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1. Introduction.

Research on decidability problems has arisen from Hubert's
program. To save the integrity of classical mathematics and to over-
come difficulties disclosed by antinomies and paradoxes of set theory,
Hubert proposed, in a series of lectures and papers in the 1920s, a
special program. Its aim was to show that classical mathematics is
consistent and that actual infinity, which seemed to generate the
difficulties, plays in fact only an auxiliary role and can be eliminated
from proofs of theorems talking only about finitary objects. To realize
this program Hubert suggested first of all to formalize mathematics, i.e.,
to represent its main domains (including classical logic, set theory,
arithmetic, analysis, etc.) as a big formal system and investigate the
latter (as a system of sequences of symbols transformed according to
certain fixed formal rules) by finitary methods.Such formalization should
be complete, i.e., axioms should be chosen in such a way that any
problem which can be formulated in the language of a given theory can
also be solved on the basis of its axioms. Formalization yielded also
another problem closely connected with completeness and called the
decision problem, decidability problem, or Entscheidungsproblem: one
could ask if a given formalized theory is decidable, i.e., if there exists a
uniform mechanical method which enables us to decide in a finite
number of steps whether or not a given formula in the language of the
theory under consideration is a theorem. Using notions from recursion
theory, one can make this definition more precise. A formal theory T is
said to be decidable iff the set of Godei numbers of) theorems of T is
recursive. Otherwise T is called undecidable. If, additionally, every
consistent extension of the theory T (formalized in the same language
as T) is undecidable, then T is said to be essentially undecidable. We
should notice here that these definitions, completely standard today,
come from Alfred Tarski and were formulated in his paper, A general
method in proofs of undecidability, published in the book [Tarski,
Mostowski & Robinson 1953].

In the 1920s and 1930s many results in this direction were obtained.
Several general methods of proving completeness and decidability of
theories were proposed, and many theories were shown to be complete
and decidable.

K. Gödel's results from 1931 on incompleteness (cf. [Godei 1931])
and A. Church's 1936 results on undecidability (of first-order predicate
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calculus and of Peano arithmetic and certain of its subtheories (cf.
[Church 1936] and [Church 1936a] ), as well as results of J. B. Rosser
from the same year on undecidability of consistent extensions of Peano
arithmetic (cf. [Rosser 1936]), indicated some difficulties and obstacles
in realizations of Hubert's program. One consequence was the fact that
since the end of the 1930s, logicians' and mathematicians' interests
concentrated on proofs of undecidability rather than decidability of
theories. General methods of proving undecidability were investigated,
and particular mathematical theories were shown to be undecidable.

Those general trends and tendencies are reflected also in the history
of logic in Poland. That is the subject of the present paper, which has
the following structure. Section 2 will be devoted to the contributions of
Polish logicians and mathematicians to the study of decidability of
theories. In particular, the method of quantifier elimination studied by A.
Tarski and his students, together with various applications of it, will be
presented. Section 3 deals with investigations of undecidability of
theories. Again, we shall discuss some general methods developed by
Polish logicians for proving the undecidability of a theory (in particular,
Tarski's method of interpretation will be considered), as well as several
results on undecidability of particular theories. Section 4 will be devoted
to the presentation of (forgotten and underestimated) results of Józef
Pepis on mutual reducibility of decision problems for various classes of
formulas. Finally, Section 5 will present generalizations and strength-
enings of Gödel's incompleteness results due to Polish logicians.

2. Decidability of theories.

2.1. Effective quantifier elimination.

The seminar led by A. Tarski at Warsaw University in 1927-29 was
devoted to the method of eliminating quantifiers. This method was
initiated by L. Löwenheim in 1915 (cf. [Löwenheim 1915]) and used in
fully-developed form by Th. Skolem (cf. [Skloem 1919]) and С. Н.
Langford (cf. [Langford 1927; 1927a]). Skolem used it to show the
decidability of the theory Го °f t n e class of all "full" Boolean algebras,
i.e., Boolean algebras of the form (P(A), Q ), where P(A) = {B : В Q
A}. Langford applied it to establish the decidability of the theory of a
dense linear order: (a) without endpoints, (b) with a first element but no
last element, and (c) with first and last elements, as well as the
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decidability (and completeness) of the theory of discrete orders having a

first and no last element.

Elimination of quantifiers was studied at the seminar by Tarski and

his students. Tarski described it as "a frequently used method, which

consists in reducing the sentences to normal form and successively

eliminating the quantifiers" {cf. [Tarski 1936]; see also [Tarski 1956a,

374], which is a revised English translation of [Tarski 1935] and [Tarski

1936].)

Generally speaking, this method can be described as follows: Let T

be a first-order theory in the language L{T). We are looking for a set Ф

of formulas in L(T), called the set of basic formulas for T, such that for

every formula <p of L(T) there exists a Boolean combination (p* of

formulas from Ф having the same free variables as cp and such that T h

cp s ф*. Of course, one can always take as the basic set Ф the set of all

formulas of the language L{T). But we are looking for "good" basic sets

consisting of "simple" formulas. Unfortunately, there is no precise

criterion for being "good" or "simple". Usually the following conditions

are required: (1) Ф should be reasonably small and irredundant, (2)

every formula in Ф should have some straightforward mathematical

meaning, (3) there should exist an algorithm for reducing every formula

(p of the language L(T) to its corresponding Boolean "representation".

From the point of view of decidability problems, the set Ф should have

one more property: (4) there should exist an algorithm that tells us,

given any basic sentence гр, either that t// i sa theorem of T or that ty is

refutable from T. If conditions (3) and (4) are met, then we have both a

completeness proof and a decision procedure for the theory T. Let us add

that a method fulfilling conditions (3) and (4) is sometimes called

"effective quantifier elimination" to distinguish it from other types of

elimination of quantifiers, in which there are no algorithms.

It seems that Tarski found this method adequate for his purposes,

and he did not try to generalize it but (together with his students) simply

applied it to the study of various theories. In this way it became in his

school the method and a paradigm of how a logician should study an

axiomatic theory.

What aims did Tarski and his students want to achieve using the

method of quantifier elimination?

First, they used it to characterize definability. Namely, suppose that

a structure Ж and a set of first-order sentences T that are true in i t are

given. Suppose also that one has found a basic set Ф for the theory T.

