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A convolution estimate for
two-dimensional hypersurfaces

Ioan Bejenaru, Sebastian Herr and Daniel Tataru

Abstract

Given three transversal and sufficiently regular hypersurfaces in R
3

it follows from work of Bennett–Carbery–Wright that the convolution
of two L2 functions supported of the first and second hypersurface,
respectively, can be restricted to an L2 function on the third hy-
persurface, which can be considered as a nonlinear version of the
Loomis–Whitney inequality. We generalize this result to a class of
C1,β hypersurfaces in R

3, under scaleable assumptions. The resulting
uniform L2 estimate has applications to nonlinear dispersive equa-
tions.

1. Setup and main result

Given three coordinate hyperplanes Σ1, Σ2, Σ3 in R
3, namely

Σ1 = yz − plane, Σ2 = xz − plane, Σ3 = xy − plane,

and smooth functions f ∈ Lp(Σ1), g ∈ Lq(Σ2), consider estimates of the
form

‖f ∗ g‖Lr′(Σ3) ≤ C‖f‖Lp(Σ1)‖g‖Lq(Σ2).

Since

(f ∗ g)(x, y, z) =

∫
f(y, z′)g(x, z − z′)dz′

by duality the above estimate is equivalent to

∣∣∣∣
∫
f(y, z)g(x,−z)h(x, y)dxdydz

∣∣∣∣ ≤ C‖f‖Lp(Σ1)‖g‖Lq(Σ2)‖h‖Lr(Σ3).
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By Hölder’s inequality, we obtain the necessary and sufficient conditions
p = q = r = 2. In that case we obtain the bound

(1.1) ‖f ∗ g‖L2(Σ3) ≤ C‖f‖L2(Σ1)‖g‖L2(Σ2).

which is the classical Loomis-Whitney inequality in three space dimensions,
see [8].

The question which we address here is the following: Does the esti-
mate (1.1) remain true if Σ1, Σ2 and Σ3 are bounded subset of transversal,
sufficiently smooth, and oriented surfaces in R

3?
This question has been answered in the affirmative in [5, Proposition 7],

along with a quantitative estimate, under the assumption of C3 regularity
and a local transversality condition on the surfaces. In considering this
question we are motivated by problems which arise in the analysis of bilinear
Xs,b,p estimates in various nonlinear dispersive equations. Precisely, one can
view the estimate (1.1) as a limiting case of the following bound:
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.

Here f, g are assumed to have Fourier support supported in a fixed unit ball,
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= sup
k≤0

2−
k
2 ‖f̂(ξ)‖L2({2k≤dist(ξ,Σ)≤2k+1}).

By rescaling, this implies estimates on dyadic frequency scales, in the low
modulation region. Bounds of this type have already appeared — at least im-
plicitely — in the study of bilinear interactions in many semilinear equations
with nontrivial resonance sets, i.e. when bilinear interactions of solutions
to the linear homogeneous equation have an output near the characteristic
set, which in our context means that Σ1 + Σ2 has a nontrivial intersection
with Σ3.

For instance, in the context of Schrödinger equations we can mention [6],
[2, Lemma 4.1] and [1]; there the three surfaces are (pieces of) parabolas.
Other examples are the bounds for the KP-I equation considered in [7].
A large class of bilinear and multilinear estimates have been systematically
studied in [9]; however, this does not include the present setup.
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In most applications to dispersive equations bilinear estimates are proved
in an ad-hoc manner, taking advantage of the exact form of the surfaces Σ1,
Σ2 and Σ3. In all cases mentioned above the three surfaces have nonva-
nishing curvature, and one may ask which (if any) is the role played by
the curvature in general. It is well known that the nonvanishing curvature
plays a fundamental role in the study of nonlinear dispersive equations, as
it insures good decay properties for the fundamental solution of the cor-
responding linear equation, as well as Strichartz and other estimates for
solutions to the linear equation. On the other hand, the bound (1.1) is still
valid when Σ1, Σ2 and Σ3 are transversal planes. Note that the role of cur-
vature and transversality has been clarified in [5] in a much broader context:
Curvature is dispensable for the validity of estimate (1.1). However, it still
is desireable to gain a better understanding of the interplay of the necessary
size, regularity, transversality and curvature assumptions on the surfaces un-
der which sharp quantitative and scaleable estimates of the type (1.1) hold
true. Our main motivation are bilinear estimates with applications to the 2d
Zakharov system, see [3], in which case we need to analyze the interaction
between two paraboloids and a cone.

Our precise set-up is the following.

Assumption 1.1. For i = 1, 2, 3 there exists 0 < β ≤ 1, b > 0, and θ > 0
as well as1 Σ∗

i ⊂ R
3, such that Σi is an open and bounded subset of Σ∗

i and

(i) the oriented surface Σ∗
i is given as

(1.2) Σ∗
i = {σi ∈ Ui | Φi(σi) = 0,∇Φi �= 0,Φi ∈ C1,β(Ui)},

for a convex Ui ⊂ R
3 such that dist(Σi, U

c
i ) ≥ diam(Σi);

(ii) the unit normal vector field ni on Σ∗
i satisfies the Hölder condition

(1.3) sup
σ,σ̃∈Σ∗

i

|ni(σ) − ni(σ̃)|
|σ − σ̃|β +

|ni(σ)(σ − σ̃)|
|σ − σ̃|1+β

≤ b;

(iii) the matrix N(σ1, σ2, σ3)=(n1(σ1), n2(σ2), n3(σ3)) satisfies the transver-
sality condition

(1.4) θ ≤ detN(σ1, σ2, σ3) ≤ 1

for all (σ1, σ2, σ3) ∈ Σ∗
1 × Σ∗

2 × Σ∗
3.

1We will use the larger surfaces Σ∗
i and condition (i) only to ensure the existence of a

global representation of Σi as a graph over a cube in a suitable frame. This assumption
is likely to be redundant, but we will not pursue these matters here as it is irrelevant for
applications.
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Σ1

Σ2

Σ3

Figure 1: Three surfaces Σ1, Σ2, and Σ3 in a transversal position.

We identify f ∈ L2(Σ1) = L2(Σ1, μ1) –μ1 being the surface measure on
Σ1– with the distribution

f(ψ) =

∫
Σ1

f(y)ψ(y)dμ1(y), ψ ∈ D(R3).

