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Abstract
The main aim of the paper is to give a socle theory for Leavitt

path algebras of arbitrary graphs. We use both the desingularization
process and combinatorial methods to study Morita invariant proper-
ties concerning the socle and to characterize it, respectively. Leavitt
path algebras with nonzero socle are described as those which have
line points, and it is shown that the line points generate the socle of a
Leavitt path algebra. A concrete description of the socle of a Leavitt
path algebra is obtained: it is a direct sum of matrix rings (of finite
or infinite size) over the base field.

New proofs of the Graded Uniqueness and of the Cuntz-Krieger
Uniqueness Theorems are given, by using very different means.

Introduction

Leavitt path algebras of row-finite graphs have been recently introduced
in [1] and [9]. They have become a subject of significant interest, both
for algebraists and for analysts working in C*-algebras. The Cuntz-Krieger
algebras C∗(E) (the C*-algebra counterpart of these Leavitt path algebras)
are described in [27]. The algebraic and analytic theories, while sharing some
striking similarities, present some remarkable differences, as was shown for
instance in the “Workshop on Graph Algebras” held at the University of
Málaga (see [11]), and more deeply in the subsequent enlightening work by
Tomforde [31].

For a field K, the algebras LK(E) are natural generalizations of the
algebras investigated by Leavitt in [26], and are a specific type of path K-
algebras associated to a graph E (modulo certain relations). The family of
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algebras which can be realized as the Leavitt path algebra of a graph includes
matrix rings Mn(K) for n ∈ N ∪ {∞} (where M∞(K) denotes matrices of
countable size with only a finite number of nonzero entries), the Toeplitz
algebra, the Laurent polynomial ring K[x, x−1], and the classical Leavitt
algebras L(1, n) for n ≥ 2. Constructions such as direct sums, direct limits
and matrices over the previous examples can be also realized in this setting.
But, in addition to the fact that these structures indeed contain many well-
known algebras, one of the main interests in their study is the comfortable
pictorial representation that their corresponding graphs provide.

The development of the theory of Leavitt path algebras (as well as that
of their analytic sisters, the graph C*-algebras) has had several different
stages as far as questions of cardinality of the graphs are concerned. At
first, in the C*-case, only finite graphs (represented by matrices) were con-
sidered: Cuntz [16] constructed and investigated the C*-algebras On (nowa-
days called the Cuntz algebras), showing, among other things, that each On

is (algebraically) simple. Soon after the appearance of [16], Cuntz and
Krieger [17] described the significantly more general notion of the C*-algebra
of a (finite) matrix A, denoted OA. Among this class of C*-algebras one can
find, for certain finite graphs E, the Cuntz-Krieger algebras C∗(E), defined
originally in [24]. The algebraic counterpart of these finite Cuntz-Krieger
algebras was considered in [7].

The second step was to consider possibly infinite but countable row-finite
graphs (that is, graphs with a countable number of vertices and edges which
satisfy that a vertex in the graph emits at most a finite number of edges).
This was first done in the analytic setting (see [15, 27, 28] among others),
while the seminal results on Leavitt path algebras of row-finite graphs ap-
peared in [1] and [9], so starting a flurry of activity. In both situations the
classification of simple ([1]) and purely infinite simple ([2]) structures was
carried out in terms of properties of the graph. In the analytic situation,
the gauge invariant ideals were determined; in the algebraic one, the graded
ideals were described. In addition, several other ring properties were studied
in the case of row-finite Leavitt path algebras, such as being exchange [10],
finite dimensional [5], noetherian [6], semisimple [4] or having stable rank
[10, 8]. It has been also shown that the Leavitt path algebra LK(E) of a
graph E and the path algebra KE associated to the same graph are closely
enough: LK(E) is an algebra of right quotients of KE (see [29]).

Apart from the very recent paper [22], by K.R. Goodearl, where he
has introduced Leavitt path algebras of uncountable directed graphs, the
following breakthrough was to remove the hypothesis of row-finiteness in the
underlying graphs. Once more this was first done for the case of graph C*-
algebras C∗(E) (see for instance [19, 14, 18]) and afterwards for Leavitt path
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algebras in [3, 31]. In both, the analytic and the algebraic cases, very often
the validity of the results for these not necessarily row-finite graphs requires
coming up with totally different proofs to those given for the row-finite case.
Sometimes, helpful shortcuts such as the desingularization process are at
hand and sometimes the proofs must be reinvented. In this paper we face
both situations.

Concretely, the aim of this article is to extend the theory of the socle of a
Leavitt path algebra (considered in [12] for row-finite graphs) to (countable)
not necessarily row-finite graphs. Specifically, we determine the structure
of minimal left ideals of Leavitt path algebras of arbitrary graphs and we
scrutinize the nature of the socle of a Leavitt path algebra of an arbitrary
graph in two different ways: first, by singling out the set of vertices that
generate the socle as a two-sided ideal (graph description) and secondly, by
unveiling the internal algebraic structure of it (algebraic description).

It is worth mentioning that these results on the socle were successfully ap-
plied for the row-finite case in [4] in order to completely classify the semisim-
ple/locally noetherian/locally artinian Leavitt path algebras. Hence, this
extension of [12] to arbitrary graphs could potentially led to achievements
analogous to [4] but for arbitrary graphs.

The article is organized as follows. The first section includes the basic
definitions and examples that will be used throughout. In addition, we
describe several basic results and relations between the path algebra and
the Leavitt path algebra of an arbitrary graph.

In Section 2, a first approach to the study of the socle of a Leavitt path
algebra of an arbitrary graph via the desingularization process is made.
We relate the “line point” vertices of a graph (these are the vertices that
generate the socle as an ideal) to that of its desingularization. This allows us
to establish, in Corollary 2.5, further socle-related connections between the
Leavitt path algebra of an arbitrary graph E and the Leavitt path algebra
of its desingularized (row-finite) graph F . These are: LK(E) has nonzero
socle if and only if LK(F ) has nonzero socle and LK(E) coincides with its
socle if and only if LK(F ) coincides with its socle.

The action of the multiplication algebra is considered in Section 3. This
is a valuable tool that allowed us to shorten the proofs of the Graded Unique-
ness Theorem and the Cuntz-Krieger Uniqueness Theorem for Leavitt path
algebras of arbitrary graphs given in [31]. What is more, this tool allowed
us to weaken, in Theorem 3.7, the set of hypotheses of the aforementioned
Cuntz-Krieger Uniqueness Theorem to a level that was useful for instance
in [3, Proof of Proposition 5.1]. These uniqueness theorems allow us to ob-
tain that for a graph, the socle of the Leavitt path algebra can be seen inside
the socle of the corresponding graph C*-algebra.
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The study of minimal left ideals of Leavitt path algebras of arbitrary
graphs is carried out in Section 4. There are two phases for this: first, only
principal left ideals generated by vertices are considered; afterwards, princi-
pal left ideals generated by an arbitrary element of LK(E) are determined.
One of the key tools in [12] for this same enterprise in the row-finite case
was the possibility to see the algebra LK(E) as a certain direct limit of alge-
bras associated to finite complete subgraphs. However, this construction is
no longer available in the general case of arbitrary graphs, so a completely
different approach, of a more combinatorial nature, is needed here.

Having paved the way, the natural subsequent and final step is taken in
Section 5, where the socle of a Leavitt path algebra of an arbitrary graph is
determined. Thus, the graph description of the socle is given in Theorem 5.2
and is the following: the socle of a Leavitt path algebra is the two-sided ideal
generated by the vertices of the graph whose trees (that is, the vertices which
follow them in the graph) do not contain cycles nor bifurcations (i.e., the
socle is the two-sided ideal generated by all line points). On the other hand,
the algebraic description of the socle is given in Theorem 5.6: the socle of a
Leavitt path algebra is a direct sum of full matrix algebras over the field K
of either finite or countably infinite size.

