# Projections of hypersurfaces in the hyperbolic space to hyperhorospheres and hyperplanes 

Shyuichi Izumiya and Farid Tari


#### Abstract

We study in this paper orthogonal projections in a hyperbolic space to hyperhorospheres and hyperplanes. We deal in more details with the case of embedded surfaces $M$ in $H_{+}^{3}(-1)$. We study the generic singularities of the projections of $M$ to horospheres and planes. We give geometric characterizations of these singularities and prove duality results concerning the bifurcation sets of the families of projections. We also prove Koenderink type theorems that give the curvature of the surface in terms of the curvatures of the profile and the normal section of the surface.


## 1. Introduction

Projections of surfaces in the Euclidean and projective 3 -spaces are well studied (see for example $[1,3,4,5,6,7,9,23,24,27,28,29,30]$ ). We initiate in this paper an analogous study for embedded surfaces in the hyperbolic space $H_{+}^{3}(-1)$. Projections in the Euclidean space $\mathbb{R}^{n}$ are linear maps. By such projections, a point in $\mathbb{R}^{n}$ is taken along a line (a geodesic) until it hits an orthogonal hyperplane of projection (which is an ( $n-1$ )-dimensional flat object). There are two notions of flat objects in the hyperbolic space $H_{+}^{n}(-1)$. One is given by the everywhere vanishing of de Sitter Gaussian curvature and the other by the everywhere vanishing of the hyperbolic Gaussian curvature (see Section 2). It is shown in [17] that a totally umbilic hypersurface has everywhere zero hyperbolic Gaussian curvature if and only if it is part of a hyperhorosphere, and it has everywhere zero de Sitter Gaussian curvature

[^0]if and only if it is part of a hyperplane ([19]). So we consider in this paper orthogonal projections to hyperhorospheres and to hyperplanes. By such projections, a point in $H_{+}^{n}(-1)$ is taken along the unique geodesic to the point where such geodesic meets orthogonally the chosen hyperhorosphere or hyperplane of projection.

We deal in Section 3 with projection to hyperhorospheres and in Section 4 with projections to hyperplanes. In both cases we start by finding the expressions of the families of orthogonal projections in $H_{+}^{n}(-1)$ to hyperhorospheres and hyperplanes (Theorems 3.1 and 4.1). We then restrict to the cases of embedded surfaces $M$ in $H_{+}^{3}(-1)$. We give geometric characterisations of the generic singularities of the orthogonal projections of $M$ to horospheres and planes (Theorems 3.5 and 4.4). We observe that the singularities of these projections measure the contact of the surface with geodesics in $H_{+}^{3}(-1)$. We prove duality results (Theorems 3.2 and 4.2) concerning the bifurcation sets of the families of projections, analogous to those of Shcherback in [29]. Here, we use the duality concepts introduced by the first author in $[11,12]$; see $\S 2$ for details. We also prove Koenderink type theorems that give the curvature of the surface in terms of the curvature of the profile and of the normal section of the surface (Theorems 3.6 and 4.5).

## 2. Preliminaries

We start by recalling some basic concepts in hyperbolic geometry (see for example [26] for details). The Minkowski $(n+1)$-space $\left(\mathbb{R}_{1}^{n+1},\langle\rangle,\right)$ is the ( $n+1$ )-dimensional vector space $\mathbb{R}^{n+1}$ endowed by the pseudo scalar product $\langle\boldsymbol{x}, \boldsymbol{y}\rangle=-x_{0} y_{0}+\sum_{i=1}^{n} x_{i} y_{i}$, for $\boldsymbol{x}=\left(x_{0}, \ldots, x_{n}\right)$ and $\boldsymbol{y}=\left(y_{0}, \ldots, y_{n}\right)$ in $\mathbb{R}_{1}^{n+1}$. We say that a vector $\boldsymbol{x}$ in $\mathbb{R}_{1}^{n+1} \backslash\{0\}$ is spacelike, lightlike or timelike if $\langle\boldsymbol{x}, \boldsymbol{x}\rangle>0,=0$ or $<0$ respectively. The norm of a vector $\boldsymbol{x} \in \mathbb{R}_{1}^{n+1}$ is defined by $\|\boldsymbol{x}\|=\sqrt{|\langle\boldsymbol{x}, \boldsymbol{x}\rangle|}$.

Given a vector $\boldsymbol{v} \in \mathbb{R}_{1}^{n+1}$ and a real number $c$, the hyperplane with pseudo normal $\boldsymbol{v}$ is defined by

$$
H P(\boldsymbol{v}, c)=\left\{\boldsymbol{x} \in \mathbb{R}_{1}^{n+1} \mid\langle\boldsymbol{x}, \boldsymbol{v}\rangle=c\right\} .
$$

We say that $\operatorname{HP}(\boldsymbol{v}, c)$ is a spacelike, timelike or lightlike hyperplane if $\boldsymbol{v}$ is timelike, spacelike or lightlike respectively. For $\boldsymbol{v}=\boldsymbol{e}_{0}=(1,0, \ldots, 0)$, we have $\operatorname{HP}\left(\boldsymbol{e}_{0}, 0\right)=\left\{\boldsymbol{x} \in \mathbb{R}_{1}^{n+1} \mid x_{0}=0\right\}$. This space is identified with the Euclidean $n$-space and is denoted by $\mathbb{R}_{0}^{n}$.

We have the following three types of pseudo-spheres in $\mathbb{R}_{1}^{n+1}$ :

$$
\begin{aligned}
\text { Hyperbolic } n \text {-space : } & H^{n}(-1) & =\left\{\boldsymbol{x} \in \mathbb{R}_{1}^{n+1} \mid\langle\boldsymbol{x}, \boldsymbol{x}\rangle=-1\right\}, \\
\text { de Sitter } n \text {-space : } & S_{1}^{n} & =\left\{\boldsymbol{x} \in \mathbb{R}_{1}^{n+1} \mid\langle\boldsymbol{x}, \boldsymbol{x}\rangle=1\right\}, \\
\text { (open) lightcone: } & L C^{*} & =\left\{\boldsymbol{x} \in \mathbb{R}_{1}^{n+1} \backslash\{\mathbf{0}\} \mid\langle\boldsymbol{x}, \boldsymbol{x}\rangle=0\right\} .
\end{aligned}
$$

We also define the lightcone hypersphere

$$
S_{+}^{n-1}=\left\{\boldsymbol{x}=\left(x_{0}, \ldots, x_{n}\right) \mid\langle\boldsymbol{x}, \boldsymbol{x}\rangle=0, x_{0}=1\right\} .
$$

For $\boldsymbol{x} \in L C^{*}$, we have $x_{0} \neq 0$ so

$$
\widetilde{\boldsymbol{x}}=\left(1, \frac{x_{1}}{x_{0}}, \ldots, \frac{x_{n}}{x_{0}}\right) \in S_{+}^{n-1}
$$

The hyperbolic space has two connected components $H_{+}^{n}(-1)=\left\{\boldsymbol{x} \in H^{n}(-1)\right.$ $\left.\mid x_{0} \geq 1\right\}$ and $H_{-}^{n}(-1)=\left\{\boldsymbol{x} \in H^{n}(-1) \mid x_{0} \leq-1\right\}$. We only consider embedded surfaces in $H_{+}^{n}(-1)$ as the study is similar for those embedded in $H_{-}^{n}(-1)$.

The wedge product of $n$ vectors $\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \ldots, \boldsymbol{a}_{n} \in \mathbb{R}_{1}^{n+1}$ is given by

$$
\boldsymbol{a}_{1} \wedge \boldsymbol{a}_{2} \wedge \cdots \wedge \boldsymbol{a}_{n}=\left|\begin{array}{cccc}
-\boldsymbol{e}_{0} & \boldsymbol{e}_{1} & \cdots & \boldsymbol{e}_{n} \\
a_{0}^{1} & a_{1}^{1} & \cdots & a_{n}^{1} \\
a_{0}^{2} & a_{1}^{2} & \cdots & a_{n}^{2} \\
\vdots & \vdots & \cdots & \vdots \\
a_{0}^{n} & a_{1}^{n} & \cdots & a_{n}^{n}
\end{array}\right|
$$

where $\left\{\boldsymbol{e}_{0}, \boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}\right\}$ is the canonical basis of $\mathbb{R}_{1}^{n+1}$ and $\boldsymbol{a}_{i}=\left(a_{0}^{i}, a_{1}^{i}, \ldots, a_{n}^{i}\right)$, $i=1, \ldots, n$. One can check that

$$
\left\langle\boldsymbol{a}, \boldsymbol{a}_{1} \wedge \boldsymbol{a}_{2} \wedge \cdots \wedge \boldsymbol{a}_{n}\right\rangle=\operatorname{det}\left(\boldsymbol{a}, \boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{n}\right)
$$

so the vector $\boldsymbol{a}_{1} \wedge \boldsymbol{a}_{2} \wedge \cdots \wedge \boldsymbol{a}_{n}$ is pseudo orthogonal to all the vectors $\boldsymbol{a}_{i}$, $i=1, \ldots, n$.

