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THE INTERNAL CONSISTENCY OF ARITHMETIC
WITH INFINITE DESCENT

YVON GAUTHIER

Abstract. The consistency of arithmetic is shown to obtain with-
out the recourse of transfinite induction or the detour of an infinite
set. Arithmetic without an induction postulate, but with infinite
descent, is Fermat Arithmetic coupled with Kronecker’s “general
arithmetic” of indeterminates. Fermat arithmetic is self-consistent
or self-contained. The main idea is to interpret a local (construc-
tive) logic with a local “effinite” quantifier in a polynomial trans-
lation and show how logic is eliminated by infinite descent in the
same way as the content is exhausted in the decomposition of poly-
nomials (or forms) where the method of infinite descent is at work.
The arithmetization of logic (and the topological interpretation) is
effected through the (combinatorial) convolution product of poly-
nomials and amounts to a parametrization of logic by polynomials
with indeterminates. Although not always effective, infinite de-
scent provides a finite constructivist setting for an arithmetic that
encompasses most of number theory and a large part of algebraic
or arithmetic geometry. The resulting arithmetical logic can be
seen as a vindication of Kronecker’s foundational outlook beyond
Hilbert’s programme.
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1. Introduction

A proof of the consistency of arithmetic without the induction postu-
late, but with infinite descent is given in the following. No use is made
of transfinite induction, and “internal” means that infinite descent will
be shown to be self-consistent. We call this arithmetic with infinite de-
scent Fermat arithmetic (FA) to contrast it with Peano arithmetic (PA)
(see [Gauthier1989]). The main idea is to translate logic into arithmetic
via a polynomial interpretation with Kronecker’s indeterminates and
is thus an attempt at the arithmetization of logic in the line of what
can be called “Kronecker’s programme”. The logic is constructive, that
is, it has all the intuitionistic features plus some constructive (local)
characteristics to be described below. Fermat arithmetic is minimal in
the sense that it is sufficient for (elementary or constructive) number
theory up to (some important part of) algebraic or arithmetic geom-
etry. André Weil has stressed the import of Fermat’s infinite descent
[Weil1] and Kronecker’s arithmetical theory of algebraic quantities in
the making of modern mathematics, but the constructive nature of such
proof methods has not been generally recognized by logicians. Rather,
logicians in general have tended to assimilate infinite descent and com-
plete induction on the one side and to favor Dedekind’s transcendental
method over Kronecker’s algorithmic approach on the other1 (see Ed-
wards [Edwards] and also [Gauthier1994]).

From a (classical) logical point of view, infinite descent is identified
with the least number principle

∃xAx → ∃x[Ax ∧ ∀y(y < x → ¬A(y))]

for a formula A and y different from x with no occurrence in A. This
principle can be obtained from the principle of complete induction

∀x[∀y(y < x → Ay) → Ax] → ∀xAx

which is deducible from Peano’s induction postulate

∀x[A0 ∧ ∀x(Ax → ASx)] → ∀xAx.

1Exceptions are found mainly among mathematicians. Poincaré, Mordell, Weil
not to mention more recent workers in algebraic geometry have all used infinite
descent as a “more” effective method of proof than complete induction. As for
Kronecker, Weil has made clear that he is the true originator of algebraic “arith-
metic” geometry. The present work could be seen as a vindication of “Kronecker’s
programme” of a general arithmetic (allgemeine Arithmetik) in the foundations of
mathematics for which he claimed internal truth and consistency (innere Wahrheit
und Folgerichtigkeit).
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Transfinite induction substitutes ordinals σ for natural numbers in the
following schema

∀σ[∀t((t < σ → A(t, x)) → A(σ, x)] → ∀σA(σ, x)

with the limit

lim
n→ω

ω·
··

ω
}

n = ε0.

Transfinite induction has been used by Gentzen in his proof of the
consistency of arithmetic, and Ackermann could not but invoke it in
his own proof [Ackermann].

From a different point of view, Nelson [Nelson] offers a predicative
or bounded version of the least number principle. From

min x1 . . . xr A ≡ A ∧ ¬∃y1 . . . ∃yr(y1 ≤ x1 ∧ . . . ∧ yr ≤ xr ∧
(y1 6= x1 ∨ . . . ∨ yr 6= xr) ∧ Ax1 . . . xr[y1 . . . yr]),

where the y’s do not occur in A and are all different from the variables
x, the principle simply states

∃x1 . . . ∃xrA → ∃x1 . . . ∃xr min x1 . . . xr A,

a metatheorem which is proven within predicative arithmetic. Buss
[Buss] has shown how

∑b
i -LMIN axioms are equivalent to the

∏b
i -PIND

or corresponding bounded induction axioms. But Nelson’s arithmetiza-
tion of (classical) logic stops short of a consistency proof for arithmetic
with infinite descent, although there is a proof of the self-consistency
of Robinson’s theory Q using the Hilbert-Ackermann consistency proof
with quantifier elimination. Our aim is to obtain self-consistency for a
larger theory, FA, with constructive means in the polynomial interpre-
tation.

We look at logic as arithmetical logic, that is logical formulas are
interpreted as polynomials and constants as arithmetical operations.
This last point was emphasized by Ackermann in his [Ackermann]2.
The introduction of Hilbert’s ε-symbol and its subsequent elimination
in proofs of consistency (cf. Herbrand and Ackermann) for the predicate
calculus and pure number theory have also inspired the way we treat
“effinite” quantification through reduction by infinite descent.

2Skolem’s quantifier-free primitive recursive arithmetic and Goodstein’s equa-
tional calculus foreshadow arithmetical logic, but explicit use of complete induction
in Skolem [Skolem] is alien to Fermat arithmetic, while the unlimited (unbounded)
substitution of number variables by definite numerals in Goodstein amounts to
complete induction. See [Goodstein].
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Finally, it should be noticed that infinite descent has entered ax-
iomatic set theory by the front door. The axiom of foundation formu-
lated by von Neumann

∀x{x 6= ∅ → ∃y(y ∈ x ∧ y ∩ x = ∅)}

comes from what Mirimanoff [Mirimanoff] called ordinary sets (ensem-
bles ordinaires) which generate only finite descents. A sequence of
elements e1 3 e2 3 e3 . . . of a set E stops when one descends to an inde-
composable element, that is ∅, also called “core” by Mirimanoff. The
axiom of replacement also formulated by von Neumann [Neumann1]
(inspired by Fraenkel) in the form

x ∈ V ∧ Func(f) → f ′′x ∈ V,

which means that if x belongs to the set-theoretic universe V , its image
also belongs to V . It is easily seen that we have here the cumulative
hierarchy. Mirimanoff had already the three operations (or postulates)
for the cumulative hierarchy: union, power set and replacement which
he explains as:

If a set (a, b, c, . . .) exists, then any equivalent set (E, F, G, . . .)
exists, where E, F, G . . . are existing (distinct) ordinary
sets.

Takeuti has attempted a justification of transfinite induction by resort-
ing to infinite descent in his [Takeuti]—for a critique see [Gauthier1985]—
but von Neumann [Neumann2] under the impulse of Mirimanoff’s in-
finite descent could already introduce ordinals through transfinite in-
duction:

“Every ordinal is the set of ordinals preceding it (Jede
Ordnungszahl ist die Menge der ihr vorangehenden Ord-
nungszahlen).”

Together with the axiom of replacement it was the birth certificate of
the cumulative hierarchy.

Historically, transfinite induction was introduced by Hausdorff as
complete induction on Cantor’s transfinite ordinals in their normal
(polynomial) form

φ = ωµν0 + ωµ−1ν1 + · · ·+ νµ

with decreasing finite powers. In that context, transfinite induction is
precisely infinite descent extended to transfinite ordinals. We shall see,
however, that infinite descent is sufficient for arithmetic.
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2. Logic

The logic is presented in a sequent calculus which is minimal, with no
structural rules but with new notions, i.e., two new connectives, local
negation and local implication, and a new quantifier called the “effinite
quantifier”. The basic concept “sequence” is divided in two, finite
sequences which are sets and effinite sequences which are not. There
are no infinite sequences. An effinite sequence is open-ended, that is, it
has a pre-positional bound, e.g., 0, but no post-positional bound, e.g.,
ω. An effinite sequence is somewhat like Brouwer’s infinitely proceeding
sequences without any pre-assigned limit. When an effinite sequence
has post-positional bound, it becomes an initial segment, i.e., a set.
Though it is minimal, the radical logic we are devising aims at providing
a natural framework for arithmetic, that is constructive theorems of
number theory, e.g., Euclid’s theorem on the infinity of primes. In a
way, our logic is a finite probe for the concept of infinity. All notions
are meant to be local and the logic itself is a “local logic”.

The universe consists of the effinite sequences of natural numbers
which we call the arithmetical domain D.

Remark. This notion of domain has some similarity with the domains
(champs) of Herbrand’s Fundamental Theorem where “the necessary
and sufficient condition for a proposition not to have property B is that
it be false in some infinite domain” [Herbrand]. However, we do not
need here Herbrand’s notion of order, since a post-positional bound on
an effinite sequence makes a (finite) set out of it.

2.1. Syntax.

2.1.1. Vocabulary. Our first-order language L(T) for our first-order the-
ory T has an effinite supply of atomic symbols:

(1) letters (capital and small) for formulas (and sentences) A, B,
C, . . . together with their punctuation signs, points, commas,
parentheses, brackets, etc.

(2) letters for variables x1, x2, . . . , xn,
(3) predicate letters pn

j and the predicate symbol =,
(4) function letters fn

j —when f is 0-ary, we consider it as a con-
stant,

(5) the connectives ∧, ∨, ¬, →,
(6) the quantifiers ∀, ∃, and .

