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ROBUSTNESS OF NONUNIFORM
POLYNOMIAL DICHOTOMIES

FOR DIFFERENCE EQUATIONS

Luis Barreira — Meng Fan — Claudia Valls — Jimin Zhang

Abstract. For a nonautonomous dynamics with discrete time defined by a
sequence of linear operators in a Banach space, we establish the robustness

of polynomial contractions and of polynomial dichotomies under sufficiently

small linear perturbations. In addition, we consider the general case of
nonuniform polynomial behavior.

1. Introduction

We consider in this paper the robustness problem for difference equations
defined by a sequence of linear operators in a Banach space, or equivalently for
a nonautonomous dynamics with discrete time. In loose terms, the problem asks
whether the behavior of a dichotomy does not change much under sufficiently
small linear perturbations. Our main aim is to show that a relatively weak form
of dichotomy, which we call polynomial dichotomy, persists under sufficiently
small perturbations of the original dynamics. We also consider the general case
of nonuniform polynomial behavior.

The notion of exponential dichotomy, essentially introduced in seminal work
of O. Perron [13], plays a central role in a substantial part of the theory of
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differential equations and dynamical systems, particularly in what concerns the
study of stable and unstable invariant manifolds. Although strictly speaking the
notion is not introduced in [13], together with Hadamard’s work on the geodesic
flow on surfaces of negative curvature, the paper can be considered one of main
original sources for the study of hyperbolicity. In particular, it may be considered
the first source for the study of robustness, via the the notion of admissibility.
Due to the role played by the notion of exponential dichotomy, it is not surprising
that the study of robustness has a long history. In particular, the problem was
discussed by J. Massera and J. Schäffer [9] (see also [10]), W. Coppel [7], and in
the case of Banach spaces by Ju. Dalec’kĭı and M. Krĕın [8]. For more recent
works we refer to [2], [6], [11], [15], [16] and the references therein.

In this paper we consider a notion of polynomial dichotomy mimicking a cor-
responding notion of contraction introduced in [4], now with rates of expansion
and contraction varying polynomially instead of exponentially. We note that
it follows from results in that paper that the notion of nonuniform polynomial
dichotomy occurs naturally, in fact being related to the nonvanishing of a certain
Lyapunov exponent. To formulate a rigorous statement we first introduce the
notion of polynomial dichotomy in a particular case.

Let B(X) be the space of bounded linear operators in a Banach space X. For
simplicity of the exposition, we assume that there is a decomposition X = E⊕F .
Moreover, given a sequence (Am)m∈N ⊂ B(X) of invertible operators we assume
that

Am =
(

Bm 0
0 Cm

)
with respect to the above decomposition. We say that the sequence (Am)m∈N

admits a nonuniform polynomial dichotomy if there exist constants a < 0, ε ≥ 0
and K > 0 such that

(1.1)
‖Bm−1 . . . Bn‖ ≤ K(m/n)anε, m > n,

‖C−1
m . . . C−1

n−1‖ ≤ K(n/m)anε, m < n.

We also introduce a natural notion of Lyapunov exponent in the present context.
Namely, the polynomial Lyapunov exponent of a vector v ∈ X (with respect to
the sequence (Am)m∈N) is defined by

λ(v) = lim sup
n→∞

log ‖An . . . A1v‖
log n

.

One can easily verify that if the sequence (Am)m∈N admits a nonuniform poly-
nomial dichotomy, then

(1.2) λ|(E \ {0}) < 0 and λ|(F \ {0}) > 0.

On the other hand, it follows from results in [4] that if condition (1.2) holds,
and the Lyapunov exponents of the sequences Am and (A∗m)−1 are finite for
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nonzero vectors, then the sequence (Am)m∈N admits a nonuniform polynomial
dichotomy. In a certain sense, this shows that the notion of nonuniform polyno-
mial dichotomy occurs naturally, in the sense that it can be deduced from the
nonvanishing of an appropriate Lyapunov exponent.

We emphasize that we also consider the general case of nonuniform polyno-
mial behavior. Indeed, the constant ε in (1.1) may be positive. It turns out that
the classical notion of (uniform) exponential dichotomy is very stringent for the
dynamics and it is of interest to look for more general types of hyperbolic behav-
ior. This is precisely what happens with the notion of nonuniform exponential
behavior. We refer to [1] for a detailed exposition of the theory, which goes back
to the landmark works of V. Oseledets [12] and Pesin [14]. In particular, the
notion of nonuniform hyperbolicity plays an important role in the construction
of stable and unstable invariant manifolds (see [14], [17], [18]). We refer to [1],
[3] for related discussions.

We note that a different notion of nonuniform polynomial dichotomy was
introduced in [5]. It corresponds to replace the terms (m/n)a and (n/m)a in
(1.1), respectively by (1 + m− n)a and (1 + n−m)a. However, since

m/n = 1 + (m− n)/n ≤ 1 + m− n for m ≥ n,

and

n/m ≤ 1 + (n−m)/m ≤ 1 + n−m for m ≤ n,

our notion is less restrictive (recall that a < 0). Moreover, as explained above,
the inequalities in (1.1) occur naturally, in the sense that they can be derived
from the nonvanishing of a Lyapunov exponent. To the best of our understanding
the corresponding notion of dichotomy in [5] has no corresponding motivation.