1. Path algebras and Leavitt path algebras of arbitrary
graphs

A (directed) graph E = (E0, E1, r, s) consists of two countable sets E0 and
E1, and maps r, s : E1 → E0. The elements of E0 are called vertices and
the elements of E1 edges. If for a vertex v, the set s−1(v) is finite, then the
graph is called row-finite. If E0 is finite then, by the row-finite hypothesis,
E1 must necessarily be finite as well; in this case we say simply that E is
finite. A vertex is called a sink if it does not emit edges, and a source if it
does not receive edges. A vertex v such that |s−1(v)| = ∞ is called an infinite
emitter. Following [31], if v is either a sink or an infinite emitter, we call it
a singular vertex. If v is not a singular vertex, we will say that it is a regular
vertex. A path μ in a graph E is a sequence of edges μ = e1 . . . en such that
r(ei) = s(ei+1) for i = 1, . . . , n−1. In this case, s(μ) := s(e1) is the source of
μ, r(μ) := r(en) is the range of μ, and n is the length of μ, i.e, l(μ) = n. We
denote by μ0 the set of its vertices, that is: μ0 = {s(e1), r(ei)|i = 1, . . . , n}.

An edge e is an exit for a path μ = e1 . . . en if there exists i such that
s(e) = s(ei) and e �= ei. If μ is a path in E, and if v = s(μ) = r(μ), then
μ is called a closed path based at v. Let CP (v) denote the set of all closed
paths based at v. If s(μ) = r(μ) and s(ei) �= s(ej) for every i �= j, then μ is
called a cycle.
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We say that a graph E satisfies Condition (L) if every cycle in E has
an exit. For n ≥ 2 we define En to be the set of paths of length n, and
E∗ =

⋃
n≥0E

n the set of all paths.

The set T (v) = {w ∈ E0 | v ≥ w} is the tree of v, that is, the set of
all the vertices in the graph E which follow v (v ≥ w means that there is a
path μ with s(μ) = v and r(μ) = w). We will denote it by TE(v) when it is
necessary to emphasize the dependence on the graph E.

Now let K be a field and let KE denote the K-vector space which has as
a basis the set of paths. It is possible to define an algebra structure on KE
as follows: for any two paths μ = e1 . . . em, ν = f1 . . . fn, we define μν as zero
if r(μ) �= s(ν) and as the path e1 . . . emf1 . . . fn otherwise. This K-algebra
is called the path algebra of E over K.

For a field K and a graph E, the Leavitt path K-algebra LK(E) is defined
as the K-algebra generated by a set {v | v ∈ E0} of pairwise orthogonal
idempotents, together with a set of variables {e, e∗ | e ∈ E1}, which satisfy
the following relations:

(1) s(e)e = er(e) = e for all e ∈ E1.

(2) r(e)e∗ = e∗s(e) = e∗ for all e ∈ E1.

(3) e∗e′ = δe,e′r(e) for all e, e′ ∈ E1.

(4) v =
∑

{e∈E1|s(e)=v} ee
∗ for every regular vertex v ∈ E0.

The elements of E1 are called (real) edges, while for e ∈ E1 we call e∗ a
ghost edge. The set {e∗ | e ∈ E1} will be denoted by (E1)∗. We let r(e∗)
denote s(e), and we let s(e∗) denote r(e). If μ = e1 . . . en is a path, then we
denote by μ∗ the element e∗n . . . e

∗
1 of LK(E).

Formally speaking we can say that LK(E) is the quotient of the free
associative algebra generated by E0 ∪ E1 ∪ (E1)∗ modulo the ideal induced
by the identities (1)-(4). Hence the universal property of the free associative
algebra jointly with that of the quotient algebra can be used to construct
homomorphisms with domain LK(E).

We will recall some facts that will be used freely along the paper.

The Leavitt path K-algebra LK(E) is spanned as a K-vector space by
{pq∗| p, q are paths in E} (see [31, Lemma 3.1]). Moreover, LK(E) has a
natural Z-grading (see [31, Section 3.3]): for each n ∈ Z, the degree n com-
ponent LK(E)n is spanned by elements of the form pq∗ where l(p) − l(q) = n.

The set of homogeneous elements is
⋃

n∈Z
LK(E)n, and an element x ∈

LK(E)n is said to be n-homogeneous or homogeneous of degree n, denoted
by deg(x) = n.

The K-linear extension of the assignment pq∗ �→ qp∗ (for p, q paths
in E) yields an involution on LK(E), which we denote simply as ∗. Clearly
(LK(E)n)∗ = LK(E)−n for all n ∈ Z.
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Examples 1.1. By considering some basic configurations one can realize
many algebras as the Leavitt path algebra of some graph. Thus, for instance,
the ring of Laurent polynomials K[x, x−1] is the Leavitt path algebra of the
graph

•��

Matrix algebras Mn(K) can be achieved by considering a line graph
with n vertices and n− 1 edges

• �� • �� • • �� •
Classical Leavitt algebras L(1, n) for n ≥ 2 are obtained as L(Rn),

where Rn is the rose with n petals graph

• ��
����

��

Of course, combinations of the previous examples are possible. For ex-
ample, the Leavitt path algebra of the graph

• �� • �� • • �� • ����
��
��

is Mn(L(1, m)), where n denotes the number of vertices in the graph and m
denotes the number of loops. In addition, the algebraic counterpart of the
Toeplitz algebra T is the Leavitt path algebra of the graph E having one
loop and one exit

•�� �� •
There exists a natural inclusion of the path algebra KE into the Leavitt

path algebra LK(E) sending vertices to vertices and edges to edges. We will
use this monomorphism without any explicit mention to it. Moreover, this
natural monomorphism from the path algebra KE into the Leavitt path
algebra LK(E) is graded, hence KE is a Z-graded subalgebra of LK(E).

We will revisit some basic results on the path algebra KE and on the
Leavitt path algebra LK(E) for an arbitrary graph E. Given that the only
difference between the definition of the Leavitt path algebra of a row-finite
graph and of an arbitrary graph is the non-existence of a CK2 relation ((4)
in the definition) at infinite emitters, it is perhaps not surprising that many
of the results that hold for the row-finite case still hold in this more general
situation. In particular, by rereading the result in [29, Lemma 1.1] we get
that the following still holds in this more general situation.
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Lemma 1.2. Let E be an arbitrary graph. Any set of different paths is
K-linearly independent.

The same can be said about [29, Proposition 2.1]:

Proposition 1.3. Let E be an arbitrary graph. Then the path algebra KE
is semiprime if and only if for every path μ there exists a path ν such that
s(ν) = r(μ) and r(ν) = s(μ).

Also, following the proof of [29, Proposition 2.2] and applying [13, Lemma
1.12] we have:

Proposition 1.4. For an arbitrary graph E and any field K, the Leavitt
path algebra LK(E) is an algebra of right quotients of the path algebra KE,
equivalently, it is a Z-graded algebra of right quotients of KE.

The following result was stated for row-finite graphs in [1, Theorem 3.11].
We include here a proof for arbitrary graphs.

Lemma 1.5. Let E be an arbitrary graph. Let v be a vertex in E0 such that
there exists a cycle without exits c based at v. Then:

vLK(E)v =

{ n∑
i=−m

kic
i | ki ∈ K; m,n ∈ N

}
∼= K[x, x−1],

where ∼= denotes a graded isomorphism of K-algebras, and considering (by
abuse of notation) c0 = w and c−t = (c∗)t, for any t ≥ 1.

Proof. First, it is easy to see that if c = e1 . . . en is a cycle without exits
based at v and u ∈ T (v), then s(f) = s(g) = u, for f, g ∈ E1, implies f = g.
Moreover, if r(h) = r(j) = w ∈ T (v), with h, j ∈ E1, and s(h), s(j) ∈ T (v)
then h = j. We have also that if μ ∈ E∗ and s(μ) = u ∈ T (v) then there
exists k ∈ N∗, 1 ≤ k ≤ n verifying μ = ekμ

′ and s(ek) = u.