Then the relations on M that are definable by first-order formulas (with

or without parameters) are exactly the Boolean combinations of the
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relations that are defined by formulas in Ф. It seems that the first who

made this point was Tarski in [Tarski 1941]. This paper introduces the

decision procedure for the theory of reals, but it does so by way of

describing the first-order definable relations on the reals. Tarski was

greatly interested in the notion of a definable relation in a structure, but

his papers on decidability or completeness rarely mentioned this aspect

of the results.

The second reason Tarski and his collaborators used the method of

quantifier elimination was the fact that it could contribute to the study

of decidability problems. One should notice here that in his papers

published before World War II, Tarski seldom mentioned effective

decidability. In describing his results he put emphasis on completeness

proofs rather than on algorithmic decidability. On the other hand, it was

clear for him by 1930 that effective quantifier elimination could give:

a mechanical method which enables us to decide in each particular case
whether a given sentence (of order 1) is provable or disprovable

(cf. [Tarski 1956a, 134], the English translation of [Tarski 1941]). In

[Tarski 1939] he refers to:

The "effective" character of all positive proofs of completeness so far
given — not only the problem of completeness but also the decision
problem is solved in the positive sense for all the deductive systems
mentioned above.

One can observe a very noticeable change of emphasis in Tarski's

writings after the war. Now he stresses the importance of decidability

results and gives them priority. On the first page of [Tarski 1953] he

describes the decision problem as "one of the central problems of

contemporary metamathematics". Both of his abstracts [Tarski 1949]

and [Tarski 1949a] are opened by saying that he has found a decision

procedure — and only later is it added that various consequences follow

from the procedure. In his writings before World War II it was just the

reverse — the results on completeness were stressed first, and only at

the end was it added that the proofs involve solving the decision

problem.

In the monograph [Tarski 1967] written in 1939 (and published in

1967) he says:

It should be emphasized that the proofs sketched below have (like all
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proofs of completeness hitherto published) an "effective" character in
the following sense: it is not merely shown that every statement of a
given theory is, so to speak, in principle provable or disprovable, but
at the same time a procedure is given which permits every such
statement actually to be proved or disproved by means of proof of the
theory. By the aid of such a proof not only the problem of com-
pleteness but also the decision problem is solved for the given system
in a positive sense 1 1. In other words, our results show that it is
possible to construct a machine which would provide the solution of
every problem in elementary algebra and geometry (to the extent
described above).

And in Note 11 of [Tarski 1967] we find the following words:

It is possible to defend the standpoint that in all cases in which a
theory is tested with respect to its completeness the essence of the
problem is not in the mere proof of completeness but in giving a
decision procedure (or in the demonstration that it is impossible to
give such a procedure).

What were the reasons for this change? The first reason is the fact that

until the mid-1930s there was no precise definition of the term

"algorithm", and mathematicians doubted if there ever would be one.

The works of A. Church, A. Turing, S. С Kleene, J. B. Rosser, and

others and the development of recursion theory changed the situation.

Tarski recognized this change immediately and began to apply recursion

theory in his papers.

The second source of Tarski's new perspective on his work on com-

pleteness/decidability problems was that he had become interested in

proofs of undecidability, publishing many results during the years 1949-

1953. (We discuss these in the next section.)

Coming back to the aims Tarski and his students wanted to achieve

using the method of quantifier elimination, one should add one thing

more. Namely, they saw not only that this method yields much

information on completeness and decidability, but also that it can be

used to describe and classify all complete extensions of a given first-

order theory T. In connection with this, Tarski introduced in his seminar

some key notions of model theory, in particular the notion of elementary

equivalence.

To finish the general discussion of the method of quantifier

elimination, we want to consider the connection between the com-

pleteness of a theory and its decidability. (This was already mentioned
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above). We mean here the theorem stating that if a first-order theory T
based on a recursive set of axioms (in fact, "recursive" can be replaced
by "recursively enumerable") is consistent and complete, then T is
decidable. The explicit formulation of this can be found in the paper by
Antoni Janiczak [Janiczak 1950] from 1950. He proved there the
following:

Theorem 2.1. Л complete, consistent theory T satisfying the conditions
(a')-(d) is decidable.

The conditions (a') - (d') say, respectively, that the set of (Godei

numbers of) sentences of the language L(T) of the theory Г should be

recursive, that the set of (Godei numbers of) axioms of T should be

recursively enumerable, that the arithmetized counterpart of the

(metamathematical) relation "a formula % results from formulas q> and

ip by the deduction rule 9t" is recursive, and finally that there exists a

recursive function Neg such that if x is a Godei number of a formula <p,

then Neg(x) is a Godei number of the negation of <p.

The key fact used in the proof of this theorem is the negation

theorem, which states that a relation is recursive iff it and its

complement are recursively enumerable. One finds this result in

Kleene's paper [Kleene 1943] (Theorem V) and in the [1955] paper by

Janiczak (a posthumous work prepared by A. Grzegorczyk from the

notes left by the author, who died prematurely in Warsaw on 5 July

1951).

At the end of Janiczak's paper [Janiczak 1950] it is written: "It is

worth remarking, in connection with our theorem, that each decidable

and consistent theory can be enlarged to a decidable, complete and

consistent theory by the method of Lindenbaum . . . . This result is due to

Tarski." And Janiczak refers here to Theorem II of Tarski's abstract On

essential undecidability (cf. [Tarski 1949b]).

A survey of Tarski's work on decidable theories is given by Doner

and Hodges (cf. [Doner & Hodges 1988]).

2.2. Applications: decidability of particular theories.

The first decidability results of Tarski came from 1926-1928 (cf.

[Tarski 1935] and [Tarski 1936]). They were based on the work of

Langford mentioned at the beginning of this section. More exactly,

Tarski proved the following theorems.



44 Volume 6, no. 1 (January 1996)

Theorem 2.2. IfTis the theory of dense linear orders, then for any first-
order sentence <p in the language of T we can compute a Boolean
combination of the sentences "There is a first element" and "There is a
last element" that is equivalent to cp modulo T.

Theorem 2.3. Let T be the theory of linear orders in which every element

except the first element has an immediate predecessor, and every element

except the last element has an immediate successor. Then for any first-

order sentence cp in the language of T we can compute a Boolean com-

bination of the sentences "There is a first element, " "There is a last

element," and "There are at most n elements" (for positive integers n)

that is equivalent to cp modulo T.

