−1 ⊕Ap,
(2) Ap = Bp ⊕ Cp ⊕ dBp, where Cp =

⊕n
q=1 Cp,q,

(3) Bp ∩ d−10 = 0,
(4) dCp,q ⊂ Cp+q−n−1,n−q+1 assuming that Cp,q = 0 for p ≤ 0.

It follows easily that the conditions (1)–(4) guarantee that a bigraded vector
space {Cp,q}n

1 is a detailed connection matrix for the f-d space A. Namely,
the conditions (a) and (b) in Definition 3.1 follow immediately from the above
conditions (1), (2) and (4). Moreover, since A = B⊕C⊕dB, where B =

⊕n
1 Bp

and C =
⊕n

1 Cp, and

H(A) =
ker d

Im d
=

(ker d|C)⊕ dB

(Im d|C)⊕ dB
=

ker d|C
Im d|C

= H(C),

we see that the inclusion C ⊂ A induces the isomorphism i:H(C) → H(A) on
homology, which is precisely the condition (c) of Definition 3.1.

In the second part we prove that applying the formula (3.1) to the bigraded
vector space constructed in the first part guarantees commutativity of the dia-
gram 3.2. It may be worth pointing out that in the second part we will refer not
only to the above conditions (1)–(4), but also to the details of the construction
from the first part.

Part I. For clarity, the construction of subspaces Cp,q, Bp and Ap will be
divided into three steps.

Step 1. First for p = 1, . . . , n we choose Bp to be any complement to Ap ∩
d−1Ap−1 in Ap, i.e.

Ap = Bp ⊕ (Ap ∩ d−1Ap−1).

By the definition of Bp, we obtain immediately that

• Bp ∩ d−10 = 0,
• dBp ⊂ dAp ∩ d−10 ⊂ Ap ∩ d−1Ap−1,



Spectral Sequences 193

• Ap−1 ∩ dBp = 0.

Step 2. To simplify the description of the procedure for choosing a subspace
Cp,q we introduce unified notation for elements of the filtration

dA0 ⊂ dA1 ⊂ . . . ⊂ dAn ⊂ d−1A0 ⊂ . . . ⊂ d−1An.

Namely, let

Dm =

{
dAm for m ≤ n,

d−1Am−n−1 for m > n.

Then we choose Cp,q to be a complement to

(Ap−1 ∩Dp+q) + (Ap ∩Dp+q−1)

in Ap ∩Dp+q satisfying

(4.1) dCp,q ⊂ Cp+q−n−1,n−q+1.

The difficulty in the construction of such Cp,q depends on whether Cp,q is
contained in the kernel of d or not. It is clear that the construction of Cp,q in
the case when p + q ≤ n + 1 poses no problem, because in this case Dp+q ⊂
Dn+1 = d−10 and, in consequence, the condition (4.1) is trivially satisfied by
any complement.

Thus it remains to check the possibility of the choice of Cp,q satisfying (4.1)
in the case when p + q > n + 1. We start with the observation that in this case
Dp+q and Dp+q−1 are preimages. More precisely,

Dp+q = d−1Ap+q−n−1,

Dp+q−1 = d−1Ap+q−n−2.

Furthermore, we observe that since the sum of indices of Cp+q−n−1,n−q+1 is equal
to p and p ≤ n + 1, the subspace Cp+q−n−1,n−q+1 has been chosen yet as any
complement of

(Ap+q−n−2 ∩ dAp) + (Ap+q−n−1 ∩ dAp−1)

in Ap+q−n−1∩dAp. The existence of a subspace Cp,q satisfying the condition (4.1)
follows immediately from the equality

Ap ∩ d−1Ap+q−n−1 = (Ap−1 ∩ d−1Ap+q−n−1)

+ (Ap ∩ d−1Ap+q−n−2) + (Ap ∩ d−1Cp+q−n−1,n−q+1)

holding for p + q > n + 1.
It is obvious that right-hand side is a subset of the left-hand side. The reverse

inclusion may be concluded as follows. Let

a ∈ Ap ∩ d−1Ap+q−n−1.
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Then da ∈ Ap+q−n−1 ∩ dAp. By the previous stage of the construction (in the
kernel)

Ap+q−n−1 ∩ dAp =[(
Ap+q−n−2 ∩ dAp

)
+

(
Ap+q−n−1 ∩ dAp−1

)]
⊕ Cp+q−n−1,n−q+1,

and so there are x ∈ Ap ∩ d−1Ap+q−n−2, y ∈ Ap−1 ∩ d−1Ap+q−n−1 and c ∈
Cp+q−n−1,n−q+1 such that

da = dx + dy + c

or equivalently

d(a− x− y) = c.

