The Review of Modern Logic
Volume 9 Numbers 3 & 4 (December 2003-August 2004) [Issue 30], pp. 181-190.

Egon Borger, Erich Gradel, Yuri Gurevich

The Classical Decision Problem

Berlin/Heidelberg/New York: Springer-Verlag (Universitext), 2001
x + 482 pp. ISBN 3540423249

REVIEW

R. GREGORY TAYLOR

The Classical Decision Problem first appeared in a 1997 hard-cover
edition within the Springer series Perspectives in Mathematical Logic.
The book under review is a soft-cover reissue within Springer’s Univer-
sitext series.

The decision problem for first-order predicate logic—Hilbert’s
Entscheidungsproblem—is this: Does there exist an effective proce-
dure for deciding whether an arbitrary first-order sentence S is logi-
cally valid or, alternatively, whether S is satisfiable. These alternative
formulations are equivalent given that S is valid if and only if =5 is
unsatisfiable. Assuming that effectiveness is captured by the techni-
cal notion of partial recursive function (the Church-Turing Thesis), it
was shown in the mid-1930s by Church and also by Turing that there
is no effective decision procedure of the desired sort (Church-Turing
Theorem). In light of this negative result, one proceeds to ask about
subclasses C' of the collection of all first-order sentences, although, in
general, a procedure for deciding validity for sentences in ' might ex-
ist in the absence of a procedure for satisfiability for C'. Similarly,
demonstrating that there is no decision procedure for validity for C' is
compatible with the existence of a decision procedure for satisfiabil-
ity for C'. In any case, the Entscheidungsproblem is now recast as a
classification problem: Which subclasses are decidable for satisfiability
(validity) and which are undecidable?

This classification problem is now completed—at least if one consid-
ers standard subclasses only, i.e., those determined by quantifier prefix
and by which predicate and function symbols may occur. After an in-
troductory first chapter, Part I of the book, comprising Chapters 2-5,
is concerned with (minimal) undecidable subclasses, where “undecid-
able” tends to mean “no decision procedure for satisfiability.” Part II
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(Chapters 6-8) takes up the search for (maximal) decidable subclasses
and has the complexity of decision procedures as a major focus. We
summarize each of Chapters 2-8 below.

Chapter 2, entitled simply “Reductions,” presents what is essentially
Turing’s proof of the unsolvability of the Entscheidungsproblem, which
then serves as a model for the various undecidability proofs appearing
later in Part I. The general pattern of such proofs is as follows.

Step 1. Choose a known undecidable problem P.

Step 2. Present a technique such that, given an arbitrary instance 7w of
P, one can effectively construct a reduction sentence Sy.

Step 3. Prove that 7 has a positive solution just in case S is satisfiable
(or valid or contradictory).

Step 4. Conclude that the satisfiability (or validity or unsatisfiability)
problem for the class of reduction sentences .S is undecidable.

In the case of Turing’s proof, Steps (1)—(4) above become

Step 1. Consider the Halting Problem for Turing Machines, already
known to be unsolvable assuming the Church-Turing Thesis.

Step 2'. Present an effective technique such that, given arbitrary Turing
machine M, one constructs a first-order reduction sentence py;.

Step 3'. Demonstrate that M, starting in standard initial configuration,
halts just in case pjs is contradictory.

Step 4'. Conclude that the satisfiability problem for the class
{pm|M is a Turing machine} is undecidable, from which the
undecidability of the Entscheidungsproblem follows immediately.

An exercise on page 23 points the reader in the direction of an alter-
native proof from the undecidability of the general word problem for
Thue processes. Chapter 2 also introduces one of the overall themes
of the book, namely, that the combinatorial structure of the reduced
decision problem P is mirrored in the syntactic features of the class of
reduction sentences.