In the Appendix to his [1936] Tarski listed all the complete theories

of dense linear orders; they are the theories of the orders ц, 1 + ц, ц +

1, and 1 + »7+1, where r\ is the natural ordering of the rational numbers.

The complete theories of linear orders are the theories of finite orders

and the theories of the orders со, со*, со* + со, and со + со*, where со is

the natural ordering of the natural numbers and со* is its inverse. Those

classifications were obtained with the help of the above-quoted

theorems.

Having solved the problem of completeness and decidability of the

theory of dense linear orders and of the theory of discrete orders, one

should ask about the theory of well-orderings. The study of this problem

has a long and interesting history.

In the late 1930s A. Tarski and his student Andrzej Mostowski

developed the outline of a proof of the decidability of this theory,

described semantically as the set of sentences true in all well-ordered

structures. They used the method of quantifier elimination, and by the

summer of 1939 they reached a clear idea of the basic formulas. Their

main aim was to prove the adequacy of certain axiom systems and to

classify the complete extensions of the theory. (Decidability would then

be a by-product.) Many technical details remained to be worked out.

The work was interrupted by World War II. Tarski escaped the German

occupation of Poland and stayed in the USA; Mostowski spent the

wartime in Poland. Each began to work out the technical details.

Unfortunately, Mostowski's notes were destroyed in Warsaw in 1944,

and Tarski's were lost in the course of his many moves. Hence the work

had to be started over from the very beginning. They published the

abstract [Mostowski & Tarski 1949] and made plans to reconstruct the

proof. This was not realized, and nothing was done beyond writing down
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the specifications of the basic formulas.
In 1964 Tarski assigned to his student John Doner the task of

working out some of the details. This was done in a rough form, and
again nothing happened until 1975. In this year Mostowski and Tarski
met and made plans to finish the paper. Unfortunately, Mostowski's
unexpected death in August 1975 upset the plans. In this situation Tarski
invited Doner to take up the work. The final result was the joint paper of
Doner, Mostowski, and Tarski, The elementary theory of well-ordering. A
metamathematical study, published in 1978 {cf. [Doner, Mostowski &
Tarski 1978]). One finds there a number of results not mentioned in
[Mostowski & Tarski 1949].

The next theory studied by Tarski by the method of quantifier
elimination was the theory of Boolean algebras. Tarski never published
either the decision procedure or a proof of the classification of complete
first-order theories of Boolean algebras. One can reconstruct the
essential elements of these from his abstract [Tarski 1949]. Tarski
announced there that he had a decision procedure for the theory of
Boolean algebras, and he used it to classify all the complete first-order
theories of Boolean algebras in terms of countably many algebraic
invariants. Each invariant was expressible as a single first-order
sentence. In the monograph [Tarski 1948] he mentions on page 1 that he
found this decision procedure in 1940.

In connection with these results one should note that already in the
paper [Tarski 1936] Tarski published the analogue of Theorem 2.3 for
atomic Boolean algebras. He even claimed that if we drop the
assumption of atomicity, then there are just countably many com-
pletions of the axioms of "the algebra of logic". He seems to mean here
that there are just countably many complete first-order theories of
Boolean algebras. But it is not clear how he could have proved this
result without having the full classification.

One should also stress that, unlike Tarski's proof, the model-
theoretic proofs of the classification we have today, e.g., those by Yu. L.
Ershov and H. J. Keisler, do not give a primitive recursive decision
procedure (though they imply the decidability of the theory of Boolean
algebras).

The problem of the decidability of the theory of Boolean algebras
was also treated by Stanislaw Jaskowski [Jaskowski 1949].

The method of quantifier elimination was also applied by Tarski to
the study of geometry. M. Presburger writes in the paper [Presburger
1930, footnote on p. 95] that in 1927-1928 Tarski proved the com-
pleteness of a set of axioms for the concept of betweenness {"b lies
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between a and c") and that of equidistance ("a is as far from b as с is
from d"). The method used by him was quantifier elimination. Tarski
himself saw this result as "a partial result tending in the same direction"
as his later theorem on real-closed fields (cf. [Tarski 1948, footnote 4]).

In conjunction with Tarski's results on decidability of geometry, one
should also mention his paper [Tarski 1959]. Using results on real-closed
fields (cf. [Tarski 1948]) that we shall discuss later, he studied various
theories of elementary geometry, defining the latter with the words: "we
regard as elementary that part of Euclidean geometry which can be
formulated and established without the help of any set-theoretical
devices" (p. 16). In particular, he considered there the system ë 2 in the
language containing predicates for the betweenness and equidistance
relations and based on the following axioms: identity, transitivity, and
connectivity for betweenness, reflexivity, identity, and transitivity for
equidistance, Pasch's axiom, Euclid's axiom, five-segment axiom,
axiom of segment construction, lower and upper dimension axioms, and
elementary continuity axiom. It is proved that the theory S2 ¡ s complete
and decidable and is not finitely axiomatizable. It is also shown that a
variant g " 2 o f ê 2 (obtained from S 2 by replacing the elementary
continuity axiom, which is in fact a scheme of axioms, by a weaker
single axiom) is decidable with respect to the set of its universal
sentences.

Another domain in which Tarski applied the method of quantifier
elimination was that of fields. In his [1931] paper Tarski wrote that he
had a complete set of axioms for the first-order theory of the reals in the
language with primitive nonlogical notions 1, <., and +. The paper
contains a sketch of the quantifier-elimination procedure for this theory
and a description of those relations on the reals that are first-order
definable in the language with the indicated primitive notions.

The most important and most famous result of Tarski for fields
concerns the theory in the richer language with 0, 1, +, -, s; as
nonlogical primitive notions. We mean here his fundamental theorem:

Theorem 2.4. To any formula q>(x¡, ..., x„J in the language with 0, 1, +,

-, s one can effectively associate: (I) a quantifier-free formula q>*(xj, . . .,

xm) in the same language and (2) a proof of the equivalence <p a q>* that

uses only the axioms for real-closed fields.

