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MULTIPLICITY RESULTS
FOR SOME QUASILINEAR ELLIPTIC PROBLEMS

Francisco Odair de Paiva

João Marcos do Ó — Everaldo Souto de Medeiros

Abstract. In this paper, we study multiplicity of weak solutions for the
following class of quasilinear elliptic problems of the form

−∆pu−∆u = g(u)− λ|u|q−2u in Ω with u = 0 on ∂Ω,

where Ω is a bounded domain in Rn with smooth boundary ∂Ω, 1 < q <

2 < p ≤ n, λ is a real parameter, ∆pu = div(|∇u|p−2∇u) is the p-Laplacian
and the nonlinearity g(u) has subcritical growth. The proofs of our results

rely on some linking theorems and critical groups estimates.

1. Introduction

In this paper we look for multiple solutions of a class of quasilinear elliptic
equations of the form

(Pλ)

{
−∆pu−∆u = g(u)− λ|u|q−2u in Ω,

u = 0 on ∂Ω,
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where Ω is a bounded domain in Rn with smooth boundary ∂Ω, 1 < q < 2 <

p ≤ n, λ is a real parameter, ∆pu = div(|∇u|p−2∇u) is the p-Laplacian and the
nonlinearity g(t) enjoys the following conditions:

(g0) g ∈ C1(R), g(0) = 0;
(g1) there are constants C1 > 0 and α with p < α < p∗ such that

|g(s)| ≤ C1(1 + |s|α−1) for all s ∈ R,

where p∗ = np/(n − p) when p < n and p∗ = ∞ when p = n is the
critical Sobolev exponent, and

(g2) there are constants C2 > 0 and β > 2 such that

|g′(s)| ≤ C2(1 + |s|β) for all s ∈ R.

In what follows we will denote by λ1(p) the first eigenvalue of the following
nonlinear eigenvalue problem

(1.1)

{
−∆pu = λ(p)|u|p−2u in Ω,

u = 0 on ∂Ω,

and λk(2), k = 1, 2, . . . , the k-th eigenvalue of the laplacian with homogeneous
Dirichlet boundary condition, which corresponds to problem (1.1) with p = 2.

On problem (Pλ), our main results concern the multiplicity of weak solutions
when the nonlinearity g(t) satisfies some additional hypotheses. Our first and
second theorems treat the case when the g(t) has “p-sublinear” growth at infinity,
more precisely, we assume that

(g3) lim sup|s|→∞ pG(s)/|s|p < λ1(p), where G(t) =
∫ t

0
g(s) ds.

They are formulated as follow.

Theorem 1.1. Assume that g satisfies (g0)–(g3) and suppose that g′(0) >

λ1(2). Then there exists λ∗ > 0 such that problem (Pλ) has at least four non-
trivial weak solutions for λ ∈ (0, λ∗).

Next we consider the case when the associated functional of problem (Pλ)
has a local linking at origin. This geometric structure implies the existence of
another nontrivial weak solution.

Theorem 1.2. Assume that g satisfies (g0)–(g3). Moreover, we assume that
g′(0) ∈ (λk(2), λk+1(2)], k ≥ 2, and

(1.2) |G(s)| ≤ 1
2
λk+1(2)|s|2 +

1
p
λ1(p)|s|p for all s ∈ R.

Then there exists λ∗ > 0 such that problem (Pλ) has at least five nontrivial weak
solutions for λ ∈ (0, λ∗).
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In our next results we consider the case when G(u) has “p-superquadratic”
growth at infinity, that is, we assume the following version of the Ambrosetti–
Rabinowitz condition:

(g4) there are constants θ > p and s0 > 0 such that for |s| ≥ s0,

0 ≤ θG(s) ≤ sg(s).

In the “p-superquadratic” case our main results are formulated as follow.

Theorem 1.3. Assume that g satisfies (g0)–(g2), (g4) and g′(0) > λ1(2).
Then there exists λ∗ > 0 such that problem (Pλ) has at least two nontrivial
solutions for λ ∈ (0, λ∗).

Finally, we consider the case λ < 0. This case is similar to the concave-convex
problems studied in [2].