Let x ∈ vLK(E)v be given by x =
∑p

i=1 kiαiβ
∗
i +δv, with s(αi) = r(β∗

i ) =
s(βi) = v and αi, βi ∈ E∗. Consider A = {α ∈ E∗ : s(α) = v}; we prove
now that if α ∈ A, deg(α) = mn + q, m, q ∈ N with 0 ≤ q < n, then
α = cme1 . . . eq. We proceed by induction on deg(α). If deg(α) = 1 and
s(α) = s(e1) then α = e1. Suppose now that the result holds for any β ∈ A
with deg(β) ≤ sn + t and consider any α ∈ A, with deg(α) = sn + t + 1.
We can write α = α′f with α′ ∈ A, f ∈ E1 and deg(α′) = sn + t, so by the
induction hypothesis α′ = cse1 . . . et. Since s(f) = r(et) = s(et+1) implies
f = et+1, then α = α′f = cse1 . . . et+1.

We shall show that the elements αiβ
∗
i are in the desired form, i.e., cd

with d ∈ Z. Indeed, if deg(αi) = deg(βi) and αiβ
∗
i �= 0, we have αiβ

∗
i =
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cpe1 . . . eke
∗
k . . . e

∗
1c

−p = v by (4). On the other hand deg(αi) > deg(βi)
and αiβ

∗
i �= 0 imply αiβ

∗
i = cd+qe1 . . . eke

∗
k . . . e

∗
1c

−q = cd, d ∈ N∗. In a
similar way, from deg(αi) < deg(βi) and αiβ

∗
i �= 0 it follows that αiβ

∗
i =

cqe1 . . . eke
∗
k . . . e

∗
1c

−q−d = c−d, d ∈ N∗. Define ϕ : K[x, x−1] → LK(E) by
ϕ(1) = v, ϕ(x) = c and ϕ(x−1) = c∗. It is a straightforward routine to check
that ϕ is a graded monomorphism with image vLK(E)v, so that vLK(E)v
is graded isomorphic to K[x, x−1] as a graded K-algebra. �

2. Desingularization, Morita equivalence and socle

Given an arbitrary graph E, one can associate a row-finite graph F , called
a desingularization of E, such that LK(E) is Morita equivalent to LK(F ) as
rings with local units [3, Theorem 5.2]. The process of building the graph F
out of E is described in [18, 3] and it essentially consists, as the name
suggests, on conveniently removing the singular vertices of E. We briefly
recall the process here for the reader’s convenience:

If v0 is a sink in E, then by adding a tail at v0 we mean attaching a graph
of the form

•v0 �� •v1 �� •v2 �� •v3 ��

to E at v0. If v0 is an infinite emitter in E, then by adding a tail at v0 we
mean performing the following process: we first list the edges e1, e2, e3, . . .
of s−1(v0), then we add a tail to E at v0 of the following form

•v0
f1 �� •v1

f2 �� •v2
f3 �� •v3 ��

We remove the edges in s−1(v0), and for every ej ∈ s−1(v0) we draw an
edge gj from vj−1 to r(ej).

If E is a directed graph, then a desingularization of E is a graph F
formed by adding a tail to every sink and every infinite emitter of E in the
fashion above. Several basic examples of desingularized graphs are found
in [3, Examples 5.1, 5.2 and 5.3].

When extending results to Leavitt path algebras of arbitrary graphs two
main philosophies have been followed. The obvious one consists on just re-
proving the results for arbitrary graphs with some ad hoc methods, while
the second approach uses the aforementioned desingularization construction
which allows us to transfer, via a Morita equivalence, results from the arbi-
trary graph setting to the row-finite situation.

In this section, we will obtain information about the socle of an arbitrary
Leavitt path algebra LK(E) out of the information provided by the socle of
the Leavitt path algebra of its desingularization LK(F ).
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A vertex v in E0 is a bifurcation (or there is a bifurcation at v) if s−1(v)
has at least two elements. A vertex u in E0 will be called a line point if
there are neither bifurcations nor cycles at any vertex w ∈ T (u). We will
denote by Pl(E) the set of all line points in E0.

As we will show, the set of line points plays a crucial role in the descrip-
tion of the socle of a Leavitt path algebra of an arbitrary graph E. The
next results analyze the relation between the line points of E and those of
the desingularized graph F .

Proposition 2.1. Let E be an arbitrary graph and F any desingularization
of E. Then

(1) Pl(E) = Pl(F ) ∩E0.

(2) Pl(E) �= ∅ if and only if Pl(F ) �= ∅.
Proof. (1). Suppose that v ∈ Pl(E). Then TE(v) does not contain bifur-
cations nor cycles in E; in particular, it does not contain infinite emitters
in E. Therefore, no edges are added at any vertex of TE(v) in the desin-
gularization process unless TE(v) contains a (necessarily unique) sink w, in
which case an infinite tail of the form

•w �� • �� • �� • ��

has been attached at w. In other words, TF (v) does not contain bifurcations
nor cycles in F either, that is, v ∈ Pl(F ).

To see the converse containment, take v ∈ Pl(F )∩E0. Then TF (v) does
not contain bifurcations nor cycles in F . Note that, by construction, neither
vertex of TF (v) is a sink nor an infinite emitter. All this shows that there
exists a countable family of vertices {vi}∞i=0 and edges {ei}∞i=0 of F such that
v0 = v, s−1

F (vi) = {ei} for all i and TF (v) = {vi}∞i=0.

Since v ∈ E0 we have two situations. First, if every vi was already in E,
then from the way the graph F is constructed we conclude that TE(v) =
{vi}∞i=0, and s−1

E (vi) = {ei} for all i. Otherwise, there exists j ≥ 0, such
that vj is a sink in E0, TE(v) = {vi}j

i=0, and s−1
E (vi) = {ei} for all i ≤ j. In

both cases v ∈ Pl(F ) implies that v ∈ Pl(E).

(2). If Pl(E) �= ∅, then Pl(F ) �= ∅ by (1). Suppose now that v ∈ Pl(F ).
Again, if v ∈ E0, then v ∈ Pl(E) by (1). Otherwise, if v is a vertex which
was not originally if E, then it cannot be a vertex in {vi}i≥1 of any new
infinite tail of the form

•v0
f1 ��

g1

		

•v1
f2 ��

g2

		

•v2
f3 ��

g3

		

•v3 ��

•r(e0) •r(e1) •r(e2) •r(e3)
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as the trees of all vertices {vi}i≥0 of these configurations necessarily have
bifurcations. Therefore, v is a vertex of an infinite tail of F which was
introduced at a sink z in E, but then clearly z ∈ Pl(E). So that Pl(E) �= ∅
in this case too. �

One of the main results of [3] was [3, Theorem 5.2]. There, the authors
proved that if E is an arbitrary graph, then LK(E) is Morita equivalent to
LK(F ) for any desingularization F of E. We are going to exploit that fact in
this section. First, we recall the notion of Morita equivalence for idempotent
rings (a ring R is said to be idempotent if R2 = R). Note that since Leavitt
path algebras have local units, they are idempotent rings.

Let R and S be two rings, RNS and SMR two bimodules and (−,−) :
N ×M → R, [−,−] : M ×N → S two maps. Then the following conditions
are equivalent:

(i)

(
R N
M S

)
is a ring with componentwise sum and product given by:

(
r1 n1

m1 s1

) (
r2 n2

m2 s2

)
=

(
r1r2 + (n1, m2) r1n2 + n1s2

m1r2 + s1m2 [m1, n2] + s1s2

)

(ii) [−,−] is S-bilinear and R-balanced, (−,−) is R-bilinear and S-balan-
ced and the following associativity conditions hold:

(n,m)n′ = n[m,n′] and [m,n]m′ = m(n,m′).

