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Abstract. Although the concept of a Boolean algebra has its roots in the algebra of logic, an algebra
of logic of the nineteenth century was a scheme for symbolizing logical relationships as algebraic
ones in such a way that logical deductions could be accomplished by algebraic manipulations. Boole
wrote three works on logic, but it is in the first of these, the 1847 The Mathematical Analysis of Logic,
Being an Essay Towards a Calculus of Deductive Logic, that one finds the most careful algebraic
development. None of the three, however, dealt adequately with existential statements and, in fact,
none of Boole’s successors dealt adequately with them either, although some of the later versions of
the algebra of logic improved substantially on Boole’s treatment. Despite these improvements, during
the approximately fifty years that constituted the period in which the algebra of logic was the
mainstream of mathematical research in logic, logicians never agreed upon a single notation system.
Finally, around the turn of the century, the term “algebra of logic” began to be used in the modern
sense of Boolean algebra and, becaise of that, what Boole started in 1847 is now essentially hidden.

AMS (MOS) 1991 subject classification: 03-03, 01A55, 03G99.

What George Boole really started was not Boolean algebra but the algebra of logic.
Although the concept of a Boolean algebra has its roots in the algebra of logic, an algebra
of logic of the nineteenth century was not an algebraic structure defined in terms of
operations and axioms that the operations satisfy, Rather, an algebra of logic was a scheme
for symbolizing logical relationships as algebraic ones in such a way that logical deductions

*“Based on a paper read at the Workshop-Conference on the History of Algebra sponsored by the LHM
Institute and Southwestern University, Georgetown, Texas, 10 November 1990. A revised version was
presented at a Special Session on History of Mathematics, Washington, D.C., Meeting of the
American Mathematical Society, 17 April 1993.
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could be accomplished by algebraic manipulations. Boole’s development of such a scheme
was motivated by work in the calculus of operations in early nineteenth century Great
Britain. Boole himself discussed Duncan Gregory’s work on the calculus of operations in
his 1844 paper, “On a General Method in Analysis.” In that paper he quotes Gregory
describing the fundamental principle of the calculus of operations as follows:

“There are a number of theorems in ordinary algebra, that, though apparently
proved to be true only for symbols representing numbers, admit of a much more
extended application. Such theorems depend only on the laws of combination to
which the symbols are subject, and are therefore true for all symbols, whatever
their nature may be, which are subject to the same laws of combination.” [Boole
1844, 225}

Boole refers again to this principle three years later in the introduction to his first work on
logic, The Mathematical Analysis of Logic, Being an Essay Towards a Calculus of
Deductive Reasoning. He states:

We might justly assign it as the definitive character of a true Calculus, thatitisa
method resting upon the employment of Symbols, whose laws of combination are
known and general, and whose results admit of a consistent interpretation. That to
the existing forms of Analysis a quantitative interpretation is assigned, is the result
of the circumstances by which those forms were determined, and is not to be con-
strued into a universal condition of Analysis. It is upon the foundation of this gen-~
eral principle, that I purpose to establish the Calculus of Logic, and that I claim for
it a place among the acknowledged forms of Mathematical Analysis, regardiess that
in its object and in its instruments it must at present stand alone. [Boole 1847, 4]

In attempting to establish this calculus of reasoning, Boole defines his symbols so that
1 represents his universe, that is, “every conceivable class of objects whether actually
existing or not” {Boole 1847, 15]; upper case letters, which appear only in the text and not
in the formulas, represent generic members of classes; and lower case letters, which he
calls elective symbols, operate on classes. He states that “the symbol x operating upon any
subject comprehending individuals or classes, shall be supposed to select from that subject
all the Xs which it contains.... When no subject is expressed, we shall suppose 1 (the
Universe) to be the subject understood” [Boole 1847, 15]. Except for the universal class,
Boole uses no symbol to explicitly denote a class; the symbol x only represents a class as
an abbreviation for x1, that is to represent all Xs. The juxtaposition xy, read as multiplying x
and y, again operates on classes and only represents a class as an abbreviation for xy1, that
is x operating on y1 or, in modern terms, the intersection of x1 and y1. Interpreting addition
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(in effect) as disjoint union, Boole shows that his interpretation requires three rules, the first
two of which, distribution of multiplication over addition and commutativity of
multiplication, are rules that symbols of quantity also satisfy. The third rule, which he calls
the index (exponent) law, is x = x. He states that these rules “are sufficient for the basis of
a Calculus” [Boole 1847, 18]. Although in his two later works on logic (1848 and 1854) it
is again these three algebraic rules upon which Boole bases his development, in neither
does one find as careful an algebraic development as one does in his first work on logic.

