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The background to the view developed in this book is constituted by
the form that classic issues in the philosophy of mathematics — What
is the ontological status of mathematical objects? Do numbers, sets,
and so on, exist? What is the semantical status of mathematical state-
ments? What do mathematical statements mean? Are they literally
true or false, are they vacuous, or do they lack truth-values altogether?
— received in the two famous papers Benacerraf devoted to What Num-
bers Could Not Be ([1]), in 1965, and to the notion of Mathematical
Truth ([2]), in 1973. Both papers stress some difficulties concerning
the realistic conception, which is taken in both the ontological sense
(mathematical objects — numbers, functions, and the like — do exist),
and in the semantical sense (each well-formed, meaningful sentence is
determinately true or false). Difficulties stem from combining these
theses with the requirement that mathematical statements have the
same semantics as ordinary statements and with the so-called causal
theory of knowledge: if mathematical objects are outside the causal
nexus, how can we know anything about them? How is it possible
to guarantee an epistemic access to a causally inert, eternal, and de-
tached mathematical realm? Moreover, confronted with different ways
to set-theoretically model virtually every kind of mathematical object,
we are left without an answer to the question of which kind of objects
are, for instance, the natural numbers, with the possible conclusion
that numbers are not objects at all.

Contrary to what Benacerraf seems to suggest, Shapiro thinks that
antirealist philosophies of mathematics don’t fare any better: in fact,
his structuralist program is a realism in ontology and a realism in
truth-value. Preliminary to the characterization of his program is the
emphasis on the importance of philosophy for mathematics. Dealing
with the relationship between the practice of mathematics and the
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philosophy of mathematics, Shapiro rejects both the philosophy-first
principle and the philosophy-last-if-at-all principle. Besides other crit-
icisms, decisive against the philosophy-first-principle is its not being
true to the history of mathematics. The axiom of choice represents an
interesting case study: this principle was not accepted because realism
sanctions it, but because it is needed. The opposite thesis, one version
of which is Quine’s naturalism, maintains the irrelevance of philoso-
phy to mathematics. Shapiro doubts that this position is healthy, on
balance, for either mathematics or philosophy. There are important
questions which are not entirely mathematical matters. One job of the
philosopher is to give an account of mathematics and its place in our
intellectual lives. What is the subject matter of mathematics? What
is the relationship between the subject matter of mathematics and the
subject matter of science that allows such extensive application and
cross-fertilization? How do we manage to do and know mathematics?
How can mathematics be taught? How is mathematical language to be
understood? How is mathematics applied in the sciences? (see p. 32).

After these preliminary clear-cut settlements, which are the topics of
the first two chapters forming Part I of the book, “Perspective”, in the
three chapters of Part II, “Structuralism”, Shapiro characterizes his
structuralist program by holding, first, that a nonalgebraic field like
arithmetic is about a realm of objects — numbers — that exists inde-
pendently of the mathematician, and, second, that there is no more to
the individual numbers “in themselves” than the relations they bear
to each other. (Needless to say, a non-algebraic field, like arithmetic,
analysis, and perhaps set theory, is intended to be about a single struc-
ture, or isomorphism type. On the contrary, algebraic fields, like group
theory, field theory, topology, and so on, are not about a single struc-
ture that is unique up to isomorphism. Rather they are about a class
of related structures.) The notion of structure is defined as the ab-
stract form of a system, which, in its turn, is defined to be a collection
of objects with certain relations. “Abstract” means that any features
of the interrelated objects that do not affect how they relate to other
objects in the system are ignored.

From an epistemological point of view, Shapiro mentions three main
ways to apprehend a particular structure: the first is through a process
of pattern recognition, or abstraction. A second way is through a direct
description of it. The third way is given by the possibility of describing
a structure as a variation of a previously understood structure. To this
subject the fourth chapter, “Epistemology and Reference”, is devoted.
The third chapter, “Structure”, concerns the ontological perspective.
On this front, a first group of issues pertains to the status of the whole
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structure, such as the natural-number structure, as well as a baseball
defense. The other group concerns the status of mathematical objects:
natural numbers, players and so on. Beginning from the latter group,
Shapiro states that “each mathematical object is a place in a particular
structure” (p. 78). The natural-number structure may be exemplified
by many different systems, and in any exemplification different objects
can play the role of 2; what does not change is the office: the number
2 is the second place in the structure. On this basis, Shapiro thinks
it possible to resolve Frege’s Caesar problem (“to determine how and
why each number is the same or different from any object whatsoever”,
p.78), and counteract criticism by Benacerraf and Kitcher against the
thesis that numbers are objects. The solution, somewhat reminiscent
of Carnap’s Empiricism, Semantics and Ontology ([3]), is to consider
that questions like “Is Julius Caesar = 2?” or “Is 1 ∈ 4 (as for von
Neumann), or not (as for Zermelo)?” are not good questions. “Good”
questions concern relations between natural numbers which can be de-
fined in the language of arithmetic. For instance, “Is 1 < 4?” or “Can
5 be evenly divided by 3?”. Asking whether 1 is an element of 4 cannot
be answered, just like asking if 1 is braver than 4. The treatment of the
Caesar problem is analogous: structuralism answers that anything can
“be” 2, i.e., {{∅}}, {∅, {∅}}, Julius Caesar, anything can occupy that
place in a system exemplifying the natural-number structure. Just as
anybody prepared to play ball can be a shortstop, meaning that any-
body can occupy that place, or play that role, in an infield system.