[−,−] being S-bilinear andR-balanced and (−,−) beingR-bilinear and
S-balanced is equivalent to having bimodule maps ϕ : N ⊗S M→R
and ψ : M ⊗R N → S, given by

ϕ(n⊗m) = (n,m) and ψ(m⊗ n) = [m,n]

so that the associativity conditions above read

ϕ(n⊗m)n′ = nψ(m⊗ n′) and ψ(m⊗ n)m′ = mϕ(n⊗m′).

A Morita context is a sextuple (R, S,N,M, ϕ, ψ) satisfying the conditions
given above. The associated ring is called the Morita ring of the context.
By abuse of notation we will write (R, S,N,M) instead of (R, S,N,M, ϕ, ψ)
and will suppose R, S, N , M contained in the Morita ring associated to the
context. The Morita context will be called surjective if the maps ϕ and ψ
are both surjective.

In classical Morita theory, it is shown that two rings with identity R
and S are Morita equivalent (i.e., R-mod and S-mod are equivalent catego-
ries) if and only if there exists a surjective Morita context (R, S,N,M, ϕ, ψ).
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The approach to Morita theory for rings without identity by means of Morita
contexts appears in a number of papers (see [20] and the references therein)
in which many consequences are obtained from the existence of a Morita
context for two rings R and S.

For an idempotent ring R we denote by R−Mod the full subcategory of
the category of all left R-modules whose objects are the “unital” nondegen-
erate modules. Here, a left R-module M is said to be unital if M = RM ,
and M is said to be nondegenerate if, for m ∈ M , Rm = 0 implies m = 0.
Note that, if R has an identity, then R−Mod is the usual category of
left R-modules R-mod.

It is shown in [25, Theorem] that, if R and S are arbitrary rings having
a surjective Morita context, then the categories R−Mod and S−Mod are
equivalent. It is proved in [20, Proposition 2.3] that the converse implication
holds for idempotent rings.

Given two idempotent rings R and S, we will say that they are Morita
equivalent if the respective full subcategories of unital nondegenerate mod-
ules over R and S are equivalent.

The following result can be found in [20] (see Proposition 2.5 and Theo-
rem 2.7).

Theorem 2.2. Let R and S be two idempotent rings. Then the categories
R−Mod and S−Mod are equivalent if and only if there exists a surjective
Morita context (R, S,M,N).

The socles of Morita equivalent semiprime idempotent rings are closely
related as we will see next. The proofs of the following results are largely
based on the concept of local algebra at an element that we proceed to
introduce.

For a ring R and an element x ∈ R, the local ring of R at x (denoted Rx)
is defined to be the ring xRx, with the sum inherited from R, and product
given by xax · xbx = xaxbx. The use of local rings at elements allows to
overcome the lack of a unit element in the original ring, and to translate
problems from a non-unital context to the unital one. See [21] for an equiv-
alent definition and information about the exchange of properties between
a ring and its local rings at elements. In particular, if e is an idempotent in
the ring R, then the local ring of R at e is just the corner eRe.

If R is a semiprime ring, then the sum of all its minimal left ideals
coincides with the sum of all its minimal right ideals. This sum is called the
socle of R and will be denoted by Soc(R). When the ring has no minimal
one-sided ideals, it is said that R has zero socle.

As the next lemma shows, taking local rings at elements and considering
the socle are commuting operations.
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Lemma 2.3. For a semiprime ring R and an element x ∈ R, we have
Soc(Rx) = (Soc(R))x.

Proof. Note that for every element x ∈ R, being R semiprime implies Rx

is semiprime too (apply [21, Proposition 2.1 (i)]), hence it makes sense to
consider the socle of the local ring at that element.

Show first Soc(Rx) ⊆ (Soc(R))x. If xax ∈ Soc(Rx), by [21, Propo-
sition 2.1 (v)], xax ∈ Soc(R). As the socle is a von Neumann regular
ring, there exists y ∈ R such that xax = (xax)y(xax) = (xax)y(xax)y(xax);
use that the socle is an ideal of the ring and that xax is in the socle ofR to ob-
tain axyxaxyxa ∈ Soc(R), so that xax = x(axyxaxyxa)x ∈ x(Soc(R))x.

For the converse, consider xax ∈ x(Soc(R))x, with a ∈ Soc(R). Apply
again that the socle is an ideal to deduce that xax is in Soc(R). By [21,
Proposition 2.1 (v)] xax ∈ Soc(Rx), as wanted. �

Theorem 2.4. Let R and S be two Morita equivalent semiprime idempotent
rings. Then:

(1) R has nonzero socle if and only if S has nonzero socle.

(2) R = Soc(R) if and only if S = Soc(S).

Proof. We start by setting several notation and results that will be used to
prove the statements.

Denote by A the Morita ring associated to a surjective Morita context
(R, S,N,M), and identify R, S, N and M , in the natural way, with subsets
of A.

(i) Use Lemma 2.3 to settle that for any x ∈ R we have: (Soc(R))x =
Soc(Rx) = Soc(Ax) = (Soc(A))x.

(ii) Soc(R) = Soc(A)∩R and Soc(S) = Soc(A)∩S. This follows from (i)
together with the fact that Rx = Ax for every x ∈ R and the fact that an
element is in the socle of a ring if and only if the local ring at the element
is an artinian ring (see [21, Proposition 1.2 (v)]).

(1). Take a nonzero element x in Soc(R). By (ii), x ∈ Soc(A), and as
the socle is an ideal, MxN , which is contained in S, is in the socle of A too.
We claim that MxN is nonzero because otherwise 0 = NMxN = RxR, a
contradiction since every element in the socle is von Neumann regular and x
is nonzero. Therefore we have 0 �= MxN ⊆ Soc(A) ∩ S ⊆ Soc(S).

It can be proved, in an analogous way, that Soc(S) �=0 implies Soc(R) �=0.

(2). If R coincides with its socle, R ⊆ Soc(A). Then S = MN =
MNMN = MRN ⊆M(Soc(A))N ⊆ Soc(A) ∩ S = Soc(S). �
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The results above can be readily adapted to the Leavitt path algebra
setting.

Corollary 2.5. Let E be an arbitrary graph and F any desingularization
of E. Then

(1) Soc(LK(E)) �= 0 if and only if Soc(LK(F )) �= 0.

(2) LK(E) coincides with its socle if and only if LK(F ) coincides with
its socle.

Proof. Use first [3, Theorem 5.2] to get that LK(E) is Morita equiva-
lent to LK(F ). Now the proof is a straightforward consequence of Theo-
rem 2.4 and the fact that Leavitt path algebras for arbitrary graphs are
rings with local units (hence, idempotent rings), and also semiprime [3,
Proposition 6.1]. �

The following result is a generalization of [12, Corollary 4.3] for arbitrary
graphs.

Corollary 2.6. Let E be an arbitrary graph, then LK(E) has nonzero socle
if and only if Pl(E) �= ∅.

Proof. Consider any desingularization F of E. Apply Corollary 2.5 (1) to
obtain that Soc(LK(E)) �= 0 if and only if Soc(LK(F )) �= 0. By the row-
finite case proved in [12, Corollary 4.3] we know that Soc(LK(F )) �= 0 if and
only if Pl(F ) �= ∅. Finally, use Proposition 2.1 (2) to get the result. �

One of the main aims of the paper is the complete determination of the
socle of a Leavitt path algebra of an arbitrary graph as the ideal gener-
ated by its set of line points. Unfortunately, this description of the socle
is unreachable via Morita equivalence (that is, by using a desingularization
process). Among other things, because two Morita equivalent idempotent
rings can have socles of different size. For example:

Example 2.7. Let R := RCFM(K) be the ring of infinite matrices with
entries in a field K, and finite rows and columns. Consider in R the idempo-
tent e11 (defined as the matrix having 1 in place (1, 1) and zero elsewhere),
and denote f := 1 − e ∈ R. Then (eRe, fRf, fRe, eRf) is a surjective
Morita context for the two idempotent rings eRe and fRf , and while eRe
is finite dimensional (in fact, it is isomorphic to the base field), fRf is not.