From the last equality

a− x− y ∈ Ap ∩ d−1Cp+q−n−1,n−q+1.

We thus get

a = x + y + (a− x− y)

with x, y and a − x − y in desired subspaces, which completes the proof of the
last inclusion.

Step 3. Finally, we define

Ap = Bp ⊕ Cp ⊕ dBp.

We see at once that Ap, Bp and Cp,q satisfy the conditions (1)–(4). Consequently,
{Cp,q}n

p,q=1 is a detailed connection matrix for the f-d space A.

Part II. By the definition of the spectral sequence

Er
p :=

Zr
p

Zr−1
p−1 + Br−1

p

.

However, from the construction of a bigraded vector space {Cp,q}n
1 in Part I

follows that the space Cr
p given by (3.1) is a complement of

(Ap−1 ∩ d−1Ap+max−1−n−1) + (Ap ∩ d−1Ap+min−1)

in Ap ∩ d−1Ap+max−n−1. But by the definition of max

d−1Ap+max−1−n−1 = d−1Amax{0,p−r} = d−1Ap−r,

since Ak = 0 for k ≤ 0. Similarly, by the definition of min

dAp+min−1 = dAmin{p−r−1,n} = dAp+r−1,

since Ak = A for k ≥ n.
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Therefore Cr
p is a complement of Zr−1

p−1 + Br−1
p in Zr

p . Finally, if we recall
how dr

p is defined and how d acts on direct summands Cp,q, we obtain that the
isomorphism Φr

p:C
r
p → Er

p given by

Φr
p(v) := v + (Zr−1

p−1 + Br−1
p )

makes the diagram 3.2 commute. �

5. The Zeeman diagram ∆

The detailed connection matrices and spectral sequences may be represented
geometrically in the plane using the so-called Zeeman diagram ∆ (see Figure 1).
This diagram was defined by E. C. Zeeman to study the information contained
in filtered differential groups (see [14] for more details).

B3

B2

B1

A

d−1A2

d−1A1

d−10

dA

dA1

dB1

C1,1

C1,2

C1,3 C2,2

C2,1

dB2

dB3

C3,1

dA2

0

C2,3

C3,3

A1 A2 A0

6




C3,2

	
�

H(A)
?

6
-

Figure 1. The detailed connection matrix for A

The Zeeman diagram ∆ is the union of a collection of unit squares in the
plane. The number of these squares depends only on the length of the filtration.
The union of any subcollection of squares in ∆ is called a region of ∆. For
example, the region to the left of the vertical line labeled Ai represents the
vector subspace Ai in the filtration. Similarly, the regions below the horizontal
lines represent the vector spaces dAi or d−1Ai. Since the differential d is filtration
preserving, some squares in the diagram represent trivial spaces. In the original
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Zeeman diagram the regions represent the quotients of some groups associated
with the filtered differential group, but in our diagram the regions represent the
components in the direct sum decompositions of some vector spaces.

Since the diagram offers a graphic and intuitive approach to detailed connec-
tion matrices and spectral sequences, we will use it to present the general idea
behind the proof of Main Theorem.

Let A be an f-d space with the filtration of the length 3, i.e.

0 = A0 ⊂ A1 ⊂ A2 ⊂ A3 = A.

We have restricted ourselves to the case n = 3 to make all our diagrams easy
to analyze. It is clear that the Zeeman diagram ∆ of the detailed connection
matrix for A constructed in the proof of Main Theorem is as in Figure 1. It is
worth pointing out that our picture shows in fact not only the detailed connec-
tion matrix C =

⊕3
p,q=1 Cp,q. but much more, namely the full decomposition of

the filtered differential vector space in the notation from the proof of Main Theo-
rem. Observe that the arrows in the picture represent the only possibly nonzero
components of the differential d, i.e. maps

d2,3:C2,3 → C1,1, d3,3:C3,3 → C2,1, d3,2:C3,2 → C1,2.

The important point to note here is the form of the relation between the relative
homology represented as the columns Cp =

⊕3
q=1 Cp,q and the total homology

H(A) represented as the row just below the x-axis.
According to the proof of Main Theorem, the above detailed connection ma-

trix allows us to reconstruct the entire spectral sequence of the f-d space A.
It is easily seen that in the examined case the spectral sequence stabilizes at
the third term, i.e. it has the form {Er, dr}3

r=1 (see Figure 2). Denoting the
isomorphisms Φr

p from Main Theorem by ', we obtain the following correspon-
dence between the first term of the spectral sequence and the components of the
detailed connection matrix

E1 =
3⊕

p=1

E1
p , E1

p '
3⊕

q=1

Cp,q.