In The Mathematical Analysis of Logic, Boole considers the four categorical propo-
sitions with which the classical syliogisms are concerned: ALL Xs ARE Ys, NO Xs ARE
Ys, SOME Xs ARE Ys, and SOME Xs ARE NOT Ys. He interprets them as statements
involving elements of classes and represents them as equations in his calculus of classes as

in the following table:
ALL XS ARE YS _
ALL YS ARE XS x=y
ALL XS ARE YS x(1-y)=0
NO XS ARE Y§ xy=0
ALLYS ARE XS vx = SOME X§
SOME XS ARE Y§ y=w W(1-x) =0
NO YS ARE X5 ¥(1-x) = SOME NOT-XS
SOMENOT-Xs AREYs | Y ="1%) vk =0
, [ v=xy v = SOME XS; OR SOME Y§
SOME XS ARE YS {OR vx = vy vx = SOME X§; vy = SOME YS
lOR wx(1-y) =0 W(1-x) = 0; (1-y) =0
[ y=x(1-y) v = SOME Xs OR SOME NOT-Ys
SOME XS ARENOTYs {ORw=¥1-y) vx = SOME X5s; ¥(1-y) = SOME NOT-Ys
LOvay=0 1-x)=0;vy=0
| [Boole 1847,25]

While the universal propositions ALL XS ARE YS and NO XS ARE YS are readily repre-
sented respectively as x (1- y) = 0 and xy = 0, the particular propositions SOME XS ARE Y$
and SOME XS ARE NOT YS require some expansion of the algebraic language. Boole ac-
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complishes this by introducing a separate elective symbol v that roughly represents the op-
eration of selecting all elements, V, of a nonempty subset of appropriate terms. For exam-
ple, when Boole represents SOME XS ARE YS as v = xy, he is selecting all elements, V, that
are members of the class of XS that are also YS. In addition to listing three interpretations
for each particular proposition, Boole introduces auxiliary conditions on the interpretation
of v as well as auxiliary equations. He calls the entries of the third column “the conditions
of final interpretation... [and notes] ...that the auxiliary equations which are given in this
column are not independent: they are implied either in the equations of the second column,
or in the condition for the interpretation of v” [Boole 1847, 24-25]. In effect, when a
logical premise is interpreted algebraically according to this scheme, the auxiliary equations
or conditions become additional premises that carry existential interpretations. For exam-
ple, the auxiliary equations for the expression SOME XS ARE NOT YS carry the existential
implications that there are Xs and there are NOT-YS. When an algebraic conclusion is to be
reinterpreted in logical terms; the auxiliary conditions, and equations, must be satisfied.

Boole algebraically derives syllogisms by eliminating the variable representing the
middle term from the two equations representing the premises. For example, the premises
ALL YS ARE XS and ALL ZS ARE Ys are translated as y(1-x) = 0 and z(1-y) = 0. Using
the usual elimination procedures for algebraic expressions, he gets z(1-x) = 0, which is
then reinterpreted as ALL ZS ARE XS. For those syllogisms involving particulars, the
manipulations are less straightforward and choosing the algebraic translation of the
premises at the outset is a crucial step. For example, in order to derive the conclusion
'SOME Zs ARE NOT XS from the premises ALL XS ARE YS and SOME ZS ARE NOT Y,
Boole translates the first premise as x(1-y) = 0 and the second as vz = W(1-y). Using
standard algebraic manipulations Boole transforms these equations into x = xy and vy =
(1-2), which give vx = vx(1-2) and, finally, vxz = 0. In order to interpret this equation as
SOME Zs ARE NOT X, Boole needs to interpret vz as SOME Zs, which he can do since it

“is implied...in the equanon vz =v(1-y) conadered as reprwenung the proposition SOME
ZS ARE NOT YS” [Boole 1847, 37]. ,