The terms consists exclusively of:

(1) variables,
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(2) sequences composed of terms and functions letters, e.g., fn
j t1, . . . , tn

for the terms t1, . . . , tn.

Formulas or wffs consist exclusively of:

(1) atomic formulas composed of terms and predicate letters, e.g.,
pn

j t1, . . . , tn for the terms t1, . . . , tn,
(2) any wff consisting of formulas composed of connectives and

quantifiers.

Remark. Sentences are closed formulas, i.e., formulas are “open” sen-
tences where variables occur free, that is, are not quantified upon. An
instance A(t1, . . . , tn/x1, . . . , xn) of a formula A is the result of subti-
tuting terms t for the free occurrences of a variable x.

I adopt the standard formulation of the sequent calculus (see, for
example, [Girard]). A sequent is an expression Γ ` ∆ where Γ and ∆
are finite sequences of formulas; Γ is the antecedent, e.g., A1 ∧ . . .∧An

and ∆ the succedent, e.g., B1 ∧ . . . ∧Bm, with the interpretation

(A1 ∧ . . . ∧ An) → (B1 ∨ . . . ∨Bm).

2.1.2. Axioms. The system of LL (Local Logic) has the axiom

Axiom 1. A ` A

for A an arbitrary formula. Axiom 1 is the identity axiom. Since we do
not have structural rules (see below), we take as axioms all formulas of
the form

Γ, A ` A, ∆ (for the weakening rule)

2.1.3. Logical rules. Logical rules are expressed in the sequent calculus
with a left-right symmetry while in a system of natural deduction, this
symmetry is replaced by the intelim rules (introduction and elimination
rules). The bar indicates that the sequent of the conclusion under the
bar has been obtained from the sequent of the premiss by the given
rules. Since our system is a system of local logic (with minimalist
and intuitionistic properties), in practice we can consider only sequents
Γ ` ∆, where ∆ consists of a unique formula. The logical rules are the
following:

Conjunction
Γ ` A, ∆ Γ ` B, ∆

Γ ` A ∧B, ∆
r∧

Γ, A ` ∆

Γ, A ∧B ` ∆
l1∧ Γ, B ` ∆

Γ, A ∧B ` ∆
l2∧

Disjunction
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Γ ` A, ∆

Γ ` A ∨B, ∆
r1∨ Γ ` B, ∆

Γ ` A ∨B, ∆
r2∨

Γ, A ` ∆ Γ, B ` ∆

Γ, A ∨B ` ∆
l ∨ .

Remark. Since the logic is local, conjunction and disjunction are as-
sumed to be locally (individually) provable, in particular disjunction
has the disjunction property of intuitionistic logic: if A∨B is provable,
it means that either ` A or ` B is provable — for conjunction, ` A
and ` B are provable.

Negation being local, the minimal derivation of negation can be writ-
ten

Negation

Γ, A ` ∆

Γ ` ¬A, ∆
r¬ Γ ` A, ∆

Γ, ¬A ` ∆
l¬ .

Remark. One can introduce or eliminate negation (to the right or to
the left), if one has reason to do so, i.e., one has found a contradiction.
Double negation cannot be eliminated, as we shall see later.

Implication
Γ, A ` B, ∆

Γ ` A → B, ∆
r → Γ ` A, ∆1 Γ, B ` ∆2

Γ, A → B ` ∆1, ∆2

l → .

Remark. Notice that since we do not have a → ¬¬a (no more than
¬¬a → a), except in finite symmetric situations (see [Gauthier1985]),
implication is also local, being intimately tied with negation.

Universal quantification
Γ ` A, ∆

Γ ` ∀x A, ∆
r ∀(∗) Γ, A(t) ` ∆

Γ, ∀x A(x) ` ∆
l ∀(∗∗) .

Remark. Since ∀ applies only to finite domains, it does not differ from
the intuitionistic (or classical) finite quantifier – of course ∀ as well as
∃ and below are subject to the usual restrictions on variables: (∗)
means that x is not free in Γ, ∆ and (∗∗) means that the substitute t
is an arbitrary term of L.

Existential quantification
Γ ` A(t), ∆

Γ ` ∃x A(x), ∆
r ∃(∗∗) Γ, A ` ∆

Γ, ∃x A ` ∆
l ∃(∗) .

Remark. The existence property of intuitionistic logic, i.e., ` ∃xA(x)
is provable means that ` A(t) is provable for some (numerical) t.
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Effinite quantification

Γ ` A(xn), ∆

Γ ` x A, ∆
r (∗) Γ, A(xn) ` ∆

Γ, xn A(xn) ` ∆
l (∗) .

Remark. Some words of explanation are in order. In the r part,
behaves like universal quantification, and in the l part, it behaves like
existential quantification; this means that effinite quantification is re-
ally existential quantification iterated effinitely, that is “generalized
existence” and not existential generalisation. On the other hand, uni-
versal generalisation applied to an effinite sequence means that there
is no counterexample to be found, a fact similar to Hilbert’s use of the
ε-symbol to define universal quantification

∀xAx ≡ A(εx¬A(x)).

xn means obviously that the variables in A occur effinitely often, and
A(xn) means that there is an effinite sequence of variables in A (eigen-
variables) not identified with those in A; only if they are the same, can
xAx be eliminated, that is to say that the left rule is only there for

the sake of symmetry. There are no structural rules in our calculus,
but there is a general principle of local shift according to which main
formulas remain lexicographically ordered either side of the turnstile
` in additions, deletions or exchanges (permutations) — alphabetical
order may be ascendant or descendant. The combinatorial principle is
latent. There is no cut rule either. If cut should be added, it would be
eliminable.

The rules for minimal negation do not capture the essence of intu-
itionist negation. In LJ (J for intuitionist), we have the rule

Γ ` ⊥
Γ ` A

for the symbol of absurdity⊥, which amounts to a structural weakening
(or addition), while classical negation requires also

Γ, ¬A ` ⊥
Γ ` ¬¬A

,

but these are not local.

2.2. Semantics. Model is taken in the usual sense of a model for a
given structure S which is a triple S =< Us, ps, fs >, where Us is the
universe of the structure, ps are the predicates and fs the functions
of the language L(T) of a first-order theory T. A structure is a model
when the proper axioms of T are all valid in the structure. I depart
slightly from the classical notion, as we shall see immediately.
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The model of local logic is a quadruple M =< DM , fM , pM , ϕM >
where DM is the domain (of natural numbers), the fM are arithmetic
functions (operations) and the pM are arithmetic predicates. To each
formula is assigned a positive integer, its “valuator”, i.e., a number
which locates the formula in the arithmetical universe. Conjunction,
disjunction and implication correspond respectively to multiplication,
addition and exponentiation, while the sum operation represents ex-
istential quantification, and the product operation represents univer-
sal quantification. Effinite quantification is interpreted as a continued
product for a non-terminating sequence. ϕM is a function which maps
the (closed) formulas of the theory into the natural numbers: I call it
the assignment map, and it is defined in the following manner:

(1) ϕM(A)[n] = 1 iff An ∈ DM .
(2) ϕM(¬A)[n] = 0 iff ¬An ∈ DM .
(3) ϕM(A ∧B)[n×m] = 1 iff An ∈ DM and Bm ∈ DM .
(4) ϕM(A ∨B)[n + m] = 1 iff An ∈ DM or Bm ∈ DM .

(5) ϕM(A
loc→ B))[nm] = 1 iff An ∈ DM implies Bm ∈ DM .

(6) ϕM(∃xAx)[n + m + ` . . . ] = 1 iff
∑

An ∈ DM .
(7) ϕM(∀xAx)[n×m× . . . × `] = 1 iff

∏
An ∈ DM .

(8) ϕM( xAx)[n×m× ` . . . ] = 1 iff
∏

An . . . ∈ DM .

Remarks. The assignment of natural numbers (and arithmetic opera-
tions) is not as arbitrary — like a Gödel numbering — as it may seem,
but serves rather as a basis for the polynomial translation which in-
terprets logic in arithmetical terms — as an arithmetical logic. This
semantics bears some analogy to the Kleene-Nelson notion of realiz-
ability, but it is aimed here at a constructivist setting for arithmetical
logic, not as an interpretation of intuitionistic logic – somewhat in the
Kolmogorov style. In clause 8, the dots mean that the sequence does
not terminate, while the sequence does terminate in clause 7 — ∀x
means that we have a (finite) set and that universal quantification is
limited to sets (instead of taking sums and products over the variables,
I indicate the quantification through the indexing of the predicate).
The notion of domain of natural numbers (see [Gauthier1977]) can be
schematized as the open structure of the arithmetical universe
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V =

Vγ (for inaccessible ordinal γ)

Vα =
⋃

β<α Vβ (for limit-ordinal α)

Vα+1 = Vα

⋃
P(Vα)

V0 = ∅

where the axiom of foundation serves as the building principle (inher-
ited from infinite descent).

2.3. The interpretation of the logical constants. I privilege an
arithmetical interpretation of constants, as can be seen from the for-
mulation of the model, and that means that constants have arithmetical
existence. Not only disjunction and the existential quantifier, but also
conjunction, negation, implication, universal and effinite quantification
have arithmetical import. Conjunction is seen as multiplication, the
universal quantifier as a finite product of numerical instances, disjunc-
tion as addition, and, while the existential quantifier is a finite sum,
the effinite quantifier must be looked at as an iterated product, as an
effinite product or sequence, not as an infinite sequence of conjunctions
in set-theoretic semantics. Negation and implication stand in a close
relationship. Let us start with the relative pseudo-complement of a,
denoted by a ⇒ b and defined as

a ⇒ b = In((X − a) ∪ b) ,
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where a and b are open subsets of a topological space X, and In is
the interior. a ⇒ b is the greatest element different from a. X − a is
the difference or relative complementation. Negation is interpreted as
arithmetic difference, remembering that substraction is not negation in
the usual sense.