The extrinsic geometry of hypersurfaces in the hyperbolic space is studied in $[11,12,13,14,15,16,17,18,19,20,21]$. Let $M$ be a hypersurface embedded in $H_{+}^{n}(-1)$. Given a local chart $\boldsymbol{i}: U \rightarrow M$, where $U$ is an open subset of $\mathbb{R}^{n-1}$, we denote by $\boldsymbol{x}: U \rightarrow H_{+}^{n}(-1)$ such embedding, identify $\boldsymbol{x}(U)$ with $U$ through the embedding $\boldsymbol{x}$ and write $M=\boldsymbol{x}(U)$. Since $\langle\boldsymbol{x}, \boldsymbol{x}\rangle \equiv$ -1 , we have $\left\langle\boldsymbol{x}_{u_{i}}, \boldsymbol{x}\right\rangle \equiv 0$, for $i=1, \ldots, n-1$, where $u=\left(u_{1}, \ldots, u_{n-1}\right) \in U$. We define the spacelike unit normal vector $\boldsymbol{e}(u)$ to $M$ at $\boldsymbol{x}(u)$ by

$$
\boldsymbol{e}(u)=\frac{\boldsymbol{x}(u) \wedge \boldsymbol{x}_{u_{1}}(u) \wedge \ldots \wedge \boldsymbol{x}_{u_{n-1}}(u)}{\left\|\boldsymbol{x}(u) \wedge \boldsymbol{x}_{u_{1}}(u) \wedge \ldots \wedge \boldsymbol{x}_{u_{n-1}}(u)\right\|}
$$

It follows that the vector $\boldsymbol{x} \pm \boldsymbol{e}$ is a lightlike vector. Let

$$
\mathbb{E}: U \rightarrow S_{1}^{n} \quad \text { and } \quad \mathbb{L}^{ \pm}: U \rightarrow L C^{*}
$$

be the maps defined by $\mathbb{E}(u)=\boldsymbol{e}(u)$ and $\mathbb{L}^{ \pm}(u)=\boldsymbol{x}(u) \pm \boldsymbol{e}(u)$. These are called, respectively, the de Sitter Gauss map and the lightcone Gauss map (or hyperbolic Gauss indicatrix) of $M([17])$. For any $p=\boldsymbol{x}\left(u_{0}\right) \in M$ and $\boldsymbol{v} \in T_{p} M$, one can show that $D_{v} \mathbb{E} \in T_{p} M$, where $D_{v}$ denotes the covariant
derivative with respect to the tangent vector $\boldsymbol{v}$. Since the derivative $d \boldsymbol{x}\left(u_{0}\right)$ can be identified with the identity mapping $1_{T_{p} M}$ on the tangent space $T_{p} M$, we have $d \mathbb{L}^{ \pm}\left(u_{0}\right)=1_{T_{p} M} \pm d \mathbb{E}\left(u_{0}\right)$, under the identification of $U$ and $M$ via the embedding $\boldsymbol{x}$. The linear transformation $A_{p}=-d \mathbb{E}\left(u_{0}\right)$ is called the de Sitter shape operator. Its eigenvalues $\kappa_{i}, i=1, \ldots, n-1$, are called the de Sitter principal curvature and the corresponding eigenvectors $\boldsymbol{p}_{i}$, $i=1, \ldots, n-1$, are called the de Sitter principal directions. The linear transformation $S_{p}^{ \pm}=-d \mathbb{L}^{ \pm}\left(u_{0}\right)$ is labelled the lightcone (or hyperbolic) shape operator of $M$ at $p$. It has the same eigenvectors as $A_{p}$ but its eigenvalues are distinct from those of $A_{p}$. In fact the eigenvalues $\bar{\kappa}_{i}^{ \pm}$of $S_{p}^{ \pm}$satisfy $\bar{\kappa}_{i}^{ \pm}=-1 \pm \kappa_{i}, i=1, \ldots, n-1$.

We call $K_{e}(p)=\prod_{i=1}^{n} \kappa_{i}(p)\left(\right.$ resp. $\left.K_{h}(p)=\prod_{i=1}^{n} \bar{\kappa}_{i}(p)\right)$ the de Sitter (resp. hyperbolic) Gauss-Kronecker curvature of $M$ at $p$. The curvature $K_{e}$ is also called the extrinsic Gaussian curvature. The set of points where $K_{e}(p)=0\left(\right.$ resp. $\left.K_{h}(p)=0\right)$ is labelled the de Sitter (resp. horospherical) parabolic set of $M$. The restriction of the pseudo-scalar product to the hyperbolic space is a scalar product, so $H_{+}^{n}(-1)$ is a Rimaniann manifold. When $n=3$, we have the sectional curvature $K_{I}$ of $M$ which is also called the intrinsic Gaussian curvature. It is known that $K_{e}=K_{I}+1$ (see (2.2) in [8]).

A hypersurface given by the intersection of $H_{+}^{n}(-1)$ with a spacelike, timelike or lightlike hyperplane is called respectively hypersphere, equidistant hypersurface or hyperhorosphere. The intersection of the surface with timelike hyperplane through the origin is called simply a hyperplane. As pointed out in the introduction, the hyperhorospheres (resp. hyperplanes) are the only hypersurfaces with everywhere zero lightcone (resp. de Sitter) Gaussian curvature. We deal in Section 3 with projections to hyperhorospheres and in Section 4 with projections to hyperplanes.

We need the notion of curvature of a curve in $H_{+}^{3}(-1)$. Let $\gamma: I \rightarrow$ $H_{+}^{3}(-1)$ be a regular curve. Since $H_{+}^{3}(-1)$ is a Riemannian manifold, we can parametrise $\gamma$ by arc-length and assume that $\gamma(s)$ is unit speed. Let $t(s)=\gamma^{\prime}(s)$, with $\|t(s)\|=1$. When $\left\langle t^{\prime}(s), t^{\prime}(s)\right\rangle \neq-1$, we have a unit normal vector $n(s)=\frac{t^{\prime}(s)-\gamma(s)}{\left\|t^{\prime}(s)-\gamma(s)\right\|}$. Let $e(s)=\gamma(s) \wedge t(s) \wedge n(s)$, then we have a pseudo orthogonal frame $\{\gamma(s), t(s), n(s), e(s)\}$ in $\mathbb{R}_{1}^{4}$ along $\gamma$. FrenetSerret type formulae, similar to those for a space curve in $\mathbb{R}^{3}$, can be proved for the curve $\gamma([20])$. The curvature of $\gamma$ at $\gamma(s)$ is defined to be

$$
\kappa_{h}(s)=\left\|t^{\prime}(s)-\gamma(s)\right\| .
$$

In particular, $t^{\prime}(s)=\kappa_{h}(s) n(s)+\gamma(s)$. The condition $\left\langle t^{\prime}(s), t^{\prime}(s)\right\rangle \neq-1$ above is in fact equivalent to $\kappa_{h}(s) \neq 0$. See [20] for more results on curves in the hyperbolic plane.

We require some properties of contact manifolds and Legendrian submanifolds for the duality results in this paper (for more details see for example [2]). Let $N$ be a $(2 n+1)$-dimensional smooth manifold and $K$ be a field of tangent hyperplanes on $N$. Such a field is locally defined by a 1-form $\alpha$. The tangent hyperplane field $K$ is said to be non-degenerate if $\alpha \wedge(d \alpha)^{n} \neq 0$ at any point on $N$. The pair $(N, K)$ is a contact manifold if $K$ is a non-degenerate hyperplane field. In this case $K$ is called a contact structure and $\alpha$ a contact form.

A submanifold $i: L \subset N$ of a contact manifold $(N, K)$ is said to be Legendrian if $\operatorname{dim} L=n$ and $d \boldsymbol{i}_{x}\left(T_{x} L\right) \subset K_{\boldsymbol{i}_{(x)}}$ at any $x \in L$. A smooth fibre bundle $\pi: E \rightarrow M$ is called a Legendrian fibration if its total space $E$ is furnished with a contact structure and the fibres of $\pi$ are Legendrian submanifolds. Let $\pi: E \rightarrow M$ be a Legendrian fibration. For a Legendrian submanifold $\boldsymbol{i}: L \subset E, \pi \circ \boldsymbol{i}: L \rightarrow M$ is called a Legendrian map. The image of the Legendrian map $\pi \circ \boldsymbol{i}$ is called a wavefront set of $\boldsymbol{i}$ and is denoted by $W(\boldsymbol{i})$.

There are two families of maps defined on an embedded manifold $M$ in the Euclidean space $\mathbb{R}^{n}$. These are the family of height functions given by

$$
\begin{array}{ccc}
H: M \times S^{n-1} & \rightarrow & \mathbb{R} \times S^{n-1} \\
(q, v) & \mapsto & q \cdot v
\end{array}
$$

and the family of orthogonal projections given by

$$
\begin{array}{ccc}
P: M \times S^{n-1} & \rightarrow & T S^{n-1} \\
(q, v) & \mapsto & (q, q-(q \cdot v) v)
\end{array}
$$

where $S^{n-1}$ denotes the unit sphere and "." the scalar product in $\mathbb{R}^{n}$. The local bifurcation set of $H$ (resp. $P$ ) is the set of $u \in S^{n-1}$ for which there exists $p \in M$ such that $H_{u}$ (resp. $P_{u}$ ) has a non-stable singularity at $p$. When $n=3$, a result in [7] shows that the dual of the $A_{2}$-stratum of the bifurcation set of the family of height functions on $M \subset \mathbb{R}^{3}$ is the lips/beaks stratum of the family of orthogonal projections on $M$. The duality in [7] refers to the double Legendrian fibration $S^{2} \stackrel{\pi_{1}}{\longleftarrow} \Delta \xrightarrow{\pi_{2}} S^{2}$, where $S^{2}$ is the unit sphere in $\mathbb{R}^{3}$ and $\Delta=\left\{(u, v) \in S^{2} \times S^{2} \mid u . v=0\right\}$. The contact structure on $\Delta$ is given by the 1 -form $\theta=v \cdot d u \mid \Delta$. (There are also other duality results in [29] regarding the strata of the bifurcation set of the family of projections of surfaces in the projective space $\mathbb{R} P^{3}$. Details of these are given in §3.2.)

We prove in $\S 3.2$ and $\S 4.2$ analogous results to those in [7] and [29]. The duality concepts we use here are those introduced in $[11,12,22]$, where five Legendrian double fibrations are considered on the subsets $\Delta_{i}, i=1, \ldots, 5$
below, of the product of two of the pseudo spheres $H^{n}(-1), S_{1}^{n}$ and $L C^{*}$. The geometric ideas behind the choice of the subsets $\Delta_{i}$ and the Legendrian double fibrations are as follows (for more details see [11, 12, 22]).

To any hypersurface $\boldsymbol{x}: U \rightarrow H^{n}(-1)$ is associated the de Sitter Gauss $\operatorname{map} \mathbb{E}: U \rightarrow S_{1}^{n}$. It is easy to show that the pair $(\boldsymbol{x}, \mathbb{E}): U \rightarrow H^{n}(-1) \times S_{1}^{n}$ is a Legedrian embedding into the set $\Delta_{1}=\left\{(\boldsymbol{v}, \boldsymbol{w}) \in H^{n}(-1) \times S_{1}^{n} \mid\langle\boldsymbol{v}, \boldsymbol{w}\rangle=0\right\}$. (The contact structure on $\Delta_{1}$ is given below.) This means that $M=\boldsymbol{x}(U)$ and $M^{*}=\mathbb{E}(U)$ are dual. We call this duality the $\Delta_{1}$-duality. This is a direct analogue of the spherical duality in the Euclidean space.