Theorem 1.4. Assume that g satisfies (g0)–(g2), (g4) and, in addition sup-
pose that, g′(0) < λ1(2). Then there exists λ∗ < 0 such that problem (Pλ) has
at least two positive solutions for λ ∈ (λ∗, 0).

There has been recently a good amount of work on quasilinear elliptic prob-
lems. Some of these problems come from a variety of different areas of ap-
plied mathematics and physics. For example, they can be found in the study of
non-Newtonian fluids, nonlinear elasticity and reaction-diffusions, for discussions
about problems modelled by these boundary value problems see for example [15].

The study of multiple solutions for elliptic problems has received considerable
attention in recent years. First, we would like to mention the progress involving
the following class of semilinear elliptic problems −∆u = λ|u|q−2u + g(u) in
Ω and u = 0 in ∂Ω, where 1 < q < 2. Ambrosetti at al. in [2], studied the
case g(u) = λ|u|r−2u, 2 < r < 2∗. Among others results, they proved the
existence of two positive solutions for small positive λ. Perera in [21] proved the
existence of multiple solutions when g(u) is sublinear at infinity and λ is small
and negative (see also [14] for assymptotically linear and superlinear cases).
Multiplicity results involving the p-Laplacian problems of the form −∆pu =
λ|u|s−2u + g(u) in Ω and u = 0 in ∂Ω, where 1 < s < p, has been studied in [3]
and [17], when g(u) = |u|r−2u, p < r < p∗.

Recently, critical groups computations via Morse theory for a functional like

(1.3) I(u) =
1
p

∫
Ω

|∇u|p dx +
1
2

∫
Ω

|∇u|2 dx−
∫

Ω

G(u) dx, u ∈ W 1,p
0 (Ω)

has been studied in [11], where the authors obtained a version of Shifting The-
orem in the case |g′(u)| ≤ C(1 + |u|r), with 0 ≤ r < p∗ − 2. Cingolani and
Degiovanni [10], has proved a existence result for the functional (1.3) when g(u)
has p-linear growth at infinity, that is, lim|t|→∞ g(u)/|u|p−2u = µ. In fact, they
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proved a version of the classical existence theorem by Amann and Zehnder [1]
for the semilinear problems. Benci at al. [6], [7] have studied a problem that
involves operator like in left-hand side of (Pλ), which are motivated by problems
from physics, in fact arising in the mathematical description of propagation phe-
nomena of solitary waves. Finally, we refer to [16] and [25] where the authors
proved multiple solutions for a problems involving more general class of operator
than in left hand side of (Pλ).

The rest of this paper is organized as follows. Section 2 contains preliminary
results, including a result of Sobolev versus Hölder local minimizers. Section 3
is devoted to proving ours main results.

2. Preliminary results

In this paper we make use of the following notation: C, C0, C1, C2, . . .

denote positive (possibly different) constants. For 1 ≤ p < ∞, Lp(Ω) denotes
the usual Lebesgue space with norm |u|p

.= [
∫
Ω
|u|p dx]1/p and W 1,p

0 (Ω) denotes
the Sobolev space endowed with the usual norm ‖u‖1,p = |∇u|p.

Here we search for weak solutions of problem (Pλ), that is, functions u ∈
W 1,p

0 (Ω) such that∫
Ω

|∇u|p−2∇u∇ϕ dx +
∫

Ω

∇u∇ϕ dx + λ

∫
Ω

|u|q−2uϕ dx−
∫

Ω

g(u)ϕ dx = 0,

for all ϕ ∈ W 1,p
0 (Ω). It is well known that under conditions (g0)–(g1) the asso-

ciated functional of (Pλ), Iλ:W 1,p
0 (Ω) → R, given by

Iλ(u) =
1
p

∫
Ω

|∇u|p dx +
1
2

∫
Ω

|∇u|2 dx +
λ

q

∫
Ω

|u|q dx−
∫

Ω

G(u) dx,

is well defined, continuously differentiable on W 1,p
0 (Ω), and its critical points

correspond to weak solutions of (Pλ) and conversely (see [12], [23]).