If implication can be seen as a continuous curve only in a non-
standard model — the topological interpretation — we could interpret
it arithmetically as a Cauchy product of power series, since a continu-
ous function can be represented arithmetically by a power series (or a
polynomial in the finite case)

∞∑
0

cnx
n =

( ∞∑
0

anx
n

) ( ∞∑
0

bnx
n

)
for cn = a0bn + a1bn−1 + . . . + anb0 , that is, the Cauchy diagonal or
convolution product, which does not lead out of the realm of natural
numbers unlike Cantor’s diagonal — of course, we have to reinterpret
∞ as the bad infinite of approximation, but this is done easily with the
effinite quantifier on constants an and indeterminates x. The net result
is that we can have a concept of local (strict) implication in an arith-
metical setting, affording more than Ackermann’s positive fragment of
strong implication.

To what extent is our constructive logic arithmetical? To see this,
we shall introduce arithmetic with (Fermat’s) infinite descent and then
reformulate Euclid’s elementary proof of the infinity of primes which
uses a primitive form of infinite descent. Gentzen says in [Gentzen]
that Euclid’s proof of the infinity of primes which uses infinite descent
contains a somewhat disguised complete induction and translates it as
such in his system — although Gentzen distinguishes between infinite
descent and complete induction, he does not emphasize the construc-
tive character of the former. Here, I want a more direct approach
than Gentzen’s. From a constructivist viewpoint, complete induction
(or Peano’s postulate) and infinite descent are not the same, and it
is important to stress the difference if one wants to stick to the most
stringent proof theory, as Gentzen undoubtedly wanted to in his per-
petuation of Hilbert’s programme.

3. Arithmetic

The minimal arithmetic we need is the usual arithmetic without the
induction postulate. Any restricted system of axioms will do. Robin-
son’s theory R =< 0, S, +, · > (as in Nelson [Nelson]) can serve as our
basic arithmetic with the axioms
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1) Sx 6= 0
2) Sx = Sy → x = y
3) x + 0 = x
4) x + Sy = S(x + y)
5) x · 0 = 0
6) x · Sy = x · y + x
7) x 6= 0 → ∃ySy = x

where 7 is replaced by an axiom for the notion of predecessor

7′) Px = y ↔ Sy = x ∨ (x = 0 ∧ y = 0).

Associative, distributive and commutative laws are assumed to hold,
i.e, they could be added here as axioms. E. Nelson has shown that R
(rather, a variant Q) is self-consistent, and we take it as our departure
point. We extend R to a Kroneckerian general arithmetic or arith-
metic of polynomials (forms) with limited exponentiation and without
the infinite expansions of formal power series. Exponentiation when
introduced will always “become” bounded in the sense that total expo-
nentiation has a relative sense, i.e., within the combinatorial world 2n,
once n has been found, computed or constructed; 2n must be such as
to allow for descent. Rather than an induction postulate, we add the
schema of infinite descent. The schema of infinite descent fulfills two si-
multaneous functions: it is a (constructive) substitute for the induction
postulate, and it introduces order in the sequence of natural numbers
through the linear ordering of finite ordinals. Transfinite induction
extends this process to well-ordered sets. Thus infinite descent is set-
theoretically equivalent to transfinite induction, but infinite descent is
independent of any set-theoretic assumption from an arithmetical point
of view.

Fermat [Fermat] says of infinite (or indefinite) descent that it is an
άπαγωγὴν είς άδυνατoν or a reductio ad absurdum. He applies his
method to the problem of right triangles (in rational integers), the areas
of which should be squares. If there were such a triangle, Fermat says,
there would be another one in smaller integers with the same prop-
erties; and if there is a second, there must be a third, a fourth, etc.,
still smaller and so on ad infinitum. But this is impossible, since there
is no infinitely descending sequence in the natural numbers. Let us
remark first that the reductio is harmless here, since it is finitary, and
the double negation that ensues is perfectly legitimate, since it does
not transcend the realm of the finite. The case is still more evident
when Fermat says that he has applied his method not only to negative
questions, but also to affirmative ones, such as “Any prime number,
which is greater than a multiple of 4 by one, must be composed of two
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squares.” If there were a prime number greater than a multiple of 4
by one, but not composed of squares, there would be a smaller one of
that nature and still smaller ones, until 5 is reached, which is the least
number having the said property. One must then conclude by indirect
proof that the theorem is true. Here, one might find that we have the
equivalent of the least number principle, but Fermat employs it in a
totally different context, that is, a purely arithmetical context. The
essential difference lies in the strictly finite or constructive formulation
of Fermat, and, while infinite descent is perfectly acceptable as reductio
ad absurdum, the least number principle as derived from complete in-
duction obeys the excluded third principle via double negation over an
infinite set and is then rejected by intuitionist (Brouwerian) standards.
Thus the equivalence of transfinite induction (and complete induction
over denumerable ordinals) and infinite descent has only a classical
meaning and cannot be constructively justified. No such reprobation
affects infinite descent, and I shall try to give some foundational legit-
imation for infinite descent. Poincaré has insisted that infinite descent
(which he calls “récurrence”) is not equivalent to (formal) complete
induction (see [Poincare1906])3 .

3.1. The formalization of infinite descent. Fermat’s arithmetic is
characterised by the method of infinite descent, and I maintain that
from the metamathematical point of view, that is from the proof-
theoretic point of view, infinite descent fulfills the role of induction
without requiring the notion of infinite set. It is obvious that Fermat
did not have the ω point of view in mind. Fermat says that he has
invented the method of infinite or indefinite descent, but it is already
in nuce in Euclid. Take, for example, proposition 31 of book VII of

3Poincaré uses infinite descent in his seminal work [Poincare1] on the arithmetic
properties of algebraic curves. Poincaré ’s phrase for infinite descent is “finite
number of hypotheses”. One possible implication of the present proof is that a
transcendental proof of Fermat’s theorem, for example, could be made construc-
tive, which it is not in the present state of affairs: let’s call this the Herbrand’s
conjecture, which says that every analytic (transcendental) proof in number theory
and in (arithmetic) algebraic geometry has (will have) a constructive (elementary)
counterpart. The parenthetical future means only that the constructive proof is
(often) post factum. See my abstract [Gauthier1983]. Although infinite descent is
not used explicitly in Wiles’s proof of Fermat’s Last Theorem [Wiles], finiteness
conditions on the local Noetherian ring for complete intersections, as shown in
Falting’s simplification, point to a form of infinite ascent that is not effective, but
nonetheless finitary. Falting’s own proof of Mordell’s conjecture is also a finiteness
result akin to infinite descent but not yet effective. All this does not mean that the
essential use of reductio ad absurdum over an infinite set in Wiles’s proof can be
overcome, at least in the near future.
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the Elements “Any composite number can be divided by a prime num-
ber.” The proof uses a decomposition or reduction which cannot go on
indefinitely since any descending sequence of natural numbers is finite.
Fermat himself put his method to use in his proof of the impossibility of
the Diophantine equation x4+y4 = z2, which is reduced to x4+y4 = z4;
this is a particular case of Fermat’s last theorem

∀n > 2 ∀x ∀y ∀z ( xn + yn 6= zn ) .

The principle of infinite descent can be formulated as follows: if the
existence of a property for a given n implies the existence of the same
property for an arbitrary smaller number, then this property is pos-
sessed by still smaller numbers ad infinitum, which is impossible since
any descending sequence of natural numbers is finite. In order to for-
malize this principle, we introduce here the quantifier , the “effinite”
quantifier.

In symbols, we have for the rendering of the intuitive notion of an
unbounded or unlimited sequence obtained by “positive” descent

x{([Ax ∧ ∃y(y < x)Ay] → ∃y∀z(z < y)Az) →
∃z(z = 0 ∨ z = 1 ∨ · · · ∨ z = n)Az} → xAx

which means that the sequence is continuing on indefinitely, or rather
“effinitely”, starting from the least number, which may be 0, 1, or n.

This principle of descent does not need a universal quantifier, only an
“effinite” quantifier for finite or rather indefinite descent; effinite still
means potentially infinite, indefinite sequences or Brouwer’s “infinitely
proceeding sequences”. To such effinite sequences, one could assign an
“unlimited” natural number, as in Nelson [Nelson], while finite natural
numbers are assigned to finite initial segments (sets) of those sequences.

Since infinite descent is impossible — any descending sequence of
positive integers must stop at 0, the pre-positional bound of the se-
quence of natural numbers — one can add the following conclusion to
our “negative” descent schema:

x{[Ax ∧ ∃y(y < x)Ay] → ∃y z(z < y)Az} → x¬Ax ,

which means that the property (or set of properties) postulated for
the infinite descent is false for all natural numbers “effinitely” — with
zAz instead of ∀zAz in the antecedent.