Consider now the lightcone Gauss map $\mathbb{L}^{ \pm}: U \rightarrow H^{n}(-1) \times L C^{*}$ which satisfies $\left\langle\boldsymbol{x}(u), \mathbb{L}^{ \pm}(u)\right\rangle=-1$. The pair $\left(\boldsymbol{x}, \mathbb{L}^{ \pm}\right): U \rightarrow H^{n}(-1) \times L C^{*}$ determines a Legedrian embedding into the set $\Delta_{2}=\left\{(\boldsymbol{v}, \boldsymbol{w}) \in H^{n}(-1) \times\right.$ $\left.L C^{*} \mid\langle\boldsymbol{v}, \boldsymbol{w}\rangle=-1\right\}$, so $M=\boldsymbol{x}(U)$ and $M^{*}=\mathbb{L}^{ \pm}(U)$ are dual. We call this duality the $\Delta_{2}$-duality.

Similarly, we have $\langle\mathbb{E}(u) \pm \boldsymbol{x}(u), \mathbb{E}(u)\rangle=1$ and $\left\langle\mathbb{L}^{+}(u), \mathbb{L}^{-}(u)\right\rangle=-2$ and these lead to the concepts of $\Delta_{3}$-duality and $\Delta_{4}$-duality respectively.

For spacelike hypersurfaces embedded in one of the pseudo-spheres in the Minkowski space (i.e. surfaces whose tangent spaces at all points are spacelike), we need to consider only the above four $\Delta_{i}$-dualities, $i=1, \ldots, 4$. However, if we consider timelike hypersurfaces in $S_{1}^{n}$, (i.e. surfaces whose tangent spaces at all points are timelike) we need the concept of $\Delta_{5}$-duality below which is also a direct analogue to the spherical duality in the Euclidean space. To summarise, we have the following five Legendrian double fibrations.
(1) (a) $H^{n}(-1) \times S_{1}^{n} \supset \Delta_{1}=\{(\boldsymbol{v}, \boldsymbol{w}) \mid\langle\boldsymbol{v}, \boldsymbol{w}\rangle=0\}$,
(b) $\pi_{11}: \Delta_{1} \rightarrow H^{n}(-1), \quad \pi_{12}: \Delta_{1} \rightarrow S_{1}^{n}$,
(c) $\theta_{11}=\langle d \boldsymbol{v}, \boldsymbol{w}\rangle\left|\Delta_{1}, \theta_{12}=\langle\boldsymbol{v}, d \boldsymbol{w}\rangle\right| \Delta_{1}$.
(2) (a) $H^{n}(-1) \times L C^{*} \supset \Delta_{2}=\{(\boldsymbol{v}, \boldsymbol{w}) \mid\langle\boldsymbol{v}, \boldsymbol{w}\rangle=-1\}$,
(b) $\pi_{21}: \Delta_{2} \rightarrow H^{n}(-1), \pi_{22}: \Delta_{2} \rightarrow L C^{*}$,
(c) $\theta_{21}=\langle d \boldsymbol{v}, \boldsymbol{w}\rangle\left|\Delta_{2}, \theta_{22}=\langle\boldsymbol{v}, d \boldsymbol{w}\rangle\right| \Delta_{2}$.
(3) (a) $L C^{*} \times S_{1}^{n} \supset \Delta_{3}=\{(\boldsymbol{v}, \boldsymbol{w}) \mid\langle\boldsymbol{v}, \boldsymbol{w}\rangle=1\}$,
(b) $\pi_{31}: \Delta_{3} \rightarrow L C^{*}, \pi_{32}: \Delta_{3} \rightarrow S_{1}^{n}$,
(c) $\theta_{31}=\langle d \boldsymbol{v}, \boldsymbol{w}\rangle\left|\Delta_{3}, \theta_{32}=\langle\boldsymbol{v}, d \boldsymbol{w}\rangle\right| \Delta_{3}$.
(4) (a) $L C^{*} \times L C^{*} \supset \Delta_{4}=\{(\boldsymbol{v}, \boldsymbol{w}) \mid\langle\boldsymbol{v}, \boldsymbol{w}\rangle=-2\}$,
(b) $\pi_{41}: \Delta_{4} \rightarrow L C^{*}, \pi_{42}: \Delta_{4} \rightarrow L C^{*}$,
(c) $\theta_{41}=\langle d \boldsymbol{v}, \boldsymbol{w}\rangle\left|\Delta_{4}, \theta_{42}=\langle\boldsymbol{v}, d \boldsymbol{w}\rangle\right| \Delta_{4}$.
(5) (a) $S_{1}^{n} \times S_{1}^{n} \supset \Delta_{5}=\{(\boldsymbol{v}, \boldsymbol{w}) \mid\langle\boldsymbol{v}, \boldsymbol{w}\rangle=0\}$,
(b) $\pi_{51}: \Delta_{5} \rightarrow S_{1}^{n}, \pi_{52}: \Delta_{5} \rightarrow S_{1}^{n}$,
(c) $\theta_{51}=\langle d \boldsymbol{v}, \boldsymbol{w}\rangle\left|\Delta_{5}, \theta_{52}=\langle\boldsymbol{v}, d \boldsymbol{w}\rangle\right| \Delta_{5}$.

Above, $\pi_{i 1}(\boldsymbol{v}, \boldsymbol{w})=\boldsymbol{v}$ and $\pi_{i 2}(\boldsymbol{v}, \boldsymbol{w})=\boldsymbol{w}$ for $i=1, \ldots, 5,\langle d \boldsymbol{v}, \boldsymbol{w}\rangle=$ $-w_{0} d v_{0}+\sum_{i=1}^{n} w_{i} d v_{i}$ and $\langle\boldsymbol{v}, d \boldsymbol{w}\rangle=-v_{0} d w_{0}+\sum_{i=1}^{n} v_{i} d w_{i}$. The 1 -forms $\theta_{i 1}^{-1}$ and $\theta_{i 2}^{-1}, i=1, \ldots, 5$, define the same tangent hyperplane field over $\Delta_{i}$ which is denoted by $K_{i}$.

We have the following duality theorem on the above spaces.
Theorem $2.1([11,12,22])$ The pairs $\left(\Delta_{i}, K_{i}\right), i=1, \ldots, 5$, are contact manifolds and $\pi_{i 1}$ and $\pi_{i 2}$ are Legendrian fibrations.

We have the following general remarks, some of which follow from the discussion proceeding Theorem 2.1.

Remark 2.2 1. Given a Legendrian submanifold $\boldsymbol{i}: L \rightarrow \Delta_{i}, i=1, \ldots, 5$, Theorem 2.1 states that $\pi_{i 1}(\boldsymbol{i}(L))$ is the $\Delta_{i}$-dual of $\pi_{i 2}(\boldsymbol{i}(L))$ and vice-versa.
2. We have the following geometric properties for a Legendrian submanifold $L \subset \Delta_{i}, i=1, \ldots, 5$. Take the case $i=1$. If $\pi_{11}(\boldsymbol{i}(L))$ is smooth at a point $\pi_{11}(\boldsymbol{i}(\boldsymbol{u}))$, then $\pi_{12}(\boldsymbol{i}(\boldsymbol{u}))$ is the normal vector to the hypersurface $\pi_{11}(\boldsymbol{i}(L)) \subset H_{+}^{n}(-1)$ at $\pi_{11}(\boldsymbol{i}(\boldsymbol{u}))$. Conversely, if $\pi_{12}(\boldsymbol{i}(L))$ is smooth at a point $\pi_{12}(\boldsymbol{i}(\boldsymbol{u}))$, then $\pi_{11}(\boldsymbol{i}(\boldsymbol{u}))$ is the normal vector to the hypersurface $\pi_{12}(i(L)) \subset S_{1}^{n}$. The same holds for the $\Delta_{i}$-dualities, $i=2, \ldots, 5$, where we take the normal to a hypersurface $M \subset L C^{*}$ at $p \in M$ as the direction given by the intersection of the normal plane to $T_{p} M$ in $\mathbb{R}_{1}^{n+1}$ with $T_{p} L C^{*}$.

3 . The $\Delta_{4}$-duality is included for completion only and is not used in this paper.
4. Since the normal of a hypersurface in $H^{n}(-1)$ is always spacelike, we have no good duality relationship in $H^{n}(-1) \times H^{n}(-1)$.

## 3. Projections to hyperhorospheres

Our construction of the family of orthogonal projections works in $H_{+}^{n}(-1)$ for $n \geq 3$. So we shall first deal with the general case and then restrict to $n=3$ for a detailed study of the singularities of the members of the family. Let $H P(\boldsymbol{v}, c)$ be a lightlike hyperplane (so $\boldsymbol{v} \in L C^{*}$ and $c \in \mathbb{R}$ ). Given a point $p \in H_{+}^{n}(-1)$, there is a unique geodesic in $H_{+}^{n}(-1)$ which intersects orthogonally the hyperhorosphere $H P(\boldsymbol{v}, c) \cap H_{+}^{n}(-1)$ at some point $q(p, \boldsymbol{v})$. We call the point $q(p, \boldsymbol{v})$ the orthogonal projection of $p$ in the direction of $\boldsymbol{v}$ to the hyperhorosphere $\operatorname{HP}(\boldsymbol{v}, c) \cap H_{+}^{n}(-1)$. By varying $c$, we obtain orthogonal projections to parallel hyperhorospheres. As the geometry we are investigating here is the same in all these parallel hyperhorospheres, we fix $c$ to be $\left\langle\boldsymbol{e}_{0}, \boldsymbol{v}\right\rangle$, with $\boldsymbol{e}_{0}=(1,0, \ldots, 0) \in H_{+}^{n}(-1)$. That is, we consider orthogonal projections to the hyperhorospheres that passe through the point $\boldsymbol{e}_{0}$. We observe that $H P\left(\boldsymbol{v},\left\langle\boldsymbol{e}_{0}, \boldsymbol{v}\right\rangle\right)=H P\left(\frac{1}{v_{0}} \boldsymbol{v},-1\right)$, so the hyperhorospheres
we are considering are in fact parametrised by the sphere $S_{+}^{n-1}$. We define the fibre bundle

$$
\mathcal{L}:=\left\{(\boldsymbol{v}, q) \in S_{+}^{n-1} \times H_{+}^{n}(-1) \mid\langle\boldsymbol{v}, q\rangle=-1\right\}
$$

By varying $\boldsymbol{v}$, we obtain a family of orthogonal projections to hyperhorospheres parametrised by vectors in $S_{+}^{n-1}$.