2. Robustness of polynomial contractions

We consider in this section the simpler problem of the robustness of nonuni-
form polynomial contractions, asking whether a nonuniform polynomial contrac-
tion persists under sufficiently small linear perturbations.

Let again B(X) be the space of bounded linear operators in a Banach
space X. Given a sequence (Am)m∈N ⊂ B(X), we define

A(m,n) =

{
Am−1 . . . An if m > n,

id if m = n.

Following [4], the sequence (Am)m∈N is said to admit a nonuniform polynomial
contraction if there exist constants a < 0, ε ≥ 0 and K > 0 such that

(2.1) ‖A(m,n)‖ ≤ K(m/n)anε, m ≥ n.
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We also consider the perturbed dynamics

(2.2) xm+1 = (Am + Bm)xm m ∈ N,

and we define

Ã(m,n) =

{
(Am−1 + Bm−1) . . . (An + Bn) if m > n,

id, if m = n.

The following is our robustness result for contractions.

Theorem 2.1. Assume that (Am)m∈N admits a nonuniform polynomial con-
traction and that there exist constants η, ρ > 0 such that ‖Bm‖ ≤ ηm−ρ for
m ∈ N. If ρ > ε + 1 and η is sufficiently small, then (Am + Bm)m∈N admits
a nonuniform polynomial contraction with

(2.3) ‖Ã(m,n)‖ ≤ K

1−Kη2ε−aζ(ρ− ε)
(m/n)anε, m ≥ n,

where ζ is the zeta function.

Proof. For each n ∈ N we consider the space

Ω0 := {Ã = (Ã(m,n))m≥n : ‖Ã‖0 < ∞},

with the norm

‖Ã‖0 := sup
{
‖Ã(m,n)‖
(m/n)anε

: m ≥ n

}
.

It is not difficult to verify that Ω0 is a Banach space. We define an operator T0

in Ω0 by

(T0Ã)(m,n) = A(m,n) +
m−1∑
k=n

A(m, k + 1)BkÃ(k, n).

It follows from (2.1) that

‖(T0Ã)(m,n)‖ ≤ ‖A(m,n)‖+
m−1∑
k=n

‖A(m, k + 1)‖ · ‖Bk‖ · ‖Ã(k, n)‖

≤ K(m/n)anε + Kη
m−1∑
k=n

(m/(k + 1))a(k + 1)εk−ρ(k/n)anε‖Ã‖0

≤ K(m/n)anε + Kη(m/n)anε
m−1∑
k=n

ka−ρ(k + 1)ε−a‖Ã‖0

≤ K(m/n)anε + Kη2ε−a(m/n)anε
m−1∑
k=n

kε−ρ‖Ã‖0,

and hence

(2.4) ‖T0Ã‖0 ≤ K + Kη2ε−aζ(ρ− ε)‖Ã‖0 < ∞.
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This shows that the operator T0: Ω0 → Ω0 is well-defined. Moreover, for each
Ã1, Ã2 ∈ Ω0 and m ≥ n, we have

‖(T0Ã1)(m,n)− (T0Ã2)(m,n)‖

≤
m−1∑
k=n

‖A(m, k + 1)‖ · ‖Bk‖ · ‖Ã1(k, n)− Ã2(k, n)‖

≤ Kη
m−1∑
k=n

(m/(k + 1))a(k + 1)εk−ρ(k/n)anε‖Ã1 − Ã2‖0

≤ Kη(m/n)anε
m−1∑
k=n

(k + 1)ε−aka−ρ

≤ Kη2ε−aζ(ρ− ε)(m/n)anε‖Ã1 − Ã2‖0,

and hence

‖T0Ã1 − T0Ã2‖0 ≤ Kη2ε−aζ(ρ− ε)‖Ã1 − Ã2‖0.

Provided that η is sufficiently small, the operator T0 is a contraction. Therefore,
there exists a unique Ã ∈ Ω0 such that T0Ã = Ã, and one can easily verify that
it is a solution of (2.2). Identity (2.3) follows readily from (2.4). This completes
the proof of the theorem. �

3. Robustness of polynomial dichotomies

We consider in this section the more general case of nonuniform polynomial
dichotomies, and the related robustness problem. In particular, we establish the
continuous dependence with the perturbation of the constants in the notion of
nonuniform polynomial dichotomy.

Given a sequence (Am)m∈N ⊂ B(X) of invertible operators, we define

A(m,n) =


Am−1 . . . An if m > n,

id if m = n,

A−1
m . . . A−1

n−1 if m < n.