3.2. Euclid’s theorem on the infinity of primes. It remains to
show that our formalism can express in a most natural way elementary
theorems in number theory. Elementary has the usual meaning of non-
transcendental, i.e., the proofs do not employ analytical methods like
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L-functions or holomorphic (entire) functions of complex analysis, infi-
nite series, limits and so on; elementary methods use only arithmetical
properties of logarithms and finite sums instead of infinite limits, for
example. The prime number theorem, which asserts that the ratio of
the number of primes in a large set x to x/ log x tends to the limit 1
as x tends to infinity, that is

lim
x→∞

π(x)

x/ log x
= 1 ,

has been proven by elementary means (by Selberg and Erdös), long
after it had been proven by analytical methods; the same holds for
Dirichlet’s theorem on the infinity of primes in any arithmetical pro-
gression ax + b for a and b relatively prime, i.e., (a, b) = 1. Since
Euclid’s theorem, like the fundamental theorem of arithmetic on the
unique representability of integers by a product of primes, needs only
constructive methods for its proof, it is the concept of infinity which
is at stake here. My contention is again that the concept is dispens-
able and that one can eliminate it or paraphrase it as Brouwer did
by referring to “infinitely proceeding sequences” (or, as I call them,
“effinite” sequences). It is really an effinite process which is at work in
those proofs; Aristotle said in his Physics 203b, that the infinite is that
which cannot be crossed (άδιεζίτητoς) — it may be worth noticing that
Gentzen spoke rather of a potential crossing or running through (ein
potentielles Durchlaufen) of the infinite in his justification of transfinite
induction. If the infinite cannot be crossed, is the thought-experiment
of a potential crossing in itself justifiable? In any case, the actual word-
ing of Euclid’s theorem is: “Prime numbers are more numerous than
any definite quantity (of prime numbers)”, which is proposition 20 of
book IX of the Elements (see Davenport [Davenport]). It suffices for
the proof to suppose that the sequence

p1, . . . , pk

enumerates all primes and we then form the number

n = p1 × p2 × . . . × pk + 1

which is equivalent to p! + 1; here we use theorem 31 of book VII
of the Elements which says: “Any composite number is divisible by a
prime number.” By definition, a composite number is divisible by two
factors, one of which must be a prime; if it is not the case, then it must
be composite and it can be divided further into a composite number and
a prime until it is necessarily found, since there is no infinite descent in
integers. Thus, the number n defined above must have a prime divisor
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and such a prime must differ from all pi, i = 1, . . . , k, since pi does
not divide n (there is a remainder). In short, Euclid’s theorem asserts
the existence of an effinite sequence of primes. Let’s use σ for that
sequence.We know already that there is an effinite sequence of integers
which is simply introduced by the rule of effinite induction

[A(a) ∈ Dn]

A(a) ∈ D0 ` A(a) ∈ Dn+1

` xA(x)

(A(a) ∈ D0 stands for A(0)). In that context, infinite descent becomes
the schema  A(a) ∈ Dn−1

...
A(a) ∈ Dn−(n−1)


A(a) ∈ Dn ` A(a) ∈ Dn−n

` xA(x)

Here xA(x) means ∃σ and x¬A(x) means ¬∃σ. The last two
schemas are analogues of the intelim rules for . We can then formal-
ize Euclid’s proof in the following way:

Lemma 3.2.1. Any composite number is divisible by a prime number.
In symbols

x(Comp x → (∃z Prim z ∧ z|x)) .

Proof. We proceed by reductio ad absurdum and we want to prove

x(Comp x → ¬(∃z Prim z ∧ z|x)) ,

which we take as a formula in a domain Dn (which means that x is

divisible by
x

z
):

¬(Comp xn → Prim zn ∧ zn|xn) ∈ Dn

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

¬(Comp xn−n → Prim zn−n ∧ zn−n|xn−n) ∈ Dn−n

x(Comp x → (Prim z ∧ z|x))

x((Comp x → ¬¬∃z(Prim z ∧ z|x)) .

�

We have a double negation, since the descent is finite. The conclusion
is reached, because it is impossible to go on infinitely or rather effinitely
in a descending sequence. We pass now to the theorem on primes which
says
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Theorem 3.2.1. Prime numbers are more numerous than any definite
quantity (of prime numbers). In symbols, we simply write:

∀ finite t σ((Prim t ∧ Prim σ) → t < σ)

Proof. Note that σ can stand either “for σ effinitely” or for “there is
an effinite sequence σ”. We take as given the following prime:

∃zn[zn ≤ pk! + 1 ∧ (Prim zn ∧ zn > p] ∈ Dn

defined above and show that all t’s differ from it; we have to show that:

∃zn∀t((t > 1 ∧ t ≤ pk!) → ¬zn = t).

Suppose that t = pk!, and zn < pk! + 1. The only case of interest is
t = p; but zn > p, thus t < zn. The fact that t is finite has been gotten
by infinite descent and the statement of the theorem is obtained by
effinite induction

[((Prim t ∧ Prim σ) → t < σ) ∈ Dn)]

((Primt ∧ Primσ) → t < σ) ∈ D0 ` ((Primt ∧ Primσ) → t < σ) ∈ Dn+1

` ∀ t σ((Prim t ∧ Prim σ) → t < σ)

where we have a double introduction, the universal quantifier, since it
was understood that t is finite and the effinite quantifier, for σ is not
finite, being greater than t. �

Note that this induction is essentially reducible to the induction
on natural numbers, i.e., it says simply that to any (prime) natural
number there is a greater one. Only the decomposition of composite
numbers into primes needs infinite descent. A detailed analysis of the
proof would exhibit a logical structure (with intelim rules) that is not
more complicated, but more explicit than the mathematical argument.
However, the important features of Euclid’s proof have been put in the
crude light of a constructive logic and shown to rest on radical assump-
tions about the infinite. No infinite set, no ω, no induction postulate
other than infinite descent (or effinite induction) is necessary. Infinite
descent is not always effective and is often used in a non-constructive
way (see Ireland and Rosen, [Ireland]). But other constructive methods
analogous to infinite descent (e.g., logarithmic bounds, approximation
procedures) have an effective number-theoretic content, not to speak of
the dynamic techniques in real algebraic geometry. I hope to have made
it clear enough that only effinite quantification is required if arithmetic
is to be given its barest logical expression. Why such a need for a naked
ontology of mathematical entities? Not because of the paradoxes, an-
tinomies and other oddities, but for the sake of intelligibility which
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amounts to fundamental relevance and empirical adequacy, I mean in
agreement with mathematical and logical practice.

4. The polynomial translation

There are various ways to translate a formal system into the natural
numbers, simple substitution of numerical variables as in Ackermann
[Ackermann], translation of logical into arithmetical operations as in
Goodstein’s equational calculus [Goodstein]. In view of our use of
Kronecker’s results, we choose the polynomial translation.

We are going to need some facts about the ring of polynomials in
one indeterminate in our consistency proof. We pass briefly over the
preliminaries (the graded ring of two or more polynomials has the same
convolution product, which is our main tool — a Grassmannian product
could be used to the same effect).

Polynomials of the form

f = f0 + f1x + f2x
2 + . . . + fnx

n

where the fi are the coefficients with the indeterminate x build up the
subring K[x] of the ring K[[x]] of formal power series. The degree of a
polynomial is the degree of the last non-zero coefficient (k = n), while
the leading coefficient of a polynomial f of degree k is the constant fk,
and f is called monic if its leading coefficient is 1. Thus polynomials
are power series having only a finite number of non-zero coefficients.
The involution or Cauchy product of two polynomials will play an
important role in our translation; we write it

f · g = (
∑
m

fmxm)(
∑

n

gnx
n) =

∑
m

∑
n

fmgnx
m+n.

The sum f + g of polynomials f and g is obtained by simply adding
corresponding coefficients. Homogeneous polynomials have all their
non-zero terms of the same degree and they can be put in the following
convenient form

a0x
m + a1x

m−1y + . . . + amym.

We are interested in irreducible (= prime in K[x]) polynomials. Ev-
ery linear polynomial is irreducible. K[x] has the property of unique
factorization, and this fact will be crucial in our future developments4.

4Kronecker had proven the unique factorization theorem in the following formu-
lation: “Every integral algebraic form (= polynomial) is representable as a product
of irreducible (prime) forms in a unique way” (see [Kronecker6], p.352). Kronecker
is interested in the theory of divisibility for forms and considers primitive forms
(forms with no common divisor greater than 1), rather than prime polynomials
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4.1. The inner arithmetical model. When we write, for example,

ϕM(∃xAx)[n + m + ` . . .] = 1 iff
∑

An ∈ DM

we can drop the right part and write

ϕM(∃xAx)[n + m + ` . . .] < n + m + ` . . . >= 1

to mean that we have a complementary mapping (of the intuitionistic
spread) ξ : N → N, so that we really have a polynomial function which
evaluates polynomials by sequences of natural numbers after having
defined an evaluation map of formulas into polynomials. The whole
process is made possible by substitution alone. Moreover, in category-
theoretic language, the indeterminate x is a universal element for the
functor U(ϕ(x)) = n. If we look at variables of logical formulas as
indeterminates, then any number of variables may be reduced to one.

We are going to make an essential use of Kronecker’s notion of the
content of forms in ([Kronecker6], p.343). A form M is contained in
another form M ′ when the coefficients of the first are convoluted (com-
bined in a Cauchy product) in the coefficients of the second. This idea
of a content (Enthalten-Sein) of forms can be summarized in the phrase
“The content of the product is the product of the contents (of each
form),” which can be extracted from Kronecker’s paper [Kronecker9]
(see also [Kronecker8] and [Kronecker10]). Thus, for a form to be con-
tained or included in another form is simply to be linearly combined
with it (to have its powers convoluted with the powers of the second
form).

We can adopt here a general principle of substitution-elimination
formulated by Kronecker [Kronecker6]. We state the Substitution Prin-
ciple:

1) Two homogeneous forms (polynomials) F and F o are equivalent
if they have the same coefficients (i.e. content);

2) Forms can be substituted for indeterminates (variables) provided
the (linear) substitution is performed with integer coefficients.

We have immediately the following Proposition 1 (proposition X in
Kronecker):

in his work. The notions of integral domain and unique factorization domain are
direct descendants of that theorem.
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Linear homogeneous forms that are equivalent can be
transformed into one another through substitution with
integer coefficients. 5

We have also the following Proposition 2 (proposition Xo in Kro-
necker):

Two polynomials F and F o are equivalent, if they can
be transformed into one another.