Theorem 3.1 The family of orthogonal projections in $H_{+}^{n}(-1)$ to hyperhorospheres is given by

$$
\begin{array}{cccc}
P_{H S}: \quad H_{+}^{n}(-1) \times S_{+}^{n-1} & \rightarrow & \mathcal{L} \\
(p, \boldsymbol{v}) & \mapsto & (\boldsymbol{v}, q(p, \boldsymbol{v}))
\end{array}
$$

where $q(p, \boldsymbol{v})$ has the following expression

$$
q(p, \boldsymbol{v})=-\frac{1}{\langle p, \boldsymbol{v}\rangle} p-\frac{1-\langle p, \boldsymbol{v}\rangle^{2}}{2\langle p, \boldsymbol{v}\rangle^{2}} \boldsymbol{v}
$$

Proof. Let $p \in H_{+}^{n}(-1)$ and $\boldsymbol{v} \in S_{+}^{n-1}$. Consider the two parallel hyperhorospheres $H P(\boldsymbol{v},-1) \cap H_{+}^{n}(-1)$ and $H P(\boldsymbol{v},\langle p, \boldsymbol{v}\rangle) \cap H_{+}^{n}(-1)$, the first contains the point $\boldsymbol{e}_{0}$ and the second the point $p$. A geodesic orthogonal to one of these hyperhorospheres is also orthogonal to the other, and the length of the segment of such geodesics between a point on one hyperhorosphere and another point on the other hyperhorosphere is the same for all such geodesics. The geodesic in $H_{+}^{n}(-1)$ through $\boldsymbol{e}_{0}$ and orthogonal to $H P(\boldsymbol{v},-1) \cap H_{+}^{n}(-1)$ is parametrised by

$$
\begin{equation*}
c(t)=\cosh (t) \boldsymbol{e}_{0}+\sinh (t) \boldsymbol{u} \tag{3.1}
\end{equation*}
$$

where $\boldsymbol{u}$ is orthogonal to $H P(\boldsymbol{v},-1) \cap H_{+}^{n}(-1)$ at $\boldsymbol{e}_{0}$ and satisfies $\langle\boldsymbol{u}, \boldsymbol{u}\rangle=1$. A short calculation shows that

$$
\boldsymbol{u}=\boldsymbol{e}_{0}-\boldsymbol{v}
$$

We are seeking the expressions of $\cosh \left(t_{0}\right)$ and $\sinh \left(t_{0}\right)$ in (3.1) when $c\left(t_{0}\right)$ is on the hyperhorosphere $\operatorname{HP}(\boldsymbol{v},\langle p, \boldsymbol{v}\rangle) \cap H_{+}^{n}(-1)$. For such $t_{0}$ we have

$$
\begin{aligned}
\langle p, \boldsymbol{v}\rangle & =\left\langle c\left(t_{0}\right), \boldsymbol{v}\right\rangle \\
& =-\cosh \left(t_{0}\right)+\langle\boldsymbol{u}, \boldsymbol{v}\rangle \sinh \left(t_{0}\right) \\
& =-\cosh \left(t_{0}\right)+\left\langle\boldsymbol{e}_{0}-\boldsymbol{v}, \boldsymbol{v}\right\rangle \sinh \left(t_{0}\right) \\
& =-\left(\cosh \left(t_{0}\right)+\sinh \left(t_{0}\right)\right)
\end{aligned}
$$

Therefore

$$
\cosh \left(t_{0}\right)+\sinh \left(t_{0}\right)=-\langle p, \boldsymbol{v}\rangle
$$

Combining the above relation with the identity $\cosh ^{2}\left(t_{0}\right)-\sinh ^{2}\left(t_{0}\right)=1$ yields

$$
\begin{aligned}
\cosh \left(t_{0}\right) & =-\frac{\langle p, \boldsymbol{v}\rangle^{2}+1}{2\langle p, \boldsymbol{v}\rangle} \\
\sinh \left(t_{0}\right) & =-\frac{\langle p, \boldsymbol{v}\rangle^{2}-1}{2\langle p, \boldsymbol{v}\rangle}
\end{aligned}
$$

Now the point $q(p, \boldsymbol{v})$, which is the orthogonal projection of $p$ to the hyperhorosphere $H P(\boldsymbol{v},-1) \cap H_{+}^{n}(-1)$ is given by

$$
q(p, \boldsymbol{v})=\cosh \left(-t_{0}\right) p+\sinh \left(-t_{0}\right) \boldsymbol{w}
$$

with $\boldsymbol{w}=p+1 /\langle p, \boldsymbol{v}\rangle \boldsymbol{v}$. Substituting the expressions for $\cosh \left(t_{0}\right)$ and $\sinh \left(t_{0}\right)$ yields the expression of $q(p, \boldsymbol{v})$ in the statement of the theorem.

The projection $P_{H S}$ can be interpreted as follows in the Poincaré ball model of $H_{+}^{n}(-1)$. Given a point $\boldsymbol{v}$ on the ideal boundary, the hyperhorospheres defined by $\boldsymbol{v}$ are the hyperspheres in the ball that are tangent to the boundary at $\boldsymbol{v}$. If we fix one of them, then the projection $q(p, \boldsymbol{v})$ is represented by the intersection of the geodesic linking $\boldsymbol{v}$ and $p$ with the fixed hyperhorosphere. One can also define a projection to the ideal boundary by considering the point of intersection of the geodesic linking $\boldsymbol{v}$ and $p$ with the ideal boundary. By varying $\boldsymbol{v}$, we obtain a family of projections to the ideal boundary. Under the identification between $S_{+}^{n-1}$ in the Minkowski model and the ideal boundary in the Poincaré ball model via the canonical stereographic projection, we also have the corresponding projection onto $S_{+}^{n-1}$ that we denote by $\overline{P_{L S}}$.

Theorem 3.2 There is a bundle isomorphism taking $P_{H S}$ to $\overline{P_{L S}}$.
Proof. For any $\boldsymbol{v} \in S_{+}^{n-1}$, the tangent space of $S_{+}^{n-1}$ at $\boldsymbol{v}$ can be canonically identified with the space

$$
T_{\boldsymbol{v}} S_{+}^{n-1}=\left\{\boldsymbol{w} \in \mathbb{R}_{0}^{n} \mid\langle\boldsymbol{v}, \boldsymbol{w}\rangle=0\right\}
$$

We define the stereographic projection $\Pi_{\boldsymbol{v}}: S_{+}^{n-1} \backslash\{\boldsymbol{v}\} \rightarrow T_{\boldsymbol{v}} S_{+}^{n-1}$ by

$$
\Pi_{\boldsymbol{v}}(\boldsymbol{u})=\boldsymbol{v}+\frac{\boldsymbol{v}-\boldsymbol{u}}{\langle\boldsymbol{u}, \boldsymbol{v}\rangle}-\boldsymbol{e}_{0}
$$

We consider the induced metric on $S_{+}^{n-1} \backslash\{\boldsymbol{v}\}$ via the stereographic projection from the Euclidean space $T \boldsymbol{v} S_{+}^{n-1}$, so that $\Pi_{\boldsymbol{v}}$ is an isometric diffeomorphism. We also define a projection $P_{L S}^{\boldsymbol{v}}: H_{+}^{n}(-1) \rightarrow S_{+}^{n-1} \backslash\{\boldsymbol{v}\}$ as follows. Given a point $p \in H_{+}^{n}(-1)$, the line joining $p$ and $\boldsymbol{v}$ meets
the lightcone at another point $q$. Then $P_{L S}^{\boldsymbol{v}}(p)$ is defined to be the point $\widetilde{q} \in S_{+}^{n-1} \backslash\{\boldsymbol{v}\}$. One can show that

$$
P_{L S}^{\boldsymbol{v}}(p)=2 \overline{\widetilde{(\underline{v}}} \overline{\langle p, \boldsymbol{v}\rangle}
$$

We remark that the restriction

$$
\left.P_{L S}^{\boldsymbol{v}}\right|_{H P(\boldsymbol{v},-1) \cap H_{+}^{n}(-1)}: H P(\boldsymbol{v},-1) \cap H_{+}^{n}(-1) \rightarrow S_{+}^{n-1} \backslash\{\boldsymbol{v}\}
$$

is an isometric diffeomorphism. Therefore,

$$
\left.\Pi_{\boldsymbol{v}} \circ P_{L S}^{\boldsymbol{v}}\right|_{H P(\boldsymbol{v},-1) \cap H_{+}^{n}(-1)}: H P(\boldsymbol{v},-1) \cap H_{+}^{n}(-1) \rightarrow T \boldsymbol{v} S_{+}^{n-1}
$$

is an isometric diffeomorphism. Varying $\boldsymbol{v}$ in $S_{+}^{n-1}$ yields a family of mappings $P_{L S}: H_{+}^{n}(-1) \times S_{+}^{n-1} \rightarrow S_{+}^{n-1} \times S_{+}^{n-1}$ given by $P_{L S}(p, \boldsymbol{v})=\left(\boldsymbol{v}, P_{L S}^{\boldsymbol{v}}(p)\right)$.

The tangent bundle of the lightcone hypersphere is

$$
T S_{+}^{n-1}=\left\{(\boldsymbol{v}, \boldsymbol{w}) \in S_{+}^{n-1} \times \mathbb{R}_{0}^{n} \mid\langle\boldsymbol{v}, \boldsymbol{w}\rangle=0\right\}
$$

Therefore we have a family of projections to the tangent bundle of $S_{+}^{n-1}$

$$
\overline{P_{L S}}: H_{+}^{n}(-1) \times S_{+}^{n-1} \rightarrow T S_{+}^{n-1}
$$

defined by $\overline{P_{L S}}(p, \boldsymbol{v})=\left(1_{S_{+}^{n-1}} \times \Pi_{\boldsymbol{v}}\right) \circ P_{L S}(p, \boldsymbol{v})=\left(\boldsymbol{v}, \Pi_{\boldsymbol{v}} \circ P_{L S}^{\boldsymbol{v}}(p)\right)$. A straightforward calculation shows that $P_{L S}^{\boldsymbol{v}}(q(p, \boldsymbol{v}))=P_{L S}^{\boldsymbol{v}}(p)$, where $q(p, \boldsymbol{v})$ is as in Theorem 3.1.