We say that the sequence (Am)m∈N admits a nonuniform polynomial dichotomy
if there exist projections Pn:X → X for n ∈ N such that

PmA(m,n) = A(m,n)Pn, m, n ∈ N,

and there exist constants a < 0 < b, ε ≥ 0 and K > 0 such that

(3.1)
‖A(m,n)Pn‖ ≤ K(m/n)anε, m ≥ n,

‖A(m,n)Qn‖ ≤ K(n/m)−bnε, m ≤ n,

where Qn = id− Pn is the complementary projection of Pn.
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We also consider the perturbed dynamics (2.2), and we define

Ã(m,n) =


(Am−1 + Bm−1) . . . (An + Bn) if m > n,

id if m = n,

(Am + Bm)−1 . . . (An−1 + Bn−1)−1 if m < n,

whenever the inverses are well-defined.
The following is our main robustness result.

Theorem 3.1. Assume that (Am)m∈N admits a nonuniform polynomial di-
chotomy and that there exist constants η, ρ > 0 such that ‖Bm‖ ≤ ηm−ρ for
m ∈ N. If

ρ > 2ε + 1, min{−a, b} > ε,

and η is sufficiently small, then (Am +Bm)m∈N admits a nonuniform polynomial
dichotomy. Namely, there exist projections P̃m for m ∈ N such that

(3.2) P̃mÃ(m,n) = Ã(m,n)P̃n, m, n ∈ N,

and

‖Ã(m,n)P̃n‖ ≤
2KK̃1

1− 2K̂
(m/n)an2ε, m ≥ n,

‖Ã(m,n)Q̃n‖ ≤
2KK̃2

1− 2K̂
(n/m)−bn2ε, m ≤ n,

where Q̃n = id− P̃n for each n ∈ N, and where

(3.3)

K̃1 =
K

1− 2εKη(2−a + 1)ζ(ρ− ε)
,

K̃2 =
K

1− 2εKηζ(ρ− ε)
,

K̂ = 2εKηζ(ρ− 2ε)(K̃1 + K̃2).

Proof. We separate the proof into several steps.

Step 1. Construction of bounded solutions of equation (2.2).
For each n ∈ N we consider the spaces

Ω1 = {U = U(m,n)m≥n ⊂ B(X) : ‖U‖1 < ∞},
Ω2 = {V = V (m,n)m≤n ⊂ B(X) : ‖V ‖2 < ∞},

respectively with the norms

‖U‖1 = sup
{
‖U(m,n)‖
(m/n)anε

: m ≥ n

}
, ‖V ‖2 = sup

{
‖V (m,n)‖
(n/m)−bnε

: m ≤ n

}
.

One can easily verify that Ω1 and Ω2 are Banach spaces.
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Lemma 3.2. For each n ∈ N, equation (2.2) has a unique solution U ∈ Ω1

satisfying, for m ≥ n,

U(m,n) =A(m,n)Pn +
m−1∑
k=n

A(m, k + 1)Pk+1BkU(k, n)(3.4)

−
∞∑

k=m

A(m, k + 1)Qk+1BkU(k, n).

Proof. One can easily verify that any sequence (U(m,n))m≥n satisfying
(3.4) is a solution of equation (2.2). We define an operator T1 in Ω1 by

(T1U)(m,n) =A(m,n)Pn +
m−1∑
k=n

A(m, k + 1)Pk+1BkU(k, n)

−
∞∑

k=m

A(m, k + 1)Qk+1BkU(k, n).

It follows from (3.1) that

(3.5) ‖A(m,n)Pn‖ +
m−1∑
k=n

‖A(m, k + 1)Pk+1‖ · ‖Bk‖ · ‖U(k, n)‖

+
∞∑

k=m

‖A(m, k + 1)Qk+1‖ · ‖Bk‖ · ‖U(k, n)‖

≤K(m/n)anε + Kη

( m−1∑
k=n

(m/(k + 1))a(k + 1)εk−ρ(k/n)anε

+
∞∑

k=m

((k + 1)/m)−b(k + 1)εk−ρ(k/n)anε

)
‖U‖1

≤K(m/n)anε + Kη

( m−1∑
k=n

(k/(k + 1))a(k + 1)εk−ρ

+
∞∑

k=m

((k + 1)/m)−b(k/m)a(k + 1)εk−ρ

)
(m/n)anε‖U‖1

≤K(m/n)anε + Kη

( m−1∑
k=n

(k + 1)ε−aka−ρ

+
∞∑

k=m

(k + 1)εk−ρ

)
(m/n)anε‖U‖1

≤K(m/n)anε + 2εKη(2−a + 1)ζ(ρ− ε)(m/n)anε‖U‖1

for each m ≥ n. This shows that T1U is well-defined, and that

(3.6) ‖T1U‖1 ≤ K + 2εKη(2−a + 1)ζ(ρ− ε)‖U‖1 < ∞.