The first announcement of this result can be found in Tarski's [1930]
abstract, where he wrote:
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In order that a set of numbers A be arithmetically definable it is
necessary and sufficient that A be a union of finitely many (open or
closed) intervals with algebraic endpoints

(English translation by L. van den Dries, cf. [van den Dries 1988]). This

follows immediately from Theorem 2.4 for m = 1. No information on the

proof can be found in the abstract. One should notice that the emphasis

was put on definability (cf. our earlier remarks).

A precise formulation of the fundamental theorem and a clear

outline of its proof were given in the 1967 monograph, The Com-

pleteness of Elementary Algebra and Geometry (cf. [Tarski 1967]). This

work was written in 1939, but the war made its publication impossible

then. (The paper reached the stage of page proofs, but publication was

interrupted by wartime developments.) Its title suggests a change of

emphasis from definability to problems of completeness.

A full and detailed proof of Theorem 2.4 finally appeared in Tarski's

[1948] work, A Decision Method for Elementary Algebra and Geometry,

prepared for publication by J. С. С. McKinsey. Its title reveals a second

change of emphasis — this time from completeness to decidability. In

the "Preface" to the second edition (from 1951) Tarski wrote:

As was to be expected it reflected the specific interests which the RAND
corporation found in the results. The decision method . . . was
presented in a systematic and detailed way, thus bringing to the fore the
possibility of constructing an actual decision machine. Other, more
theoretical aspects of the problems discussed were treated less
thoroughly, and only in notes.

Note that the results in [van den Dries 1988] were formulated in terms of

the field of real numbers, but they hold generally for real-closed fields

— the latter are mentioned only in footnotes.

Real-closed fields and algebraically closed fields were discussed by

Tarski in his abstract from 1949 [Tarski 1949a]. One finds there a

description (in an algebraic language) of each class of the form: all

algebraically closed (or real-closed) fields that are models of some

complete first-order theory. Tarski remarks also that he found a decision

procedure for the theory of algebraically closed fields and says that his

classification "follow" from this procedure. A decision procedure for

real-closed fields, based on an extension of Sturm's theorem "to

arbitrary systems of algebraic equations and inequalities in many

unknowns," is also mentioned. It implies that the theory of real-closed

fields is "consistent and complete" and that any two models of this
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theory are elementarily equivalent.
As we mentioned earlier, the method of effective quantifier

elimination was used not only by Tarski, but also by his students.
Among results obtained by the latter, one should mention here Mojzesz
Presburger's result on decidability of the arithmetic of addition and
Wanda Szmielew's result on decidability of the theory of abelian
groups.

In the school year 1927/28 A. Tarski gave a course of lectures on
first-order theories. During this course he presented a set of axioms for
the theory of addition of natural numbers. It is formalized in a first-order
language with 0, S, and + as the only nonlogical primitive notions.
(Hence there is no multiplication.) Today this is called Presburger
arithmetic. Tarski formulated the problem of showing that the axioms
are complete. This was solved by Presburger in May 1928 and published
in 1930 (cf. [Presburger 1930]). The result was also presented as his
master's thesis.

The method used by Presburger was effective quantifier elimination,
of course. It was shown that one can take as a set of basic formulas the
set consisting of formulas of the form ax + a = b, ax + a &b, b < ax +
a, ax + a 3sn b, where a and b are terms in which the variable x does not
occur freely, a is a natural number, the symbol ax is an abbreviation for

X + . . 4- X

v -^ 1, the relations < and ¿ are defined in the usual way, and

a times
the relation s=n is defined as follows:

x &ny s 3z (x=y + (z + . . . + z )vy =x

In this way one obtains the completeness and the decidability of the
theory under consideration. (Notice that Presburger, like Tarski at that
time, formulated his result in terms of completeness and did not mention
decidability.)

One should also add here that similar results for the theory of the
successor operation (in the first-order language with 0 and S the only
primitive nonlogical notions) and for the theory of multiplication (in the
first-order language with only 0, S, and •) of natural numbers were
obtained by J. Herbrand (1928) and Th. Skolem (1930), respectively.
They used the method of quantifier elimination as well.

The second important result obtained in Tarski's school by the
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method of effective quantifier elimination was the result of Wanda
Szmielew on decidability of the theory of abelian groups (cf. [Szmielew
1949,1949a, 1955]). She gave a classification of all complete first-order
theories of abelian groups. This was done by describing a set of
algebraic invariants which were expressible by first-order sentences.
Those results have various consequences (noted by Szmielew, e.g., in
[Szmielew 1955]). Using them, one can obtain many examples of non-
elementarily-definable (in her terminology, non-arithmetical) classes,
e.g., the class of all finite groups, the class of all simple groups, the
class of all torsion groups, and that of all torsion-free groups. It can also
be shown that there exist two infinite groups of the same power (for
instance two denumerable groups) that are elementarily equivalent but
non-isomorphic.

3. Undecidability of theories.

As we mentioned above, the results of K. Godei, A. Church, and J.
B. Rosser on undecidability and essential undecidability shifted the
interests of logicians towards undecidability of theories. Polish logicians
followed this shift and contributed to undecidability research as well.
This section is devoted that activity. First, the work of Tarski on general
methods of establishing the (essential) undecidability of first-order
theories will be discussed. (A survey of Tarski's work on undecidable
theories is given by McNulty; cf. [McNulty 1986].) Then some
applications, due to Polish logicians, of those methods will be indicated.

3.1. General methods of proving undecidability.

The most important work in this respect is the paper by A. Tarski, A
general method in proofs of undecidability, published as Part One of the
work [Tarski, Mostowski & Robinson 1953]; cf. [Tarski 1953]). It
contains his results obtained during 1938-1939 (and summarized in the
abstract [Tarski 1949b]).

Tarski distinguishes there two types of methods for proving undecid-
ability: the direct method and the indirect one. The former was applied
by Godei, Church, and Rosser (in the above-quoted papers). It uses the
notion of recursivity of functions and relations and is based on the
condition that all recursive functions and relations are strongly
representable in the theory being considered. Hence this method may be
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applied only to theories in which a sufficient number-theoretical

apparatus can be developed.