Let $\Phi: \mathcal{L} \rightarrow T S_{+}^{n-1}$ be the mapping defined by $\Phi(\boldsymbol{v}, q)=\left(\boldsymbol{v}, \Pi_{\boldsymbol{v}} \circ P_{L S}^{\boldsymbol{v}}(q)\right)$. Since $\left.\Pi \boldsymbol{v} \circ P_{L S}^{\boldsymbol{v}}\right|_{H P(\boldsymbol{v},-1) \cap H_{+}^{n}(-1)}$ is an isometric diffeomorphism, $\Phi$ is a bundle isomorphism and $\Phi \circ P_{H S}=\overline{P_{L S}}$.

On the Poincaré ball model of $H_{+}^{n}(-1)$, the ideal boundary can be identified with $S_{+}^{n-1}$ through the canonical stereographic projection. Therefore, the bundle $\mathcal{L}$ can be identified with the tangent bundle of the ideal boundary.

In this paper, the family of orthogonal projections of a given submanifold $M$ in $H_{+}^{n}(-1)$ to hyperhorospheres refers to the restriction of the family $P_{H S}$ to $M$. We still denote this restriction by $P_{H S}$. We have the following result where the term generic is defined in terms of transversality to submanifolds of multi-jet spaces (see for example [10]).
Theorem 3.3 For a residual set of embeddings $\boldsymbol{x}: M \rightarrow H_{+}^{n}(-1)$, the family $P_{H S}$ is a generic family of mappings.
Proof. The theorem follows from Montaldi's result in [25] and the fact that $P_{H S \mid H_{+}^{n}(-1)}$ is a stable map.

We denote by $P_{H S}^{\boldsymbol{v}}$ the map $H_{+}^{n}(-1) \rightarrow H_{+}^{n}(-1)$, given by $P_{H S}^{\boldsymbol{v}}(p)=$ $q(p, \boldsymbol{v})$, with $q(p, \boldsymbol{v})$ as in Theorem 3.1.

### 3.1. Projections of surfaces in $H^{3}(-1)$ to horospheres

We now study projections of embedded surfaces in $H_{+}^{3}(-1)$ to horospheres. For a given $\boldsymbol{v} \in S_{+}^{2}$ and a point $p_{0} \in M$, one can choose local coordinates so that $P_{H S}^{\boldsymbol{v}}$ restricted to $M$ can be considered locally as a map-germ $\mathbb{R}^{2}, 0 \rightarrow \mathbb{R}^{2}, 0$. These map-germs are extensively studied. We refer to [27] for the list of the $\mathcal{A}$-orbits with $\mathcal{A}_{e}$-codimension $\leq 6$, where $\mathcal{A}$ denotes the Mather group of smooth changes of coordinates in the source and target. In Table 1, we reproduce from [27] the list of local singularities of $\mathcal{A}_{e}$-codimension $\leq 3$. Some of these singularities are also called as follows: $4_{2}$ (lips/beaks), $4_{3}$ (goose), 5 (swallowtail), 6 (butterfly), $11_{5}$ (gulls). The multi-local singularities of $\mathcal{A}_{e}$-codimension $\leq 2$ are as follows:

$$
\begin{array}{ll}
\text { codimension 0: } & \text { double fold. } \\
\text { codimension 1: } & \text { triple fold; double tangent fold; fold plus cusp. } \\
\text { codimension 2: } & \text { quadruple fold; double cusp; double fold plus cusp; } \\
& \text { double tangent; fold plus fold; 3-point contact folds; } \\
& \text { cusp plus tangent fold; swallowtail plus fold; } \\
& \text { lips/beaks plus fold. }
\end{array}
$$

Table 1: $\mathcal{A}_{e}$-codimension $\leq 3$ local singularities of map-germs
$\mathbb{R}^{2}, 0 \rightarrow \mathbb{R}^{2}, 0([27])$.

| Name | Normal form | $\mathcal{A}_{e}$-codimension |
| :--- | :--- | :---: |
| Immersion | $(x, y)$ | 0 |
| Fold | $\left(x, y^{2}\right)$ | 0 |
| Cusp | $\left(x, x y+y^{3}\right)$ | 0 |
| $4_{k}$ | $\left(x, y^{3} \pm x^{k} y\right), k=2,3,4$ | $k-1$ |
| 5 | $\left(x, x y+y^{4}\right)$ | 1 |
| 6 | $\left(x, x y+y^{5} \pm y^{7}\right)$ | 2 |
| 7 | $\left(x, x y+y^{5}\right)$ | 3 |
| $11_{2 k+1}$ | $\left(x, x y^{2}+y^{4}+y^{2 k+1}\right), k=2,3$ | $k$ |
| 12 | $\left(x, x y^{2}+y^{5}+y^{6}\right)$ | 3 |
| 16 | $\left(x, x^{2} y+y^{4} \pm y^{5}\right)$ | 3 |

It follows from Theorem 3.3 that for generic embeddings of the surface only singularities of $\mathcal{A}_{e}$-codimension $\leq \operatorname{dim}\left(S_{+}^{2}\right)=2$ can occur in the members of the family of orthogonal projections. So we have the following result.

Proposition 3.4 For a residual set of embeddings $\boldsymbol{x}: M \rightarrow H_{+}^{3}(-1)$, the projections $P_{H S}^{v}: M \rightarrow H_{+}^{3}(-1)$ in the family $P_{H S}$ have local singularities $\mathcal{A}$-equivalent to one in Table 1 whose $\mathcal{A}_{e}$-codimension $\leq 2$. Moreover, these singularities are versally unfolded by the family $P_{H S}$.

The members of $P_{H S}$ can also have multi-local local singularities $\mathcal{A}$ equivalent to one listed above with $\mathcal{A}_{e}$-codimension $\leq 2$, and these singularities are also versally unfolded by the family $P_{H S}$. In this paper, we deal mainly with the geometry of the local singularities.

As $A_{p}$ and $S_{p}$ are self-adjoint operators on $M$ we can define the notion of asymptotic directions at $p$. We say that $u \in T_{p} M$ is a de Sitter (resp. horospherical) asymptotic direction if and only if $\left\langle A_{p} \cdot u, u\right\rangle=0$ (resp. $\left\langle S_{p} \cdot u, u\right\rangle=0$ ). There are $0 / 1 / 2$ de Sitter (resp. horospherical) asymptotic directions at every point where $K_{e}(p)\left(\right.$ resp. $\left.K_{h}(p)\right) 0>/=/<0$.

Given $\boldsymbol{v} \in S_{+}^{2}$ and a point $q$ on the horosphere $H P(\boldsymbol{v},\langle q, \boldsymbol{v}\rangle) \cap H_{+}^{3}(-1)$, we denote by $\boldsymbol{v}^{*}$ the projection of $\boldsymbol{v}$ in the direction of $q$ (considered as a vector in $\mathbb{R}_{1}^{4}$ ) to the tangent space of the horosphere at $q$. We have $\boldsymbol{v}^{*}=$ $\boldsymbol{v}+\langle q, \boldsymbol{v}\rangle q$, and the map $\boldsymbol{v} \mapsto \boldsymbol{v}^{*} /\left\|\boldsymbol{v}^{*}\right\|=-(\boldsymbol{v} /\langle q, \boldsymbol{v}\rangle+q)$ from $S_{+}^{2}$ to $T_{q} H_{+}^{3}(-1) \cap S_{1}^{3}$ is one-to-one. Also, given two parallel horospheres defined by $\boldsymbol{v} \in S_{+}^{2}$ and a geodesic orthogonal to both of them at $p$ and $q$ respectively, then the vector $\boldsymbol{v}^{*}$ associated to $\boldsymbol{v}$ is the same at $p$ and $q$. The types of singularities in the following theorem are those in Table 1.
Theorem 3.5 Let $M$ be an embedded surface in $H_{+}^{3}(-1)$ and $\boldsymbol{v} \in S_{+}^{2}$.
(1) The projection $P_{H S}^{\boldsymbol{v}}$ is singular at a point $p \in M$ if and only if $\boldsymbol{v}^{*} \in$ $T_{p} M$.
(2) The singularity of $P_{H S}^{\boldsymbol{v}}$ at $p$ is of type cusp or worse if and only if $\boldsymbol{v}^{*}$ is a de Sitter asymptotic direction at $p$. In particular, $p$ is a de Sitter hyperbolic or parabolic point.
(3) The singularities of $P_{H S}^{\boldsymbol{v}}$ of type 5 (swallowtail) occur generically on a curve in the de Sitter hyperbolic region, labelled the horosphere flecnodal curve. This curve can be characterised as the locus of points where the de Sitter asymptotic curves have geodesic inflections.
(4) The singularities of $P_{H S}^{v}$ at $p$ is of type $4_{2}$ or $4_{3}$ if and only if $p$ is a de Sitter parabolic point but not a swallowtail point of the de Sitter Gauss map and $\boldsymbol{v}^{*}$ is the unique de Sitter asymptotic direction there. Singularities of type $11_{5}$ occur at swallowtail points of the de Sitter Gauss map.