For f ∈ L2(Σ1), g ∈ L2(Σ2) with compact support the convolution f ∗ g ∈
D′(R3) is given by

(f ∗ g)(ψ) =

∫
Σ1

∫
Σ2

f(x)g(y)ψ(x+ y)dμ1(x)dμ2(y), ψ ∈ D(R3).

A-priori this convolution is an integrable function which is only defined
almost everywhere, therefore its restriction to Σ3 is not well-defined. To
address this issue we begin with f ∈ C0(Σ1) and g ∈ C0(Σ2). Then f ∗ g ∈
C0(R

3) and has a well-defined trace on Σ3. If (1.1) is proved in this case, then
the trace of f ∗ g on Σ3 can be defined by density for arbitrary f ∈ L2(Σ1)
and g ∈ L2(Σ2).

Transferring the bound (1.1) from coordinate planes to the general set-
ting of possibly curved surfaces turns out to be quite nontrivial. The reason
is that the convolution has an additive structure with respect to addition in
the ambient space R

3, which is lost when restricting it to curved surfaces.
Our first result is the following.

Theorem 1.2. Let Σ1,Σ2,Σ3 be surfaces in R
3 which satisfy Assumption 1.1

with parameters 0 < β ≤ 1, b = 1 and θ = 1
2
, and diam Σi ≤ 1. Then for

each f ∈ L2(Σ1) and g ∈ L2(Σ2) the restriction of the convolution f ∗g to Σ3

is a well-defined L2(Σ3)-function which satisfies

(1.5) ‖f ∗ g‖L2(Σ3) ≤ C‖f‖L2(Σ1)‖g‖L2(Σ2),

where the constant C depends only on β.
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As mentioned above, in the case where the surfaces are of class C3 and
a local transversality condition is satisfied a variant of this theorem has
been obtained earlier with a different proof. More precisely, estimate (1.5)
can be derived from [5, Theorem 1] as in the proof of [5, Proposition 7 or
Theorem 8].

For multilinear estimates with applications to nonlinear dispersive equa-
tions it is necessary to make explicit how C depends on the diameter of the
surfaces and on θ, b and β. The subsequent Corollaries 1.4, 1.5 and in par-
ticular 1.6 are quantitative refinements of the above Theorem which –to the
best of our knowledge– are not available in the literature.

The proof of Theorem 1.2 presented here, which merely uses C1,β reg-
ularity, is based on the induction on scales argument á la Bourgain, Wolff,
Tao seems to be more robust compared to the proof given in [5] in the sense
that it does not require the normals to be Lipschitz. On the other hand,
the induction on scales machinery has been implemented in [4] in a more
general context, but the results of [4] imply our results only up to a small
loss in the induction on scales procedure, see also [4, Remark 6.3]. Note that
the homogeneous regularity assumption (1.3) allows us to take advantage of
the isotropic scaling, which is essential for the derivation of the subsequent
Corollaries.

The result (1.5) can be viewed as a weaker form of the three dimensional
multilinear restriction conjecture, see [4]. Denoting

Ejfj =

∫
Σj

eixξfj(ξ)dξ, fj ∈ L1(Σj)

we have

Conjecture 1.3. ([4]) Assume that Σ1, Σ2 and Σ3 satisfy the transversality
condition (iii) above. Then

(1.6) ‖E1f1E2f2E3f3‖L1 ≤ C‖f1‖L2(Σ1)‖f2‖L2(Σ2)‖f3‖L2(Σ3)

With an ε loss this is proved in [4],

(1.7) ‖E1f1E2f2E3f3‖L1(B(0,R)) ≤ CRε‖f1‖L2(Σ1)‖f2‖L2(Σ2)‖f3‖L2(Σ3).

Another generalization of the Loomis-Whitney inequality is given in [5].
In the context of the above restriction conjecture, the results in [5] imply
that

‖E1f1E2f2E3f3‖L2 ≤ C‖f1‖L4/3(Σ1)‖f2‖L4/3(Σ2)‖f3‖L4/3(Σ3)

which would follow from (1.6) by multilinear interpolation with the triv-
ial L∞ bound for the product.
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We conclude the section with a discussion of further versions of our main
result. Partitioning the three surfaces into smaller pieces and using linear
changes of coordinates it is easy to allow arbitrary values for the parameters
in the hypothesis of the theorem:

Corollary 1.4. Let Σ1,Σ2,Σ3 be surfaces in R
3 which satisfy Assump-

tion 1.1 with parameters 0 < β ≤ 1, b > 0, θ > 0, and diam Σi ≤ R.
Then for each f ∈ L2(Σ1) and g ∈ L2(Σ2) the restriction of the convolution
f ∗ g to Σ3 is a well-defined L2(Σ3)-function which satisfies

(1.8) ‖f ∗ g‖L2(Σ3) ≤ C(Rβb, θ)‖f‖L2(Σ1)‖g‖L2(Σ2).

Here the expression Rβb appears due to isotropic scaling. While this is
easy to prove, it is not so useful due to the unspecified dependence of the
constant C on Rβb and θ. A better result is contained in the next Corollary,
which considers the case of three surfaces which can be placed into the
context of Theorem 1.2 via a linear transformation.

Corollary 1.5. Assume that Σ1, Σ2, Σ3 satisfy the conditions of Theo-
rem 1.2. Let T : R

3 → R
3 be an invertible, linear map and Σ′

i = TΣi. Then
for functions f ′ ∈ L2(Σ′

1) and g′ ∈ L2(Σ′
2) the restriction of the convolution

f ′ ∗ g′ to Σ′
3 is a well-defined L2(Σ′

3)-function which satisfies

(1.9) ‖f ′ ∗ g′‖L2(Σ′
3) ≤ C√

d
‖f ′‖L2(Σ′

1)‖g′‖L2(Σ′
2),

where

d = inf
σ′
1,σ′

2,σ′
3

| detN ′(σ′
1, σ

′
2, σ

′
3) | ,

N ′(σ′
1, σ

′
2, σ

′
3) is the matrix of the unit normals to Σ′

i at (σ′
1, σ

′
2, σ

′
3) and C

depends only on β.