These propositions can be considered as lemmas for the unique fac-
torization theorem for forms which Kronecker considered as one of his
main results. The substitution procedure is simultaneously an elimi-
nation procedure, since indeterminates (Unbestimmte) are replaced by
integer coefficients. Thus an indefinite (or effinite) supply of variables
can be made available to a formal system and then reduced by the
substitution-elimination method to an infinitely descending or finite
sequence of natural numbers, as will be shown in the following.

The substitution process takes place inside arithmetic, from within
the Galois field F ∗, i.e., the minimal, natural or ground field of polyno-
mials which is the proper arena of the translation, and indeterminates
— Kronecker credits Gauss for the introduction of “indeterminatae” —
are the appropriate tools for the mapping of formulas into the natural
numbers. The important idea is that indeterminates in Kronecker’s
sense can be freely adjoined and discharged, and although Kronecker
did not always suppose that his forms were homogeneous, we restrict
ourselves to homogeneous polynomials.

Definition. The height of a polynomial is the maximum of its lengths
(number of its components or terms)—the height of a polynomial is
indicated by a lower index.

Let us rewrite the eight clauses of section 2 in the polynomial fashion
of the valuation map ϕ̂.

5This can be seen as the precursor of the problem of quantification over empty
domains. We know that we have MP

A, A ⊃ B

B

in an empty domain, provided that A and B have the same free variables (see
[Mostowski]). But Kronecker had a more general theory of inclusion or content of
forms in mind, and the transformation in question is a composition of contents, an
internal constitution of polynomials (forms) where indeterminates are not the usual
functional variables.
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Clause 1: An atomic formula A can be polynomially translated
as

ϕ̂(A)[n] = (a0x)

(where the a0 part is called the determinate, the x part the in-
determinate, and ϕ̂ the polynomial valuation function or map).
Here the coefficient a0 corresponds to a given natural number
(the “valuator”), and 0 indicates that it is the first member of a
sequence, x being its associate indeterminate. The polynomial
(a0x) is thus a combination of the two polynomials (1, 0, 0, 0 . . .)
and (0, 1, 0, 0 . . .). We identify polynomials by their first coeffi-
cients.

Clause 2: The negation of an atomic formula, that is ¬A, is
translated as

ϕ̂(¬A)[n] = (1− a0x).

Clause 3: The conjunction A and B is translated as ϕ̂(A∧B)(n×
m) = (a0x)·(b0x) for the product of monomials (a0x) and (b0x).

Clause 4: The disjunction A or B is rendered by ϕ̂(A ∨ B)(n +
m) = (a0x + b0x).

Clause 5: Local implication A → B is rendered by ϕ̂(A → B)(mn) =
(ā0x + b0x)n for ā0x = 1− a0x.

Remarks. How is implication to be interpreted polynomially? A devel-
oped product of polynomials has the form

a · b = (
∑

i

aix
i)(
∑

j

bjx
j) =

∑
i

∑
j

aibjx
i+j.

For ab we could simply write (a + b)n for the binomial coefficients and
put

(a0x + b0x)n = an
0x + nan−1xbx + [n(n− 1)/2!]an−2

2 x2b2x
2 + . . . + bn

0x
n

in short

(a0x + b0x)n
i<n =

∑
i+j=n

(i + j)aibjxn.

The rationale for our translation is that we want to express the notion
of inclusion of a in b by intertwining or combining their coefficients
in a “crossed” product, the sum of which is 2n which is also the sum
of combinations of n different objects taken r at a time

n∑
r=0

Cr
n.
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Linear combination of coefficients is of course of central importance
in Kronecker’s view, and one of his fundamental results is stated: “Any
integral function of a variable can be represented as a product of linear
factors” [Kronecker6]. In his [Kronecker8], Kronecker refers to Gauss’s
concept of congruence and shows that a modular system with infinite
(indeterminate) elements can be reduced to a system with finite ele-
ments. This is clearly the origin of Hilbert’s basis theorem [Hilbert] on
the finite number of forms in any system of forms with

F = A1F1 + A2F2 + . . . + AmFm

for definite forms F1, F2, . . . , Fm of the system and arbitrary forms
A1, A2, . . . , Am with variables (indeterminates) belonging to a given
field or domain of rationality (Rationalitätsbereich). The fact that ex-
ponentiation is not commutative is indicated by the inclusion a ⊂ b.
The combinatorial nature of implication is made more explicit in poly-
nomial expansion and is strengthened by the symplectic (interlacing)
features of local inclusion of content. We may also define implication,
in analogy with the relative complement, as

(1N − a0x) + b0x ,

where 1N is the arithmetic universe polynomially expanded.

Clause 6: ϕ̂(∃xAx)[n + m + ` . . .] =
∑

0...(a0x + b0x + c0x . . .)i<n

where
∑

is an iterated sum of numerical instances with a0 as
the first member of the sequence.

Clause 7: ϕ̂(∀xAx)[n×m× `] =
∏

0(a0xb0xc0x)i<n.
Clause 8: ϕ̂( xAx)[n×m× ` . . .] =

∏
0...(a0xb0xc0x . . .)n .

Remarks. The effinite quantifier calls for some clarification. While the
classical universal quantifier stands here for finite sets only, the effinite
quantifier is meant to apply to infinitely proceeding sequences or effinite
sequences. These are not sets and do not have a postpositional bound;
we put an n to such a sequence and a 2n to sequences of such sequences

0, 1, 2, . . . , n, . . . , 2n

with the understanding that n signifies an arbitrary bound. It should
be pointed out that Boole in his Mathematical Analysis of Logic (1847)
had also a universe (of classes) denoted by 1; negation was interpreted
as 1− x. The fact that the ring K[x] of polynomials enjoys the unique
factorization property exhibited by infinite descent coupled with the
proof by infinite descent of the infinity of primes makes essential use,
from our point of view, of the effinite quantifier. We then have a
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combinatorial formulation
n∏

0...

(a0xb0xc0x . . . nnx
n)

for the effinite quantifier; since n! = 2n =
∏

c≤n c, the combinations of
n . I call this scheme the absolute or standard scale. Any other scale is
an associate scale (of indeterminates) and is reducible by substitution
to the standard scale.

As a foundational precept, there is no ω. Any transnatural or trans-
arithmetic (transfinite, in Cantorian terminology) ordinal scale, e.g.,
up to ε0, is an associate scale and is by definition reducible. It is clear,
from a Kroneckerian point of view, that Cantor’s transfinite arithmetic
becomes a dispensable associate (with an indeterminate pay-off!). The
arithmetic universe N is naturally bounded by 2n and not by 2ℵ0 for
infinite power series!

5. The consistency proof

Gentzen’s pairing of reduction rules with transfinite inductions in
the ε0 segment may be looked at as an associate scale — the scale of
ordinal numbers associated with every derivation (see [Gentzen]). The
theorem of transfinite induction makes all ordinal numbers “accessible”
by running through them in an increasing order; the reduction proce-
dure then allows a descent according to the decreasing order of the
ordinal numbers. In the same spirit, Takeuti attempts in [Takeuti] a
justification of transfinite induction by invoking the principle: “ When
all numbers smaller than β are recognized as accessible, the β is it-
self accessible”. But instead of strictly increasing sequences of ordinals
β0 < β1 < . . . < βε0 , Takeuti introduces directly strictly decreasing
sequences µ > . . . > µ1 > µ0 for µ = lim ωµn . As I have shown (see
[Gauthier1985]), these ordinals are not uniformly recessible (over an
immediate predecessor) and cannot count as ordinals in the absolute
scale. On the other side, the associate scale can be reduced by a uni-
form procedure and can be entirely dispensed with, in accordance with
Kronecker’s general arithmetic.

Ackermann’s consistency proof in [Ackermann] also uses a decreas-
ing sequence of ordinal indices in order to prove his finiteness result for
global substitutions (Gesammtersetzungen) of fundamental types; his
m -sequences are uniformly (immediately) recessible, and the reduc-
tion procedure ends after a finite number of steps. However, despite
the fact that his general recursion procedure is also built in the fashion
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of infinite descent, Ackermann must refer to the associate (indetermi-
nate) scale of transfinite ordinals, which he then reduces one-to-one
to finite ordinals. But the transfinite ordinals are not immediately re-
cessible, and the upper bound estimate 2α for indices of m -sequences
([Ackermann], p. 193) has only a relative meaning, since it is not in-
dependent of some use of transfinite induction, as Ackermann admits.6

Transfinite induction means always a detour via an infinite set.
Instead of the ordinal hierarchy of set-theoretic ascendency, I use

here the arithmetic of irreducible polynomials to show the internal
consistency of infinite descent in a direct way.

5.1. The elimination of logical constants. The connectives of nega-
tion, disjunction, and conjunction are directly eliminable by translation
into the arithmetic interpretation, since they can be viewed as the dif-
ference, sum, and product of polynomials in a finite number of terms
(constants and indeterminates, or variables). We have then

Proposition 5.1.1. Connectives are eliminable through direct transla-
tion in the polynomial interpretation.

Proof. Rewrite the logical rules as follows for the sequent calculus with
Γ the antecedent and ∆ the (single) consequent, both consisting of
polynomials (monomials); we write for negation

(Γ + a0x) · ∆

Γ · ((1− a0x) + ∆)

Γ · (a0x + ∆)

(Γ + (1− a0x)) · ∆

with ∆ empty, i.e., “without content” in this case, or multiplication
by zero and the understanding that the line has the meaning simply
of an ordered sequence of sequents (consisting of sequences of formulas
themselves). It should be obvious that we have replaced the sign ` by
the operation · in order to have polynomial uniformization which does
not alter the meaning of the rules.