Showing a class to be undecidable frequently involves showing it to
be a so-called reduction class. Suppose that, for class C' of sentences,
we possess an algorithm (or reduction procedure) A that transforms an
arbitrary first-order sentence S into sentence A(S) in C' such that S is
satisfiable (valid) if and only if A(S) is. Then C'is said to be a reduction
class for satisfiability (validity). (Note that a reduction procedure for
satisfiability yields a reduction procedure for validity, thus restoring
duality.) Intuitively, deciding satisfiability (validity) for such a class C'
is as hard as deciding it in general. So reduction classes are undecidable
classes of maximal computational complexity in this sense.
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The first result considered concerning reduction classes, due to Aan-
deraa and Borger, concerns the class IvIvY N KROM N HORN with
binary predicate symbols only, where the utilized reduction sentence
Sy for first-order 7 is a logical description of the behavior of a certain
deterministic two-register machine M for input some numeric encoding
of . “IVIAV” speaks to the prefix of any member, assumed to be in
prenex normal form, of the reduction class and “KROM N HORN” to
its quantifier-free matrix. This result in turn yields a proof of a propo-
sition, attributed to Kreisel, stating that there exists no recursive “in-
terpolation function.” (Such a function, given first-order formulae
and ¢ with equality where ¢ = ¢, returns an interpolant for ¢ and ¢.)
The formalization of instructions of two-register machines involved in
the Aanderaa-Borger Theorem (Theorem 2.1.15) plays a role at later
points in the text, e.g., in the Chapter 5 proof of the Lewis—Goldfarb
result mentioned below.

Trakhtenbrot’s Theorem, which says that Fin-sat(FO), Non-sat(FO),
Inf-axioms(FO) are pairwise recursively inseparable sets of first-order
sentences, is shown to follow from the recursive inseparability of two
sets of Turing machines related to the Halting Problem. (An infinity
axiom is a satisfiable first-order sentence having no finite models.) This
transfer of recursive inseparability is effected by a certain reduction
property involving a reduction sentence as in (2'). So the proof method
here is a variant of Turing’s method of logical description. On page 17,
Trakhtenbrot’s Theorem is described as the analogue of Church-Turing
for finite satisfiability, which makes sense given that X,Y recursively
inseparable implies X, Y not recursive. The more usual presentation
of Trakhtenbrot’s Theorem—no decision procedure for Fin-sat(FO)—is
thus implicit in the page 17 remark. The logical descriptions chosen in
the proof of Trakhtenbrot’s Theorem do not fix their models up to iso-
morphism. For example, no part of the description of Turing machines
states that, at any time ¢, the machine described is in one and only one
state at ¢t or that one and only one tape square is being scanned. It
is the authors’ contention that these incomplete descriptions facilitate
simpler proofs and smoother complexity correlations between machine
computations and simulating logical deductions.

The concept of a conservative reduction is introduced, whereby one
intends a mapping that (two-way) preserves both satisfiability as well
as finite satisfiability. dvdv N KROM N HORN and V33V N KROM N
HORN with binary predicate symbols only are mentioned as examples
of conservative reduction classes. The relationship between logical ex-
pressability and computational complexity is investigated beginning in



184 R. GREGORY TAYLOR

62.2.1. Using sentences of propositional logic to describe Turing ma-
chine computations, the authors give a quick proof of the Cook-Levin
Theorem.

Trakhtenbrot’s Theorem quite naturally leads one to ask after the
cardinalities of the models of the various sentences ¢ of Fin-sat(FO).
The class of these natural numbers is the spectrum of 1. Since any
model of a second-order (SO) sentence having no nonlogical vocabu-
lary is just a domain, there is a natural correspondence between the
spectra of first-order sentences and the class of finite models of exis-
tential second-order sentences in which no nonlogical predicate con-
stants occur. So such a class of models, assumed closed under isomor-
phism, may itself be regarded as a spectrum. By permitting nonlogical
predicate constants to occur in existential second-order sentences, one
obtains the notion of generalized spectrum. The celebrated theorem
of Fagin is proved, stating that generalized spectra are precisely the
(isomorphism-closed) classes K of finite structures of nonempty sig-
nature that are accepted by some nondeterministic Turing machine in
time polynomially bounded in the size of their respective domains. Al-
ternatively, ¥1-SO is said to capture NP. Complexity class P has been
shown to be captured in a weaker sense by various classes of sentences
(logics). Namely, if one restricts attention to classes K of successor
structures, then SO-HORN and X1-HORN both capture P. This is also
true of least-fixed-point logic FO + LFP for ordered structures.