In deriving some sylloglsms, Boole uses the symbol v to solve equations representmg
universal premises for the variable representing the middle term. However, in doing so he
introduces existential premises. For example, his derivation of the syllogism Darapti —
ALL YS ARE XS, ALL YS ARE Zs, therefore SOME ZS ARE XS — involves solving the
equation representing the first premise, y(1-x) =0, to find y = vx. This adds to the premises
the assertion SOME XS ARE YS$ and carries the existential premises, there are XS and there
are YS. Because the existence of YS is necessary to ensure its validity, Darapti is no longer
considered a valid syllogism. |

Boole states later in this work that this technique could have been used in all instances
of a universal premise in a syllogism and lists general forms for the four categorical
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propositions employing the symbol v but not listing any auxiliary equation or condition.
Although the apparatus of auxiliary equations is somewhat cumbersome, it does provide a
consistent algebraic treatment of syllogistic logic. This approach, however, was abandoned
by Boole in all of his later work in favor of one that starts with the representation of both
universal and particular propositions in terms of v and suppresses explicit reference to
auxiliary conditions and equations.

After discussing the syllogism, Boole extends his 1847 system to deal with a calculus
of propositions. As before, the lower case letters that appear in the formulas are given an
operational interpretation, x representing the operation of selecting those cases for which the
proposition X is true and 1- x selecting those for which it is false. In this situation, “the
hypothetical Universe, 1, shall comprehend all conceivable cases and conjunctions of
circumstances” [Boole 1847, 49]. Although the expressive possibilities of this system are
precisely analogous to those of the calculus of classes, Boole considers only statements that
are universal in form, X IS TRUE and X IS NOT TRUE, rather than those that are particular in
form, X 1S SOMETIMES TRUE and X IS SOMETIMES NOT TRUE. He therefore does not need
to use the complicated apparatus he created to overcome the difficulties associated with the
translation of particulars. On the other hand, he does analyze a series of hypothetical
syllogisms having as premises and conclusions hypothetical propositions with conditional
forms such as IF X IS TRUE, THEN Y IS TRUE, and disjunctive forms such as EITHER X IS
TRUE OR Y IS TRUE. The conditional is translated x(1-y) = 0, while the disjunction is
translated x + y — 2xy = 1 if OR is interpreted exclusively and is translated x + y = xy = 1 if
OR is interpreted inclusively. In general, the translations and the algebraic derivations are
quite straightforward even though this approach does not produce a calculus of
propositions that would be considered successful in modern terms.! However, as he
abandoned his first approach to defining a calculus of classes so, too, did Boole abandon
his first approach to defining a calculus of propositions.

Boole ends The Mathematical Analysis of Logic by considering elective functions and
equations, that is functions and equations involving elective symbols, x, y, v, etc. In solving
elective equations he uses techniques of the algebra of quantity, such as Maclaurin’s
theorem and division, including division by 0. Although we now do not consider division
by 0 a valid algebraic process, in the first half of the nineteenth century such division was
viewed differently. For example, in an 1831 treatise published by the Society for Diffusion
of Useful Knowledge, Augustus De Morgan writes that in treating “fractions of the form
3, etc., I have followed the method adopted by several of the most esteemed continental

writers, of referring the explanation to some particular problem” [De Morgan 1831, vi]. In

1A discussion of the problems in Boole’s approach appears in [Prior 1949]. Boole’s basic ideas are re-
worked in [Hailperin 1984 1.
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particular, he writes the following in connection with what we would now call a word
problem: ’

Such an equation as x =g indicates that the supposition from which x was deduced
can never hold good. Nevertheless in the common language of algebra it is said that

a
-0
as the use of the phrase is very general, the only method is to attach a meaning
which shall not involve absurdity or confusion of ideas. The phrase used is this:

When ¢ =b, f; = 5 and is infinitely great. [De Morgan 1831, 123-124]

is infinite, This phrase is one which in its literal meaning is an absurdity.... But

For thecasea=0, De Morgan states:

It is now evident that ... any value of x whatever is an answer to the question, ...
[thus] when the value of any quantity appears in the form g that quantity admits of
an infinite number of values, and this indicates that the conditions given to deter-
mine that quantity are not sufficient. [De Morgan 1831, 126-127]

2.

a
a-b’

. . 0 . .
Since the expression — can appear in other circumstances, such as De Morgan

0
cautions his reader to establish the reason for its occurrence.