For disjunction:

Γ · (a0x + ∆)

Γ · ((a0x + b0x) + ∆)

Γ · (b0x + ∆)

Γ · ((a0x + b0x) + ∆)

6Gödel’s own consistency proof of arithmetic (the “Dialectica” interpretation)
in [Goedel] makes use of a general recursion schema (of functionals) over all finite
types, which is equivalent to complete induction. Herbrand’s proof (see [Herbrand])
also requires general recursive functions. It is my contention that the concept of
recursion stems from arithmetic reduction procedures originating with Dedekind,
but mainly from Kronecker’s more algorithmic general arithmetic. Recursion is also
“récurrence,” which in France was another name for infinite descent.
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and also
(Γ + a0x) · ∆) (Γ + b0x) · ∆

(Γ + (a0x + b0x)) · ∆
.

For conjunction:

(Γ + a0x) · ∆

(Γ + (a0x · b0x)) · ∆

(Γ + b0x) · ∆

(Γ + (a0x · b0x)) · ∆

and also
Γ · (a0x + ∆) Γ · (b0x + ∆)

Γ · ((a0x + b0x) + ∆)
.

�

Remarks. We can treat implication as

Γ + a0 · b0 + ∆

Γ · ((1− a0) + b0) + ∆

Γ · (a0 + ∆1) (Γ + b0) · ∆2

(Γ + ((1− a0) + b0)) · ∆1 + ∆2

where ∆1 and ∆2 are two different sequences. There is some artificiality
in the symmetrical treatment of intelim rules — the sagittal correspon-
dence — in natural deduction systems (or in the sequent calculus). The
symmetry induced by the inversion principle is not derived from the
content (of symmetric polynomials), but from a formal duality which is
not intrinsic or internal. Negation is generally not involutive — except
in finite dual (Boolean) situations — and we could also introduce non-
commuting variables in polynomials or in power series, while it is pre-
cluded by the double (dual) negation. In intuitionistic logic, this global
symmetry is absent, and the more complex situations that are reflected
in the logic are an indication of more genetic, less structural features.
Internal logic is an analysis of content. Here, logical content = polyno-
mial content. Finally, the detachment or elimination rule is equivalent
to modus ponens, and the polynomial translation should make manifest
the content of the sequential character of inference. Gentzen’s linear
logic — Gentzen used the phrase lineares Räsonieren — is by itself a
phenomenon of polynomial content.

The existential quantifier and the universal quantifier over finite sets
interpreted as iterated (finite) sum and iterated (finite) product are
also directly eliminable. We have

Proposition 5.1.2. The existential and universal quantifiers are elim-
inable through direct translation in the polynomial interpretation.

Proof. The universal quantifier can be rendered by

Γ · (a0x + ∆)

Γ · (
∏

i(aixi) + ∆)
(∗) (Γ + ax) · ∆

(Γ +
∏

n(anxn)) · ∆
(∗∗) ,
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where (∗) means that x is an indeterminate not appearing in Γ and
(∗∗) means that ax is an arbitrary term in the polynomial.

The existential quantifier is translated as

Γ · (ax + ∆)

Γ · (
∑

n(anxn) + ∆)
(∗∗) (Γ + a0x) · ∆

(Γ +
∑

i(aixi)) · ∆
(∗) .

�

Remarks. The terms aix
i are arbitrary. Since we deal with polynomials

(with integer coefficients), the existence property for the existential
quantifier is immediately guaranteed, and since the (classical) universal
quantifier is limited to finite domains, its scope is always well-defined.

5.2. The elimination of implication. We want to arithmetize (lo-
cal) implication. We put 1 − a = ā for local negation. We have
(ā0x + b0x)n and we want to exhaust the content of implication – in
Gentzenian terms, this would correspond to the exhibition of subfor-
mulas (the subformula property). We just expand the binomial by
decreasing powers

(ā0x + b0x)n = ān
0x + nān−1xb0x + [n(n− 1)/2!]ān−2xb2x + . . . + bn

0x

where the companion indeterminate x shares the same power expan-
sion. By an easy calculation (on homogeneous polynomials that are
symmetric, i.e., with a symmetric function f(x, y) = f(y, x) of the
coefficients)

(ā0x + b0x)n = ān
0x +

n−1∑
k=1

(n− 1/k − 1)āk−1
0 x + (n− 1/k)āk

0xbn−k
0 x + bn

0x

=
n∑

k=1

(n/k − 1)āk
0xbn−k

0 x +
n−1∑
k=0

(n− 1/k)āk
0xbn−k

0 x

=
n−1∑
k=0

(n− 1/k)āk+1
0 xbn−1−k

0 x +
n−1∑
k=0

(n− 1/k)āk
0xbn−k

0 x

= ā0

n−1∑
k=0

(n− 1/k)(ā0 − 1)kbn−1−k
0 x +

n−1∑
k=0

(n− 1/k))āk
0x(b0 − 1)n−1−kx

= (ā1x + b1x)(ā1x + b1x− 1)n−1

and continuing by descent and omitting the x ’s, we have

(ā2 + b2)(ā2 + b2 − 2)n−2

· · ·
(ān−2 + bn−2 + ān−2 + bn−2 − (n− 2))n−(n−2)
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(ān−1 + bn−1 + ān−1 + bn−1 − (n− 1))n−(n−1)

(ān + bn)(ān + bn)n−n.

Applying descent again on (ān + bn), we obtain

(ā0 + b0)

or, reinstating the x ’s

(ā0x + b0x).

Remembering that

(āx + bx)n
k<n =

∑
k+m=n

(k + m/k)ākbmxn ,

we have

(āx + bx)k+m=n
k<n =

∏
k+n=m

(k,m) = 2n ,

or more explicitly

m+n∑
i=0

c1x
m+n−1 = ā0x · b0x

m+n∏
i=1

(1 + cix) = 2n ,

where the product is over the coefficients (with indeterminates) of con-
volution of the two polynomials (monomials) a0 and b0. We could of
course calculate the generalized formula for polynomials

(a0x + b0x + c0x + . . . + k0x)n =
∑

p,q,r, ... s

apbqcr . . . ks

in the same manner, but we shall postpone the general case till we
come to the effinite quantifier for a unified treatment.

The combinatorial content of the polynomial is expressed by the
power set 2n of the n coefficients of the binomial. I contend that this
combinatorial content expresses also the meaning of local (iterated)
implication. Convolution exhibits the arithmetic connectedness that
serves to render the logical relation of implication. Implication is seen
here as a power of polynomials, ak and bm with k < m having their
powers summed up and expanded in the binomial expansion. Some
other formula may be used for the product, but it is essential to the
constructive interpretation that the arithmetic universe be bounded by
2n. One way to make things concrete is to analyse a → b in terms of

a → b = C((2n − a) + b)

where C can stand for combinations or coefficients. The formula is an
arithmetical analogue of the topological interpretation of intuitionistic
implication.
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Theorem 5.2.1. Local implication a → b can be eliminated by inter-
preting it as (ā + b)n.

Proof. By the above construction. �

5.2.1. Elimination of the effinite quantifier? If we try to translate the
effinite quantifier back into our logical rules, we meet with some diffi-
culties. We may try

Γ · ((anx
n) + ∆)

Γ · (
∏

i...(aixi) + ∆)
r (∗) (Γ + (anx

n)) · ∆

Γ · (
∏

n...(anxn)) · ∆
l (∗∗) ,

but then we haven’t made much progress. The point is that (universal)
effinite quantification amounts to an existential quantification which
says simply “There is an effinite (infinitely proceeding) sequence of
prime numbers”, for example. It is manifest that the symbol is not
directly eliminable. Still, the constructive procedure of infinite descent
in the cumulative degree structure of polynomials will enable us to
discharge the symbol in a finite number of steps, much in the same
way as the ε symbol is eliminated in Ackermann’s proof. But the ε
symbol required transfinite induction for its elimination, since it is a
transfinite choice function, and the reduction of global substitutions of
true formulas for ε-formulas had to depend on the (transfinite) ordinal
hierarchy of the second number class, as in Gentzen’s proof.

By replacing the rank of a formula by the degree of the corresponding
polynomial, we obtain a reduction by unique factorization, that is a
finiteness result for arithmetic with infinite descent.

5.3. Divisibility. The method of descent we have used in [Gauthier1989]
and which is most common could also be called the method of decom-
position, as Weil has called it.7 The decomposition process necessarily
stops, and this form of the descent is the one most commonly used
for the positive solutions of Diophantine equations. After Fermat, Le-
gendre used the method, and it is the way it is used by most contempo-
rary authors from Mordell and Weil on.8 Local decomposition of forms
in a descent corresponds to a division process. Kronecker has outlined
in [Kronecker6] the most general setting for the decomposition of poly-
nomial content. His notion of inclusion or content is expressed in terms

7Cf. A. Weil [Weil2].
8Mordell [Mordell] says that you start with an arbitrary n — an arbitrary choice

made once and for all — and descend finitely. Hasse’s principle of local solvability
implying global solvability for quadratic forms relies on the same principle and is
related to Legendre’s “positive” infinite descent for the equation ax2 + by2 = cz2.
Cf. [Davenport].
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of the convolution product. The general form of the convolution prod-
uct of two polynomials (forms) encloses or contains higher-order forms
and the substitution-elimination method enables one to remain within
the confines of integral forms. The product of forms

m∑
h=0

MhUh ·
m+1∑
i=1

Mm+iUm+1

satisfies an algebraic equation of order r which defines a form containing
the product of forms

r∏
h=1

MkVhk.