We remark that the linear transformation T does not explicitely appear
in the estimate (1.9). Instead, the size 1√

d
of the constant is determined only

by the transversality properties of the surfaces Σ′
1,Σ

′
2,Σ

′
3. Hence the best

way to interpret the result in the Corollary is to say that the bound (1.9)
for the surfaces Σ′

1,Σ
′
2,Σ

′
3 holds whenever these surfaces are bounded, C1,β

regular and uniformly transversal with respect to some linear frame.

Finally, let us state an explicit condition which guarantees that the as-
sumptions of Corollary 1.5 are satisfied:
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Corollary 1.6. Let Σ1,Σ2,Σ3 be surfaces in R
3 which satisfy Assump-

tion 1.1 with parameters 0 < β ≤ 1, b > 0, θ > 0, and diam Σi ≤ R,
so that

(1.10) Rβb ≤ θ.

Then for each f ∈ L2(Σ1) and g ∈ L2(Σ2) the restriction of the convolution
f ∗ g to Σ3 is a well-defined L2(Σ3)-function which satisfies

(1.11) ‖f ∗ g‖L2(Σ3) ≤ C√
θ
‖f‖L2(Σ1) ‖g‖L2(Σ2),

where C depends only on β.

Finally, we remark that the factor θ−
1
2 which appears in (1.11) has also

been obtained in [5, Theorem 1.2], but with an unspecified dependence of R
on b and θ.

2. Linear changes of coordinates

The aim of this section is to use linear transformations in order to derive
Corollaries 1.5, 1.6 from Theorem 1.2. Parts of these arguments will also be
useful in the proof of Theorem 1.2.

Proof of Corollary 1.5. We may assume that we have a single coordinate
patch for each surface, i.e. there is a global parametrization ϕi : R

2⊃Ωi→R
3,

ϕi(Ωi)=Σi. Therefore, Σ′
i =TΣi is parametrized by ϕ′

i = Tϕi. For i = 1, 2, 3
we define the induced normals

mi(u) = ∂1ϕi(u) × ∂2ϕi(u), m′
i(u) = ∂1ϕ

′
i(u) × ∂2ϕ

′
i(u).

It is easily checked that

(2.1) m′
i = det(T )(T−1)�mi

and therefore

|m′
1||m′

2||m′
3| = | det(m′

1, m
′
2, m

′
3)|| det(n′

1, n
′
2, n

′
3)|−1

=
det(T )2 det(n1, n2, n3)

| det(n′
1, n

′
2, n

′
3)|

|m1||m2||m3|.
(2.2)

Let f ′ ∈ L2(Σ′
1), g

′ ∈ L2(Σ′
2) and h′ ∈ L2(Σ′

3) be given and it is enough to
consider non-negative functions. We write f = f ′(T ·), and

f̃ ′(u) = f ′(ϕ′
1(u))|m′

1(u)|
1
2 ,

and similarly for g′, h′.
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With this notation and by duality, our claim is equivalent to∣∣∣∣
∫
f̃ ′(u)g̃′(v)h̃′(w)|m′

1(u)|
1
2 |m′

2(v)|
1
2 |m′

3(w)| 12dν ′(u, v, w)

∣∣∣∣ ≤
≤ C√

d
‖f̃ ′‖L2(Ω1)‖g̃′‖L2(Ω2)‖h̃′‖L2(Ω3)

(2.3)

with the measure

dν ′(u, v, w) = δ(ϕ′
1(u) + ϕ′

2(v) − ϕ′
3(w))dudvdw,

where δ denotes the Dirac delta distribution at the origin in R
3. Let us also

define the measure

dν(u, v, w) = δ(ϕ1(u) + ϕ2(v) − ϕ3(w))dudvdw.

Using δ(T ·) = | det(T )|−1δ(·), and (2.2) we have that

|m′
1|

1
2 |m′

2|
1
2 |m′

3|
1
2dν ′ ∼ |m1| 12 |m2| 12 |m3| 12

| det(n′
1, n

′
2, n

′
3)|

1
2

dν

by the transversality assumption (1.4) with θ = 1
2

on the normals to Σi.
Therefore (2.3) is equivalent to∣∣∣∣∣

∫
f̃ ′(u)g̃′(v)h̃′(w)

|m1(u)| 12 |m2(v)| 12 |m3(w)| 12dν(u, v, w)

| det(n′
1(ϕ

′
1(u)), n

′
2(ϕ

′
2(v)), n

′
3(ϕ

′
3(w)))| 12

∣∣∣∣∣
≤ C√

d
‖f̃ ′‖L2(Ω1)‖g̃′‖L2(Ω2)‖h̃′‖L2(Ω3).

(2.4)

Observe that it follows from our assumption that the corresponding estimate
for Σ1,Σ2,Σ3, namely∣∣∣∣

∫
f̃ ′(u)g̃′(v)h̃′(w)|m1(u)| 12 |m2(v)| 12 |m3(w)| 12dν(u, v, w)

∣∣∣∣
≤ C‖f̃ ′‖L2(Ω1)‖g̃′‖L2(Ω2)‖h̃′‖L2(Ω3)

holds true. This implies (2.4). �

Proof of Corollary 1.6. Partitioning each of the three surfaces into sma-
ller sets we strengthen the relation (1.10) to

(2.5) Rβb ≤ 2−10θ.

Consider a fixed triplet (σ0
1, σ

0
2 , σ

0
3) ∈ Σ1×Σ2×Σ3. For arbitrary (σ1, σ2, σ3)

∈ Σ1 × Σ2 × Σ3 we use the Hölder condition to compute

(2.6) |ni(σi) − ni(σ
0
i )| ≤ bRβ ≤ 2−10θ, i = 1, 2, 3
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This implies that N(σ1, σ2, σ3) does not vary much,

(2.7) | detN(σ0
1 , σ

0
2, σ

0
3) − detN(σ1, σ2, σ3)| ≤ 2−8θ

Hence, after possibly increasing θ, we may assume that on Σ1 ×Σ2 ×Σ3 we
have the stronger bound

θ ≤ | detN(σ1, σ2, σ3)| ≤ (1 + 2−8)θ.