364 L. Barreira — M. Fan — C. Valls — J. Zhang

Therefore, we obtain an operator T1: Ω1 → Ω1. Moreover, for each U1, U2 ∈ Ω1

and m ≥ n, we have

‖(T1U1)(m,n) − (T1U2)(m,n)‖

≤
m−1∑
k=n

‖A(m, k + 1)Pk+1‖ · ‖Bk‖ · ‖U1(k, n)− U2(k, n)‖

+
∞∑

k=m

‖A(m, k + 1)Qk+1‖ · ‖Bk‖ · ‖U1(k, n)− U2(k, n)‖

≤Kη

( m−1∑
k=n

(m/(k + 1))a(k + 1)εk−ρ(k/n)anε

+
∞∑

k=m

((k + 1)/m)−b(k + 1)εk−ρ(k/n)anε

)
‖U1 − U2‖1

≤ 2εKη(2−a + 1)ζ(ρ− ε)(m/n)anε‖U1 − U2‖1,

and hence

(3.7) ‖T1U1 − T1U2‖1 ≤ 2εKη(2−a + 1)ζ(ρ− ε)‖U1 − U2‖1.

Provided that η is sufficiently small, the operator T1 is a contraction, and there
exists a unique U ∈ Ω1 such that T1U = U . �

Lemma 3.3. For each n ∈ N, equation (2.2) has a unique solution V ∈ Ω2

satisfying, for m ≤ n,

V (m,n) =A(m,n)Qn +
m−1∑
k=1

A(m, k + 1)Pk+1BkV (k, n)(3.8)

−
n−1∑
k=m

A(m, k + 1)Qk+1BkV (k, n).

Proof. Again one can easily verify that any sequence (V (m,n))m≤n sa-
tisfying (3.8) is a solution of equation (2.2). We define an operator T2 in Ω2

by

(T2V )(m,n) =A(m,n)Qn +
m−1∑
k=1

A(m, k + 1)Pk+1BkV (k, n)

−
n−1∑
k=m

A(m, k + 1)Qk+1BkV (k, n).
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By (3.1), for each m ≤ n, we have

‖A(m,n)Qn‖ +
m−1∑
k=1

‖A(m, k + 1)Pk+1‖ · ‖Bk‖ · ‖V (k, n)‖

+
n−1∑
k=m

‖A(m, k + 1)Qk+1‖ · ‖Bk‖ · ‖V (k, n)‖

≤K(n/m)−bnε + Kη

( m−1∑
k=1

(m/(k + 1))a(k + 1)εk−ρ(n/k)−bnε

+
n−1∑
k=m

((k + 1)/m)−b(k + 1)εk−ρ(n/k)−bnε

)
‖V ‖2

≤K(n/m)−bnε + Kη

( m−1∑
k=1

(m/(k + 1))a(m/k)−b(k + 1)εk−ρ

+
n−1∑
k=m

((k + 1)/k)−b(k + 1)εk−ρ

)
(n/m)−bnε‖V ‖2

≤K(n/m)−bnε + Kη

( m−1∑
k=1

(k + 1)εk−ρ

+
n−1∑
k=m

(k + 1)εk−ρ

)
(n/m)−bnε‖V ‖2

≤K(n/m)−bnε + 2εKηζ(ρ− ε)(n/m)−bnε‖V ‖2.

This shows that T2V is well-defined, and that

(3.9) ‖T2V ‖2 ≤ K + 2εKηζ(ρ− ε)‖V ‖2 < ∞.

Hence, we obtain an operator T2: Ω2 → Ω2. For each V1, V2 ∈ Ω2 and m ≤ n, we
have

‖(T2V1)(m,n) − (T2V2)(m,n)‖

≤
m−1∑
k=1

‖A(m, k + 1)Pk+1‖ · ‖Bk‖ · ‖V1(k, n)− V2(k, n)‖

+
n−1∑
k=m

‖A(m, k + 1)Qk+1‖ · ‖Bk‖ · ‖V1(k, n)− V2(k, n)‖

≤Kη

( m−1∑
k=1

(m/(k + 1))a(k + 1)εk−ρ(n/k)−bnε

+
n−1∑
k=m

((k + 1)/m)−b(k + 1)εk−ρ(n/k)−bnε

)
‖V1 − V2‖2

≤ 2εKηζ(ρ− ε)(n/m)−bnε‖V1 − V2‖2,
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and hence,

(3.10) ‖T2V1 − T2V2‖2 ≤ 2εKηζ(ρ− ε)‖V1 − V2‖2.

For η sufficiently small the operator T2 is a contraction, and there exists a unique
V ∈ Ω2 such that T2V = V . �

Step 2. Properties of the bounded solutions.

Lemma 3.4. We have U(m, l)U(l, n) = U(m,n) for each m ≥ l ≥ n.

Proof. It follows from (3.4) that

U(m, l)U(l, n) =A(m,n)Pn +
l−1∑
k=n

A(m, k + 1)Pk+1BkU(k, n)

+
m−1∑
k=l

A(m, k + 1)Pk+1BkU(k, l)U(l, n)

−
∞∑

k=m

A(m, k + 1)Qk+1BkU(k, l)U(l, n).