Boole encounters expressions of the form g and %when, for example, he finds the

solution of the equation ¢(xy) =0 to be

10 &00)
(10) - 6(11) ' $(00) - (01)

(1 - x). [Boole 1847, 73]

Boole deals with ooefﬁcients that have O in the denominator as follows: “the indefinite
symbol 3 must be replaced by an arbitrary elective symbol v [while] the term, which is

multiplied by a factor % (or by any numerical constant except 1) must be separately

equated to 0, and will indicate the existence of a subsidiary Proposition” [Boole 1847, 74].
Although in his subsequent work Boole abandons the use of auxiliary conditions and
equations and his initial approach to the calculus of proposition, he does not abandon the

techniques that caused the introduction of the symbols g and % .
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Boole’s second work on logic, “The Calculus of Logic,” was published a year after
The Mathematical Analysis of Logic. Although this paper presents the calculus of classes
very differently from the earlier essay, there are some similarities to the later portions of
that work. Specifically, he represents all four categorical propositions by equations that
involve the symbol v and once again considers the solutions of elective equations.
Representing ALL XS ARE YS and NO XS ARE YS as y = wx and y = (1= x), he derives
the equations x(1- y) = 0 and xy = 0, calling them subsidiary relations. Although the vast
majority of the paper deals with categorical propositions, Boole does note that he can
transfer his results on categorical propositions to hypothetical propositions and deduce “the
one from the other by mere analytic process” [Boole 1848, 197].

It is in this 1848 paper that Boole first makes it clear that it is very important to him that
his calculus is based on the single relation of equality. Other relational symbols, or copula
as they were called, were used by logicians of the time; Boole, however, specifically
rejected the suggestion, made to him in 1848, that he use the copula > and thus avoid
using the symbol v [Smith 7983, 32]. A hint of Boole's reasoning appears in his discussion
of why he represents NO YS ARE XS in such a way as to make the predicate rather than the
subject negative.

There are but two ways in which the proposition, NO XS ARE YS, can be
understood. 1st, In the sense of ALL XS ARE NOT-Y. 2nd, In the sense of IT IS NOT
TRUE THAT ANY XS ARE Y8, i.e. the proposition SOME XS ARE Y8 is false. The
former of these is a single categorical proposition. The latter is an assertion
respecting a proposition, and its expression belongs to a distinct part of the elective
system. It appears to me that it is the latter sense, which is really adopted by those
who refer the negative, not, to the copula. To refer it to the predicate is not a useless
refinement, but a necessary step, in order to make the proposition truly a relazion
between classes. [Boole 1848, 187n}

The Laws of Thought, which appeared in 1854, again addresses both categorical and
hypothetical propositions, this time referring to the categorical propositions, ones that
express relations between things, as primary, and to the hypothetical propositions, ones that
express relations between propositions, as secondary. In this work, Boole is once again
developing a calculus in which to symbolically represent the laws of reasoning; he
continues to use only one copula and continues to represent all propositions by equations
that involve v. Although the development of the calculus is similar to his 1848 paper, this
book is much longer and, in addition to dealing with logic, Boole applies his method of
logic to probability. |

It is also in The Laws of Thought that one first sees a suggestion of the theory of
Boolean algebras.
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Instead of determining the measure of formal agreement of the symbols of Logic
with those of Number generally, it is more immediately suggested to us to compare
them with symbols of quantity admirting only of the values 0 and 1. Let us
conceive, then, of an Algebra in which the symbols x, y, z, &c. admit indifferently
of the values 0 and 1, and of these values alone. The laws, the axioms, and the
processes of such an Algebra will be identical in their whole extent with the laws,
the axioms, and the processes of an Algebra of Logic. Difference of interpretation
will alone divide them. [Boole 1854, 37-38]

The formalistic tone of this paragraph is reinforced by the following later extract from the
same work:

The formal processes of reasoning depend only upon the laws of the symbols, and
not upon the nature of their interpretation... We may in fact lay aside the logical
interpretation of the symbols in the given equation; convert them into quantitative
symbols, susceptible only of the values O and 1, perform upon them as such all the
requisite processes of solution; and finally restore to them their logical inter-
pretation. [Boole 1854, 69-70}