From the Hölder condition we also obtain

|(σi − σ0
i )n

0
i | ≤ 2−10Rθ

which shows that Σi is contained in an infinite slab of thickness 2−10Rθ with
respect to the n0

i direction. By orthogonality with respect to such slabs it
suffices to prove the desired bound (1.11) in the case when the other two
surfaces are contained in similar slabs,

(2.8) |(σi − σ0
i )n

0
j | ≤ 2−10Rθ, i, j = 1, 2, 3.

We will apply Corollary 1.5 with

T = Rθ(N�)−1, N = N(σ0
1 , σ

0
2, σ

0
3).

We need to show that for Σ̃i := T−1Σi we have the conditions (1.4) with
b = 1, (1.3) with θ = 1

2
and the size condition diam(Σ̃i) ≤ 1. Concerning

the latter we observe that

T−1(σi − σ0
i ) =

1

Rθ

⎛
⎝ n0

1(σi − σ0
i )

n0
2(σi − σ0

i )
n0

3(σi − σ0
i )

⎞
⎠

Thus by (2.8) we obtain

|T−1(σi − σ0
i )| ≤

√
32−10 ≤ 1

2

therefore diam(Σ̃i) ≤ 1. For the transversality condition, we first estimate

(2.9) ‖N−1‖ ≤ 2| detN |−1‖N‖2 ≤ 6θ−1

This gives a bound for T , namely

(2.10) ‖T‖ ≤ 6R.

The unit normal ñi(σ̃i) to Σ̃i in σ̃i ∈ Σ̃i is given by

(2.11) ñi(σ̃i) =
N−1ni(T σ̃i)

|N−1ni(T σ̃i)| .
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By construction for σ̃0
i = T−1σ0

i we have ñi(σ̃
0
i ) = N−1ni(σ

0
i ) = ei. By (2.6)

and (2.9) it follows that

|N−1ni(T σ̃i) − ei| ≤ 2−7

which implies that
|ñi(T σ̃i) − ei| ≤ 2−5.

This in turn yields the desired transversality condition

det Ñ(σ̃1, σ̃2, σ̃3) ≥ 1/2.

Finally, for the Hölder condition we use (2.9) and (2.10) to compute

|ñi(σ̃) − ñi(ρ̃)|
|σ̃ − ρ̃|β ≤ 3‖N−1‖‖T‖β |ni(T σ̃) − ni(T ρ̃)|

|T σ̃ − T ρ̃|β ≤ 27θ−1Rβb ≤ 1

which proves the desired bound for the first term in the Hölder condi-
tion (1.3) with b = 1. The second term in (1.3) is treated in the same
way. �

3. Induction on scales

Theorem 1.2 is obtained from uniform estimates for f ∗ g thickened sur-
faces Σ3(ε) given by

(3.1) Σ3(ε) := {v ∈ R
3 | dist(v,Σ3) ≤ ε}.

Our main technical result is the following.

Proposition 3.1. For all Σ1, Σ2, and Σ3 with diam(Σi) ≤ 1 as in Theo-
rem 1.2 and f ∈ L2(Σ1), g ∈ L2(Σ2) and 0 < ε ≤ 1 the estimate

(3.2) ‖f ∗ g‖L2(Σ3(ε)) ≤ C
√
ε‖f‖L2(Σ1)‖g‖L2(Σ2)

holds true with a constant C depending only on β.

We first show how this implies the main Theorem.

Proof of Theorem 1.2. For f ∈ C0(Σ1) and g ∈ C0(Σ2) we have f ∗ g ∈
C0(R

3). Then

‖f ∗ g‖L2(Σ3) = lim
ε→0

ε−
1
2‖f ∗ g‖L2(Σ3(ε)),

therefore (1.5) follows from (3.2). The result extends by density to f ∈L2(Σ1)
and g ∈ L2(Σ2). �
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The rest of this section is devoted to the proof of Proposition 3.1. By re-
peating the argument from the proof of Corollary 1.6 –namely a finite par-
tition of the surfaces Σi, scaling and transforming the normals at one triplet
of points to e1, e2, e3– we can reduce Proposition 3.1 to the following setup:

There are unit cubes Ωi ⊂ R
2, i = 1, 2, 3 centered at points a0

i ∈ R
2,

and C1,β functions φi in the doubled cubes 2Ωi so that

Σ1 ={(x, y, z) ∈ R
3 | (y, z) ∈ Ω1, x = φ1(y, z)},

Σ2 ={(x, y, z) ∈ R
3 | (x, z) ∈ Ω2, y = φ2(x, z)},

Σ3 ={(x, y, z) ∈ R
3 | (x, y) ∈ Ω3, z = φ3(x, y)},

(3.3)

where the functions φi satisfy

(3.4) ∇φ1(a
0
1) = ∇φ2(a

0
2) = ∇φ3(a

0
3) = 0

and have small Hölder constant

(3.5) sup
w,w̃∈2Ωi

|∇φi(w) −∇φi(w̃)|
|w − w̃|β ≤ 2−40.

To set up the induction on scales we allow the scale of the cubes Ωi to
vary from 0 to 1. Precisely, for 0 < ε ≤ r ≤ 1 we denote by C(r, ε) the best
constant C in the estimate

(3.6) ‖f ∗ g‖L2(Σ3(ε)) ≤ C
√
ε‖f‖L2(Σ1)‖g‖L2(Σ2)

considered over all surfaces Σ1, Σ2, Σ3 as in (3.3) with Ωi cubes of size r
and φi satisfying (3.4) and (3.5).

For 0 ≤ ε ≤ r ≤ R ≤ 1 we also introduce the auxiliary notation C(R, r, ε)
as the best constant in the estimate (3.6) over all surfaces Σ1, Σ2, Σ3 as
in (3.3) with Ωi cubes of size r and φi satisfying (3.5) in larger cubes 4Ωi

and a weaker version of (3.4), namely

(3.7) |∇φi(a
0
i )| ≤ 2−40(

√
3R)β

Throughout this paper (and hence in the above definitions) we agree to
the following convention: the size of a cube is half of its side-length. The
reason for doing so is purely technical as it spares us from carrying a factor
of 2 in some estimates.

As a starting point of our induction we establish the desired bound
when r is sufficiently small, depending on ε.