For a fixed l, writing h(m, l) = U(m, l)U(l, n) − U(m,n) for m ≥ l, we obtain
L1h = h, where

(L1H)(m, l) =
m−1∑
k=l

A(m, k + 1)Pk+1BkH(k, l)−
∞∑

k=m

A(m, k + 1)Qk+1BkH(k, l)

for each H ∈ Ωl
1 and m ≥ l, where Ωl

1 is obtained from Ω1 replacing n by l. It
follows from (3.5) that L1 is well-defined. Moreover,

‖(L1H)(m, l)‖ ≤
m−1∑
k=l

‖A(m, k + 1)Pk+1BkH(k, l)‖

+
∞∑

k=m

‖A(m, k + 1)Qk+1BkH(k, l)‖

≤Kη

( m−1∑
k=l

(m/(k + 1))a(k + 1)εk−ρ(k/l)alε

+
∞∑

k=m

((k + 1)/m)−b(k + 1)εk−ρ(k/l)alε
)
‖H‖1

≤ 2εKη(2−a + 1)ζ(ρ− ε)(m/l)alε‖H‖1,

that is,

‖L1H‖1 ≤ 2εKη(2−a + 1)ζ(ρ− ε)‖H‖1 < ∞.
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We thus obtain an operator L1: Ωl
1 → Ωl

1. For each H1,H2 ∈ Ωl
1 and m ≥ l, we

have

‖(L1H1)(m, l) − (L1H2)(m, l)‖

≤
m−1∑
k=l

‖A(m, k + 1)Pk+1‖ · ‖Bk‖ · ‖H1(k, l)−H2(k, l)‖

+
∞∑

k=m

‖A(m, k + 1)Qk+1‖ · ‖Bk‖ · ‖H1(k, l)−H2(k, l)‖

≤Kη

( m−1∑
k=l

(m/(k + 1))a(k + 1)εk−ρ(k/l)alε

+
∞∑

k=m

((k + 1)/m)−b(k + 1)εk−ρ(k/l)alε
)
‖H1 −H2‖1

≤ 2εKη(2−a + 1)ζ(ρ− ε)(m/l)alε‖H1 −H2‖1.

Therefore,

‖L1H1 − L1H2‖1 ≤ 2εKη(2−a + 1)ζ(ρ− ε)‖H1 −H2‖1,

and for η sufficiently small there exists a unique H ∈ Ωl
1 such that L1H = H.

Since 0 ∈ Ωl
1 also satisfies this identity, we have H = 0. Moreover, since h ∈ Ωl

1

we conclude that h = 0. �

Lemma 3.5. We have V (m, l)V (l, n) = V (m,n) for each m ≤ l ≤ n.

Proof. The argument is analogous to that in the proof of Lemma 3.4. By
(3.8), we have

V (m, l)V (l, n) =A(m,n)Qn −
n−1∑
k=l

A(m, k + 1)Qk+1BkV (k, n)

+
m−1∑
k=1

A(m, k + 1)Pk+1BkV (k, l)V (l, n)

−
l−1∑

k=m

A(m, k + 1)Qk+1BkV (k, l)V (l, n).

Now set h(m, l) = V (m, l)V (l, n) − V (m,n) for each m ≤ l. Then L2h = h,
where

(L2H)(m, l) =
m−1∑
k=1

A(m, k + 1)Pk+1BkH(k, l)−
l−1∑

k=m

A(m, k + 1)Qk+1H(k, l)

for each H ∈ Ωl
2 and m ≤ l, where Ωl

2 is obtained from Ω2 replacing n by l.
Proceeding in a similar manner to that in the proof of Lemma 3.4, one can show
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that 0 is the unique fixed point of L2 in Ωl
2, and since h ∈ Ωl

2 we conclude that
h = 0. �

Step 3. Construction of the projections P̃m in (3.2).
Given p ∈ N we define

(3.11) Pm = Ã(m, p)U(p, p)Ã(p, m), Qm = Ã(m, p)V (p, p)Ã(p, m)

for each m ∈ N. We emphasize that the operators Pm and Qm may depend
on p. It follows from Lemmas 3.4 and 3.5 that:

(a) Pm and Qm are projections for each m ∈ N;
(b) PmÃ(m,n) = Ã(m,n)Pn and QmÃ(m,n) = Ã(m,n)Qn for each m,n

in N.

Moreover, since

P p = U(p, p) = Pp −
∞∑

k=p

A(p, k + 1)Qk+1BkU(k, p)(3.12)

Qp = V (p, p) = Qp +
p−1∑
k=1

A(p, k + 1)Pk+1BkV (k, p),(3.13)

we obtain:

(c) PpP p = Pp, QpQp = Qp, Qp(id−P p) = id−P p, Pp(id−Qp) = id−Qp.