Moreover, the first differential d1 of the spectral sequence is fully described
by the action of the components d2,3 and d3,3 (compare Figures 1 and 2). In the
same manner we can see that

E2 =
3⊕

p=1

E2
p , E2

1 '
3⊕

q=2

C1,q, E2
2 ' C2,2, E2

3 '
2⊕

q=1

C3,q.
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- - -- - -

6 6 6

E1, d1 E2, d2 E3, d3





 	

Figure 2. The spectral sequence E = {Er, dr}3
1 for A

Similarly, the second differential d2 may be identified with the component d3,2.
Finally,

E3 =
3⊕

p=1

E3
p , E3

p ' Cp,4−p.

Since the length of the filtration is equal to 3, d3 = 0.

6. Morse decompositions

Both spectral sequences and detailed connection matrices may be used as
algebraic tools for studying the dynamics of Morse decompositions. To avoid
technicalities we restrict ourselves to flows on compact metric spaces. Let X be
such a space.

Recall that a collection {Mi}n
1 of mutually disjoint compact invariant subsets

of X is called a Morse decomposition if for every x ∈ X\
⋃n

i=1 Mi there are indices
i < j such that ω+(x) ⊂ Mi and ω−(x) ⊂ Mj . The sets Mi are called Morse
sets. Moreover, generalized Morse sets for i ≤ j are defined as

Mji :=
{

x ∈ X

∣∣∣∣ ω+(x) ∪ ω−(x) ⊂
j⋃

k=i

Mk

}
.

Spectral sequences and detailed connection matrices may be naturally related
to a filtration of index pairs associated with the Morse decomposition. Recall
that a filtration of compact sets {N i}n

0 is called an index filtration if

(1) ∅ = N0 ⊂ N1 ⊂ . . . ⊂ Nn = X,
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s
6 6

? ?

�

�

6 ?

Figure 1. The dynamics of a flow on X
Figure 3. The dynamics of a flow on X

(2) (N j , N i−1) is an index pair for Mji.

Such filtrations, even regular, exist (see [11] for more details). Instead of
giving the precise definition of regularity, we just mention its basic consequence.
Namely, if the index filtration is regular, then the Conley index of each Morse
set Mji is isomorphic to the singular homology of the pair (N j , N i−1).

All we need to construct spectral sequences or detailed connection matrices
is to start with some f-d space. We show how to find such an f-d space in the
context of the Conley index theory. Let {N i}n

0 be an index filtration for the
Morse decomposition {Mi}n

1 . Let C(Nk) be the vector space of singular chains
in Nk and ik:C(Nk) → C(N) be a homomorphism induced by the inclusion
Nk ⊂ N . It is evident that a filtration

{ik(C(Nk))}n
0 ,

equipped with the boundary map on singular chains, is an f-d space. Thus,
a spectral sequence (detailed connection matrix) for the Morse decomposition
{Mi}n

1 is exactly a spectral sequence (detailed connection matrix) for the above
f-d space.

The main idea behind the concept of spectral sequences or detailed connec-
tion matrices for Morse decompositions is that their nonzero differentials provide
information on time arrow preserving sequences of connecting orbits between
different Morse sets as in the following simple example. Consider a flow on the
closed unit ball D2 in the plane with the dynamics as in Figure 3. Observe
that that the fixed point and two periodic orbits form a Morse decomposition of
X = D2 with the local Conley indices

CHk(M1) = δ0kQ + δ1kQ, CHk(M2) = 0, CHk(M3) = δ2kQ,
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6

-

�

6

6

s
s

s	
CH(X)

C
H

(M
1
)

C
H

(M
2
)

C
H

(M
3
)

6

Figure 4. The spectral sequence and detailed connection matrix for the

Morse decomposition of X

and the global Conley index of the whole space

CHk(X) = δ0kQ.

An easy comparison of the above Conley indices shows that the spectral sequence
and the detailed connection matrix for the Morse decomposition of X is as in
Figure 4. The dots in Figure 4 represent elements of some bases of the Conley
indices that agree with the direct sum decomposition given by the detailed con-
nection matrix. Observe that the nonzero differential corresponds to the time
arrow preserving sequence of connecting orbits from M3 to M1.
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