In the upcoming sections of the paper we will use specifically-adapted
methods in order to achieve our main goal: the description of the socle.
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3. Action of the multiplication algebra of LK(E)

The action of the multiplication algebra of a Leavitt path algebra on the
algebra itself has proved to be a powerful tool that has allowed researchers
to shorten the proofs of some results in this theory. Recall that for a
not necessarily associative K-algebra A, and fixed x, y ∈ A, the left and
right multiplication operators Lx, Ry : A → A are defined by Lx(y) := xy
and Ry(x) := xy. Denoting by EndK(A) the K-algebra of K-linear maps
f : A → A, the multiplication algebra of A (denoted M(A)) is the subalge-
bra of EndK(A) generated by the unit and all left and right multiplication
operators La, Ra : A → A. There is a natural action of M(A) on A such
that A is an M(A)-module whose submodules are just the ideals of A. This
is given by M(A)×A −→ A, where f · a := f(a) for any (f, a) ∈ M(A)×A.
Given x, y ∈ A we shall say that x is linked to y if there is some f ∈ M(A)
such that y = f(x). This fact will be denoted by x � y.

The result that follows was proved in [12, Proposition 3.1] for row-finite
graphs. It states that any nonzero element in a Leavitt path algebra is linked
to either a vertex or to a nonzero polynomial in a cycle with no exits. So
it gives a full account of the action of M(LK(E)) on LK(E). This result
proved to be very powerful as the main ingredient to show that the socle of
a Leavitt path algebra of a row-finite graph is the ideal generated by the line
points. The same proof given there can be used in the case of not necessarily
row-finite graphs.

Proposition 3.1. Let E be an arbitrary graph. Then, for every nonzero
element x ∈ LK(E), there exist μ1, . . . , μr, ν1, . . . , νs ∈ E0 ∪E1 ∪ (E1)∗ such
that:

(1) μ1 . . . μrxν1 . . . νs is a nonzero element in Kv, for some v ∈ E0, or

(2) there exist a vertex w ∈ E0 and a cycle without exits c based at w such
that μ1 . . . μrxν1 . . . νs is a nonzero element in wLK(E)w.

Both cases are not mutually exclusive.

Corollary 3.2. For any nonzero x ∈ LK(E) we have x � v for some v ∈ E0

or x � p(c, c∗) where c is a cycle with no exits and p a nonzero polynomial
in c and c∗.

Proof. Use Lemma 1.5 together with Proposition 3.1. �
For any K-algebra A the M(A)-submodules of A are just the ideals of A

and the cyclic M(A)-submodules ofA are the ideals generated by one element
(principal ideals in the sequel). So the previous corollary states that the
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nonzero principal ideals contain either vertices or nonzero elements of the
form p(c, c∗). Therefore, for graphs in which every cycle has an exit, each
nonzero ideal contains a vertex. Now, [31, Corollary 6.10] can be obtained
immediately from item (2) in the following result:

Corollary 3.3. Let E be an arbitrary graph.

(1) Every Z-graded nonzero ideal of LK(E) contains a vertex.

(2) Suppose that E satisfies Condition (L). Then every nonzero ideal of
LK(E) contains a vertex.

Proof. The second assertion has been proved above. So assume that I is
a graded ideal of LK(E) which contains no vertices. Let 0 �= x ∈ I and use
Corollary 3.2 to find elements y, z ∈ LK(E) such that yxz =

∑n
i=−m kic

i �= 0.
But I being a graded ideal implies that every summand is in I. In particular,
for t ∈ {−m, . . . , n} such that ktc

t �= 0 we have 0 �= (kt)
−1c−tktc

t = w ∈ I,
which is absurd. �

It was shown in [3, Proposition 6.1] that LK(E) is a semiprime algebra
for an arbitrary graph. The proof required the use of the desingularization
process. Here, we can give an element-wise proof by using Proposition 3.1.

Proposition 3.4. Let E be an arbitrary graph. Then LK(E) is semiprime.

Proof. Take a nonzero ideal I such that I2 = 0. If I contains a vertex
we are done. Otherwise there is a nonzero element p(c, c∗) ∈ I by Corol-
lary 3.2. If we consider the (nonzero) coefficient of maximum degree in c
and write p(c, c∗)2 = 0 we immediately see that this scalar must be zero, a
contradiction. �

To illustrate the power of Proposition 3.1 we can see how it reduces
considerably in length the proofs given in [31] of the so-called Uniqueness
Theorems. These are [31, Theorem 4.6] (Graded Uniqueness Theorem) and
[31, Theorem 6.8] (Cuntz-Krieger Uniqueness Theorem).

Theorem 3.5. Let E be an arbitrary graph, and let LK(E) be the associated
Leavitt path algebra.

(1) Graded Uniqueness Theorem.

If A is a Z-graded ring and π : LK(E) → A is a graded ring homo-
morphism with π(v) �= 0 for every vertex v ∈ E0, then π is injective.

(2) Cuntz-Krieger Uniqueness Theorem.

Suppose that E satisfies Condition (L). If π : LK(E) → A is a ring
homomorphism with π(v) �= 0 for every vertex v ∈ E0, then π is
injective.
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Proof. In both cases, the kernel of the ring homomorphism π is an algebra
ideal (a graded ideal in the first one). By Corollary 3.3, Ker(π) must be
zero because otherwise it would contain a vertex (apply (1) in Corollary 3.3
to (1) and (2) to the other case), which is not possible by the hypotheses. �

In [31], Tomforde used the previous theorems in order to prove that, for
the field of complex numbers C, the Leavitt path algebra LC(E) could be
embedded in the graph C*-algebra C∗(E) via a homomorphism φ : LC(E) →
C∗(E) sending the generators of LC(E) to the generators of C∗(E). As he
noted, such a homomorphism is well-defined by the universal property of
LC(E) and is injective, as can be shown precisely by applying the Graded
Uniqueness Theorem. Here, we can use this embedding φ to get that the
socle of the Leavitt path algebra of an arbitrary graph E is always contained
in the socle of the graph C*-algebra of E (but may not be equal), as is
shown in the next result. The counterexample contained in the following
proposition was communicated to the authors by Pere Ara.

Proposition 3.6. Let E be an arbitrary graph. Then

Soc(LC(E)) ⊆ Soc(C∗(E)).

Moreover, there exists a row-finite graph E such that the inclusion is proper.

Proof. As explained in the previous paragraph, we can use Theorem 3.5 (1)
and the ideas of [31, Proof of Theorem 7.3] to obtain that LC(E) is isomor-
phic to a dense *-subalgebra A of C∗(E).

Consider a minimal idempotent e ∈ A. We will show that e is a minimal
idempotent in C∗(E) as well. It suffices to show that eC∗(E)e is a divi-
sion ring. Take a nonzero element x ∈ eC∗(E)e. Because A is a dense
*-subalgebra of C∗(E), there exists a sequence {xn}∞n=1 ⊆ A such that
x = lim(exne). Suppose that n is such that the element exne ∈ eAe is
nonzero. Since eAe is a division ring, there exists yn ∈ eAe such that
exneyn = ynexne = 1|eAe = e. As x �= 0, there exists m such that exne �= 0
for every n ≥ m. Define yn = 0 for every n < m and y = lim yn. Then
xy = lim(exne)yn = lim e = e = 1|eC∗(E)e and analogously yx = 1|eC∗(E)e.
This proves our claim.