We also note that Ũ(m, p) = U(m, p)Pp satisfies identity (3.4) with n = p. Since
Ũ ∈ Ω1, it follows from the uniqueness in Lemma 3.2 that U(m, p)Pp = U(m, p).
Similarly, Ṽ (m, p) = V (m, p)Qp satisfies identity (3.8) and the uniqueness in
Lemma 3.3 implies that V (m, p)Qp = V (m, p). Setting m = p we obtain:

(d) P pPp = P p and QpQp = Qp.

Lemma 3.6. If η is sufficiently small, then the operator Sp = P p + Qp is
invertible.

Proof. It follows from (c) that

(3.14) P p + Qp − id = QpP p + PpQp.

By (3.12) and (3.13), we obtain

PpQp = PpV (p, p) =
p−1∑
k=1

A(p, k + 1)Pk+1BkV (k, p),

QpP p = QpU(p, p) = −
∞∑

k=p

A(p, k + 1)Qk+1BkU(k, p).

On the other hand, by (3.6) and (3.3), for each m ≥ n we have

(3.15) ‖U(m,n)‖ ≤ K̃1(m/n)anε,
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and by (3.9) and (3.3), for each m ≤ n we have

(3.16) ‖V (m,n)‖ ≤ K̃2(n/m)−bnε.

It follows from (3.14)–(3.16) that

‖P p + Qp − id‖ ≤
∞∑

k=p

‖A(p, k + 1)Qk+1‖ · ‖Bk‖ · ‖U(k, p)‖

+
p−1∑
k=1

‖A(p, k + 1)Pk+1‖ · ‖Bk‖ · ‖V (k, p)‖

≤ K̃1Kη
∞∑

k=p

((k + 1)/p)−b(k + 1)εk−ρ(k/p)apε

+ K̃2Kη

p−1∑
k=1

(p/(k + 1))a(k + 1)εk−ρ(p/k)−bpε

≤ K̃1Kη
∞∑

k=p

((k + 1)/p)−b(k + 1)εk−ρ(k/p)akε

+ K̃2Kη

p−1∑
k=1

(p/(k + 1))a(k + 1)εk−ρ(p/k)−b+ε(p/k)−εpε

≤ K̃1Kη
∞∑

k=p

(k + 1)εkε−ρ + K̃2Kη

p−1∑
k=1

(k + 1)εkε−ρ

≤ 2εKηζ(ρ− 2ε)(K̃1 + K̃2) = K̂.

This implies that for η sufficiently small, the operator Sp is invertible. �

Now we set

(3.17) P̃m = Ã(m, p)SpPpS
−1
p Ã(p, m), Q̃m = Ã(m, p)SpQpS

−1
p Ã(p, m)

for each m ∈ N. It is easy to show that P̃m and Q̃m are projections for each
fixed m ∈ N, and that (3.2) holds. We note that P̃m + Q̃m = id for each m ∈ N.

Step 4. Norm bounds for the evolution operators.

Lemma 3.7. We have ‖Ã(m,n)|ImPn‖ ≤ K̃1(m/n)anε for m ≥ n.

Proof. We first show that if (zm)m≥n is a bounded solution of equation
(2.2), then

zm =A(m,n)Pnzn +
m−1∑
k=n

A(m, k + 1)Pk+1Bkzk(3.18)

−
∞∑

k=m

A(m, k + 1)Qk+1Bkzk
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for each m ≥ n. Note that zm = Pmzm + Qmzm, where

Pmzm = A(m,n)Pnzn +
m−1∑
k=n

A(m, k + 1)Pk+1Bkzk,

Qmzm = A(m,n)Qnzn +
m−1∑
k=n

A(m, k + 1)Qk+1Bkzk.

We rewrite the last identity in the form

(3.19) Qnzn = A(n, m)Qmzm −
m−1∑
k=n

A(n, k + 1)Qk+1Bkzk.

On the other hand, we have

∞∑
k=n

‖A(n, k + 1)Qk+1Bkzk‖ ≤ Kη
∞∑

k=n

((k + 1)/n)−b(k + 1)εk−ρ‖zk‖

≤ Kη2εζ(ρ− ε) sup
k≥n

‖zk‖,

and

‖A(n, m)Qmzm‖ ≤ K(m/n)−bmε‖zm‖ = K(m/n)−b+εnε‖zm‖.

Therefore, letting m →∞ in (3.19) yields

Qnzn = −
∞∑

k=n

A(n, k + 1)Qk+1Bkzk.

Consequently,

Qmzm = −
∞∑

k=n

A(m, k + 1)Qk+1Bkzk +
m−1∑
k=n

A(m, k + 1)Qk+1Bkzk

= −
∞∑

k=m

A(m, k + 1)Qk+1Bkzk,

which yields (3.18).
Now given ξ ∈ X we consider the solution zm = Ã(m,n)Pnξ of equation (2.2)

for m ≥ n. By (3.11) we have

zm = Ã(m, p)U(p, p)Ã(p, n)ξ = U(m, p)Ã(p, n)ξ.