The second method, the indirect one, "consists in reducing the

decision problem for a theory Тг to the decision problem for some other

theory T2 for which the problem has previously been solved" (cf. [Tarski

1953, 4]). This reduction can take place in two ways: to establish the

undecidability of a theory Тъ one can try to show either that (1) T\ can

be obtained from some undecidable theory T2 by deleting finitely many

axioms (and not changing the language) or that (2) some essentially

undecidable theory T2 is interpretable in 7\.

Only the second way was elaborated by Tarski. Before describing

Tarski's results, let us note here that the notion of interpretability, i.e., of

definability of the fundamental notions of one theory in another theory,

is a key ingredient in Tarski's investigations. Recall what has been said

above on Tarski's motivations behind his work on effective quantifier

elimination. It should be added that the results on undecidability of

theories were very often only one kind of consequence of Tarski's results

on definability and interpretability.

In his [7953] paper Tarski treats interpretability and relative inter-

pretability, dealing with each of them in two forms: full (i.e.,

unqualified) and weak.

Let Ti and T2 be two first-order theories. Assume that they have no

nonlogical constants in common. (By an appropriate change of symbols,

this assumption can always be fulfilled.) The theory T2 is said to be

interpretable in the theory 7^ iff we can extend Ту by adding to its

axioms some definitions of nonlogical primitive notions of T2 in such a

way that the extension turns out to be an extension of T2 as well. The

theory T2 is weakly interpretable in the theory T1 iff T2 is interpretable

in some consistent extension of Тг formalized in the same language

L(T{). The main theorem concerning undecidability is now the following

one (cf. Tarski 1953, Theorem 8]):

Theorem 3.1. Let T\ and T2 be two theories such that T2 is weakly

interpretable in Tx or in some inessential extension of Tj. // T2 is

essentially undecidable and finitely axiomatizable, then:

(i) Ti is undecidable, and so is every subtheory of 7\ that has the
same constants as 7\;

(ii) there exists a finite extension of Ту that has the same constants as
7\ and is essentially undecidable.



MODERN LOGIC 51

Recall that an extension 5 of a theory T is called inessential iff

every constant of S that does not occur in T is an individual constant

and every theorem of S is provable in S on the basis of theorems of T.

Weak interpretability and the above Theorem 3.1 widen in a con-

siderable way the range of applications of the method of interpretation

in proving the undecidability of theories. A further widening is provided

by the notions of relative interpretability and weak relative inter-

pretability. They are defined in the following way: A theory T2 is said to

be relatively interpretable (weakly relatively interpretable) in a theory

Tj iff there exists a unary predicate P that does not occur in T2 and such

that the theory T2(
p) (obtained by relativizing T2 to the predicate P) is

interpretable (weakly interpretable) in Tx in the sense explained above.

It can be shown that for any theory T and any unary predicate P that is

not a constant of T, the theory 7 v ) is essentially undecidable iff the

theory T is essentially undecidable.

It happens very often that one can easily show that a certain theory

T2, known to be essentially undecidable, is relatively interpretable (or

weakly relatively interpretable) in a given theory T\, while the proof of

interpretability of T2 in Ti is either much more difficult or impossible.

Hence the combination of (weak) relative interpretability and Theorem

3.1 is a proper strengthening of the method of interpretation.

3.2. Applications: undecidability of particular theories.

To apply the method of interpretation described above, one has to

have a finitely axiomatizable, essentially undecidable theory that is

weak enough to be interpreted even in theories quite distant from it.

Peano arithmetic and its extensions, as well as various versions of set

theory that were known in the late 1930s to be essentially undecidable,

could not play this role. Peano arithmetic is not finitely axiomatizable

and set theory is too rich.

The problem was solved by A. Mostowski, A. Tarski, and Raphael

M. Robinson. In 1939 Mostowski and Tarski constructed a finitely

axiomatizable and essentially undecidable subtheory б of the arithmetic

of natural numbers. It was closely related to the theory of non-densely

ordered rings (cf. [Mostowski & Tarski 1949a] where an analogous

theory is described). Around 1949/50 R. M. Robinson and A. Tarski

streamlined this system, and finally a simple, finitely axiomatizable,

and essentially undecidable theory Q arose. It was described in the
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paper by A. Mostowski, R. M. Robinson and A. Tarski, Undecidability
and essential undecidability in arithmetic (cf. [Mostowski, Robinson &
Tarski 1953]). Q is the first-order theory in the language with S, 0, +,
and • as nonlogical primitive notions and based on the following axioms:

Sx = Sy —* x = y,

x * 0 -» 3y (x = Sy),

x + 0 = x,

x + Sy =S(x + y),

x • 0 = 0,

x • Sy = (x • y) + x.

It is shown in [Mostowski, Robinson & Tarski 1953] that Q is
essentially undecidable and that no axiomatic subtheory of Q obtained
by removing any one of its axioms is essentially undecidable. Essential
undecidability of Q was proved by a direct method, based on ideas
found in [Tarski 1933] and [Tarski 1935a] as well as in [Godei 1931]. A
result of Tarski, stating that the diagonal function and the set of Godei
numbers of theorems of Q cannot both be strongly represented in Q, was
used. (In fact, this result holds for any consistent and axiomatizable
extension of a certain fragment of Q, denoted in [Mostowski, Robinson
& Tarski 1953] by R.) Since the diagonal function is recursive and
hence strongly representable in Q, it follows that Q is essentially
undecidable.

It is worth noticing here that the key step in the proof of the above
theorem is to show that all recursive functions and sets are strongly
representable. This is based on a characterization of recursive functions
found by Julia Robinson in 1950 {cf. [Robinson 7950]). And again the
construction of the theory Q arose by a keen insight into the semantical
notion of definability. (Strong representability is a kind of definability.)

Another example of a theory with properties similar to those of Q,
i.e., finitely axiomatizable and essentially undecidable, was constructed
by Andrzej Grzegorczyk in his [1962] paper. In fact, two theories F and
F* are given there. The theory F is a first-order theory formalized in a
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language with two individual constants 0 and S and one binary function

symbol |. Its nonlogical axioms are the following:

(Fl) Vx (0 * 5 | x),

(F3) Vx (x = 0 v 3y (x = S | y)),

(F4) Ух У у 3z {z | 0 = x & V« [Z | (5 | u) = у \ (z | и)]}.