Recall that Soc(R) is the two-sided ideal generated by the minimal idem-
potents of a ring R. Denote by I the set of the minimal idempotents in A,
and by I∗ the set of minimal idempotents in C∗(E). Then:

Soc(A) =
∑
e∈I

AeA ⊆
∑
e∈I

C∗(E)eC∗(E) ⊆
∑
e∈I∗

C∗(E)eC∗(E) = Soc(C∗(E)).
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To show that the inclusion might be proper we consider the row-finite
graph E given by

•�� �� •
In [29], Siles Molina showed that the Leavitt path algebra of this graph

is the algebraic Toeplitz algebra T = C〈x, y | xy = 1〉, for which it is
known that Soc(T ) = M∞(C). However, the completion of T is the analytic
Toeplitz algebra, whose socle is the algebra of finite rank operators, which
strictly contains M∞(C) (matrices of countable size with only a finite number
of nonzero entries). �

In spite of the power of the aforementioned Uniqueness Theorems, one
may encounter different situations in which neither set of hypotheses in The-
orem 3.5 are satisfied. This happens, for instance, in the proof of [3, Propo-
sition 5.1]. Here, the authors showed that for any arbitrary graph E, and F
any of its desingularizations, the Leavitt path algebra LK(E) is isomorphic
to a subalgebra of LK(F ). In proving this result, they built a homomor-
phism φ from LK(E) to LK(F ) and needed to show its injectivity. In this
situation, neither E satisfied Condition (L) nor φ was a graded homomor-
phism (because the desingularization process might enlarge some paths but
not all of them), so the Uniqueness Theorems could not be applied. The
key point of the proof they gave was just that the image of a certain cycle
without exits was again a cycle, possibly with more edges than the original
one. This idea appears in the main result of [30], i.e., Theorem 1.2. The
hypotheses in these cases were less general than the ones in the following
generalization of the Cuntz-Krieger Uniqueness Theorem.

Theorem 3.7. Let E be an arbitrary graph, A a graded K-algebra and
π : LK(E) → A a ring homomorphism with π(v) �= 0, for every vertex
v ∈ E0, which maps each cycle without exits to a non-nilpotent homogeneous
element of nonzero degree. Then π is injective.

Proof. Note that the kernel of π is an algebra ideal of LK(E) which does
not contain vertices. If Ker(π) is nonzero, by Corollary 3.2 it contains a
nonzero element p(c, c∗), where p is a polynomial and c is a cycle without
exits. By the hypothesis π(c) = h �= 0 is a homogeneous element of degree
r �= 0, thus 0 = π(p(c, c∗)) = p(h, h∗). Since h is not nilpotent, then the
coefficients of the polynomial p(c, c∗) are all zero, a contradiction. �

Finally we show how to use Proposition 3.1 to simplify the proof on the
characterization of simple Leavitt path algebras (see [3, Theorem 3.1]).

Corollary 3.8. Let E be an arbitrary graph. Then LK(E) is simple if
and only if E satisfies Condition (L) and the only hereditary and saturated
subsets of E0 are the trivial ones.
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Proof. If LK(E) is simple, both conditions on the graph E are proved in [3,
Theorem 3.1]. For the converse take into account that Condition (L) implies
that any nonzero element in LK(E) is linked to a vertex (see Proposition 3.3).
Thus, there is a vertex in any nonzero ideal I of LK(E). But on the other
hand ∅ �= I ∩ E0 is hereditary and saturated ([3, Lemma 2.3]), therefore it
coincides with E0 and so I = LK(E). �

4. Minimal left ideals

Minimal left ideals are the building pieces of the socle of a semiprime ring.
Clearly enough, in order to be able to compute Soc(LK(E)), it would be wise
to collect as much information as possible on the structure of these ideals.
Hence, the aim of this section is to find necessary and sufficient conditions
so that a principal left ideal is minimal.

As a first step, we will find necessary and sufficient conditions on a vertex
so that the left ideal it generates turns out to be minimal. We recall some
notions introduced and results proved in [12] for row-finite graphs, which
will be also useful in the context of arbitrary graphs.

We say that a path μ contains no bifurcations if the set μ0 \ {r(μ)}
contains no bifurcations, that is, if none of the vertices of the path μ, except
perhaps r(μ), is a bifurcation.

The following two results are valid verbatim for arbitrary graphs because
the use of relation (4) in their proofs is limited to the case of vertices v
without bifurcations (and therefore finite-emitters).

Lemma 4.1. [12, Lemma 2.2] Let E be an arbitrary graph and let u, v be
in E0, with v ∈ T (u). If there is only one path joining u with v and it does
not contain bifurcations, then LK(E)u ∼= LK(E)v as left LK(E)-modules.

Note that the following proposition assumes that u is a finite-emitter.

Proposition 4.2. [12, Proposition 2.3] Let E be an arbitrary graph and u a
regular vertex with s−1(u) = {f1, . . . , fn}. Then LK(E)u =

⊕n
i=1 LK(E)fif

∗
i .

Furthermore, if r(fi) �= r(fj) for i �= j and vi := r(fi), then LK(E)u ∼=⊕n
i=1 LK(E)vi.

The next result, however, requires a slight adaptation from its row-finite
analog.

Lemma 4.3. Let E be an arbitrary graph and let u ∈ E0 be an infinite
emitter. Then

⊕∞
i=1 LK(E)fif

∗
i � LK(E)u, where s−1(u) = {fi}i∈N. In

particular, LK(E)u is not a minimal left ideal.
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Proof. The inclusion
⊕∞

i=1 LK(E)fif
∗
i ⊆ LK(E)u is clear. Suppose that

u ∈ ⊕∞
i=1 LK(E)fif

∗
i and write u =

∑
j αjgjg

∗
j , where gj ∈ s−1(u). Since

s−1(u) is infinite, there exists f ∈ s−1(u) such that f �= gj for all j. Then,
f = uf =

∑
j αjgjg

∗
jf = 0, a contradiction. �

Recall that a left ideal I of an algebra A is said to be minimal if it is
nonzero and the only left ideals of A that it contains are 0 and I. From the
results above we get an immediate consequence.

Corollary 4.4. Let E be an arbitrary graph and w ∈ E0. If T (w) contains
some bifurcation, then the left ideal LK(E)w is not minimal.

Thus we have found a first necessary condition for the minimality of the
left ideal generated by a vertex. But, as in the row-finite case, there is a
second condition, introduced in [12]. The proof given there holds also in our
more general setting.

Proposition 4.5. [12, Proposition 2.5] Let E be an arbitrary graph. If there
is some closed path based at u ∈ E0, then LK(E)u is not a minimal left ideal.

Thus using this proposition and Corollary 4.4 we conclude:

Proposition 4.6. Let E be an arbitrary graph. Let u be a vertex of the
graph E and suppose that the left ideal LK(E)u is minimal. Then u ∈ Pl(E).

As we shall prove in what follows, this necessary condition turns out to
be also sufficient. Following the reasoning given in [12, Proposition 2.7] but
using Corollary 4.4 and Propositions 3.4 and 4.6 instead, we have:

Proposition 4.7. Let E be an arbitrary graph. For any u ∈ E0, the left
ideal LK(E)u is minimal if and only if uLK(E)u = Ku ∼= K.

Remark 4.8. For any sink u, trivially uLK(E)u = Ku ∼= K, and therefore
the left ideal LK(E)u is minimal. Also, if w is a vertex connected to a sink
u by a path without bifurcations, then we have that LK(E)w is a minimal
left ideal because LK(E)w ∼= LK(E)u by Lemma 4.1.

Our task now is to show that the converse implication of Proposition 4.6
holds too. The proof of this fact strongly differs from that given in the
row-finite setting, and this is so precisely because we lack the direct limit
construction in which a great part of the proof for the row-finite case is
based on. Our new approach is more combinatorial.

Before proceeding with this task, we need to establish several preliminary
results.
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Proposition 4.9. Let E be an arbitrary graph and u ∈ Pl(E). Then
every nonzero element of the form f1 · · · fkg

∗
1 · · · g∗p with r(g∗p) = u and

s(f1), r(fi), r(g
∗
i )∈ T (u), is either the vertex u or can be written as g∗k+1 · · · g∗p,

with 1 < k < p.