Lemma 3.2. Assume that r ≤ ε
1

β+1 . Then C(r, ε) ≤ 1.
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Proof. For f ∈ L2(Σ1), g ∈ L2(Σ2) and an arbitrary test function ψ the
convolution (f ∗ g)(ψ) can be expressed in the form

∫
f̃(y, z)g̃(x, ζ − z)ψ(x+ φ1(y, z), y + φ2(x, ζ − z), ζ)dxdydzdζ

where

f̃(y, z) =f(φ1(y, z), y, z)
√

1 + |∇φ1(y, z)|2
g̃(x, ζ) =g(x, φ2(x, ζ), ζ)

√
1 + |∇φ2(x, ζ)|2.

Assume that suppψ ⊂ Σ3(ε). For every v ∈ suppψ there is a ∈ Ω3 such
that d((a, φ3(a)), v) ≤ ε and d(a, a0

3) ≤
√

3r. Using (3.5) we have:

|φ3(a) − φ3(a
0
3)| ≤

√
3r sup

b∈Ω3

|∇φ3(b)| ≤ 2−10(
√

3r)1+β ≤ 2−8ε

Then,

suppψ ⊂ {(x, y, z) | |z − φ3(a
0
3)| ≤

ε

4
}.

Let us denote J(ε) = [φ3(a
0
3)− ε

4
, φ3(a

0
3)+

ε
4
]. The Cauchy-Schwarz inequality

shows that

|(f ∗ g)(ψ)| ≤
∫

‖f̃(·, z)‖L2‖g̃(·, ζ − z)‖L2I(z, ζ)dzdζ

≤ ‖f̃‖L2‖g̃‖L2

∫
J(ε)

sup
z
I(z, ζ)dζ,

where

I(z, ζ) :=

(∫
|ψ(x+ φ1(y, z), y + φ2(x, ζ − z), ζ)|2dxdy.

)1
2

By the change of variables

Φz,ζ(x, y) = (x+ φ1(y, z), y + φ2(x, ζ − z))

we obtain
I(z, ζ) ≤

√
2‖ψ(·, ·, ζ)‖L2(R2),

because | detDΦz,ζ(x, y)| = |1 − ∂yφ1(y, z)∂xφ2(x, ζ − z)| ≥ 1
2
.

Finally, since z is in an interval of size ε
2
, using again the Cauchy-Schwarz

inequality we obtain ∫
J(ε)

sup
z
I(z, ζ)dζ ≤ 1√

2

√
ε‖ψ‖L2
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Hence it follows that

(f ∗ g)(ψ) ≤√
ε‖f̃‖L2‖g̃‖L2‖ψ‖L2

≤√
ε‖f‖L2(Σ1)‖g‖L2(Σ2)‖ψ‖L2(Σ3(ε)).

The bound C(r, ε) ≤ 1 follows by density and duality. �
The previous lemma shows that C(r, ε) is finite. By the argument in the

proof of Corollary 1.6 it also follows that C(R, r, ε) is always finite. The
next lemma allows us to bound the auxiliary variable C(R, r, ε) in terms
of C(r, ε).

Lemma 3.3. The following estimate holds true

(3.8) C(R, r, ε) ≤ (1 +Rβ)C(r(1 +Rβ)1+ 1
β , ε(1 +Rβ)1+ 1

β )

Proof. The argument proceeds along the lines of the proof of Corollary 1.6,
carefully keeping track of the scales. Let σ0

i ∈ Σi be the images of a0
i ∈ Ωi.

We consider the linear transformation defined by the matrix

T = λ(N�)−1, N = N(σ0
1 , σ

0
2, σ

0
3), λ = (1 +Rβ)−

1
β

We denote Σ̃i = T−1Σi. We will show that the surfaces Σ̃i satisfy the

conditions in the definition of C(r(1 +Rβ)1+ 1
β , ε(1 +Rβ)1+ 1

β ).

We denote σ̃0
i = T−1σ0

i and let ã0
j be the projections of σ̃0

i on the coor-

dinate planes, and Ω̃i the corresponding projections of Σ̃i. Setting i = 3 for
convenience, we also consider the full correspondence a3 → ã3 given by

a3 = (x, y) ∈ Ω3 → σ3 = (x, y, φ3(x, y)) ∈ Σ3

→ σ̃3 = T−1σ3 = (x̃, ỹ, φ̃(x̃, ỹ)) ∈ Σ̃3

→ ã3 = (x̃, ỹ) ∈ Ω̃3

and similarly for i = 1, 2.
By construction the matrix of the unit normals to Σ̃i at σ̃0

i is

Ñ(σ̃0
1 , σ̃

0
2, σ̃

0
3) = I.

This implies that the condition (3.4) is satisfied for the surfaces Σ̃i at the
points ã0

i .
The condition (3.7) shows that

|nk(σ
0
k) − ek| ≤ 2−10(

√
3R)β

which leads to

(3.9) ‖N − I‖ ≤ 2−8Rβ, ‖N−1 − I‖ ≤ 2−8Rβ.
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Also by (3.7) and (3.5) it follows that

(3.10) |∇φ3(a3)| ≤ 2−6Rβ, a ∈ 4Ω3

We claim that Ω̃i is contained in a cube of size r(1+Rβ)
1
β centered at ã0

j .

Set i = 3 for convenience, and consider the canonical map T3 from Ω3 to Ω̃3,
defined by T3a3 = ã3. Then, by (3.9) and (3.10) the chain rule shows that

(3.11)
∥∥DT3 − λ−1I2

∥∥ ≤ 2−4Rβ

This implies that Ω̃i is contained inside a cube centered at ã0
i which has size

r̃ = r(λ−1 +
√

3 2−4Rβ) ≤ r(1 +Rβ)1+ 1
β

Or next goal is to establish the bound (3.5) for φ̃3. Define the func-
tion Φ3(x, y, z) = z − φ3(x, y). Then σ̃3 ∈ Σ̃3 iff Φ̃3(σ̃3) := Φ3(T σ̃3) = 0.
The implicit function theorem guarantees the existence of φ̃3 which satisfies
Φ̃3(x̃, ỹ, φ̃3(x̃, ỹ)) = 0. In addition, setting (N�)−1 = (t1, t2, t3), we have

∇φ̃3(ỹ, z̃) = − 1

t3 · n(x, y)

(
t1 · n(x, y)
t2 · n(x, y)

)
, n(x, y) =

⎛
⎝−∂1φ3(x, y)
−∂2φ3(x, y)