Remark 2.1. Notice that condition (g3) implies that the functional Iλ is
coercive and therefore satisfies the Palais–Smale condition (see Lemma 3.1 in
Section 3). On the other hand, under the hypothesis (g4), the Palais–Smale
condition for the functional Iλ can be proved by standard arguments.

Also, it is well known that there exists a smallest positive eigenvalue λ1(p),
and an associated function ϕ1 > 0 in Ω that solves (1.1), and that λ1(p) is
a simple eigenvalue (see [5]). We recall that we have the following variational
characterization

λ1(p) = inf
{ ∫

Ω

|∇u|p dx : u ∈ W 1,p
0 (Ω),

∫
Ω

|u|p dx = 1
}

.

Next we show that the local minimum of the associated functional Iλ in C1-
topology is still a local minimum in W 1,p

0 (Ω). This result was proved by Brezis
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and Nirenberg for p = 2 (see [8]) and for the quasilinear case we referee to [18],
[17], we will include here a proof for the sake of completeness.

Lemma 2.2. Assume that g satisfies (g1) and u0 ∈ W 1,p
0 (Ω)∩C1

0(Ω) is a local
minimizer of Iλ in the C1-topology, that is, there exits r > 0 such that

(2.1) Iλ(u0) ≤ Iλ(u0 + v), for all v ∈ C1
0(Ω) with ‖v‖C1

0 (Ω) ≤ r.

Then u0 is a local minimizer of Iλ in W 1,p
0 (Ω), that is, there exists α > 0 such

that

Iλ(u0) ≤ Iλ(u0 + v), for all v ∈ W 1,p
0 (Ω) with ‖v‖1,p ≤ α.

Proof. If u0 is a local minimizer of Iλ in the C1-topology, we see that it is
a weak solution of (Pλ). By regularity results in Tolksdorf [24], u0 ∈ C1,α(Ω)
(0 < α < 1). Now, suppose that the conclusion does not holds. Then for all
ε > 0 there exists vε ∈ Bε such that

(2.2) Iλ(u0 + vε) < Iλ(u0),

where Bε := {v ∈ W 1,p
0 (Ω) : ‖v‖1,p ≤ ε}. It is easy to see that Iλ is lower semi-

continuous on the convex set Bε. Notice that Bε is weakly sequentially compact
and weakly closed in W 1,p

0 (Ω). By standard lower semicontinuous argument, we
know that Iλ is bounded from below on Bε and there exists vε ∈ Bε such that

Iλ(u0 + vε) = inf
v∈Bε

Iλ(u0 + v).

We shall prove that vε → 0 in C1 as ε → 0, which is a contradiction with (2.1) and
(2.2). The corresponding Euler equation for vε involves a Lagrange multiplier
µε ≤ 0, namely, vε satisfies

I ′λ(u0 + vε)(h) = µε

∫
Ω

|∇vε|p−2∇vε∇h for all h ∈ W 1,p
0 (Ω),

that is,

−∆p(u0 + vε)−∆(u0 + vε)− g(u0 + vε)− |u0 + vε|q−2(u0 + vε) = −µε∆pvε.

Thus,

−∆pu0 −∆u0 − [∆p(u0 + vε)−∆pu0 + ∆vε] + µε∆pvε

= g(u0 + vε) + |u0 + vε|q−2(u0 + vε).

This implies that

(2.3) − [∆p(u0 + vε)−∆pu0] + µε∆pvε

= g(u0 + vε)− g(u0) + |u0 + vε|q−2(u0 + vε)− |u0|q−2u0.
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Notice that we can write (2.3) as

−div(A(vε)) := − div(|∇(u0 + vε)|p−2∇(u0 + vε)

− |∇u0|p−2∇u0 +∇vε − µε|∇vε|p−2∇vε)

= g(u0 + vε)− g(u0) + |u0 + vε|q−2(u0 + vε)− |u0|q−2u0

= g′(ξ) + |u0 + vε|q−2(u0 + vε)− |u0|q−2u0

where ξ ∈ (min{u0, u0 + vε},max{u0, u0 + vε}). We know (see Tolksdorf [24])
that for p > 2 there exits ρ > 0 independent of u0 and vε such that

[|∇(u0 + vε)|p−2∇(u0 + vε)− |∇u0|p−2∇u0] ≥ ρ|∇vε|p.