Proof. We shall take the surface $M$ in hyperbolic Monge form (H-Monge form, see [17]) at the point in consideration. In fact, by hyperbolic motions, we can suppose that the point of interest is $\boldsymbol{e}_{0}=(1,0,0,0)$ and the surface is given in H -Monge form

$$
\boldsymbol{x}(x, y)=\left(\sqrt{f^{2}(x, y)+x^{2}+y^{2}+1}, f(x, y), x, y\right)
$$

with $(x, y)$ in some neighbourhood of the origin. Here $f$ is a smooth function with $f(0,0)=0$ and $f_{x}(0,0)=f_{y}(0,0)=0$. So a unit normal to $M$ at $\boldsymbol{e}_{0}$ is given by $\boldsymbol{n}(0,0)=(0,1,0,0)$. We shall write the Taylor expansion of $f$ at the origin in the form

$$
f(x, y)=a_{20} x^{2}+a_{21} x y+a_{22} y^{2}+\sum_{i=0}^{3} a_{3 i} x^{3-i} y^{i}+\sum_{i=0}^{4} a_{4 i} x^{4-i} y^{i}+\text { h.o.t. }
$$

Let $\boldsymbol{v}=\left(1, v_{1}, v_{2}, v_{3}\right) \in S_{+}^{2}$, so that at $\boldsymbol{e}_{0}$ we have $\boldsymbol{v}^{*}=\left(0, v_{1}, v_{2}, v_{3}\right)$. Then

$$
\begin{aligned}
& \partial P_{H S}^{\boldsymbol{v}} / \partial x(0,0)=\left(0, v_{1} v_{2}, 1+v_{2}^{2}, v_{2} v_{3}\right) \\
& \partial P_{H S}^{\boldsymbol{v}} / \partial y(0,0)=\left(0, v_{1} v_{3}, v_{2} v_{3}, 1+v_{3}^{2}\right)
\end{aligned}
$$

and these two vectors are linearly dependent if and only if $v_{1}=0$, if and only if $\boldsymbol{v}^{*} \in T_{\boldsymbol{e}_{0}} M$, which proves (1).

For the remaining cases we take, without loss of generality, $\boldsymbol{v}=(1,0,0,1)$. The restriction of the projection $\pi\left(x_{0}, x_{1}, x_{2}, x_{3}\right) \mapsto\left(0, x_{1}, x_{2}, 0\right)$ to the horosphere is a submersion at $\boldsymbol{e}_{0}$. As the singularities of $P_{H S}^{\boldsymbol{v}}$ and those of $\pi \circ P_{H S}^{\boldsymbol{v}}$ are $\mathcal{A}$-equivalent, we study $\pi \circ P_{H S}^{\boldsymbol{v}}$ instead. We have

$$
\pi \circ P_{H S}^{\boldsymbol{v}}(x, y)=\left(\frac{f(x, y)}{\sqrt{f^{2}(x, y)+x^{2}+y^{2}+1}}, \frac{x}{\sqrt{f^{2}(x, y)+x^{2}+y^{2}+1}}\right)
$$

We can now analyse the appropriate $k$-jets of $\pi \circ P_{H S}^{\boldsymbol{v}}$ and interpret geometrically the conditions for it to be $\mathcal{A}$-equivalent to a given singularity. For example, we have a fold singularity if and only if $a_{20} \neq 0$, if and only if $\boldsymbol{v}^{*}=(0,0,0,1)$ is not a de Sitter asymptotic direction at $\boldsymbol{e}_{0}$. The singularity is of type cusp if and only if $a_{20}=0$ and $a_{21} a_{33} \neq 0$, and is of type swallowtail if and only if $a_{20}=a_{33}=0$ and $a_{21} a_{44} \neq 0$.

The equation of the asymptotic curves in the parameter space is given by $l d x^{2}+2 m d x d y+n d y^{2}=0$, where $l, m, n$ are the coefficients of the de Sitter second fundamental form. Suppose that the projection in the direction of $\boldsymbol{v}=(1,0,0,1)$ has a singularity worse than fold at $\boldsymbol{e}_{0}$ and assume that this point is not a de Sitter parabolic point, i.e. $a_{20}=0$ and $a_{21} \neq 0$. Then the de Sitter asymptotic curve tangent to $\boldsymbol{v}^{*}$ is parametrised by

$$
\gamma(t)=\left(1+\frac{1}{2} t^{2},-\frac{1}{2} a_{33} t^{2},-\frac{3}{2} \frac{a_{33}}{a_{21}} t^{2}, t\right)+\text { h.o.t. }
$$

The geodesic curvature of this asymptotic curve at $\boldsymbol{e}_{0}$ is $-3 a_{33} / a_{21}$ and its curvature, as a curve in $H_{+}^{3}(-1)$ (see $\S 2$ for definition), is given by $\left|a_{33}\right| \sqrt{1+9 / a_{21}^{2}}$. Both these curvatures vanish at $\boldsymbol{e}_{0}$ if and only if $a_{33}=0$, if and only if the singularity of the projection is of type swallowtail or worse.

The analysis for remaining cases is similar to the one above.

We call the image of the critical set of $P_{H S}^{\boldsymbol{v}}$ the contour (or profile) of $M$ in the direction $\boldsymbol{v}$. This is generically a curve on a horosphere. We shall suppose here that it is a smooth curve. (The bifurcations of the contour as $\boldsymbol{v}$ varies in $S_{+}^{2}$ are similar to those of the contour of a surface in the Euclidean space $\mathbb{R}^{3}$ and can be found in [1].) Let $p$ be a point on $M$. We call the intersection of $M$ with the 3 -dimensional space generated by the vectors $p, \boldsymbol{v}$ and $\boldsymbol{e}(p)$ the normal section of $M$ at $p$ along $\boldsymbol{v}$. Koenderink showed in [24] that for embedded surfaces in $\mathbb{R}^{3}$, the Gaussian curvature of the surface at a given point is the product of the curvature of the contour with the curvature of the normal section in the direction of projection. We have the following result for projections of surfaces in $H_{+}^{3}(-1)$ to horospheres, where the curvature of a curve in $H_{+}^{3}(-1)$ is as given in $\S 2$.

Theorem 3.6 (Koenderink type theorem) Let $\kappa_{c}$ be the curvature of the contour and $\kappa_{n}$ the curvature of the normal section in the projection direction. Then the de Sitter Gaussian curvature of the surface is given by

$$
K_{e}=\kappa_{n} \sqrt{\kappa_{c}^{2}-1} .
$$

Proof. We consider the H-Monge form setting of the proof of Theorem 3.5 and take $\boldsymbol{v}=(1,0,0,1)$. We assume that the singularity of the projection is a fold at $\boldsymbol{e}_{0}$, so $a_{22} \neq 0$. Then the 2 -jet of the profile is given by

$$
\left(1+\frac{1}{2} t^{2}, \frac{4 a_{20} a_{22}-a_{21}^{2}}{4 a_{22}} t^{2}, t-\frac{a_{21}}{2 a_{22}} t^{2}, \frac{1}{2} t^{2}\right)
$$

so, following the formula in $\S 2$, its curvature at $\boldsymbol{e}_{0}$ is given by

$$
\kappa_{c}^{2}=\frac{\left(4 a_{20} a_{22}-a_{21}^{2}\right)^{2}}{4 a_{22}^{2}}+1 .
$$

The normal section of the surface along $\boldsymbol{v}$ is given by

$$
\left(\sqrt{f(0, y)^{2}+y^{2}+1}, f(0, y), 0, y\right)
$$

and its curvature at $\boldsymbol{e}_{0}$ is given by $\kappa_{n}=2 a_{22}$. Given the fact that the de Sitter Gaussian curvature $K_{e}=4 a_{20} a_{22}-a_{21}^{2}$ at $\boldsymbol{e}_{0}$, it follows that

$$
\kappa_{c}^{2}=\frac{K_{e}^{2}}{\kappa_{n}^{2}}+1
$$

We remark that $K_{I} \equiv 0$ (i.e. flat in the intrinsic sense) for a horosphere, so that $K_{e} \equiv 1$. This explains why we have +1 in the last formula.

### 3.2. Duality

We prove in this section duality result similar to those in [29] for central projections of surfaces in $\mathbb{R} P^{3}$. Following the notation in [29], let $S$ be a two-dimensional surface in $\mathbb{R} P^{3}$ and $q$ a point in $\mathbb{R} P^{3}$. The pencil of lines through $q$ form a two dimensional projective space $Q$ and one obtains a bundle $\mathbb{R} P^{3} \backslash q \rightarrow Q$. The projection of the surface $S$ from the point $q$ is the diagram $S \hookrightarrow \mathbb{R} P^{3} \backslash q \rightarrow Q$. For a generic surface, a germ of a projection is equivalent to one of 14 non-equivalent types of projections [30]. Three of these types occur when one projects from a point in an open set of $\mathbb{R} P^{3}$ and the rest when projecting from points on the bifurcation set of the family of projections parametrised by points in $\mathbb{R} P^{3}$. One component of the bifurcation set is the ruled surface $A_{2}^{\text {par }}$ swept out by the asymptotic lines with origins at the parabolic points of $S$. Another stratum of the bifurcation set involving local singularities is the ruled surface $A_{3}$ swept out by the asymptotic lines of $S$ which are tangent to $S$ of order at least three (the origin of such lines form a smooth curve on $S$ ). The projection can have multi-local singularities. Three other ruled surfaces are considered in [29]. These are the $A_{1}^{3}$ whose lines are tangent to $S$ at three points or more, $A_{1} \times A_{2}$ whose lines are tangent to $S$ at three points or more, so that each line is asymptotic tangent at one of the points, and the surface $A_{1} \| A_{1}$ whose lines are tangent to $S$ at two points, so that for each line, the projective planes tangent to $S$ at the points coincide. The following result is proved in [29], where the dual surface $S^{*}$ is the wavefront of $S \hookrightarrow P T^{*} \mathbb{R} P^{3}$. (The projectivised cotangent bundle $P T^{*} \mathbb{R} P^{3}$ is given the canonical contact structure, see [2] for more details.)

Theorem 3.7 ([29])
(1) $A_{2}^{\text {par }}$ is the front of the cuspidal edge of the surface $S^{*}$.
(2) $A_{1} \| A_{1}$ is the front of the self-intersection line of the surface $S^{*}$.
(3) The surfaces $A_{3}, A_{1}^{3}, A_{1} \times A_{2}$ are self-dual, i.e. the surface dual to these surfaces are the corresponding objects of the surface $S^{*}$.

There are Euclidean analogues in [7] of the results in [29] (see also [3, 4, 6] for related results). It is shown for example in [7] that the dual of the $A_{2^{-}}$ stratum of the bifurcation set of the family of height functions on a smooth surface in $\mathbb{R}^{3}$ is dual to the lips/beaks stratum of the family of orthogonal projections of the surface. (As pointed out in $\S 2$, duality in [7] refers to the double Legendrian fibration $S^{2} \stackrel{\pi_{1}}{\longleftarrow} \Delta \xrightarrow{\pi_{2}} S^{2}$, where $S^{2}$ is the unit sphere in $\mathbb{R}^{3}$ and $\Delta=\left\{(u, v) \in S^{2} \times S^{2} \mid u . v=0\right\}$. The contact structure on $\Delta$ is given by the 1 -form $\theta=v \cdot d u \mid \Delta$.)