Despite these statements, even at this time Boole is not engaged either in constructing a
Boolean algebra or in constructing a formal theory of Boolean algebras and applying it to
the calculus of sets and propositions.? His manipulations continue to involve division,
including division by O, and, in particular, the expressionb(2 is still very common. Boole’s

statement regarding (9) makes it clear that his work is not axiomatic in the current sense

: | . 0 :
and, futhermore, it echoes De Morgan’s caution that; can occur for many different

reasons in the algebra of quantity: “Its actual interpretation...as an indefinite class symbol,
cannot, I conceive, except upon the ground of analogy, be deduced from its arithmetical
properties, but must be established experimentally” [Boole 1854, 91-92]. As division
occurs frequently in the chapter in which Boole reconsiders the rules of syllogism, this
treatment is in many ways less satisfactory than the one he had given seven years earlier.
Boole’s aim in developing his system in 1847 had been to extend to logic what he be-
lieved to be the fundamental principle of algebra, i.e. “that the validity of the processes of
analysis does not depend upon the interpretation of the symbols which employed, but
solely upon the laws of their combination” [Boole 1847, 3]. By 1854 he claimed he was

2 [Hailperin 1981] considers in modern day terminology what Boole meant by his algebra of 0 and 1.
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“exhibitfing] Logic, in its practical aspect, as a system of processes carried on by the aid of
symbols having a definite interpretation, and subject to laws founded upon that interpreta-
tion alone. But at the same time they exhibit those laws as identical in form with the laws
of the general symbols of algebra, with this single addition, viz., that the symbols of Logic
are further subject to a special law...to which the symbols of quantity, as such, are not sub-
ject” [Boole 1854, 6].

The logicians who followed Boole also relied heavily on the interpretations in which
they were working. In general their aim was to find better sets of symbols and rules so that
the formal manipulations on these symbols were clearer, yet produced significant logical
results. Some of them did not use the symbols of the algebra of quantity; some explicitly
stated their axioms and some did not. However, even when they did state their axioms,
their work, like Boole’s, tended to contain manipulations that relied for justification on the
intended application to logic rather than on any previously stated axiomatic foundation.
Thus in the development and presentation of these algebras of logic, there was an ongoing
interaction between the formulation of the calculus and its intended interpretation that is
absent in the more modern formalistic view. ’

In developing a multiplicity of algebras of logic, Boole’s successors were strongly
motivated by the difficulty of representing particular statements. None of these systems
was so successful as to command widespread adoption. In fact, John Venn commenting
on the situation of about 1880 wrote:

Particular propositions, in their common acceptation, are of a somewhat temporary
and unscientific character. Science secks for the universal, and will not be fully
satisfied until it has attained it. Indefiniteness indeed in respect of the predicate
cannot, or need not, always be avoided; but the indefiniteness of the subject, which
is the essential characteristic of the particular proposition, mostly can and should be
avoided. For we can very often succeed at last in determining the SOME; so that
instead of saying vaguely that SOME A IS B, we can put it more accurately by
stating that THE A WHICH IS C IS B, when of course the proposition becomes

- universal. Propositions which resist such treatment and remain incurably particular
are comparatively rare: their hope and aim is to be treated statistically, and so to be
admitted into the theory of Probability. [Venn 1881, 169-170]

Venn’s remarks were intended on a purely philosophical level and were not reflected in any
special way in his own presentation of the algebra of logic. His views on particulars differ
greatly from those of Boole: Venn wanted to give particular statements a universal inter-
pretation, while Boole, in his later works, gave his universal statements an existential im-
port. Moreover, Venn’s suggestion that a particular statement should be replaced by a ref-
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erence to a specific object that has the required property bears some resemblance to the
modern constructivist development of mathematics.

Although the algebra of logic was never entirely successful in dealing with particulars,
some of the later versions improved substantially on Boole’s treatment. One of the more
successful systems was developed by Christine Ladd, a student of C. S. Peirce, and was
published in 1883, In her paper, “On the Algebra of Logic,” Ladd prefaces the description
of her system with some analysis of the systems of several of her predecessors. The
following comments show a much less rigid view than Boole’s of the relationship between
the algebra of logic and the algebra of quantity:

The addition of logic has small connection with the addition of mathematics, and
the multiplication has no connection at all with the process whose name it has
taken. The object in borrowing the words and the signs is to utilize the familiarity -
which one has already acquired with processes which obey somewhat similar
laws.... The essential processes of symbolic logic are either addition or multipli-
cation (for greater convenience, both are used), and negation. The latter process
renders any inverse processes which might correspond to subtraction and division
quite unnecessary, and it is only on account of a supposed resemblance between the
logical and the mathematical processes that an attempt to introduce them has been
made. [Ladd 7883, 18-19]

Even though Ladd and others were less insistent than Boole on maintaining a strict
analogy between the algebra of logic and the algebra of quantity, their analyses blur some
crucial distinctions. For example, the logic of sets and propositions are often not dis-
tinguished from one another. At a more fundamental level, the algebra of logic never
achieved separation between syntax and semantics, that is, between the rules of formation
of formulas and their manipulation on the one hand, and the interpretation of the symbols
on the other. However, this distinction was hinted at by Augustus De Morgan who, in
1839, describes algebra of quantity as follows:

Algebra now consists of two parts, the technical, and the logical. Technical algebra
is the art of using symbols under regulations which, when this part of the subject is
considered independenﬂy of the other, are prescribed as the definitions of the
symbols. Logical algebra is the science which investigates the method of giving
meaning to the primary symbols, and of interpreting all subsequent symbolic
results. [De Morgan 1841, 173}

George Peacock, whom De Morgan credits with first making the distinction between these
two parts of algebra, writes of arithmetical and symbolical algebra in the Preface to his
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1830 Treatise on Algebra. For Peacock, symbols are restricted in arithmetical algebra so
that, for example, one does not subtract a larger number from a smaller. In symbolical
algebra, the operations coincide with those of arithmetical algebra but the symbols are not
restricted. Although it is clear that De Morgan was also thinking of a restriction on
symbols in technical algebra, his logical algebra is not merely an unrestricted version of
technical algebra. One can see this again when De Morgan comments on his names for the
two parts of algebra: he does not like his term logical algebra, but he likes even less
Peacock’s term symbolical because it “does not distinguish the use of symbols from the
explanation of symbols” [De Morgan /841,177n]. While De Morgan’s description of this
difference is not as polished as that which we now make between syntax and semantics, it
is a distinction not made by Boole and his followers.

As we mentioned above, Boole placed great emphasis on using no relational symbol
other than equality, and specifically rejected the use of a copula for the relation of in-
equality. On the other hand, some of the systems developed by Boole’s successors use
such copul®. Ladd writes about them:

Algebras of Logic may be divided into two classes, according as they assign the
expression of the “quantity” of propositions to the copula or to the subject.
Algebras of the latter class have been developed with one copula only,— the sign
of equality; for an algebra of the former class two copulas are necessary, — one
universal and one particular. [Ladd 1883, 23-24]

The word “quantity” in the above quotation refers to the distinction between universal and
existential statements, that is between statements that involve the concept all and the con-
cept some.

Ladd accompanies her discussion of copule with a chart displaying some of the variety
of notations for propositional forms used by her predecessors [Ladd 1883, 24]. Her brief
discussion of symbols refers to only five different forms and gives only a small glance at
the multiplicity of notations in use in the algebra of logic by 1882. The use of many
different notations reflects not only the then current question of whether the quantity of a
proposition should be expressed by the subject or the copula, but also reflects a variety of
judgments as to which relationships should be regarded as fundamental. Two years before
Ladd published her essay, John Venn’s book, Symbolic Logic, was published and includes
twenty-five different symbolic expressions for NO § IS P, reflecting not merely differing
notational preferences but, in many cases, actual conceptual differences [Venn 1881, 407].
By 1894, when Venn published the second edition of Symbolic Logic, he was able to cite
eight more, although only four had been introduced after the publication of the first edition
[Venn 1894, 481]. Of the total, more than one third predate Boole’s earliest contribution.
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These lists appear in the “Historical Notes™ section of Venn’s books along with detailed
descriptions of the symbols.

Boole’s system i the first systematic development of an algebra of logic, and Ladd’s is
one of the later ones. However, the work that is generally considered to have presented the
algebra of logic in its most mature form is Ernst Schroder’s three volume Vorlesungen
iiber die Algebra der Logik, published between 1890 and 1905. Volume one of the Vor-
lesungen develops operations inverse to logical addition and multiplication, and more than
one copula is used in order to derive many of Boole’s results without recourse to the kind
of ad hoc manipulation to which Boole frequently resorted. The two later volumes
introduce a theory of quantifiers and relations that, like some of Schroder’s earlier work, is
based on ideas of C. S. Peirce.