The last part of Chapter 2 is given over to a justification of the
standard classification scheme, in terms of quantifier prefixes and non-
logical vocabulary, used to organize the nondenumerable realm of sub-
classes of first-order sentences. Generalized prefix sets are collections
of words over the four-letter alphabet {V,3,v*,3*}. Such a set is
closed (downward) if it contains every (not necessarily contiguous) sub-
string of any member. It then turns out that any nontrivial (“does
not contain every prefix”) closed prefix set—set of strings over two-
letter alphabet {V,3}—is describable as a finite union of maximal
generalized prefix sets. For example, the downward closure II of the
prefix set II = {V"I™V 0 < n < m < k}U {3W"F|0 < n <
m < k} is just (V*3*V*) U (3*V*3*). The entire realm of closed pre-
fix sets is well partial ordered by inclusion. In turn, the entire realm
of (not necessarily closed) prefix sets is well quasi-ordered by the (non-
antisymmetric) domination relation whereby I, dominates II; pro-
vided that II; C II,. The authors go on to describe a well-quasi-
ordering of the sequences used to characterize the range of nonlogical
predicate and function symbols occurring within classes of first-order
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sentences. We content ourselves with two examples of the notation
used to denote standard classes. First, take the (undecidable) Gold-
farb class [3*v?3, (0,1), (0)]=, discussed below. Here 3*V*3 means that
the prefix of any sentence in the class, assumed to be in prenex normal
form, consists of arbitrarily many existential quantifiers followed by at
most two universal quantifiers followed possibly by a single existential
quantifier. Then (0, 1) indicates that the matrix can contain no occur-
rences of monadic predicate symbols but may have occurrences of (up
to) one dyadic predicate symbol (but no n-adic predicate symbols for
n > 2). Finally, (0) means no function symbols at all. The subscript
indicates that occurrences of the equality predicate are allowed. Sen-
tences in the (decidable) Ramsey class without identity [3*V*, all, (0)],
or just [3*V*, all], may involve occurrences of arbitrarily many n-adic
predicate symbols for any n > 1, and occurrences of = are not permit-
ted.

The two well-quasi-orderings of the last paragraph together yield
a well-quasi-ordering of the realm of prefix-vocabulary classes used
throughout the book. In summary, Gurevich’s Classifiability Theo-
rem asserts that if downward closed collection ® of prefix—vocabulary
classes is closed under finite union, then 2 and ¢ have other finiteness
properties as well. For instance, suppose 2 is the collection of prefix—
vocabulary classes with satisfiability problem in PSPACE. Then D¢ is
the upward closure under the well-quasi-ordering of a finite collection
of minimal (downward) closed classes.

Chapter 3 takes up the satisfiability problem for prefix—vocabulary
classes of sentences of pure predicate logic—without = or function
symbols. Certain classical solvable cases were identified very early
on, namely, Lowenheim’s class [all, (w)] of relational monadic sen-
tences—(w) for “arbitrarily many”, Ackermann’s [3*V3*, all], [3*V*, all]
of Bernays and Schénfinkel, and [3*V23* all], shown decidable by each
of Godel, Kalméar, and Schiitte. (These decidable classes, the last of
which alone is maximal, are covered in Chapter 6.) A generation later
other classes of sentences of pure predicate logic were shown to be un-
decidable. Regarding the latter, the Classifiability Theorem predicts
that there will be just finitely many minimal undecidable (downward)
closed prefix-vocabulary classes—let © in the preceding paragraph be
the collection of all decidable prefix—vocabulary classes. There turn out
to be nine such minimal undecidable classes. Two of them—the Kahr
class [V3V, (w, 1)] and the Gurevich class [V3V3*, (0, 1)]—are central to
the story. First, a certain domino (tiling) problem, known to be unde-
cidable, is described and shown to be reducible to (finite) satisfiability
for Kahr’s class. Subsequently, Kahr’s class is shown reducible to each
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of five other prefix-vocabulary classes. Finally, Kahr is reducible to
Gurevich, in turn reducible to the remaining two classes of the nine.
Each reduction is conservative, which means that finite satisfiability
for each of the nine prefix—vocabulary classes is undecidable as well.
(In an appendix by C. Allauzen and B. Durand, new proofs of the
undecidability of several domino problems are presented.)

In Chapter 4 the authors survey the situation with regard to standard
classes of sentences of full predicate logic—either with functions but
without =, with = but without functions, or with both. Again, the hy-
pothesis of the Classifiability Theorem is met so that a finite classifica-
tion must be expected—this time there are seven minimal undecidable
prefix-vocabulary classes. First, the Halting Problem for Two-Register
Machines is reduced to (the Herbrand subclass of) [V, (0), (2)]=, in its
turn reduced to (the Herbrand subclass of) [V, (0), (0,1)]=. This takes
care of classes with both functions and =. Next, [V3V, (0,w)], shown
undecidable in Chapter 3, is reduced first to two minimal classes with
functions but without =. These results are all due to Gurevich. Com-
pleting the classification was left to Goldfarb, who in the early 1980s
showed that [V3V, (0, w)] is reducible, this time, to three minimal classes
with = but without functions. The most challenging of these reduc-
tions involves the class [V*3, (w,1)]=. The interesting history of this
reduction class, long assumed decidable due to an erroneous remark in
a 1933 paper of Godel, is reviewed briefly in the historical section at
the end of the chapter. All the reductions mentioned here are conser-
vative so that the classification with regard to satisfiability in the finite
coincides with that of satisfiability generally.