Thus,

A(vε).∇vε ≥ (ρ− µε)|∇vε|p + |∇vε|2 ≥ C|∇vε|p,

since µε ≤ 0. Using the growth condition (g2) we have

|g′(ξ)| ≤ C1 + C2(|u0|β−1 + |vε|β−1 + |u0|q−1 + |vε|q−1).

Since β − 1 > 0 and q − 1 > 0, by regularity results obtained in [19], we have
that for some 0 < α < 1, there exists C > 0 independent of ε such that

‖vε‖Cα(Ω) ≤ ‖vε‖1,p ≤ C.

By the regularity results in [20], we also have that

‖vε‖C1,α
0 (Ω) ≤ C1.

This implies that vε → 0 in C1 as ε → 0. Since ‖vε‖1,p → 0, we have v0 ≡ 0.
This completes the proof. �

Now, for u ∈ W 1,p
0 (Ω) we define

I±λ (u) =
1
p

∫
Ω

|∇u|p dx +
1
2

∫
Ω

|∇u|2 dx +
λ

q

∫
Ω

|u±|q dx−
∫

Ω

G(u±) dx,

where u+ = max{u, 0} and u− = min{u, 0}. Since g(0) = 0, I±λ ∈ C1 and the
critical points u± of I±λ satisfy ±u± ≥ 0, we conclude that u± are also critical
points of Iλ. In fact, (I±λ )′(u±)[(u±)∓] =

∫
Ω
|∇(u±)∓|pdx+

∫
Ω
|∇(u±)∓|2dx = 0.

Lemma 2.3. The origin u ≡ 0 is a local minimizer for Iλ and I±λ , for any
λ > 0.

Proof. By Lemma 2.2, is sufficient to show that u = 0 is a local minimizer
of Iλ in the C1 topology. First we observe that from (g1) and the regularity of
g, we have

G(s) ≤ C|s|2 + C|s|α for s ∈ R,
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for some positive constant C. Then, for u ∈ C1
0 (Ω) we have

Iλ(u) =
1
p

∫
Ω

|∇u|p dx +
1
2

∫
Ω

|∇u|2 dx +
λ

q

∫
Ω

|u|q dx−
∫

Ω

G(u) dx

≥ λ

q

∫
Ω

|u|q dx−
∫

Ω

G(u) dx

≥ λ

q

∫
Ω

|u|q dx− C

∫
Ω

|u|2 dx− C

∫
Ω

|u|α dx

≥
(

λ

q
− C|u|2−q

C0 − C|u|α−q
C0

) ∫
Ω

|u|q dx ≥ 0,

if C|u|2−q
C1
0

+ C|u|α−q
C1
0

≤ λ
q . The same argument works for I±λ . �

We do not include here the proof of next lemma because it follows using the
same ideas of [21, Lemma 2.1].

Lemma 2.4. If u± is a local minimizer for I±λ , then it is a local minimizer
of Iλ, for any λ > 0.

3. Proofs of main theorems

Proof of Theorem 1.1. We already know that the origin is a local mini-
mum of the functional I±λ . In the next two lemmas we prove that I±λ is coercive
and minu∈W 1

0 (Ω) I±λ (u) < 0. Thus, I±λ has a global minimum u±0 with negative
energy. Finally, by applying the Mountain Pass Theorem, we get critical points
u±1 with positive energy.

Lemma 3.1. The functional I±λ is coercive, lower bounded and satisfies the
(PS) condition.

Proof. By (g3) there exists ε > 0, small enough, and a constant C such
that

pG(s) ≤ (λ1(p)− ε)|s|p + C, for all s ∈ R.

Then

I±λ (u) ≥ 1
p

∫
Ω

|∇u|p dx−
∫

Ω

G(u) dx

≥ 1
p

∫
Ω

|∇u|p dx− (λ1(p)− ε)
p

∫
Ω

|u|p dx− C

≥ 1
p

(
1− (λ1(p)− ε)

λ1(p)

)
||u||p1,p − C.