The last identity follows from the fact that both Ã(m, p)U(p, p) and U(m, p) are
solutions of equation (2.2), which coincide for m = p. Since m 7→ U(m, p) is
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bounded, this shows that (zm)m≥n is a bounded solution of equation (2.2) with
zn = Pnξ. By (3.18), for each m ≥ n we have

PmÃ(m,n)ξ =A(m,n)PnPnξ +
m−1∑
k=n

A(m, k + 1)Pk+1BkP kÃ(k, n)ξ

−
∞∑

k=m

A(m, k + 1)Qk+1BkP kÃ(k, n)ξ.

Then, writing B = (Ã(m,n)|ImPn)m≥n we obtain

‖PmÃ(m,n)ξ‖ ≤K(m/n)anε‖Pnξ‖

+ Kη
m−1∑
k=n

(m/(k + 1))a(k + 1)εk−ρ‖P kÃ(k, n)ξ‖

+ Kη
∞∑

k=m

((k + 1)/m)−b(k + 1)εk−ρ‖P kÃ(k, n)ξ‖

=K(m/n)anε‖Pnξ‖

+ Kη
m−1∑
k=n

(m/(k + 1))a(k + 1)εk−ρ‖P kÃ(k, n)Pnξ‖

+ Kη
∞∑

k=m

((k + 1)/m)−b(k + 1)εk−ρ‖P kÃ(k, n)Pnξ‖

≤K(m/n)anε‖Pnξ‖

+ Kη
m−1∑
k=n

(m/(k + 1))a(k + 1)εk−ρ(k/n)anε‖B‖1‖Pnξ‖

+ Kη

∞∑
k=m

((k + 1)/m)−b(k + 1)εk−ρ(k/n)anε‖B‖1‖Pnξ‖

≤K(m/n)anε‖Pnξ‖
+ 2εKη(2−a + 1)ζ(ρ− ε)(m/n)anε‖B‖1‖Pnξ‖.

Therefore,
‖B‖1 ≤ K + 2εKη(2−a + 1)ζ(ρ− ε)‖B‖1,

and since η is sufficiently small (see (3.7)),

‖B‖1 ≤
K

1− 2εKη(2−a + 1)ζ(ρ− ε)
= K̃1.

This yields the desired inequality. �

Lemma 3.8. We have ‖Ã(m,n)|ImQn‖ ≤ K̃2(n/m)−bnε for m ≤ n.

Proof. Since −a > ε, proceeding in a similar manner to the proof of
Lemma 3.7, we conclude that if (zm)m≤n is a bounded solution of equation (2.2),
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then

zm =A(m,n)Qnzn +
m−1∑
k=1

A(m, k + 1)Pk+1Bkzk(3.20)

−
n−1∑
k=m

A(m, k + 1)Qk+1Bkzk.

Now given ξ ∈ X we have

zm := Ã(m,n)Qnξ = V (m, p)Ã(p, n)ξ for m ≤ n.

Therefore, (zm)m≤n is a bounded solution of equation (2.2) with zn = Qnξ, and
it follows from (3.20) that

QmÃ(m,n)ξ =A(m,n)QnQnξ +
m−1∑
k=1

A(m, k + 1)Pk+1BkQkÃ(k, n)ξ

−
n−1∑
k=m

A(m, k + 1)Qk+1BkQkÃ(k, n)ξ.

Therefore, writing C = (Ã(m,n)|ImQn)m≤n we obtain

‖QmÃ(m,n)ξ‖ ≤K(n/m)−bnε‖Qnξ‖

+ Kη
m−1∑
k=1

(m/(k + 1))a(k + 1)εk−ρ‖QkÃ(k, n)ξ‖

+ Kη

n−1∑
k=m

((k + 1)/m)−b(k + 1)εk−ρ‖QkÃ(k, n)ξ‖

=K(n/m)−bnε‖Qnξ‖

+ Kη
m−1∑
k=1

(m/(k + 1))a(k + 1)εk−ρ‖QkÃ(k, n)Qnξ‖

+ Kη
n−1∑
k=m

((k + 1)/m)−b(k + 1)εk−ρ‖QkÃ(k, n)Qnξ‖

≤K(n/m)−bnε‖Qnξ‖

+ Kη
m−1∑
k=1

(m/(k + 1))a(k + 1)εk−ρ(n/k)−bnε‖C‖2‖Qnξ‖

+ Kη
n−1∑
k=m

((k + 1)/m)−b(k + 1)εk−ρ(n/k)−bnε‖C‖2‖Qnξ‖

≤K(n/m)−bnε‖Qnξ‖+ 2εKηζ(ρ− ε)(n/m)−bnε‖C‖2‖Qnξ‖,

and hence,
‖C‖2 ≤ K + 2εKηζ(ρ− ε)‖C‖2.
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Since η is sufficiently small (see (3.10)), it follows that

‖C‖2 ≤
K

1− 2εKηζ(ρ− ε)
= K̃2.