Proof. We proceed by induction on the number of real edges k. If we have
f1g

∗
1 · · · g∗p, since r(f1) = s(g∗1) = r(g1) then f1 = g1, and therefore f1g

∗
1 · · · g∗p

= g1g
∗
1 · · · g∗p = g∗2 · · · g∗p, by (4). Suppose the result is valid for k−1.

Consider f1 · · · fkg
∗
1 · · · g∗p; by the induction hypothesis f2 · · · fkg

∗
1 · · · g∗p =

g∗k · · · g∗p so that f1 · · · fkg
∗
1 · · · g∗p = f1g

∗
k · · · g∗p = g∗k+1 · · · g∗p. �

Lemma 4.10. Let E be an arbitrary graph and let μ, ν ∈ E∗, with l(μ), l(ν)
≥ 1, s(μ) = s(ν) and such that for every u ∈ μ0 ∪ ν0 there are neither
bifurcations nor cycles at u. Then, μν∗ �= 0 implies μν∗ = s(μ).

Proof. We prove it by induction on l(μ) + l(ν). The base case is for
l(μ) + l(ν) = 2. In this case we have μ = f1 and ν = g1, with s(f1) =
r(g∗1) = s(g1), and since we have no bifurcations at s(f1), necessarily f1 = g1

and moreover, by (4) we get f1g
∗
1 = s(f1).

Let us suppose the result holds for the cases with l(μ) + l(ν) < n, and
prove it for l(μ) + l(ν) = n. Write μ = f1 . . . fr and ν = gs . . . g1. Note that
by the hypothesis we have r, s ≥ 1. Now, since μν∗ �= 0, then

(§) f2 . . . frg
∗
1 . . . g

∗
s−1 �= 0.

In this situation we have three possibilities:
If r = 1, then again having no bifurcations at s(f1) implies that f1 = gs,

and by (§) we get that r(fr) = s(g∗1), that is, s(g∗1) = r(gs) = s(g∗s) = r(g∗s−1).
In other words, gs−1 . . . g1 is a closed path based at r(f1), and therefore there
exists some cycle based at this same vertex, contradicting our assumption.
If s = 1 we may proceed analogously. Finally, for the case r, s > 1 we
are allowed to apply the induction hypothesis on (§) with the paths μ′ =
f2 . . . fr and ν ′ = gs−1 . . . g1 which of course verify that s(μ′) = s(ν ′). Thus,
μ′(ν ′)∗ = s(μ′) and consequently μν∗ = f1s(μ

′)g∗s = f1f
∗
1 = s(f1), again by

using (4) and the fact that there are no bifurcations at s(f1). �
We would like to determine the different types of monomials we might

encounter in LK(E)u when u ∈ Pl(E). In order to do this, we make the
following definitions. Define L to be the set of edges f ∈ E1 so that
s(f), r(f) ∈ T (u). It is clear that the sources of edges in E1 \ L are not
in T (u) because there are not bifurcations at any vertex of T (u). There-
fore, for all paths μ = f1 · · · fk with fi ∈ L and τ = g1 · · · gp with gj �∈ L,
we have μτ = 0 because r(μ) ∈ T (u) but s(τ) �∈ T (u). Moreover, the
graph T = (T (u), L, r|T (u), s|T (u)) is a line graph (that is, a graph without
bifurcations which has only u as a source).
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Proposition 4.11. Let E be an arbitrary graph and u ∈ Pl(E). The mono-
mials generating LK(E)u as a K-vector space are of the following types:

(1) u.

(2) f1 · · · fk, with r(fk) = u and s(f1) �= u.

(3) f1 · · · fkg
∗
1 · · · g∗p with s(f1) �= u, r(g∗p) = u, fi �∈ L and gi ∈ L.

(4) g∗1 · · · g∗p with r(g∗p) = u, s(g∗1) �= u and gi ∈ L.

Proof. Consider first a monomial in real edges. Then it is necessarily of
one the types (1) or (2). Take next a monomial of mixed type with real and
ghost edges. Then it must be of the form f1 · · · fkg

∗
1 · · · g∗p with r(g∗p) = u.

In case s(f1) = u, applying Lemma 4.10 we fall again in case (1). So we can
proceed supposing s(f1) �= u. If for some i we have fi ∈ L, then i = k or
fi+1, . . . , fk ∈ L. Since fi · · · fkg

∗
1 · · · g∗p is nonzero and all the edges are in L

(and also r(g∗p) = u) we have fi · · · fkg
∗
1 · · · g∗p = g∗j · · · g∗p for some j so that

1 ≤ j ≤ p, by Proposition 4.9.

In a similar fashion we can proceed with the elements of type (4) to see
that gi ∈ L. �

We have now all the technical ingredients in hand to prove that the
necessary condition for a principal left ideal generated by a vertex to be
minimal, given in Proposition 4.6, is also sufficient.

Theorem 4.12. Let E be an arbitrary graph and u ∈ E0. Then LK(E)u is
a minimal left ideal if and only if u ∈ Pl(E).

Proof. Let u ∈ E0 such that LK(E)u is minimal. Then u ∈ Pl(E) by
Proposition 4.6.

Now we prove the converse. Take u ∈ Pl(E) and 0 �= z ∈ LK(E)u.
We will show that u ∈ LK(E)z. By Proposition 4.11 we may write z =
z1 + z2 + z3 + z4, where zi is a linear combination of monomials of type (i)
in Proposition 4.11. We distinguish four cases.

Case 1: z1 �= 0.

In this situation z1 = ku for some 0 �= k ∈ K, so u = k−1uz1 = k−1uz ∈
LK(E)z.

Case 2: z1 = 0 and z4 �= 0.

Let kt∗1 · · · t∗l be a nonzero monomial in z4 with l minimal. For every mo-
nomial f1 · · ·fk of type (2) appearing in z2 we have that utl · · · t1f1 · · ·fk = 0
since CP (u) = ∅. Pick a nonzero monomial f1 · · · fkg

∗
1 · · · g∗p of type (3) of z3.

Then utl · · · t1f1 · · · fkg
∗
1 · · · g∗p = 0 because fi �∈ L and ti ∈ L. Moreover, if
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we consider g∗1 · · · g∗p, a monomial of type (4) appearing in z4, different from
t∗1 · · · t∗l , we have that utl · · · t1g∗1 · · · g∗p = 0 because otherwise there would
exist a closed path based at u (observe that since l is minimal, we necessarily
have l < p). This shows that u = k−1utl · · · t1z ∈ LK(E)z.

Case 3: z1, z4 = 0 and z2 �= 0.

Choose kt1 . . . tl, a nonzero monomial in z2 with l maximal. Note that
t∗l · · · t∗1z2 = ku because for a nonzero monomial f1 · · · fr different from
t1 · · · tl appearing in z2 we have that t∗l · · · t∗1f1 · · ·fr �= 0 would imply l > r
and consequently CP (u) �= ∅, a contradiction.

Now, choose f1 · · · frg
∗
1 · · · g∗s , a monomial of type (3) and consider the

element x = t∗l · · · t∗1f1 · · · frg
∗
1 · · · g∗s . Distinguish the following three situ-

ations. First, if r < l, then x = t∗l · · · t∗r+1g
∗
1 · · · g∗s = 0 since CP (u) = ∅.

Second, if r = l then x = ux = ug∗1 · · · g∗s = 0 as CP (u) = ∅. Finally, if
r > l then x = t∗l · · · t∗1f1 · · · flfl+1 · · · frg

∗
1 · · · g∗s = ufl+1 · · · frg

∗
1 · · · g∗s , and

this would imply fl+1 ∈ L, a contradiction.

This proves that t∗l · · · t∗1z3 = 0 so that u = k−1t∗l · · · t∗1z2 = k−1t∗l · · · t∗1z ∈
LK(E)z.