Thus I±λ (u) →∞ as ||u||1,p →∞. �
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Lemma 3.2. Let ϕ1 be the first eigenfunction associated to λ1(2). Then there
exists t0 > 0 such that I±λ (±t0ϕ1) < 0, for all λ in a limited set.

Proof. Since g(0) = 0, g′(0) > λ1(2) and (g1) holds, for each ε > 0, there
exists C > 0 such that

G(s) ≥ (λ1(2) + ε)
2

s2 − C|s|α, for all s ∈ R.

Then, for t > 0 we obtain

I±λ (±tϕ1) ≤
tp

p

∫
Ω

|∇ϕ1|p dx +
t2

2

∫
Ω

|∇ϕ1|2 dx

+
tqλ

q

∫
Ω

|ϕ1|q dx− (λ1(2) + ε)t2

2

∫
Ω

|ϕ1|2 dx + Ctα
∫

Ω

|ϕ1|α dx

=
t2

2

(
1− (λ1(2) + ε)

λ1(2)

)
||ϕ1||21,2 +

tp

p
||ϕ1||p1,p +

tqλ

q
|ϕ1|qq + Ctα|ϕ1|αα.

Since α > p > 2 we can conclude the lemma. �

End the proof of Theorem 1.1. By the Mountain Pass Theorem, I±λ
has a nontrivial critical point u±1 with I±λ (u±1 ) > 0. Since I±λ is bounded bellow,
it also has a global minimizer u±0 with I±λ (u±0 ) < 0. �

Proof of Theorem 1.2. In what follows we assume that the reader is
somewhat familiar with Morse theory (see [9] for necessary prerequisites). In
particular, we recall that the critical groups of a real C1 functional Φ at an
isolated critical point u0 with Φ(u0) = c, are defined by

Cq(Φ, u0) = Hq(Φc ∩ U, (Φc ∩ U) \ {u0}) for q ∈ N.

Here Φc := {u : Φ(u) ≤ c}, U is a neighbourhood of u0 such that u0 is the only
critical point of Φ in Φc∩U , and H∗( · , · ) denote the singular relative homology
groups with coefficients in Z.

By the proof of Theorem 1.1, Iλ has four critical points u±1 , with Iλ(u±1 ) > 0,
and u±0 , with Iλ(u±0 ) < 0. By Lemma 2.4, we have that u±0 are local minimum
of Iλ since they are global minimum of I±λ . Then

Cj(Iλ, u±0 ) = δj0Z.

Now, in order to prove the existence of another nontrivial solution we will apply
the following abstract theorem due to Perera (see [22, Theorem 3.1]):

Theorem 3.3. Let X = X1⊕X2 be a Banach space with 0 < k = dim X1 <

∞. Suppose that Φ ∈ C1(X, R), has a finite number of critical points and satisfies
the Palais–Smale compactness condition (PS). Moreover, assume the following
conditions:

(a) there exists ρ>0 such that supS1
ρ
Φ<0, where S1

ρ ={u∈X1 : ||u||=ρ},
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(b) Φ ≥ 0 in X2,
(c) there is e ∈ X1 \ {0} such that Φ is bounded from below on {se + x2 :

s ≥ 0, x2 ∈ X2}.

Then Φ has a critical point u0 with Φ(u0) < 0 and Ck−1(Φ, u0) 6= 0.

First we consider Hk :=
⊕k

j=1 ker(−∆ − λj(2)I) and Wk = W 1,p
0 (Ω) ∩H⊥

k ,
where H⊥

k denotes the orthogonal subspace of Hk in H1
0 (Ω). Thus we have

W 1,p
0 (Ω) = Hk ⊕Wk,

||u||22 ≤ λk(2)|u|22, for all u ∈ Hk,

||u||22 ≥ λk+1(2)|u|22, for all u ∈ Wk.

The next lemma is a verification of the hypotheses of Theorem 3.3.

Lemma 3.4. The functional Iλ enjoys the following properties:

(a) there exist λ∗ > 0 and ρ > 0 such that supSk
ρ

Iλ < 0, for 0 < λ < λ∗,
where Sk

ρ = {u ∈ Hk ; ||u||1,p = ρ};
(b) Iλ ≥ 0 in Wk;
(c) Iλ is bounded from below.