Hence, the notions of inclusion and of equivalence (reciprocal inclusion)
of forms are valid generally, i.e., for both forms and divisors.9 Factor
decomposition — which we may call devolution — is a descending
technique perfectly similar to the division algorithm for integers or the
Euclidean algorithm for polynomials. The notion of greatest common
divisor of a finite set of elements is an equivalence class of polynomials,
and Kronecker’s main result is as stated above.10

Every integral algebraic form is canonically representable as a prod-
uct of irreducible (prime) forms. For this unique decomposition (devo-
lution) of polynomials, descent is used to arrive at irreducible polyno-
mials, much in the same way as in Euclid’s proof of the divisibility of
composite numbers by primes. Take a polynomial

f(x) = a0x
n + b1x

n−1 + . . . + bn

of degree n. Suppose that n is not prime, then it must be divisible
by two factors i and j one of which, say j, must be prime; if not, j
must be divisible by two factors, h and g, one of which, say g, must be
prime; if not, we go on in that process, until we reach an a which is
necessarily prime, since there is no infinite descent, and we must stop
at 1, that is, linear (and irreducible) polynomials. Formally,

x {[Ax ∧ ∃y (y < x)Ay] → ∃y z (z < y)Az} → x¬Ax.

By reductio ad absurdum, there are irreducible polynomials. Now the
fact (Gauss’s lemma) that the product of two primitive polynomials
(with 1 as the greatest common divisor of their respective coefficients)

9My emphasis is different from Edwards’s [Edwards], who has chosen to look at
divisor theory rather than the theory of forms which is, in my view, the encom-
passing theory.

10See Kronecker [Kronecker6]. Edwards [Edwards] rightly says that Dedekind’s
Prague theorem — a generalization of Gauss’s lemma to the algebraic case — is
but a consequence of Kronecker’s result.
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is primitive can also be had with infinite descent and reductio ad absur-
dum. This fact combined with the fact that there is unique decompo-
sition into irreducible (= prime) polynomials, we obtain unique prime
factorization. Kronecker’s version of unique decomposition rests on the
formula quoted above

r∏
h=1

MkVhk.

and ∏
i=j+k

ci =
∑

j+k=i

ajbk

with j = (0, . . . , m) and k = (0, . . . , n). We shall read it in the form
(remembering that ab−1 ≡ 1( mod p) from a divisibility point of view)

m+n∏
i=1

(1 + cixi) =
m+n∑
i=0

(cix
m+n−1) =

∑
m+n=1

(ambn)

to prove the eliminability of the effinite quantifier. The procedure is
quite similar to the process of elimination of implication which now ap-
pears as a decomposition of content — the notion of inclusion (Enthalten-
Sein) which has been translated by “content.” With the elimination of
the effinite quantifier by infinite descent, we shall be done.

5.4. The elimination of the effinite quantifier through infinite
descent. There is an intimate connection between implication as in-
clusion (filling a content) and effinite quantification as an iterated prod-
uct. We have introduced the effinite quantifier in the form

ϕM( xAx)[n×m× ` . . .] < n×m× ` . . . >= 1 ,

and this can be translated in sequents

Γ · ((anx
n) + ∆)

Γ · (
∏

i...(aixi) + ∆)
r (∗) (Γ + (anx

n)) · ∆

Γ · (
∏

n...(anxn)) · ∆
l (∗∗) .

We can see this product as an iterated product∏
. . .

∏
(amxm)(anx

n) ,

which we write as
m∏

i=1

ai

( n∏
j=1

. . . am+j

)
. . . =

m+n...∏
r=1

=
n+1∏
i=1

ai =

( n∏
i=1

ai

)
an+1

...

=
n+m∏
i=1

ai =

( n∏
i=1

ai

)
an+1, . . . an+n ,
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which we calculate by descending. We set

m+n∏
i=1

(ci)n = am · bn

m+n∏
i=1

(1 + cix)1 · · · (1 + ci)n .

The lower index (1 . . . n) is the height of the polynomial. We take up
again our calculations of coefficients. We put ((a0x) ·(b0x))n to indicate
that we have a product of monomials

(a0x · b0x) = ((a0x) · (b0x))

=

an
0x +

∏n
i=1

∑n−1
k=1(n− 1/k − 1)1a

k−1
0 x + (n− 1/k)1(a

k
0xbn−k

0 x)1 + bn
0x1

...

an
0x +

∏n
i=1

∑n−1
k=1(n− 1/k − 1)na

k−1
0 x + (n− 1/k)n(ak

0xbn−k
0 x)n + bn

0xn


=


∏n−1

i=1 (
∑n

k=1)(n/k − 1)1(a
k
0xbn−k

0 x)1 +
∑n−1

k=0(n− 1/k − 1)1(a
k
0xbn−k

0 x)1
...∏n−1

i=1 (
∑n

k=1)(n/k − 1)n(ak
0xbn−k

0 x)n +
∑n−1

k=0(n− 1/k − 1)n(ak
0xbn−k

0 x)n


=


∏n

i=1(
∑n−1

k=0)(n− 1/k)1(a
k+1
0 xbn−1−k

0 x)1 +
∑n−1

k=0(n− 1/k)1(a
k
0xbn−k

0 x)1
...∏n(
∑n−1

k=0)(n− 1/k)n(ak+1
0 xbn−1−k

0 x)n +
∑n−1

k=0(n− 1/k)n(ak
0xbn−k

0 x)n



=



an

n∏
i=1

[
n−1∑
k=0

(n− 1/k)1((a0 − 1)kx)1(b
n−1−kx)1

+bn

n−1∑
k=0

(n− 1/k)1(a
k
0x)1((b0 − 1)n−1−kx)1

]
...

an

n∏
i=1

[
n−1∑
k=0

(n− 1/k)n((a0 − 1)kx)n(bn−1−kx)n

+bn

n−1∑
k=0

(n− 1/k)n(ak
0x)n((b0 − 1)n−1−kx)n

]


= (a1x + b1)1(a1x + b1x− 1)n−1

1

· · ·
= (a1x + b1)n(a1x + b1x− 1)n−1

n ,
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and continuing by descent, we have (again omitting the x’s)

=

(a2 + b2)1(a2 + b2 − 2)n−2
1

...
(a2 + b2)n(a2 + b2 − 2)n−2

n


· · ·

=

(an−2 + bn−2)1(an−2 + bn−2 − n− 2)
n−(n−2)
1

...

(an−2 + bn−2)n(an−2 + bn−2 − n− 2)
n−(n−2)
n


· · ·

=

(an−1 + bn−1)1(an−1 + bn−1 − n− 1)
n−(n−1)
1

...

(an−1 + bn−1)n(an−1 + bn−1 − n− 1)
n−(n−1)
n


· · ·

=

(an + bn)1(an + bn)n−n
1

...
(an + bn)n(an + bn)n−n

n

 ,

which is

=

(a0 + b0)1
...

(a0 + b0)n

 ,

which is just (a0 · b0) =
∏n

0 (a0 + b0). �
We can also calculate the generalized formula

(a0x · b0x · c0x · . . . · g0x)n =
∏

abc ... g

∑
pqr ... s

apbqcr . . . gs

in the same manner by simultaneous descent
(a0x · b0x · c0x · . . . · g0x)n
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=



an
0x +

n∏
i=1

n−1∑
k=1

(n− 1/k − 1)1a
k−1
0 x + (n− 1/k)1(a

k
0x · bn−k

0 x)1

+ (bn
0x)1 + (n− 1/k)1((a

k
0x · cn−k

0 x)1 + (cn
0x)1) + . . .

+ (n− 1/k)1((a
k
0x · gn−k

0 x)1 + (gn
0 x)1)+

+ (bn
0x · cn

0x)1

...
+ (cn

0x · gn
0 x)1

...
+ (bn

0x · gn
0 x)1



(Add up to the height n− 1 for the product.)

=



=
n−1∏
i=1

(
n∑

k=1

)
(n/k − 1)1(a

k
0xbn−k

0 x)1

+
n−1∑
k=0

(n− 1/k)1(a
k
0xbn−k

0 x)1 . . .

+
n−1∑
k=0

(n− 1/k)1((a
k
0xcn−k

0 x)1 + (cn
0x)1) + . . .

+
n−1∑
k=0

(n− 1/k)1((a
k
0xgn−k

0 x)1 + (gn
0 x)1) + . . .

+
n−1∑
k=0

(n− 1/k)1(b
k
0xcn

0x)1 . . .

...

+
n−1∑
k=0

(n− 1/k)1(c
n
0x · . . . · gn

0 )1 . . .

...

+
n−1∑
k=0

(n− 1/k)1(b
n
0x · . . . · gn

0 )1
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(Add up to the height n− 1 for the sum.)

=



n∏
i=1

(
n−1∑
k=0

)(n− 1/k)1(a
k+1
0 bn−1−k

0 x)1

+
n−1∑
k=0

(n− 1/k)1(a
k
0b

n−k
0 x)1

...

+
n−1∑
k=0

(n− 1/k)1 + (bk
0g

n−k
0 x)1


(Add up to the height n for p + q + r + s = n.)

=



an

n∏
i=1

[
n−1∑
k=0

(n− 1/k)1((a0 − 1)kx)1(b
n−1−kx)1

+bn

n−1∑
k=0

(n− 1/k)1(a
k
0x)1((b0 − 1)n−1−kx)n

]

+ cn

n−1∑
k=0

(n− 1/k)1(b
k
0x)1((c0 − 1)n−1−kx)n

...

gn

n−1∑
k=0

(n− 1/k)1(c
k
0x)1((g0 − 1)n−1−kx)n


=

[
(a1x + b1x)1(a1x + b1x− 1)1(a1x + c1x− 1) . . .
(a1x + g1x− 1)n−1

1

]
· · ·

=

[
(a1x + b1x)n(a1x + b1x− 1)n(a1x + c1x− 1)n . . .
(a1x + g1x− 1)n−1

n

]
.