Case 4: z1, z2, z4 = 0 and z3 �= 0.

Choose kt1 · · · tlh∗1 · · ·h∗m, a nonzero monomial in z3 with l minimal. Now
we have two possibilities:

(i) There is some summand f1 · · ·frg
∗
1 · · · g∗s of z3 such that f1 · · ·fr �=

t1 · · · tl. If r = l then t∗l · · · t∗1f1 · · · frg
∗
1 · · · g∗s = 0, whereas if r > l, we

would get that s(fl+1) ∈ T (u) so that fl+1 ∈ L, which is impossible.

(ii) z3 is the monomial kt1 · · · tlh∗1 · · ·h∗m.

Hence, in any case, t∗l · · · t∗1z is an element which is under the conditions in
Case 2, and therefore u ∈ LK(E)t∗l · · · t∗1z ⊆ LK(E)z. �

We close this section with the result that states that minimal left ideals
are generated by line points. The proof of this fact follows the same sketch
that the proof of [12, Theorem 3.4], now using Lemma 1.5, Proposition 3.1
and Theorem 4.12 instead of their row-finite analogs.

Theorem 4.13. Let E be an arbitrary graph and let x be in LK(E) such
that LK(E)x is a minimal left ideal. Then, there exists a vertex v ∈ Pl(E)
such that LK(E)x is isomorphic (as a left LK(E)-module) to LK(E)v.
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5. The socle of a Leavitt path algebra

Leavitt path algebras are semiprime by Proposition 3.4. This implies, in
particular, that their left and right socles agree, which enables us to speak
of the socle without distinguishing sides. However, it is more convenient for
us to work with left ideals, hence we will obtain the socle as the sum of all
minimal left ideals.

Recall that a homogeneous component of the socle is the sum of all min-
imal left ideals which are isomorphic among themselves. Each homogeneous
component is also a (two-sided) ideal and the sum of all of them is the socle.
Having characterized in the previous section the minimal left ideals, we can
apply these results to characterize Soc(LK(E)). First of all we would like to
give a generating set of vertices of the socle as a two-sided ideal.

Proposition 5.1. For an arbitrary graph E we have that∑
u∈Pl(E)

LK(E)u ⊆ Soc(LK(E)).

The reverse containment does not hold in general.

Proof. Use Theorem 4.12 to show that for any u ∈ Pl(E), the left ideal
LK(E)u is minimal and therefore it is contained in the socle.

The reverse containment is not true in general as shows the example
given in [12, Proposition 4.1]. �

As in the case of a row-finite graph, the socle of a Leavitt path algebra
LK(E) is generated as a two-sided ideal by Pl(E), the set of line points. To
prove this, we can follow the steps in the proof of [12, Theorem 4.2] but
using Propositions 3.4, 4.13 and 5.1 rather than their row-finite versions,
jointly with the fact that the ideal generated by a subset H of E0 agrees
with the ideal generated by the hereditary saturated closure of H (see the
first assertion of [10, Lemma 2.1]).

Theorem 5.2. Let E be an arbitrary graph. Then

Soc(LK(E)) = I(Pl(E)) = I(H),

where H is the hereditary and saturated closure of Pl(E).

This result has an immediate but useful corollary.

Corollary 5.3. For an arbitrary graph E, the Leavitt path algebra LK(E)
has nonzero socle if and only if Pl(E) �= ∅.

If R is a ring, we let M∞(R) denote the ring of matrices of countable size
over R with only a finite number of nonzero entries.
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Examples 5.4. By using these results, we can compute the socle of some
Leavitt path algebras of not necessarily row-finite graphs.

1. Consider the infinite edges graph E∞ given by

•v
(∞) �� •w

Then, by [3, Lemma 1.1], LK(E∞) ∼= M∞(K) ∨ K, where the latter
denotes the unitization of M∞(K). Thus Theorem 5.2 gives another
way to show that Soc(M∞(K) ∨ K) = M∞(K) via the Leavitt path
algebra approach because

Soc(M∞(K) ∨K) = Soc(LK(E∞)) = I(Pl(E∞)) = I({w}) = M∞(K),

where the last equality can be obtained by using the isomorphism
defined in [3, Lemma 1.1].

2. Take the infinite clock graph C∞

• •

•v



 �� ���������
��

�
��

��
��

		

(∞)

•

•
By [3, Lemma 1.2] we know that

LK(C∞) ∼=
∞⊕
i=1

M2(K) ⊕KI22,

where I22 is the element in
∏∞

i=1 M2(K) given by I22 =
∏∞

i=1E22, and
E22 is the standard (2, 2)-matrix unit in M2(K). Thus, using again
Theorem 5.2 and the isomorphism given in [3, Lemma 1.2] we get

Soc(

∞⊕
i=1

M2(K) ⊕KI22) = Soc(LK(C∞)) = I(Pl(C∞))

= I(C0
∞ \ {v}) =

∞⊕
i=1

M2(K).

The next corollary is a generalization of [12, Corollary 4.4]. Recall that
LK(1,∞) is the Leavitt path algebra of the infinite rose graph R∞

•

(∞)

��

considered in [3, Examples 3.1 (ii)].
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Corollary 5.5. For all m,n ∈ N ∪ {∞},

Soc(Mm(LK(1, n))) = 0.

Proof. When both m and n are finite, we just apply [12, Corollary 4.4]. In
other cases we consider the graph Em

n given by

•vm
em−1�� •vm−1 •v3

e2 �� •v2
e1 �� •v1 f1��

f2

��

f3

��

where if m = ∞ then we have an infinite number of edges and vertices in
the line, and if n = ∞ then we have an infinite number of loops based at v1.
It is a tedious routine to check, with similar ideas to those of [2, Proposition
12], that Mm(LK(1, n)) ∼= LK(Em

n ). This graph satisfies that Pl(E
m
n ) = ∅,

for every m,n ∈ N ∪ {∞} so that Corollary 5.3 yields the result. �

We finish the paper by giving a structural characterization of the socle
of a Leavitt path algebra LK(E) for an arbitrary graph E.

If the socle is nonzero, then we know that Soc(LK(E)) = ⊕αCα, where
the Cα are the different homogeneous components which are simple K-
algebras (agreeing with their socles).

The structure theorem of simple algebras which coincide with their socles
states that any such algebra is isomorphic to an algebra A = FM'(M) (see [23,
IV, §8, p. 74] for the definition). In the framework of this theory (M,M′)
is a pair of dual vector spaces over a division K-algebra Δ. These vector
spaces come from the minimal left ideal M = eA (so that M′ = Ae) and
Δ is the division K-algebra Δ = eAe. Thus M is a left Δ-vector space
and M′ a right Δ-vector space. Taking into account Proposition 4.7 we see
that in our context Δ = K and the map ∗ : M → M′ such that ea �→ a∗e
is an isomorphism of K-vector spaces. Hence dim(M) = dim(M′) ≤ ℵ0.
Then, applying [23, IV, §15 Theorem 2, p. 89] in the infinite-dimensional
case, each homogeneous component of Soc(LK(E)) is isomorphic to Mn(K),
where n ∈ N ∪ {∞}.

Recall that a matricial algebra is a finite direct product of full matrix
algebras over K, while a locally matricial algebra is a direct limit of matricial
algebras. Now, Litoff’s Theorem [23, IV, §15 Theorem 3, p. 90] implies that
each homogeneous component of the socle is locally matricial over K and so
the socle itself is locally matricial over K. Thus we have proved the following
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Theorem 5.6. For any arbitrary graph E the socle of the Leavitt path al-
gebra LK(E) is zero or a locally matricial algebra and we have:

Soc(LK(E)) =
⊕
i∈I

Mni
(K),

where ni ∈ N ∪ {∞} and I is a countable set.
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[20] Garćıa, J. L. and Simón, J. J.: Morita equivalence for idempotent rings.
J. Pure Appl. Algebra 76 (1991), 39–56.
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