1

⎞
⎠ ,

By (3.9) and (3.10) we obtain

|(N�)−1n(x, y) − e3| ≤ 2−5Rβ

which after some elementary computations leads to

|∇φ̃3(ã
1
3) −∇φ̃3(ã

2
3)| ≤ (1 + 2−4Rβ)|∇φ3(a

1
3) −∇φ3(a

2
3)|

On the other hand (3.11) shows that

|ã1
3 − ã2

3| ≥ λ−1(1 − 2−4Rβ)|a1
3 − a2

3|
Given the value of λ it follows that

|∇φ̃3(ã
1
3) −∇φ̃3(ã

2
3)|

|ã1
3 − ã2

3|β
≤ (1 + 2−4Rβ)

(1 +Rβ)(1 − 2−4Rβ)β

|∇φ3(a
1
3) −∇φ3(a

2
3)|

|a1
3 − a2

3|β
≤ 2−10,

hence (3.5) is established for the surfaces Σ̃i.

Formula (2.1), combined with (3.9), shows how the surface measures
on Σ1 and Σ2 change:

(3.12) λ2(1 − 2−4Rβ)dμ̃i(σ̃
′
i) ≤ dμi(σ

′
i) ≤ λ2(1 + 2−4Rβ)dμ̃i(σ̃

′
i), i = 1, 2.



A convolution estimate 721

There is a small variation in the thickness of the third surface. A direct
computation based on (3.9) gives

(3.13) T−1Σ3(ε) ⊂ Σ̃3(λ
−1(1 + 2−8Rβ)ε).

Moreover, if ψ̃(·) = ψ(T ·), then

(3.14)
(1 − 2−6Rβ)

1
2

λ
3
2

‖ψ‖L2(R3) ≤ ‖ψ̃‖L2(R3) ≤ (1 + 2−6Rβ)
1
2

λ
3
2

‖ψ‖L2(R3).

From all the above considerations it follows that

C(R, r, ε) ≤
≤ (1 + 2−4Rβ)

5
2 (1 − 2−6Rβ)−

1
2C(r(1 +Rβ)1+ 1

β , ε(1 + 2−8Rβ)λ−1),

and the bound (3.8) follows immediately since R ≤ 1. �
The following result establishes the key estimate needed for the induction

on scales argument.

Proposition 3.4. Assume that (240ε)
2

β+2 ≤ R and Rβ := R
β+2

2(β+1) . Then,
the estimate

(3.15) C(Rβ, ε) ≤ (1 +R
β
4 )C(Rβ, R, ε)

holds true.

Proof. We split the proof in five steps.

Step 1 (Symmetrization). The numbers C(Rβ , ε) and C(R,Rβ, ε) are
defined by (3.6) (with the additional constraints on Σi). That formula has
the disadvantage of not revealing the symmetry of the problem with respect
to the role of the three surfaces. However, (3.6) is equivalent to

〈f1 ∗ f2, f3〉 ≤ C
√
ε‖f1‖L2(Σ1)‖f2‖L2(Σ2)‖f3‖L2(Σ3(ε))

for all f3 ∈ L2(R3). Upon replacing f3 by f3(−·) and Σ3 by −Σ3 and
considering smooth, compactly supported f3, this coincides with the triple
convolution of the distributions f1, f2 with f3 at zero, i.e.

(3.16) (f1 ∗ f2 ∗ f3)(0) ≤ C(R, ε)
√
ε‖f1‖L2(Σ1)‖f2‖L2(Σ2)‖f3‖L2(Σ3(ε)).

By density this is an equivalent definition of C(R, ε). Since (3.16) is sym-
metric2 in Σi we prefer to use this as a definition of C(R, ε). In a similar
way we symmetrize the definition of C(Rβ , R, ε).

2up to the thickening of Σ3, which is irrelevant at this scale.
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Step 2 (Reduction of scales). From now on we assume that Σi are defined
as in (3.3) where Ωi are cubes of size Rβ. By translation in the coordinate
directions we may assume that φi(a

0
i ) = 0, i = 1, 2, 3. From (3.5) it follows

for rβ := 2−39R
β+2

2 that

(3.17) Σi ⊂ {(x1, x2, x3) | |xi| ≤ rβ

2
} ⊂ {(x1, x2, x3) | |xi| ≤ R

8
}.

From (240ε)
2

β+2 ≤ R it follows that ε ≤ rβ

2
, therefore

(3.18) Σ3(ε) ⊂ {(x1, x2, x3) | |x3| ≤ rβ} ⊂ {(x1, x2, x3) | |x3| ≤ R

4
}.

Hence we are dealing with three scales ordered as follows:

rβ ≤ R ≤ Rβ.

Step 3 (Decomposition of the surfaces). Inspired by (3.18) we make the
following construction. We will recursively define an increasing sequence3

(sk)k≥0 with the properties

(3.19) sk+1 ∈ [sk +
1

2
R, sk +R]

and

‖f1‖L2(Σ1∩{|x3+sk+1|≤rβ}) ≤ 2−17R
β
4 ‖f1‖L2(Σ1∩{ 1

2
R≤−x3−sk≤R}),

‖f2‖L2(Σ2∩{|x3−sk+1|≤rβ}) ≤ 2−17R
β
4 ‖f2‖L2(Σ2∩{ 1

2
R≤x3−sk≤R}).

(3.20)

In order to do so, we set s1 = −a − rβ for a number a > 0 such that
f1 and f2 have support in the slab R

2 × [−a, a]. Then (3.20) is trivially
verified for k = 0. Assume we already have constructed sk for some k ≥ 0.
For i = 1, 2 the set {1

2
R ≤ (−1)ix3 − sk ≤ R} ⊂ R

3 comprises m slabs
(−1)iI1, . . . , (−1)iIm of thickness (in x3-direction) 2rβ, where m denotes the

largest integer which is smaller or equal to the ratio
1
2
R

2rβ
. For the function

αi = ‖fi‖−2
L2(Σi∩{ 1

2
R≤(−1)ix3−sk≤R})f

2
i

it follows that

2 ≥
m∑

l=1

(∫
−Il∩Σ1

α1dμ1 +

∫
Il∩Σ2

α2dμ2

)

≥ m min
l=1,...,m

(∫
−Il∩Σ1

α1dμ1 +

∫
Il∩Σ2

α2dμ2

)
.