The theory F* is formalized in the same language as F, and the set

of its nonlogical axioms consists of (F1)-(F3) plus the following

axioms:

(F*4) V/Vfl 3g {g | 0 = a & Vx (g | (S \ x) =f\ x)},

(F*5)3gVx(g\x = 0).

The theories F and F * have common extensions, but they are inde-

pendent, e.g., (F*5) is not a theorem of F and (F4) is not a theorem of

F*. Now using the fact that all recursive functions are strongly

representable in F it is proved that F is essentially undecidable. (Hence

the direct method is applied here.) The essential undecidability of F* is

proved by showing that a weak essentially undecidable set theory of R.

L. Vaught can be interpreted in it. (The theory of Vaught is obtained by

simplifying the theory considered by Szmielew and Tarski in [Szmielew

& Tarski 1952].)

After the publication of the paper [Mostowski, Robinson, & Tarski

1953], research activity concerning undecidable theories increased

sharply. There were at least three centers of research: Berkeley (under

the leadership of Tarski), Princeton (where Godei was a member of the

Institute for Advanced Study and where Church, Rosser, and Kleene had

done their pioneering work in the theory of recursive functions), and

Novosibirsk (under the leadership of A. I. Mal'cev). The reason for this

increase of interest was the fact that the method of interpretation,

together with the finitely axiomatizable and essentially undecidable

system Q, opened the way for various applications. We shall indicate

here some of these applications, restricting ourselves — according to

the subject of this paper — to those due to Polish logicians.

Some applications were mentioned already in the paper by
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Mostowski, Robinson, and Tarski (their [1953]). In particular, it was
shown there that certain theories of integers, as well as various
algebraic theories, are undecidable. More precisely, it was proved
(Theorem 12) that the arithmetic J of arbitrary integers (in the language
with + and • only) and all its subtheories (in the same language) are
undecidable and that there are finitely axiomatizable subtheories of J
that are essentially undecidable. The same holds for the theory J< of
integers formalized in the language with +, -, and <. Both theories J and
J< are defined semantically as the set of all sentences (in the indicated
languages) true in the structure ( /, +, •) (or, respectively, ( / , <, +, •)),
where / is the set of all integers and the functions and relation have their
usual meanings.

Another group of results in [Mostowski, Robinson & Tarski 1953]
concerns the undecidability of various algebraic theories. In particular,
it is proved that the elementary theories of rings, commutative rings,
integral domains, ordered rings, and ordered commutative rings, with or
without unit, are undecidable (Corollary 13) and that the elementary
theories of non-densely ordered rings and non-densely ordered
commutative rings, with or without unit, are essentially undecidable
(Theorem 14).

In 1946 A. Tarski proved the undecidability of the elementary theory
of groups — this result was announced in [Tarski 1949c] and expounded
fully in the paper Undecidability of the elementary theory of groups,
published in [Tarski, Mostowski & Robinson 1953] {cf. [Tarski 1953a]).
Using (relative) interpretability of various systems of integer arithmetic,
it is proved that the theory G of groups (formalized in the language with
• as the only nonlogical constant) and every subtheory of G (in the same
language as G) are undecidable and that there exists a finitely
axiomatizable extension of G that has the same nonlogical constant as
G and is essentially undecidable.

It should be noted here that a weaker result in the same direction
was announced by S. Jaskowski in his [1948].

A. Tarski proved {cf. [Tarski 1949d]) the undecidability of the
following theories: the theory of modular lattices, the theory of arbitrary
lattices, the theory of complemented modular lattices, and the theory of
abstract projective geometries. Again, the method of interpretation was
used. It was also noticed that the indicated theories are not essentially
undecidable, since the theories of Boolean algebras and of real
projective geometry are decidable {cf. the previous section).

A. Tarski and W. Szmielew considered the undecidability of various
weak fragments of set theory {cf. [Szmielew & Tarski 1952] and [Tarski
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1953]). In particular, they proved (by interpreting the system Q) that a
small fragment S of set theory is essentially undecidable.The theory S is
formalized in the language with two nonlogical constants: E (= being a
set) and the membership relation E, and based on the set of axioms
stating that: (i) any two sets with the same elements are identical, (ii)
there is a set with no elements, and (iii) for any two sets a and b there
is a set с consisting of those and only those elements that are elements
of a or are identical with b. From this theorem of Tarski and Szmielew it
follows that every consistent theory that is an extension of 5 is
essentially undecidable, hence all axiomatic systems of set theory (with
E and E as nonlogical constants) that are known from the literature are
essentially undecidable. The result can be extended to systems of set
theory formulated in the language with E alone.

A. Tarski and Leslaw W. Szczerba considered the undecidability of
various geometrical theories. In particular, in Tarski's [Ì959] paper it is
shown that the system &'2 of geometry, obtained from the system S2

described in the previous section by supplementing it with a small
fragment of set theory, is essentially undecidable. In thier [1979]
Szczerba and Tarski studied the undecidability of various systems of
affine geometry.

Using Tarski's general method of interpretability together with
results of Mostowski, Robinson, and Tarski on the theory Q, A.
Grzegorczyk considered in his [1951] the undecidability of some
topological theories. In particular, he proved:

(1) There exists an elementary theory T of closure algebras that is
undecidable and finitely axiomatizable and such that each theory of
closure algebras consistent with Г is undecidable. (The undecidability of
the closure algebra was also proved by another method by S. Jaákowski
in 1939, cf. [Jaskowski 1948\.)

(2) There exists an elementary theory T of the algebra of closed sets
such that T is essentially undecidable and finitely axiomatizable and
such that every Brouwerian algebra consistent with T is undecidable.
(One consequence of this theorem is the undecidability of the abstract
algebra of projective geometry and of general lattice theory — those
results were obtained by another method by Tarski, cf. [Tarski 1949d].)

(3) The algebra of bodies is undecidable.

(4) Every algebra of convexity true in a Euclidean space En, for n a
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2, is undecidable.

(5) Every semi-projective algebra true in a Euclidean space En, n a
2, is undecidable.

(I am here using the terminonogy of Grzegorczyk, cf. his [1951].) By an
algebra of convexity (similarly for a semi-projective algebra) true in a
Euclidean space, a (syntactically given) theory is meant whose axioms
are true in a Euclidean space.)

The main idea of the proofs of the above theorems is that the
arithmetic Q can be interpreted as an arithmetic of finite sets.