Although the work of both Peirce and Schroder has some elements in common with
Gottlob Frege’s Begriffsschrifi, which appeared in 1879, their work remained within the
Boolean tradition of devising essentially algebraic symbolism for logical relationships. In
fact, in 1880 Schroder wrote a lengthy review of the Begriffsschrift in which he criticizes
Frege for ignoring the Boolean tradition and attempts to reformulate Frege’s ideas within
that algebraic tradition.

Both Peirce and Schrdder, however, had a more sophisticated view than Boole of what
axioms are, and both recognized that the algebra of logic is not really an axiomatic system.
In a paper published in 1870, Peirce explains his views on the nature of the algebra of logic
as follows:

If the question is asked, What are the axiomatic principles of this branch of logic,
not deducible from others? I reply that whatever rank is assigned to the laws of
contradiction and excluded middle belongs equally to the interpretations of [various
equations]... But these axioms are mere substitutes for definitions of the universal
logical relations, and so far as these can be defined, all axioms may be dispensed
with. The fundamental principles of formal logic are not properly axioms, but
definitions and divisions; and the only facts which it contains relate to the identity of
the conceptions resulting from those processes with certain familiar ones. [Peirce
1870, 378]

Essentially the same view is expressed by Schroder in 1877 in his first work in logic:

Samtliche Theoreme unserer Disciplin sind intuitiv; sie erscheinen, sobald sie zum
Bewusstsein gebracht werden, als unmittelbar einleuchtend, und deshalb konnten
auch die als Axiome hier angefithrten Behauptungen mit einer gewissen Berechti-
gung als Folgerungen hingestellt werden, welche durch die Definitionen unmittel-
bar mit gegeben seien. [All the theorems of our discipline are intuitive; as soon as
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they are noted they appear immediately obvious, and therefore the statements cited
here as axioms could, with a certain justification, also be presented as conclusions
based directly on the definitions.} [Schroder 1877, 4]

‘Although the symbolical representation of logic has a long history, the period in which
the algebra of logic constituted the mainstream of mathematical research in logic lasted
only from mid-nineteenth century, that is from the time of Boole’s work, until the turn of
the century. During these approximately fifty years, those who were working in the algebra
of logic concerned themselves with the solution of 2 number of logical problems, some of
which, such as the problem of eliminating a variable from an algebraic expression or set of
expressions, had analogues in the algebra of quantity. Although the solution of such
problems was important to those who worked in the algebra of logic, the fact that the
subject never achieved notational stability has greatly influenced how we view it.

Although Schrdoder’s algebraic notation remained in use during the early twentieth
century, the work of the logicians who used it was not directed to the goal, characteristic of
the algebra of logic, of interpreting logical relationships in terms of algebraic ones.
Nonetheless, in 1915 Leopold Lowenheim used results and techniques of the Peirce-
Schroder logic of relatives to prove the model-theoretic result that bears his name.

Around the turn of the century, Alfred North Whitehead (1898) and E. V. Huntington
(1904) used the expression “algebra of logic” to denote the formal calculus that can be
abstracted from the propositional calculus and naive set theory and that forms the basis of
the theory of Boolean algebras. The term “Boolean algebra” was not used in this sense
until HM. Sheffer coined the term in his 1913 paper, “A Set of Five Independent
Postulates for Boolean Algebras, with Application to Logical Constants.” Although the
term had been used by C. S. Peirce around 1880, Peirce used the term to refer to
techniques of symbol manipulation, not to algebraic structures. In fact, Peirce used the
terms “Boolian [sic] algebra” and “Boolian calculus” interchangeably in the same way that
Boole used the terms “algebra of logic” and “calculus of logic” interchangeably. In 1933,
Huntington adopted the more modern terminology, Boolean algebra, even though the title
of his paper, “New Sets of Postulates for the Algebra of Logic,” still contains the older
terminology. This changing meaning and interchangeable use of the two expressions,
“algebra of logic” and “Boolean algebra,” has tended to lead to an over-simplified
historical picture of the nineteenth century algebra of logic, which was both less abstract
and more ambitious than the theory of Boolean algebras. :
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