Proof. (a) Since g(0) = 0, by (g1) given ε > 0 there exists C > 0 such that

G(s) ≥ (g′(0)− ε)
2

s2 − C|s|α, for all s ∈ R.

Since the norm are equivalent in Hk, for each u ∈ Hk we have

Iλ(u) ≤ 1
p

∫
Ω

|∇u|p dx +
1
2

∫
Ω

|∇u|2 dx

+
λ

q

∫
Ω

|u|q dx− (g′(0)− ε)
2

∫
Ω

u2 dx + C

∫
Ω

|u|α dx

≤ 1
2

(
1− (g′(0)− ε)

λk(2)

)
||u||22 + C(λ||u||qp + ||u||pp + ||u||αp )

≤ c

2

(
1− (g′(0)− ε)

λk(2)

)
||u||2p + C(λ||u||qp + ||u||pp + ||u||αp ),

where, in the last inequality, we use that the norms are equivalent in a finite
dimensional space. Since, we can choose ε such that g′(0)−ε > λk(2), and using
that α > p > 2 then we can take ρ and λ∗, small enough, such that (a) holds.

(b) If u ∈ Wk, by (1.2), we have

Iλ(u) ≥ 1
p

∫
Ω

|∇u|p dx +
1
2

∫
Ω

|∇u|2 dx +
λ

q

∫
Ω

|u|q dx

− λk+1(2)
2

∫
Ω

u2 dx− λ1(p)
p

∫
Ω

|u|p dx ≥ 0.

We notice that (c) already was proved. �
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End the Proof of Theorem 1.2. Thus Iλ has a critical point u2 with
Iλ(u2) < 0 and Ck−1(Iλ, u2) 6= 0. Then we can conclude, using k ≥ 2, that u2 is
different of u±0 and u±1 . �

Proof of Theorem 1.3. This theorem is a direct application of the Moun-
tain Pass Theorem (see [4], [23]).

Lemma 3.5. Let ϕ1 be the first eigenfunction associated to λ1(2). Under the
above conditions, there exist t0 > 0 and λ∗ > 0 such that I±λ (±t0ϕ1) < 0, for all
λ ∈ (0, λ∗).

Proof. By g(0) = 0, g′(0) > λ1(2) and (g1) we have that, given ε > 0 there
exists C > 0 such that

G(s) ≥ (λ1(2) + ε)
2

s2 − C|s|α, for all s ∈ R.

Then, for t > 0,

I±λ (±tϕ1) =
tp

p

∫
Ω

|∇ϕ1|p dx +
t2

2

∫
Ω

|∇ϕ1|2 dx

+
tqλ

q

∫
Ω

|ϕ1|q dx− (λ1(2) + ε)t2

2

∫
Ω

|ϕ1|2 dx + Ctα
∫

Ω

|ϕ1|α dx

=
t2

2

(
1− (λ1(2) + ε)

λ1(2)

)
||ϕ1||21,2 +

tp

p
||ϕ1||p1,p +

tqλ

q
|ϕ1|qq + Ctα|ϕ1|αα

≤ t2

q

{(
1− (λ1(2) + ε)

λ1(2)

)
||ϕ1||21,2

+ tp−2||ϕ1||p1,p + tq−2λ|ϕ1|qq + C1t
α−2|ϕ1|αα

}
.

Since α > p > 2 > q > 1, we can choose λ∗ > 0 such that I±λ (±t0ϕ1) < 0, for all
λ ∈ (0, λ∗). �

Now, the proof of Theorem 1.3 follows from standard argument using the
Mountain Pass Theorem. �

Proof of Theorem 1.4. We will look for critical points of the C1 functional

I+
λ (u) =

1
p

∫
Ω

|∇u|p dx +
1
2

∫
Ω

|∇u|2 dx +
λ

q

∫
Ω

|u+|q dx−
∫

Ω

G(u+) dx

for u ∈ W 1,p
0 (Ω).