3Notice that the sequence itself may depend on the functions f1 and f2, but the final
bound will not depend on this sequence.
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This estimate implies that there exists Il∗ such that∫
(−1)iIl∗∩Σi

f 2
i dμ1 ≤ 2

m
‖fi‖2

L2(Σi∩{ 1
2
R≤(−1)ix3−sk≤R}) , i = 1, 2.

We choose sk+1 to be the center of Il∗ , which satisfies (3.19) because Il∗ ⊂
[sk + 1

2
R, sk +R] and (3.20) because m−1 ≤ 2−36R

β
2 .

For this sequence we define

Σi[k, e3] = Σi ∩ {(x1, x2, x3) | (−1)ix3 ∈ [sk + rβ, sk+1 − rβ]},
Σ̃i[k, e3] = Σi ∩ {(x1, x2, x3) | (−1)ix3 ∈ [sk − rβ , sk + rβ]}.

With this notation it follows that

sk +
1

2
R ≤ sk+1 ≤ sk +R(3.21)

‖fi‖L2(Σ̃i[k,e3])
≤ 2−17R

β
4 ‖fi‖L2(Σi[k−1,e3]∪Σ̃i[k,e3])∪Σi[k,e3])

, i = 1, 2.(3.22)

Since (3.18) has the (more restrictive) analog (3.17) in all directions, we can
perform a similar construction to define Σi[k, e1] and Σ̃i[k, e1] for i = 2, 3
as well as Σi[k, e2] and Σ̃i[k, e2] for i = 1, 3 with the same properties (3.21)
and (3.22). Moreover, we introduce

Σk2,k3

1 = Σ1[k2, e2] ∩ Σ1[k3, e3],

Σ̃k2,k3
1 = (Σ̃1[k2, e2] ∩ Σ1[k3, e3]) ∪ (Σ1[k2, e2] ∩ Σ̃1[k3, e3])

∪ (Σ̃1[k2, e2] ∩ Σ̃1[k3, e3]),

and similarly Σk1,k3

2 , Σ̃k1,k3

2 and Σk1,k2

3 (ε), Σ̃k1,k2

3 (ε). Now, we have the de-
compositions

Σi =
⋃
k,l

Σk,l
i ∪ Σ̃k,l

i , i = 1, 2,

and the same for Σ3(ε).

Step 4 (Properties of the new sets). In this step we collect three useful
facts about our new sets.

a) Diameter: From (3.21) it follows that Σk2,k3

1 , is generated as in (3.3)
by Ωk2,k3

1 ⊂ C, where C is a cube of size R. In addition, since Ωk2,k3

1 ⊂ Ω1, it
follows that at the center c0 of C we have an estimate of type (3.7), namely

|∇φ1(c0)| ≤ 2−40(
√

3Rβ)β.

A similar characterization holds true for Σ̃k2,k3

1 ,Σk1,k3

2 , etc. This basically
says that if in (3.16) we replace each Σi by Σkl,km

i or Σ̃kl,km

i , then the constant
should be adjusted to C(Rβ, R, ε).
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b) Orthogonality: The reason to introduce the decompositions from the
previous step is to apply almost orthogonality arguments. More exactly we
claim that

(3.23) (f1|Σk2,k3
1

∗ f2|
Σ

k1,k′
3

2

∗ f3|
Σ

k′
1

,k′
2

3 (ε)
)(0) = 0

unless ki = k′i for i = 1, 2, 3.

Indeed, by definition of Σk2,k3
1 and Σ

k1,k′
3

2 we have

supp(f1|Σk2,k3
1

∗ f2|
Σ

k1,k′3
2

) ⊂
⊂ {(x1, x2, x3) | x3 ∈ [sk′

3
− sk3+1 + 2rβ, sk′

3+1 − sk3 − 2rβ]}.
For the left hand side of (3.23) to be different from zero it is necessary that

[sk′
3
− sk3+1 + 2rβ, sk′

3+1 − sk3 − 2rβ] ∩ [−rβ, rβ] �= 0.

due to (3.18), which leads to k3 = k′3 because (sk) is strictly increasing. In
a similar manner it follows that ki = k′i for i = 1, 2.

A similar argument, using the properties of (sk)k≥1, provides that if one
allows in (3.23) one or more of the Σi to be replaced by the corresponding
set Σ̃i, the convolution is zero unless |ki − k′i| ≤ 1.

c) Smallness on Σ̃: The lack of perfect orthogonality in (3.23) when Σ̃’s
are involved is compensated by the following smallness of mass on those sets

(3.24)

( ∑
k,l

‖fi‖2
L2(Σ̃k,l

i )

) 1
2

≤ 2−16R
β
4 ‖fi‖L2(Σi)

We prove (3.24) for i = 1 since the other cases are similar. From the
definitions of the sets we have the straightforward estimate∑

k2,k3

‖f1‖2

L2(Σ̃
k2,k3
1 )

≤
∑
k2

‖f1‖2
L2(Σ̃1[k2,e2])

+
∑
k3

‖f1‖2
L2(Σ̃1[k3,e3])

Then one uses (3.22) and the analog of (3.22) for Σ̃1[k2, e2] to estimate each

term by 2−34R
β
2 ‖f1‖2

L2(Σ1) and obtains (3.24).

Step 5 (Conclusion of the proof). Based on the above analysis on sets
we decompose

(3.25) (f1|Σ1 ∗ f2|Σ2 ∗ f3|Σ3(ε))(0) = S + T

where
S =

∑
k1,k2,k3,k′

1,k′
2,k′

3

f1|Σk2,k3
1

∗ f2|
Σ

k1,k′
3

2

∗ f3|
Σ

k′
1

,k′
2

3 (ε)
(0)

where the remainder T contains 7 sums of the same type as S, except that
one (3 cases), two (3 cases) or all three (1 case) Σ are replaced by Σ̃.
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We decompose as

(3.26) T = T1 + T2 + T3 + T12 + T13 + T23 + T123

where the subscripts indicate the positions of the Σ̃ factors.

On behalf of the orthogonality relation (3.23) we observe that

S =
∑

k1,k2,k3

f1|Σk2,k3
1

∗ f2|Σk1,k3
2

∗ f3|Σk1,k2
3 (ε)

(0).