Applying the method of interpretability and using the undecidability
of the theory of non-densely ordered rings (see above), Antoni Janiczak
proved the undecidability of some simple theories of relations and
functions. These results were contained in his master's thesis, which was
submitted, shortly before his unexpected death in July 1951, to the
Faculty of Mathematics of the University of Warsaw. The results were
published in the paper [Janiczak 1953], prepared for print by A.
Mostowski with the assistance of A. Grzegorczyk. Janiczak proved the
undecidability of the theory of two equivalence relations, of the theory
of two equivalence relations whose intersection is the identity relation,
of the theory of one equivalence relation and one bijection, and of the
theory of one 1-1 relation and one function (many-one relation). It is
also mentioned in the paper [Janiczak 1953] that the theory of one
equivalence relation is decidable. (This can be shown by the method of
quantifier elimination.)

4. Reducibility results.

Another approach to the decidability problem {Entscheidungs-
problem) was represented by Józef Pepis (a mathematician active at the
University of Lvov, killed by the Gestapo in August 1941). He explicitly
distinguishes three versions of it (cf. [Pepis 1937]): the tautology de-
cision problem (Allgemeingiiltigkeitsproblem), the satisfiability decision
problem (Erfüllbarkeitsproblem), and the deducibility decision problem
(beweistheoretisches Entscheidungsproblem). The first problem consists
of finding a uniform mechanical method — or proving that there is no
such method — that would enable us to decide in a finite number of
steps if a given formula is a tautology. In the second case one asks if
there exists a uniform and mechanical method of deciding in a finite
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number of steps if a given formula can be realized, i.e., if it has a
model. Hence this version has a semantic character. The last case
concerns syntax — one asks here if there exists a method with the
indicated properties that would enable us to decide in a finite number of
steps if a given formula is a theorem of a given theory, i.e., if the
formula can be deduced from the theory's axioms.

Observe that so far we have been interested in and discussed mainly
the third version. Note also that all these versions are equivalent, i.e., a
positive (or negative) solution to one of them yields a positive (or
negative) solution to the others. Hence one can simply speak here about
the decidability problem. Pepis says in his [1937] that the most
convenient approach to the Entscheidungsproblem is the second one,
i.e., the decidability problem for satisfiability — and therefore he
concentrates on this approach.

On the other hand, one can distinguish between a direct approach
and an indirect one. The former consists of solving the decision problem
for a particular given theory, the latter of reducing a given general
decision problem to some particular cases of the decision problem.
Pepis was only intere sted in the second approach, and all his papers are
devoted to the study of various reducibility procedures.

He published four papers on decidability and reducibility. In all of
them the first-order predicate calculus, formalized in a language with
propositional variables and identity relation, (enger logischer
Funktionenkalkül, as Pepis used to call it) was studied from the point of
view of the reducibility of the satisfiability decision problem for one
class of formulas to the satisfiability decision problem for another class
of formulas.

The first paper was published in 1936 (c/. [Pepis 1936]). Results
contained in it were generalized in Pepis' 1937 doctoral dissertation
[Pepis 1937], submitted to the Jan Kazimierz University in Lvov. The
third paper [Pepis 1938], from 1938, contains new results on reducibility,
which generalize the results of W. Ackermann [1936] and L. Kalmár
[1936]. The fourth paper [Pepis 1938a], also from 1938, is devoted to the
introduction and discussion of a certain new, simple, and general
reduction procedure.

It is impossible to quote here all the results of Pepis. We shall only
indicate some examples. The statement: "In considering the satisfi-
ability decision problem for first-order predicate calculus, we can
restrict ourselves with out loss of generality to formulas with the given
property E" means that any formula of first-order predicate calculus is
equivalent — from the point of view of satisfiability — to a formula
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with the property E.
Pepis proved that in considering the satisfiability decision problem

for first-order predicate calculus, we can restrict ourselves without loss
of generality to the following formulas:

1. formulas in prenex normal form in which a unique 3-ary predicate
occurs and that possess a Skolem prefix of the form

Vxj Vx2 VJC3V^4 Эу! 3y2 . . . 3yn ,

2. formulas in prenex normal form with prefix

V* Vy 3z Vjq . . . V;c„

and such that the matrix contains only two (one unary and one 3-

ary) predicates,

3. formulas in prenex normal form with prefix

. • • V*„ Эу

and such that the matrix contains only two (one unary and one 3-

ary) predicates,

4. formulas in prenex normal form with prefix

and such that the matrix contains only one unary, one binary, and
one 3-ary predicate,

5. formulas of the form

Vy Vz Зх Ф(х, у , z) & V * ! V*2 • • • Vx„ sí {хь x 2 , . . . , x n )

where Ф is a predicate and the formula si contains, besides Ф, one

further (unary) predicate,

6. formulas of the form
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У у Vz Эх (R^x, у) & R2(x, у)) & V ^ V * 2 . . . Vxn M(xb x 2 . . . x n )

where R^ and R2 are predicates, the formula sí contains, besides R1

and R2, one further (unary) predicate, and the symbols Ry and R2

occur in si only negatively.

Pepis' results partially lost their meaning in light of the theorem of
Church (cf. [Church 1936]) that showed that first-order predicate
calculus is undecidable and in this way gave a negative solution to its
decision problem. Nevertheless, their value consists of the indication of
reducibility properties for various classes of formulas. On the other hand,
it seems that Pepis did not accept Church's Thesis, and he did not share
the opinion that the recursive functions comprise all effective methods.
(See his paper [Pepis 1937, 169-170].) Hence he was convinced that the
results of Church did not solve the problem definitively, and he treated
the decidability problem for predicate calculus as still open.

Reducibility methods similar to those used by J. Pepis were applied
by Stanislaw Jaskowski to study the decision problem for various mathe-
matical theories. In particular, [Jaskowski 1948] announces certain re-
ductions of the decision problem for first-order predicate calculus to
decision problems for various topological and group-theoretical
expressions. In the paper [Jaskowski 1948] Jaskowski proved that the
decision problem for predicate calculus is equivalent to the problem of
whether or not for every parameter © of the interval (-1, 1), a system of
ten ordinary differential equations given by him explicitly possesses a
real solution over the interval (—1, 1), satisfying the particular initial
condition. At the end of the paper it is stated that the negative solution
to the former (which follows from the theorem of Church) yields a
negative solution to the latter.