Chapter 5, entitled “Other Undecidable Cases,” surveys results con-
cerning the (finite) satisfiability problem for classes of prenex first-
order sentences characterized, nonstandardly, by the structure of their
quantifier-free matrices. A first section covers Krom and Horn struc-
ture. (Any conjunct within the matrix of a Krom formula, assumed to
be in prenex normal form, is a disjunction of at most two literals. Any
conjunct within the matrix of a Horn formula is a disjunction involving
at most a single positive literal.) In the proof of Theorem 5.1.2, five
prefix classes with Krom matrix and without functions or equality are
shown to be undecidable—in fact to be reduction classes. In particular,
using two distinct ways of modeling machine configurations as atomic
formula, (a version of) the Halting Problem for Two-Register Machines
is reduced to the Lewis classes [v23V, (0,0,w)] N KROM N HORN and
[Vav2, (0,0, w)] N KROM N HORN, respectively. By the fact that the
Halting Problem is complete for r.e. sets and given that, by Godel
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Completeness, the valid formulae of first-order logic themselves consti-
tute an r.e. set, we have that the Lewis classes are reduction classes for
satisfiability.

Section 5.2 is a brief survey of proof techniques and results concerning
classes determined by restrictions upon the number of occurring atomic
subformula. For example, the authors present a proof of the result of
Lewis and Goldfarb stating that the class of sentences with prefix in
V3av* and matrix of the form 7 Amy = m3 ATy — 74 A7 is a reduction
class, where each of 7,..., 75 is an atomic formula involving one and
the same k-adic predicate symbol for constant k& fixed by the size of
the instruction set of some assumed universal two-register machine.
A corollary (Exercise 5.2.7) asserts the undecidability of the class of
equality- and function-free V*3-sentences whose matrices are of the
form (m VoV as) A (—my V —ms) A (-1 V 7g), where each of 7y, ..., 7g
is atomic. The next subsection covers Wirsing’s proof that the subclass
of [V%,(0), (0,1)]= comprising all and only sentences with matrices of
the form s = tAu # v is a conservative reduction class. A related result
establishes the undecidability of the subclass of [v¢,(0,0,0,1), (2,1)]N
KROMNHORN with matrices conjoining just one atomic formula, one
negated atomic formula, and one disjunction of the form —pV o, where
p and o are both atomic.

Chapter 6 brings us back to standard classes. It tells the complete
story with respect to those that are decidable and have the so-called
Finite Model Property—any satisfiable sentence in the class has a finite
model. (In older literature such classes are also said to be finitely con-
trollable.) The authors begin by setting to one side the essentially finite
classes, viz., those involving a finite set of possible prefixes (no 3* or
V*), a finite collection of predicate symbols, and no function symbols.
If a linear ordering of CNFs of possible matrices (up to relettering) is
assumed, then each sentence in the class can be identified with a sen-
tence with identical prefix and with that one among equivalent CNFs
that is minimal in the ordering. But then there are only finitely many
cases to consider, and we can assume that a Turing machine “decider”
M possesses all the answers (table lookup). Note that, given the pecu-
liar manner in which decision problems are framed, we need not know
what the table actually is in the case of a particular essentially finite
class in order to assert decidability. Also, worst case, M consumes
space logarithmic in the length of its input sentence.

Most of Chapter 6 is taken up with showing that each of (1)—(5)
below is decidable for (finite) satisfiability.

(1) Ramsey class [3*V*, all, (0)]=
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(2) Godel-Kalmar-Schiitte class [3*V23*, all, (0)]
(3) Lob—Gurevich class [all, (w), (w)]

(4) Gurevich-Maslov-Orevkov class [3*V3*, all, all]
(5) Gurevich class [3*, all, all]-

Since any recursive class C' with the Finite Model Property is such that
Sat(C') is then recursive and since each of (1)—(5) is obviously recursive,
we need only see that each of (1)—(5) has the Finite Model Property,
which is what Chapter 6 is about.