The previously recorded slogan, “mathematical objects are places in
structures”, is susceptible of two readings: the first is called the places-
are-offices perspective, the second the places-are-objects perspective.
We practice the former when we say, for instance, that the man cur-
rently occupying the office of vice president is more intelligent than
his predecessor, or that “the von Neumann 2 has one more element
than the Zermelo 2” (p. 82). When practicing the latter we treat the
places of a given structure as objects in their own right. We may say
that the vice president, regardless of who is the (wo)man who occupies
that place, is president of the Senate. While the previous stance pre-
supposed a background ontology capable to supply objects to fill the
places of the structure, now the statements are about the respective
structure as such, independent of any exemplifications it may have.
The contrast places-are-offices/places-are-objects is related to the dis-
tinction between the two interpretations of the copula: as identity or
as predication. When we adopt the first point of view and say, for
instance, that 7 is the largest prime less than 10, we use the “is” of
identity. Alternatively, if we say that {∅, {∅}} is 2, we are of course
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not saying that {∅, {∅}} “is identical to” 2, but that it plays the rôle
(occupies the office) of 2 in the system of finite von Neumann ordinals.
In this sense, we use the “is” of predication (relative to a system which
exemplifies the structure).

As a technical tool to reason about systems, Shapiro thinks that
isomorphism is a too demanding one since, for instance, being not iso-
morphic, we can not say, much as it seems natural to do, that the natu-
ral numbers with addition and multiplication and the natural numbers
with addition, multiplication and less-than are systems which exem-
plify the same structure. More useful, and more suitable to express
the “sameness of structure” relationship among systems, is judged the
equivalence relation between systems (and structures) formulated by
Resnik in “Mathematics as a Science of Patterns: Ontology and Refer-
ence” ([5]). Two systems M and N are defined to be structure-equivalent
if there is a system R such that M and N are each isomorphic to full
subsystems of R. And a system P is defined to be a full subsystem of
R if they have the same objects and if every relation holding in R can
be defined in terms of the relations of P. So, being less-than definable
in terms of addition (x < y iff ∃z (z 6= 0 & x + z = y)), the natural
numbers with addition and multiplication are a full subsystem of the
natural numbers with addition, multiplication and less-than. There-
fore, the two systems are trivially structure-equivalent: just let the
natural numbers with addition, multiplication and less-than play the
role of “R” in the previous definition. Shapiro notes that, being charac-
terized in terms of definability, the notion of structure-equivalence, and
hence a number of ontological matters, are dependent on the linguistic
resources available in the background metalanguage. Strangely enough,
instead of furthering the application of this notion to the analysis of
some concrete systems, Shapiro devotes himself to outline an axiomatic
treatment of structures. We are given an axiom of Infinity (there is at
least one structure that has an infinite number of places), three ax-
ioms concerning substructures (Subtraction, Subclass, and Addition),
two axioms aimed at assuring the existence of large structures (Power-
structure and Replacement), one axiom, Coherence, assuring that any
coherent theory characterizes a structure, or a class of structures, and
lastly a Reflection axiom which states that if φ, then there is a structure
S that satisfies the other axioms of structure theory and φ (φ being any
first- or second-order sentence in the language of structure theory). One
realizes the impact of the last axiom if he considers that, letting φ be
a tautology, Reflection entails the existence of a structure the size of an
inaccessible cardinal. As regards Coherence, it is worth stressing that
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because second-order language is used, simple (proof-theoretic) consis-
tency is not sufficient to guarantee that a theory describe a structure
or class of structures. At pages 134-136, Shapiro dwells upon the pos-
sibility of equating coherence and consistency (where the latter notion
is defined as the nonexistence of a sort of deduction, i.e., the deduc-
tion of a contradiction; meaning, of course, not the lack of concrete
tokens for the relevant deduction, but the nonexistence of a certain
type) concluding that satisfiability (the assertion of the existence of a
model) is a better analogue than consistency for coherence. This must
be intended as meaning that satisfiability is a rigorous mathematical
notion that provides a good mathematical model of coherence. As an
analogy: “satisfiability is to coherence pretty much as recursiveness is
to computability” (p.135).

The fifth and concluding chapter of the second part, “How we got
here”, retraces in a lucid and interesting way the steps of the idea
that mathematics is the science of structures, mainly following the
debates on the foundations of geometry which involved, among others,
Helmholtz, Hilbert, Frege, Russell and Poincaré.

Part III of the book, “Ramifications and Applications”, consists of
three chapters and is devoted to evaluate the extension of structuralism
to other aspects of mathematics and to science and ordinary language.
A characteristic feature of this part of the book is that direct exposition
of the various themes is largely interwoven in a penetrating survey of
the relevant literature: Quine, Dummett, Field, Hellmann, Resnik,
and others, are extensively discussed. In the reviewer’s opinion, just
this capacity of keeping together various threads, developing them from
both an historical and a theoretical point of view, is what mainly shapes
Shapiro’s book and makes it an absolutely remarkable tool for anybody
working in the foundations of mathematics.
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