Let $M$ be an embedded surface in $H_{+}^{3}(-1)$. The situation here is different from that in [29]. We shall use the duality concepts in [11, 12, 22] (see Section 2), so the $\Delta_{1}$-dual of the surface $M$ does not live in the dual space of the ambient space $H_{+}^{3}(-1)$ of the surface $M$. Also, the bifurcation set of the family of projections $P_{H S}$ is not a subset of $H_{+}^{3}(-1)$. However, we still obtain results similar to those in [29].

We denote by $A_{2}^{\text {par }}$ the ruled surface in $H_{+}^{3}(-1)$ swept out by the geodesics in $H_{+}^{3}(-1)$ with origins at the de Sitter parabolic points of $M$ and whose tangent directions at these points are along the unique de Sitter asymptotic directions. We also denote by $A_{1} \| A_{1}$ the ruled surface swept out by the geodesics in $H_{+}^{3}(-1)$ that are tangent to $M$ at two points where the normals to $M$ at such points are parallel. (So the projection $P_{H S}^{\boldsymbol{v}}$, with $\boldsymbol{v}$ well chosen, has a multi-local singularity of type double tangent fold or worse.)

Theorem 3.8 Let $M^{*}$ be the $\Delta_{1}$-dual of the surface $M$ embedded in $H_{+}^{3}(-1)$. Then,
(1) The $\Delta_{1}$-dual of the surface $A_{2}^{p a r}$ is the cuspidaledge of $M^{*}$.
(2) The $\Delta_{1}$-dual of the surface $A_{1} \| A_{1}$ is the self-intersection line of $M^{*}$.

Proof. (1) We suppose that the de Sitter parabolic set $K_{e}^{-1}(0)$ is a regular curve. This property holds for generic embeddings of surfaces in $H_{+}^{3}(-1)$. Let $p(t), t \in I$, be a parametrisation of the de Sitter parabolic set of $M$ and $\boldsymbol{u}_{i}(t), i=1,2$, denote the unit principal directions of $M$ at $p(t)$. Suppose, without loss of generality, that the unique asymptotic direction at $p(t)$ is along $\boldsymbol{u}_{1}(t)$. Then we have the following local parametrisation of $A_{2}^{\text {par }}$ :

$$
\boldsymbol{y}(s, t)=\cosh (s) p(t)+\sinh (s) \boldsymbol{u}_{1}(t)
$$

The normal to the surface $A_{2}^{\text {par }}$ (in $H_{+}^{3}(-1)$ ) is along

$$
\boldsymbol{y} \wedge \boldsymbol{y}_{s} \wedge \boldsymbol{y}_{t}=\cosh (s) p(t) \wedge \boldsymbol{u}_{1}(t) \wedge p^{\prime}(t)+\sinh (s) p(t) \wedge \boldsymbol{u}_{1}(t) \wedge \boldsymbol{u}_{1}^{\prime}(t)
$$

At a generic point $p$ on the de Sitter parabolic set (i.e. away from swallowtail of the de Sitter Gauss map), the de Sitter asymptotic direction is transverse to the parabolic set, so $p(t) \wedge \boldsymbol{u}_{1}(t) \wedge p^{\prime}(t)$ is along $\boldsymbol{e}(p(t))$. It follows from Lemma 3.11 below that $p(t) \wedge \boldsymbol{u}_{1}(t) \wedge \boldsymbol{u}_{1}^{\prime}(t)$ is also along $\boldsymbol{e}(p(t))$. Therefore $\boldsymbol{y} \wedge \boldsymbol{y}_{s} \wedge \boldsymbol{y}_{t}$ is along $\boldsymbol{e}(p(t))$. So the normal to the ruled surface $A_{2}^{p a r}$ is constant along the rulings and is given by the normal vector $\boldsymbol{e}(p(t))$ to $M$ at $p(t)$. This means that $A_{2}^{p a r}$ is a de Sitter developable surface. Therefore, the $\Delta_{1}$-wavefront of $A_{2}^{p a r}$ is $\{\boldsymbol{e}(p), p$ a de Sitter parabolic point $\}$. This is precisely the singular set (i.e. the cuspidaledge) of the $\Delta_{1}$-dual surface of $M$.
(2) Suppose a multi-local singularity (double tangent fold) occurs at two points $p_{1}$ and $p_{2}$ on $M$. The surface $A_{1} \| A_{1}$ is then a ruled surface generated by geodesics along a curve $C_{1}$ on $M$ through $p_{1}$ (or a curve $C_{2}$ on $M$ through $p_{2}$ ). The normals to the surface at points on $C_{1}$ and $C_{2}$ that are on the same ruling of $A_{1} \| A_{1}$ are parallel. Let $q(t)$ be a local parametrisation of the curve $C_{1}$ and $\boldsymbol{u}(t)$ be the unit tangent direction to the ruling in $A_{1} \| A_{1}$ through $q(t)$. Then a parametrisation of $A_{1} \| A_{1}$ is given by

$$
w(s, t)=\cosh (s) q(t)+\sinh (s) \boldsymbol{u}(t)
$$

The normal to this surface is along $\cosh (s) V_{1}(t)+\sinh (s) V_{2}(t)$ with $V_{1}(t)=q(t) \wedge \boldsymbol{u}(t) \wedge q^{\prime}(t)$ and $V_{2}(t)=q(t) \wedge \boldsymbol{u}(t) \wedge \boldsymbol{u}^{\prime}(t)$. These normals are parallel at two points on any ruling, one point being on the curve $C_{1}$ and the other on $C_{2}$. Therefore $V_{1}(t)$ and $V_{2}(t)$ are parallel, so the normal to the surface $A_{1} \| A_{1}$ is constant along the rulings of this surface. As these are along the normal to the surface at $q(t)$, it follows that the $\Delta_{1}$-wavefront of $A_{1} \| A_{1}$ is $\left\{\boldsymbol{e}(p), p \in C_{1}\right\}=\left\{\boldsymbol{e}(p), p \in C_{2}\right\}$. This is precisely the self-intersection line of $M^{*}$, the $\Delta_{1}$-dual surface of $M$.

With the notation in the proof of Theorem 3.8, the cuspidaledge of $M^{*}$ (the $\Delta_{1}$-dual of $M$ ) is parametrised by $\mathbb{E}(p(t))$ (recall that $M^{*}=\mathbb{E}(M)$ by definition). Theorem 3.8 asserts that $L(s, t)=(\boldsymbol{y}(s, t), \mathbb{E}(p(t)))$ is a Legendrian embedding into $\Delta_{1}$. This can be checked directly using the parametrisation $L(s, t)$.

We consider now other dualities pointed out in Section 2. We define a diffeomorphism $\Psi_{1}: H_{+}^{3}(-1) \times S_{+}^{2} \rightarrow \Delta_{1}$ by

$$
\Psi_{1}(q, \boldsymbol{v})=\left(q,-\frac{\boldsymbol{v}}{\langle q, \boldsymbol{v}\rangle}-q\right)
$$

The inverse mapping $\Psi_{1}^{-1}: \Delta_{1} \rightarrow H_{+}^{3}(-1) \times S_{+}^{2}$ is given by

$$
\Psi_{1}^{-1}(q, \boldsymbol{w})=(q, \widetilde{q+\boldsymbol{w}})
$$

so $p(t) \widetilde{+\boldsymbol{u}_{1}}(t)$ gives a parametrisation of the stratum Bif( $P_{H S}$, lips/beaks $)$ in $S_{+}^{2}$. Let

$$
\Sigma\left(4_{2}\right)=\left\{(q, \boldsymbol{v}) \in H_{+}^{3}(-1) \times S_{+}^{2} \mid P_{H S}^{\boldsymbol{v}} \text { has a singularity at } q \text { of type } 4_{2}\right\}
$$

so that $\pi\left(\Sigma\left(4_{2}\right)\right)=\operatorname{Bif}\left(P_{H S}\right.$, lips/beaks , where $\pi: H_{+}^{3}(-1) \times S_{+}^{2} \rightarrow S_{+}^{2}$ is the canonical projection. Therefore we have

$$
\Psi_{1}\left(\overline{\Sigma\left(4_{2}\right)}\right)=\left\{(q, \boldsymbol{w}) \mid \boldsymbol{w} \text { is the unique asymptotic direction at } q \in K_{e}^{-1}(0)\right\} .
$$

Moreover, we define a surface in the lightcone by

$$
\begin{aligned}
\boldsymbol{z}(s, t) & =\boldsymbol{y}(s, t)+\mathbb{E}(p(t)) \\
& =\cosh (s) p(t)+\sinh (s) \boldsymbol{u}_{1}(t)+\mathbb{E}(p(t))
\end{aligned}
$$

with notation as in the proof of Theorem 3.8. We now define the mappings $\Phi_{12}: \Delta_{1} \rightarrow \Delta_{2}$ and $\Phi_{13}: \Delta_{1} \rightarrow \Delta_{3}$ by $\Phi_{12}(q, \boldsymbol{w})=(q, q+\boldsymbol{w})$ and $\Phi_{13}(q, \boldsymbol{w})=$ $(q+\boldsymbol{w}, \boldsymbol{w})$. These mappings are contact diffeomorphisms. Since $\boldsymbol{y}(s, t)$ and $\mathbb{E}(p(t))$ are $\Delta_{1}$-dual, it follows that $\boldsymbol{y}(s, t)$ and $\boldsymbol{z}(s, t)$ are $\Delta_{2}$-dual and $\boldsymbol{z}(s, t)$ and $\mathbb{E}(p(t))$ are $\Delta_{3}$-dual. We have therefore shown the following result.

Theorem 3.9 Let $M^{*}$ be the $\Delta_{1}$-dual of the surface $M$ embedded in $H_{+}^{3}(-1)$. Then the $\Delta_{2}$-dual of $A_{2}^{p a r}$ is the $\Delta_{3}$-dual of the cuspidaledge of $M^{*}$.