In the paper [Jaskowski 1956] some generalizations of Pepis's
results to algebraic structures can be found. A short proof of one of the
reducibility theorems of Pepis is also given. The algebraic structures
considered by Jaskowski are free groupoids. It is shown, in particular,
that in the case of a free groupoid 3% (1) the satisfiability problem for
the class of elementary sentences is reducible to the decision problem
for the class of first-order sentences with prefix

3E VJCJ . . . Vxn,

in S£, where £ is a unary predicate, and (2) the tautology problem for
the class of elementary sentences is reducible to the decision problem
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for the class of first-order sentences with prefix

in

5. New proofs of the incompleteness theorem.

In discussing the contributions of Polish logicians to decidability
problems, one should also mention works devoted to generalizations and
strengthenings of Gödel's classical theorems on incompleteness, as well
as scientific articles presenting results on decidability to the general
public.

We start with a paper by A. Tarski [Tarski 1939a] from 1939. An
enlarged system of logic is considered there, the enlargement being
obtained by adding rules of inference of a "non-finitary" ("non-
constructive") character. The existence of undecidable statements in
such systems is shown. The author emphasizes the part played by the
concept of truth in relation to problems of this nature. One should also
note a certain kinship between these results and the results of Rosser
[Rosser 1936].

Another author whose contribution to the classical incompleteness
theorems should be mentioned here is A. Mostowski. In his paper
[Mostowski 1949] one finds an interesting construction of a new
undecidable sentence. The main properties of this sentence are that it is
set-theoretical in nature, is stronger than Gödel's sentence, and is not
effective. Nevertheless, its content is distinctly mathematical and
intuitive. His construction does not use the arithmetization of syntax and
the diagonal process, as was the case with Godei and other authors.
Instead, Mostowski uses some set-theoretical lemmas and the Skolem-
Löwenheim theorem. Mostowski's undecidable sentence is stronger than
Gödel's in the sense that the latter ceases to be undecidable if one adds
the infinite w-rule to the system. The former does not have this property
— there is no "reasonable" rule of inference that, when added to the
system being considered, would decide it. The undecidability proof is
non-finitary — it rests on the axioms of Zermelo-Fraenkel set theory,
including the axiom of choice (which, in fact, can be eliminated from
the proof) and an axiom ensuring the existence of at least one
inaccessible cardinal. Mostowski's undecidable statement expresses a



MODERN LOGIC 61

fact concerning real numbers; more precisely, it states that an si-set is
not empty.

Another contribution of Mostowski to the domain under discussion
here is his paper [Mostowski 1961] from 1961. The notion of free formula
is introduced there. If ç? is a formula with one free numerical variable,
then cp is said to be free for a system S if for every natural number n, the
formulas cp(O) . . . cp(n) are completely independent, i.e., every
conjunction formed of some of those formulas and of the negations of
the remaining ones is consistent with 5. (Here n denotes the nth

numeral, i.e., 0 is the term 0 and n + 1 is the term Sn). It is proved that
free formulas exist for certain systems S and some of their extensions.
An even more general result is obtained: given a family of extensions of
S satisfying certain very general assumptions, there exists a formula that
is free for every extension of this family. It should be noted here that the
method of the proof applies not only to systems based on usual finitary
rules of inference, but also to systems with the infinitary «-rule.

Mostowski also wrote two important popular works devoted to the
incompleteness results. One was published in Polish in 1946 (cf.
[Mostowski 1946]), the other in English in 1952 (cf. [Mostowski 1952]).
Both enjoyed considerable popularity. The aim was to present "as
clearly and as rigorously as possible the famous theory of undecidable
sentences created by Kurt Godei in 1931" (cf. Preface, [Mostowski
1952]). Though based on classical material, they introduced some new
ideas. In particular, in the book [Mostowski 1952] the theory of 91-
definability was developed. It presents a simultaneous generalization of
the theory of definability and that of the general recursivity of functions
and relations. This theory proves to be a very convenient tool — one can
express in it, in a clear way, the assumptions that are the common
source of the various proofs of Gödel's incompleteness theorem.

To finish this section we wish to mention a paper by Andrzej
Ehrenfeucht from 1961 (cf. [Ehrenfeucht 1961]). The notion of a
separable theory is studied there, and some interrelations between
separability and essential undecidability of theories are established. To
be more precise, a theory T is said to be separable iff there exists a
recursive set X of formulas such that (1) if cp is a theorem of T, then cp
E X and (2) if -• cp is a theorem of T, then cp (£.X. It can be seen easily
that every inseparable theory is essentially undecidable, but not vice
versa. In fact, an essentially undecidable but separable theory is
constructed in the paper. It is also shown that an axiomatizable theory Г
is inseparable iff for any recursive family {Г(} of axiomatizable
consistent extensions of T, there is a closed formula cp undecidable in
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each T¿. This result establishes a relation between a theorem of
Grzegorczyk, Mostowski, and Ryll-Nardzewski {cf. [Grzegorczyk,
Mostowski & Ryll-Nardzewski 1958]), stating the inseparability of
Peano arithmetic, and the result of Mostowski {cf. [Mostowski 1961])
that shows the existence of an undecidable sentence for any recursively
enumerable family of extensions of Peano arithmetic.

6. Conclusions.

With this we come to the end of our survey of results due to Polish
logicians and devoted to decidability theory. One can easily see that
Polish mathematicians and logicians were, from the very beginning, in
the mainstream of investigations devoted to the Entscheidungsproblem.
What is more, they contributed to the development of this field in a
significant way.

Especially, Tarski and his students (and later, students of his
students) were active here. They not only solved the problem of
decidability in the case of many particular theories by establishing their
decidability or undecidability, but also developed general methods of
such proofs, which became classical and standard.

Though decidability problems also have a philosophical character
and research in this field can be described in terms of the study of the
"cognitive power" pertaining to logical means of proof, it seems that
such a philosophical motivation was not the main factor stimulating the
activity of Polish logicians. Tarski and his students were adherents of
the separation of logical research from philosophical study. For them,
logic and foundations of mathematics constituted a separate field having
its own problems and methods, a field developing independently of other
branches of mathematics and philosophy.
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