From the conclusions in Step 4 a) above, we obtain

S ≤ C(Rβ, R, ε)
∑

k1,k2,k3

‖f1‖L2(Σ
k2,k3
1 )

‖f2‖L2(Σ
k1,k3
2 )

‖f3‖L2(Σ
k1,k2
3 (ε))

≤ C(Rβ, R, ε)‖f1‖L2(Σ1)‖f2‖L2(Σ2)‖f3‖L2(Σ3(ε))

In passing to the last line we have used the Cauchy-Schwartz inequality with
respect to all three ki’s and the fact that the sets Σk2,k3

1 are disjoint with
respect to the pair (k2, k3) (and the same for the sets Σk1,k3

2 , Σk1,k2
3 ).

For each term in the remainder the same argument applies up to the
orthogonality issue. By the almost orthogonality the first term in the re-
mainder is given by

(3.27) T1 =
∑
∗

(
f1|Σ̃k2,k3

1
∗ f2|

Σ
k1,k′3
2

∗ f3|
Σ

k′1,k′2
3 (ε)

)
(0)

where ∗ indicates summation with respect to k1, k2, k3, k
′
1, k

′
2, k

′
3 satisfying

|ki − k′i| ≤ 1 for i = 1, 2, 3. We obtain

T1 ≤ C(Rβ, R, ε)
∑
∗

‖f1‖L2(Σ̃
k2,k3
1 )

‖f2‖
L2(Σ

k1,k′
3

2 )
‖f3‖

L2(Σ
k′
1

,k′
2

3 (ε))

≤ 27C(Rβ, R, ε)

( ∑
k2,k3

‖f1‖2

L2(Σ̃
k2,k3
1 )

) 1
2

‖f2‖L2(Σ2)‖f3‖L2(Σ3(ε))

≤ 2−11R
β
4C(Rβ , R, ε)‖f1‖L2(Σ1)‖f2‖L2(Σ2)‖f3‖L2(Σ3(ε)).

where we have used (3.24) in passing to the last line. If one considers the
remaining terms in (3.26) the same estimate holds true, which amounts to

T ≤ R
β
4C(Rβ, R, ε)‖f1‖L2(Σ1)‖f2‖L2(Σ2)‖f3‖L2(Σ3(ε))

This estimate for the remainder term T together with the estimate for the
main term S and (3.25) leads to (3.15). �
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As a corollary we obtain

Corollary 3.5. Under the assumption (240ε)
2

β+2 ≤ R the estimate

(3.28) C(Rβ, ε) ≤ (1 +R
β
4
β )2C((1 +Rβ

β)1+ 1
βR, ε(1 +Rβ

β)1+ 1
β )

holds true, where Rβ is defined as Rβ = R
β+2

2(β+1) .

Proof. This result is a direct consequence of (3.15) and (3.8). �
We can now proceed with the proof of the result claimed in (3.2).

Proof of Proposition 3.1. We recursiveley define R(k) as

R(k + 1) = R(k)
2(β+1)

β+2 (1 +R(k)β)1+ 1
β .

A straightforward computation gives

(3.29)
R(k + 1)

R(k)
= R(k)

β
β+2 (1 +R(k)β)1+ 1

β .

Since the right-hand side is an increasing function in R(k), one can choose
R(0) = Cβ such that additionally

R(0)
β

β+2 (1 +R(0)β)1+ 1
β ≤ 1

2

is satisfied. With this choice the sequence R(k) is strictly decreasing and
limk→∞R(k) ≤ limk→∞ 2−k = 0. The result in (3.28) provides

(3.30) C(R(k), ε) ≤ (1 +R(k)
β
4 )2C(R(k + 1), ε(1 +R(k)β)1+ 1

β ).

However, in order to apply the above inequality we need to verify the re-
quired bounds. If

ε(k) = ε

k−1∏
l=0

(1 +R(l)β)1+ 1
β ,

then the above formula can be used as long as (240ε(k))
2

β+2 ≤ R(k). For

k = 0 one needs to verify (240ε)
2

β+2 ≤ Cβ for which it is enough to take

ε ≤ εβ = 2−40C
β+2

2
β . For k ≥ 1 we have that

ε(k)
2

β+2 = ε
2

β+2 (

k−1∏
l=0

(1 +R(l)β))
2

β+2
(1+ 1

β
)

is an increasing sequence, therefore we can find N to be the highest value

of k with the property ε(k)
2

β+2 ≤ R(k).
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Now we can use (3.30) for all k ≤ N and by iterating it, we obtain

(3.31) C(R(0), ε) ≤
N−1∏
k=0

(1 +R(k)
β
4 )2C(R(N), ε(N)).

Using (3.29) we estimate

ln
∞∏

k=0

(1 +R(k)β)1+ 1
β ≤ (1 +

1

β
)

∞∑
k=0

R(k)β ≤ (1 +
1

β
)R(0)β

∞∑
k=0

(
1

2β
)k,

which is less than ln(2) by making Cβ small enough, which shows that∏∞
k=0(1 +R(k)β)1+ 1

β ≤ 2 and therefore ε(k) ≤ 2ε for all k ≥ 0.

Since R(N + 1) ≤ (240ε(N + 1))
2

β+2 ≤ (241ε(N))
2

β+2 , it follows that

R(N) ≤ 241(ε(N))
1

β+1 ≤ (241ε(N))
1

β+1 . Now we can apply the result in
Lemma 3.2 and obtain

(3.32) C(R(N), ε(N)) ≤ C(R(N), 241ε(N)) ≤
√

241ε(N) ≤ 221
√
ε.

In a similar manner as above we obtain

ln

∞∏
k=0

(1 +R(k)
β
4 )2 ≤ 1

at the expense of adjusting Cβ again. The last estimate together with (3.31)
and (3.32) proves that

C(R(0), ε) ≤ C
√
ε

for all ε ≤ εβ. From this the claim in Proposition 3.1 follows by partitioning
each Σi into a finite number of pieces of diameter less than R(0) and, in
addition, by partitioning Σ3(ε) into a finite number of pieces Σ′

3(εβ) where
Σ′

3 are translates of Σ3 in the z-direction. �
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