This yields the desired inequality. �

Lemma 3.9. We have

‖Ã(m,n)P̃n‖ ≤ K̃1(m/n)anε‖P̃n‖, m ≥ n,(3.21)

‖Ã(m,n)Q̃n‖ ≤ K̃2(n/m)−bnε‖Q̃n‖, m ≤ n.(3.22)

Proof. By property (d), we have

SpPp = (P p + Qp)Pp = P p, SpQp = (P p + Qp)Qp = Qp.

Setting Sm = Ã(m, p)SpÃ(p,m) for m ∈ N, we can show that

P̃mSm = Pm and Q̃mSm = Qm.

Indeed, by (3.17) we have

P̃mSm = Ã(m, p)SpPpÃ(p, m) = Ã(m, p)P pÃ(p, m) = Pm,

since P p = U(p, p). The other identity can be obtained in a similar manner.
Since Sm is invertible, we conclude that

ImP̃m = ImPm and ImQ̃m = ImQm.

Thus, by Lemmas 3.7 and 3.8, we obtain

‖Ã(m,n)P̃n‖ ≤ ‖Ã(m,n)|ImP̃n‖ · ‖P̃n‖
= ‖Ã(m,n)|ImPn‖ · ‖P̃n‖ ≤ K̃1(m/n)anε‖P̃n‖

for m ≥ n, and

‖Ã(m,n)Q̃n‖ ≤ ‖Ã(m,n)|ImQ̃n‖ · ‖Q̃n‖
= ‖Ã(m,n)|ImQn‖ · ‖Q̃n‖ ≤ K̃2(n/m)−bnε‖Q̃n‖

for m ≤ n. �

Lemma 3.10. Provided that η is sufficiently small, for each m ∈ N we have

‖P̃m‖ ≤
2K

1− 2K̂
mε and ‖Q̃m‖ ≤

2K

1− 2K̂
mε.

Proof. Given ξ ∈ X, we set

z1
m = Ã(m,n)P̃nξ for m ≥ n,

z2
m = Ã(m,n)Q̃nξ for m ≤ n.
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By Lemma 3.9, (z1
m)m≥n and (z2

m)m≤n are bounded solutions of equation (2.2).
It thus follows from (3.18) and (3.20) that

P̃mÃ(m,n)ξ =A(m,n)PnP̃nξ +
m−1∑
k=n

A(m, k + 1)Pk+1BkP̃kÃ(k, n)ξ

−
∞∑

k=m

A(m, k + 1)Qk+1BkP̃kÃ(k, n)ξ,

and

Q̃mÃ(m,n)ξ =A(m,n)QnQ̃nξ +
m−1∑
k=1

A(m, k + 1)Pk+1BkQ̃kÃ(k, n)ξ

−
n−1∑
k=m

A(m, k + 1)Qk+1BkQ̃kÃ(k, n)ξ.

Taking m = n, we obtain

QmP̃mξ = −
∞∑

k=m

A(m, k + 1)Qk+1BkP̃kÃ(k,m)ξ,

PmQ̃mξ =
m−1∑
k=1

A(m, k + 1)Pk+1BkQ̃kÃ(k, m)ξ.

By (3.21) and (3.22), we have

‖QmP̃m‖ ≤ K̃1Kη
∞∑

k=m

((k + 1)/m)−b(k + 1)εk−ρ(k/m)amε‖P̃m‖

≤ K̃1Kη2εζ(ρ− 2ε)‖P̃m‖

and

‖PmQ̃m‖ ≤ K̃2Kη

m−1∑
k=1

(m/(k + 1))a(k + 1)εk−ρ(m/k)−bmε‖Q̃m‖

≤ K̃2Kη2εζ(ρ− 2ε)‖Q̃m‖.

Moreover, since ‖Pm‖ ≤ Kmε and ‖Qm‖ ≤ Kmε, we obtain

‖P̃m‖ ≤ ‖P̃m − Pm‖+ ‖Pm‖
= ‖P̃m − PmP̃m − Pm + PmP̃m‖+ ‖Pm‖
= ‖QmP̃m − PmQ̃m‖+ ‖Pm‖
≤ ‖QmP̃m‖+ ‖PmQ̃m‖+ ‖Pm‖
≤ K̃1Kη2εζ(ρ− 2ε)‖P̃m‖+ K̃2Kη2εζ(ρ− 2ε)‖Q̃m‖+ Kmε

≤ K̂(‖P̃m‖+ ‖Q̃m‖) + Kmε,
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and

‖Q̃m‖ ≤ ‖Q̃m −Qm‖+ ‖Qm‖
= ‖P̃m − Pm‖+ ‖Qm‖ ≤ K̂(‖P̃m‖+ ‖Q̃m‖) + Kmε.

Summing the two yields

‖P̃m‖+ ‖Q̃m‖ ≤ 2K̂(‖P̃m‖+ ‖Q̃m‖) + 2Kmε.

This completes the proof of the lemma. �

The statement of Theorem 3.1 follows now readily from the above lemmas.�
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