As for complexity, one can usually extract, from the proof that C'
has the Finite Model Property, a bound m on the size of a satis-
fying model of S € C, which in turn yields a bound on nondeter-
ministic computation time that is polynomial in (number of occur-
ring universal quantifiers, model-size bound m and) sentence length
n. For example, the proof of Theorem 6.2.43 states that member-
ship in Sat([3*V*3*, all, (0)]) (cf. (2)) is decidable nondeterministically
in 20(n/log ) steps and a matching lower bound is given earlier in
Theorem 6.2.13. This puts it outside NP. But, as shown in Theorem
6.2.45, due to Gradel, there is a large family of nontrivial subclasses of
[3*V23* all, (0)] whose satisfiability problems are in NP.

The final section §6.5 of Chapter 6 gives a classification of prefix—
vocabulary classes with respect to the Finite Model Property itself,
which is a departure from the “decision problem” theme of the book—
but a very interesting one. There are nine maximal classes with the
property and ten minimal classes with infinity axioms. (Most, but
not all, of these classes figured earlier in the classification with respect
to the decision problem for satisfiability.) Since an essentially finite
class may contain an infinity axiom, these classes cannot be ignored
this time around. Another important difference is that, to date, this
classification is incomplete: except in a few cases, it is presently un-
known which of the essentially finite subclasses of the Goldfarb class
[3*V23*, all, (0)]= contain infinity axioms.

Back to decidability, just two maximal decidable standard classes
contain infinity axioms, and Chapter 7 is devoted to demonstrating de-
cidability for these two classes. Since the Finite Model Property is not
involved, the techniques of Chapter 7 differ greatly from those of Chap-
ter 6. The first class considered is [all, (w), (1)]=, and FxVyVz(fy #
z A (fy = fz = y = z)), which says that f is injective but not surjec-
tive, is an infinity axiom here. The proof of decidability appeals to Ra-
bin’s Theorem stating that the second-order monadic theory S2S of the
infinite binary tree—“2S” for “two successors (children)”—is decidable.
That result in turn uses Biichi’s proof that the second-order monadic
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theory S1S of one successor is decidable. (Incidentally, decidability here
means that, given any formula (X, ..., X,,) of the language of S1S, we
can effectively determine whether S15 = 3X;...3X,¥(X,..., X,).)
The treatment is largely self-contained, which means that Biichi au-
tomata and Rabin’s tree automata are covered. The last half of Chap-
ter 7 is given over to a proof that the Shelah class [3*V3*, all, (1)]= is
decidable for satisfiability. This is apparently the only published proof,
and Shelah himself advised the authors regarding its presentation.

One uses Ly for the restriction of first-order logic to formulae with
predicate symbols but no function symbols and such that at most vari-
ables x1, ...,z can occur in them. Since L3, with or without equality,
extends the minimal undecidable Kahr class [V3V, (w, 1)], it follows that
Ly, is undecidable for £ > 3. On the other hand, in a paper published
in 1975, Mortimer showed that L, is decidable—indeed has the Finite
Model Property. The authors give what we are told is a new, simpler,
proof of this result, and the upper bound 2°™ on (nondeterministic)
complexity extractable from their proof is also better. This material
is presented at the beginning of the final Chapter 8, entitled “Other
Decidable Cases,” which otherwise covers nonstandard classes of first-
order sentences of interest to those working in computer science and
linguistics. Proofs are given for the decidability of the Aanderaa-Lewis
class [VIV]NKROM and the Maslov class [3*V*3* | "NKROM. A host of
related complexity results are provided, e.g., the satisfiability problem
for the Aanderaa—Lewis class is NLOGSPACE-complete, as shown by
Denenberg and Lewis in 1984. Open questions remain here: it is not
known whether [V3v¥3*]N KROM with k¥ > 0 and [V3V3*| N KROM are
decidable for satisfiability.

It is hoped that the reader now has some idea of what is in The Clas-
sical Decision Problem. As for the manner in which the material is pre-
sented, the authors, in the book’s preface, describe their effort as that
of “combining the features of a research monograph and a textbook.”
They suggest that the book—or selected chapters of it—might be used
for an introductory course on decision problems, undecidability, and
the complexity of decision procedures. Indeed, numerous exercises are
provided in every chapter. On the other hand, considerable sophistica-
tion regarding automata theory and finite model theory is presupposed.
For example, the authors’ descriptions of specific machines and models
usually amount to mere sketches. So there is usually a lot to think
about in making sense of the authors’ arguments. This is part of what
makes this book so enjoyable. But reading it could be a frustrating
experience for a student reader with inadequate preparation.
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The book’s encyclopedic, exhaustively annotated, bibliography is a
particularly useful feature. Each entry includes a brief summary rang-
ing from a single sentence to half a page. The bibliography alone is
worth the price of this remarkable book.
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