The descent is then effected simultaneously on the degree and the
height of the polynomial and gives

(a0 · b0 · c0 · . . . · g0) =
n∏
0

(a0 + b0 + c0 + . . . + g0) .

Not having at our disposal the analytical tools of power series (with
the notions of infinite series and limits), we can always call a computer
for help in particular cases (which is not a case in question here), since
we have the benefit of a finite calculation, not available in an ideal
transarithmetical world.
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We have extracted the content of the product (of the contents of each
polynomial) by infinite descent. In so doing, we have also eliminated
the logical content of the effinite quantifier: the effinite quantifier ap-
pears then as a long chain of implications (inclusions), any implication
being itself a singular inclusion (or content).

Infinite descent for reducible polynomials terminates at 1 or 0; if it
terminates at 1 (the degree 1), we have the linear irreducible polyno-
mials, while constant polynomials have degree 0, then 1 6= 0; if the
descent terminates at 0, the zero polynomial has no degree (denoted
by −∞). Then 1 6= 0 or 0 6= −∞. In other terms,

` A,¬A
,

which is

` A + (1− A)
,

that is, 1 + (1 − 1) 6= 0. Thus, consistency is proven, that is, ¬(0 =
1). �

6. Concluding Remarks

We have shown that the system FA of Fermat’s arithmetic is a con-
sistent extension of R. Robinson’s arithmetic. Self-consistency of arith-
metic with infinite descent has been obtained by internal, that is, el-
ementary or constructive means. The polynomial arithmetic we have
used is equivalent to what Kronecker calls his “general arithmetic”,
the arithmetic of forms (polynomials) with indeterminates (algebraic
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quantities or abstract objects).11 No detour via an infinite set (of nat-
ural numbers) is needed in the proof of internal consistency, nor is the
extended induction on transfinite ordinals necessary.12 In other words,
arithmetic with infinite descent is self-contained, selbstenthaltend, as
Kronecker would probably have said. Note that this does not entail
completeness, since we want our arithmetic to be open-ended — of
course, “relative” completeness ensues for fragments of arithmetic.

Transfinite arithmetic is but an associate (projective) scale (of alge-
braic quantities) immediately reducible to the absolute scale; in par-
ticular the ε0 scale is reduced by taking Cantor’s normal form theorem
as the ordinal polynomial with finite coefficients ci

ξ = ωαc + ωα
1 c1 + . . . + ωα

ncn

for the transfinite hierarchy up to ε0. Indeterminates, sometimes called
transcendentals or infinites (see Weil [Weil2]), are merely symbols for

11S. Lang [Lang] says that “analysis becomes number theory at infinity.” Here,
“at infinity” means points at infinity or archimedean places for hermitian forms
or divisors in the intersection theory of arithmetic surfaces. But the point at
infinity can vanish! A nice illustration of this is the recent arithmetization of the
Riemann-Roch theorem by Gillet and Soulé, where the calculus on an arithmetic
variety is independent of the choice of any hermitian metric (i.e., the point at
infinity). Diophantine approximation (Vojta and others) is also responsible for the
pushing away of the point at infinity (= analysis). This is one sign, among many
others, of the arithmetization of algebraic geometry, a century after Kronecker.
One needs only to remember that elliptic curves are cubic polynomials (with at
least one rational point). The Taniyama-Weil conjecture, which says “every elliptic
curve can be parametrized by elliptic modular forms,” implies that quadratic
polynomials (among them, Diophantine equations, like Fermat’s last theorem) are
exceptional among all polynomials — some of them have no remainder or residue,
i.e., they generate squares and can be shown to be independent from all other
higher-degree polynomials. For the semistable (square-free) case, see Wiles [Wiles].
The Taniyama-Shimura-Weil conjecture is not thereby put to rest, nor the general
Fermat equation

xp + yq = zr ,

which could require still decades of work for a solution according to Henri Darmon
of McGill University.

12Fragments of Peano arithmetic have their consistency defined from above, that
is from a transfinitely consistent PA in a regressive manner, such that the consis-
tency of a finite fragment depends on the consistency of a larger fragment. For
a recent survey of the traditional (set-theoretic) point of view in arithmetic, see
[Hajek].
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quantities that are eliminated through substitution in the general arith-
metical calculus, following Kronecker’s programme. Recursive func-
tions, primitive and general (with the symbol µ), are also readily trans-
latable in the general calculus as polynomial functions and polynomials
equations, the recursion equations and the µ-operation having their
natural formulation in infinite descent (see Ackermann [Ackermann]).

Infinite descent is obviously finite and constructive, although not al-
ways effective, as we have repeatedly said. Upper bounds are defined
in principle, but in practice they are not always available, and an ar-
bitrary n in the arithmetical degree structure serves as a preliminary
existence theorem (cf. Hilbert and E. Noether for the computation
of invariants and finite bases for polynomials13). Finite existence theo-
rems are a priori and can be looked at as invitations for effective proofs.
The recent history of algebraic geometry is an eloquent example.

What about logic? The faithfulness of the polynomial translation
is summarized in the arithmetical content (which is not set-theoretic),
and its justification is achieved by infinite descent. An “arithmetical
logic” is probably what Hilbert intended in his early attempts at the
consistency problem, the combinatorial foundations of logic and arith-
metic. The possibility of such an arithmetical logic, the polynomial in-
terpretation, is hinted at and the finitary character of infinite descent is
stressed in Kreisel [Kreisel]. The ambivalent ontological commitment
to Cantor’s paradise had some consequence for Hilbert’s programme
for the restoration of classical analysis via set theory and (traditional)
logic, while Gödel’s transfinite point of view made room for an ab-
stract interpretation of concrete mathematical objects. The symbolic
manipulation of identities or equalities in a substitutional calculus in
which variables play the role of indeterminates in an infinite (or indefi-
nite) domain — ultimately reducible to a single x — does not have any
transcendent meaning, as abstract modern algebra, set theory, model
theory and classical logic would have us believe. Logicians and philoso-
phers have taken too seriously Frege’s credo in numbers as concepts or
Russell’s disregard for actual mathematical practice, and they have not
taken notice that mathematics most of the time is done with concepts

13As expected, E. Noether’s proofs are by infinite descent using a splitting
process (Faltungsprozess) for split extensions that can be reduced to fundamen-
tal splittings (Grundfaltungen) by descent — the splitting or minimal field. See
[Noether1908] and [Noether1911] where Study’s symbolic method of polynomial
identities is put to use in the reduction of higher-order forms. It is interesting to
note that modern algebra has developed (since Emmy Noether and with her) in
a less and less constructive fashion while modern number theory and arithmetic
geometry are more and more constructive.
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that work (or do the work) on themes and motives in their proper arena
and with the appropriate machinery. A calculus without the “good” or
“right” concepts is useless. The equivalence between arithmetical logic
and polynomial arithmetic does not involve any circularity, only a con-
structive interpretation of what logic is. In view of Gödel’s Dialectica
interpretation, one could wonder if logic is concrete or abstract, since
it is the meaning of the concept which is at stake here. Gödel says —
thinking probably of Gentzen — that the notion of accessibility (Er-
reichbarkeit) is an abstract concept which involves a kind of reflection
on finite constructions. The notion of functional of finite simple type
over the integers is such a concept. Gödel shows how to eliminate logic
(implication and the quantifiers) by using a recursive functional

F ′ = ∀x∃yA[x, y, z]

where y and z are finite sequences of variables of arbitrary type and A
is a quantifier-free expression with the variables x, y, z. In the case of
implication,

(F ⊃ G)′ = ∀y, w ∃V, Z[ A(y, Z(y, w), x) ⊃ B(V (y), w, u) ] ,

formulas are simply identified with (two) functionals (with their proper
variables) which coordinate (zuordnen) the consequent with the an-
tecedent. I claim that the convolution product achieves the aim (of
the computational extraction of the content) of implication in a direct
fashion. Here one would have for the example given by Gödel :

∃xAx ⊃ ∃yBy =
n∑
0

(∑
ā0x +

∑
b0x
)n

and

∀xAx ⊃ ∀yBy =
n∏
0

(∏
ā0x ·

∏
b0x
)n

.

The formal content of forms (polynomials) in Kronecker’s sense of en-
tailment or inclusion Enthalten-Sein seems to call for such an interpre-
tation by adjunction of indeterminates. Whether the calculus of con-
tent needs an abstract (intensional) setting is of foundational import.
There is no doubt that the requirement of constructivity is satisfied,
while the requirement of finiteness might be relaxed (with the effinite
quantifier and infinite descent?). In any case, those requirements were
the motivation for Gödel’s extension of the finitist point of view in or-
der to prove the consistency of Peano’s arithmetic. In the case of FK
or Fermat-Kronecker arithmetic, we have seen that the requirements
are met in a most natural or purely internal way. Hilbert’s consistency
programme is vindicated. The embedding of arithmetic into a larger
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theory, the “general arithmetic” of polynomials with indeterminates
in which logic is translated, allows for a consistency proof downwards,
from complete (and transfinite) induction to infinite descent, and back-
wards, from Hilbert to Kronecker.

References

[Ackermann] Ackermann, W., “Zur Widerspruchsfreiheit der reinen Zahlentheo-
rie,” Math. Ann, 117 (1940), 162-194.

[Buss] Buss, S.R., Bounded Arithmetic, Napoli: Bibliopolis, 1986.
[Davenport] Davenport, H., The Higher Arithmetic, London: Hutchison University

Library, 1968.
[Edwards] Edwards, H.M., Divisor Theory, Basel: Birkhaüser, 1989.
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biquadratischen Form,” J. Reine u. Angew. Math., 134 (1908), 23-90.

[Noether1911] Noether, E., “Zur Invariantentheorie der Formen von n Variabeln,”
J. Reine u. Angew. Math., 139, (1911), 118-154.
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