The proof of this theorem is similar in spirit to that of Theorem 2.1 in [13].
We will shown that the functional I+

λ has the mountain-pass structure which
together with the compactness condition will give us a positive solution in a pos-
itive level. After that, we will proof that I+

λ has a positive local minimum in
a ball around the origin with negative energy.

We made it in three steps.
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Step 1. There exist r > 0 and a > 0 such that I+
λ (u) ≥ a if ||u||1,p = r.

Indeed, using condition (g1) and g′(0) < λ1(2), for ε small and s ∈ R we
have

G(s) ≤ 1
2
(λ1(2)− ε)|s|2 + C|s|α, for all s ∈ R.

Thus, (remember that λ < 0)

I+
λ (u) ≥ 1

p

∫
Ω

|∇u|p dx +
1
2

∫
Ω

|∇u|2 dx +
λ

q

∫
Ω

|u|q dx

− (λ1(2)− ε)
2

∫
Ω

|u|2 dx− C

∫
Ω

|u|α dx

≥1
p

∫
Ω

|∇u|p dx +
1
2

(
1− (λ1(2)− ε)

λ1(2)

) ∫
Ω

|∇u|2 dx

+
λ

q

∫
Ω

|u|q dx− C

∫
Ω

|u|α dx

≥A||u||p1,p + λB||u||q1,p − C||u||α1,p.

By [13, Lemma 3.2] there exists λ∗ < 0 such that if λ ∈ (λ∗, 0), I+
λ satisfies the

property above.

Step 2. There exists tM > r such that I+
λ (tMϕ1) ≤ 0.

Indeed, let ϕ1 the first eigenfunction associated to λ1(p). For t > 0 we have

I+
λ (tϕ1) =

tp

p

∫
Ω

|∇ϕ1|p dx +
t2

2

∫
Ω

|∇ϕ1|2 dx +
tqλ

q

∫
Ω

|ϕ1|q dx−
∫

Ω

G(tϕ1) dx

= tp
{

1
p

∫
Ω

|∇ϕ1|p dx +
t2−p

2

∫
Ω

|∇ϕ1|2 dx

+
tq−pλ

q

∫
Ω

|ϕ1|q dx−
∫

Ω

G(tϕ1)
tp

dx

}
.

It follows from condition (g4) that there exists a positive constant C such that
G(s) ≥ Csθ, for all s ≥ s0. Thus

I+
λ (tϕ1) ≤ tp

{
1
p

∫
Ω

|∇ϕ1|p dx +
t2−p

2

∫
Ω

|∇ϕ1|2 dx

+
tq−pλ

q

∫
Ω

|ϕ1|q dx− Ctθ−p

∫
Ω

|ϕ1|θ dx

}
.

Now, observing that

lim
t→+∞

t2−p

2

∫
Ω

|∇ϕ1|2 dx = lim
t→+∞

tq−pλ

q

∫
Ω

ϕq
1 dx = 0,

for all λ ∈ (λ∗, 0) and θ > p, we obtain I+
λ (tMϕ1) ≤ 0 for some tM > 0. Thus,

we can apply the Mountain Pass Theorem to obtain a critical point u1 such that
I+
λ (u1) > 0.
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Step 3. There exists 0 < tm < r such that I+
λ (tmϕ1) < 0.

Indeed, let ϕ1 the first eigenfunction associated to λ1(2). We have that

I+
λ (tϕ1) = t2

{
tp−2

p

∫
Ω

|∇ϕ1|p dx +
1
2

∫
Ω

|∇ϕ1|2 dx

+
tq−2λ

q

∫
Ω

|ϕ1|q dx−
∫

Ω

G(tϕ1)
t2

dx

}
.

Since q < 2, λ < 0 and G(t)/t2 is bounded next to t = 0, our claim follows.
Now, the minimum of the functional I+

λ in a closed ball of W 1,p
0 (Ω) with

center in zero and radius r such that

I+
λ (u) ≥ 0 for all u with ||u||1,p = r,

is achieved in the correspondent open ball and thus yields a nontrivial critical
point u2 of I+

λ , with I+
λ (u2) < 0 and ||u2||1,p < r. �
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