Remark 3.10 In Shcherback's Theorem 3.7, the surfaces $A_{3}, A_{1}^{3}$ and $A_{1} \times$ $A_{2}$ are self-dual. In our case, we need the analogues of these surfaces for $M^{*}$. As $M^{*}$ is not in $H_{+}^{3}(-1)$, we need to define the concept of projections for surfaces embedded in the de Sitter and lightcone pseudo-spheres. This will be dealt with in a forthcoming paper.

In the proof of Theorem 3.8 we used the following result.
Lemma 3.11 Let $M$ be a generic surface in $H_{+}^{3}(-1)$. Then the derivative of the de Sitter (resp. lightcone) asymptotic direction along the de Sitter (resp. lightcone) parabolic curve is tangent to the surface $M$.

Proof. We consider the de Sitter case and the lightcone case follows in a similar way. We can suppose that the surface is parametrised by $\phi(x, y)$, where $x=$ const. and $y=$ const. represent the lines of curvature of $M$. Let $p(t)$ be a local parametrisation of the de Sitter parabolic curve. Then the unique de Sitter asymptotic direction on the parabolic set is also a principal direction. Suppose without loss of generality that this principal direction is $\boldsymbol{u}_{1}(t)$. Then $\boldsymbol{u}_{1}(t)=\lambda(t) \phi_{x}(p(t))=\lambda(t) \phi_{x}(x(t), y(t))$, where $\lambda(t)=$ $1 /\left\|\phi_{x}(x(t), y(t))\right\|$. Therefore $\boldsymbol{u}_{1}^{\prime}(t)=\lambda(t)\left(x^{\prime}(t) \phi_{x x}(p(t))+y^{\prime}(t) \phi_{x y}(p(t))\right)+$ $\lambda^{\prime}(t) \phi_{x}(p(t))$. The coefficients of the de Sitter second fundamental form are given by $l=\left\langle\phi_{x x}, \boldsymbol{e}\right\rangle=\kappa_{1} / E, m=\left\langle\phi_{x y}, \boldsymbol{e}\right\rangle=0$ and $n=\left\langle\phi_{y y}, \boldsymbol{e}\right\rangle=\kappa_{2} / G$ (where $E, F, G$ are the coefficients of the first fundamental form). So

$$
\begin{aligned}
\left\langle\boldsymbol{u}_{1}^{\prime}(t), \boldsymbol{e}(t)\right\rangle & =\lambda(t)\left(\left\langle\phi_{x x}(p(t)), \boldsymbol{e}(t)\right\rangle x^{\prime}(t)+\left\langle\phi_{x y}(p(t)), \boldsymbol{e}(t)\right\rangle y^{\prime}(t)\right) \\
& =\lambda(t) \kappa_{1}(t) / E \\
& =0
\end{aligned}
$$

and hence $\boldsymbol{u}_{1}^{\prime}(t) \in T_{p(t)} M$.

## 4. Projections to hyperplanes

We begin, as in Section 3, by considering the general case of orthogonal projections in $H_{+}^{n}(-1)$, for $n \geq 3$, to hyperplanes. Let $H P(\boldsymbol{v}, 0)$ be a timelike hyperplane (so $\boldsymbol{v} \in S_{1}^{n}$, that is, $\langle\boldsymbol{v}, \boldsymbol{v}\rangle=1$ ). Given a point $p \in H_{+}^{n}(-1)$, there is a unique geodesic in $H_{+}^{n}(-1)$ which intersects orthogonally the hyperplane $H P(\boldsymbol{v}, 0) \cap H_{+}^{n}(-1)$ at some point $r(p, \boldsymbol{v})$. We call the point $r(p, \boldsymbol{v})$ the orthogonal projection of $p$ in the direction of $\boldsymbol{v}$ to the hyperplane $H P(\boldsymbol{v}, 0) \cap$ $H_{+}^{n}(-1)$. The space $H P(\boldsymbol{v}, 0)$ can be identified with the tangent space of $S_{1}^{n}$ at $\boldsymbol{v}$.

Theorem 4.1 The family of orthogonal projections in $H_{+}^{n}(-1)$ to hyperplanes is given by

$$
\begin{array}{ccc}
P_{P}: \quad H_{+}^{n}(-1) \times S_{1}^{n} & \rightarrow & T S_{1}^{n} \\
(p, \boldsymbol{v}) & \mapsto & (\boldsymbol{v}, r(p, \boldsymbol{v}))
\end{array}
$$

where $r(p, \boldsymbol{v})$ has the following expression

$$
r(p, \boldsymbol{v})=\frac{1}{\sqrt{1+\langle\boldsymbol{v}, p\rangle^{2}}}(p-\langle p, \boldsymbol{v}\rangle \boldsymbol{v})
$$

Proof. Let $p \in H_{+}^{n}(-1)$ and $\boldsymbol{v} \in S_{1}^{n}$. We consider the equidistant hypersurface $H P(\boldsymbol{v},\langle p, \boldsymbol{v}\rangle) \cap H_{+}^{n}(-1)$ through $p$ and the geodesic

$$
\begin{equation*}
c(t)=\cosh (t) p+\sinh (t) \boldsymbol{u} \tag{4.1}
\end{equation*}
$$

orthogonal to $H P(\boldsymbol{v},\langle p, \boldsymbol{v}\rangle) \cap H_{+}^{n}(-1)$ at $p$ and to $H P(\boldsymbol{v}, 0) \cap H_{+}^{n}(-1)$ at $r(p, \boldsymbol{v})$. The vector $\boldsymbol{u}$ is given by

$$
\boldsymbol{u}=\frac{1}{\sqrt{1+\langle p, \boldsymbol{v}\rangle^{2}}}(\boldsymbol{v}+\langle p, \boldsymbol{v}\rangle p)
$$

We are seeking the expressions of $\cosh \left(t_{0}\right)$ and $\sinh \left(t_{0}\right)$ in (4.1) when $c\left(t_{0}\right)$ is on the hyperplane $H P(\boldsymbol{v}, 0)$. For such $t_{0}$ we have

$$
\begin{aligned}
\left\langle c\left(t_{0}\right), \boldsymbol{v}\right\rangle & =\langle p, \boldsymbol{v}\rangle \cosh \left(t_{0}\right)+\langle\boldsymbol{u}, \boldsymbol{v}\rangle \sinh \left(t_{0}\right) \\
& =\langle p, \boldsymbol{v}\rangle \cosh \left(t_{0}\right)+\sqrt{1+\langle p, \boldsymbol{v}\rangle^{2}} \sinh \left(t_{0}\right) \\
& =0
\end{aligned}
$$

Therefore

$$
\sinh \left(t_{0}\right)=-\frac{\langle p, \boldsymbol{v}\rangle}{\sqrt{1+\langle p, \boldsymbol{v}\rangle^{2}}} \cosh \left(t_{0}\right)
$$

Combining the above relation with the identity $\cosh ^{2}\left(t_{0}\right)-\sinh ^{2}\left(t_{0}\right)=1$ yields

$$
\begin{aligned}
\cosh \left(t_{0}\right) & =\sqrt{1+\langle p, \boldsymbol{v}\rangle^{2}} \\
\sinh \left(t_{0}\right) & =-\langle p, \boldsymbol{v}\rangle .
\end{aligned}
$$

The point $r(p, \boldsymbol{v})$ is given by $r(p, \boldsymbol{v})=\cosh \left(t_{0}\right) p+\sinh \left(t_{0}\right) \boldsymbol{u}$. Substituting the expressions of $\cosh \left(t_{0}\right), \sinh \left(t_{0}\right)$ and $\boldsymbol{u}$ yields the expression of $r(p, \boldsymbol{v})$ in the statement of the theorem.

The family of orthogonal projections of a given submanifold $M$ in $H_{+}^{n}(-1)$ to hyperplanes is the restriction of the family $P_{P}$ to $M$. We still denote this restriction by $P_{P}$.

Theorem 4.2 For a residual set of embeddings $\boldsymbol{x}: M \rightarrow H_{+}^{n}(-1)$, the family $P_{P}$ is a generic family of mappings.

Proof. The theorem follows from Montaldi's result in [25] and the fact that $P_{P \mid H_{+}^{n}(-1)}$ is a stable map.

We denote by $P_{P}^{\boldsymbol{v}}$ the map $H_{+}^{n}(-1) \rightarrow H_{+}^{n}(-1)$, given by $P_{P}^{\boldsymbol{v}}(p)=$ $r(p, \boldsymbol{v})$, with $r(p, \boldsymbol{v})$ as in Theorem 4.1

### 4.1. Projections of surfaces in $\boldsymbol{H}^{3}(-1)$ to planes

We consider now embedded surfaces in $H_{+}^{3}(-1)$. For a given $\boldsymbol{v} \in S_{1}^{3}$ and a point $p_{0} \in M$, one can choose local coordinates so that $P_{P}^{\boldsymbol{v}}$ restricted to $M$ can be considered locally as a map-germ $\mathbb{R}^{2}, 0 \rightarrow \mathbb{R}^{2}, 0$. It follows from Theorem 4.2 that for generic embeddings of the surface, only singularities of $\mathcal{A}_{e}$-codimension $\leq \operatorname{dim}\left(S_{1}^{3}\right)=3$ can occur in the members of the family of orthogonal projections. So we have the following result.

Proposition 4.3 For a residual set of embeddings $\boldsymbol{x}: M \rightarrow H_{+}^{3}(-1)$, the projections $P_{P}^{\boldsymbol{v}}: M \rightarrow H_{+}^{3}(-1)$ in the family $P_{P}$ have local singularities $\mathcal{A}$-equivalent to one in Table 1. Moreover, these singularities are versally unfolded by the family $P_{P}$.
(The projection $P_{P}^{\boldsymbol{v}}$ can also have multi-local singularities of $\mathcal{A}_{e^{-}}$-codimension $\leq 3$ and these singularities are versally unfolded by the family $P_{P}$; see $\S 3.1$ for the codimension $\leq 2$ singularities.)

Given $\boldsymbol{v} \in S_{1}^{3}$ and a point $q$ on the equidistant surface $H P(\boldsymbol{v},\langle q, \boldsymbol{v}\rangle) \cap$ $H_{+}^{3}(-1)$, we denote by $\boldsymbol{v}^{*}$ the projection of $\boldsymbol{v}$ in the direction of $q$ to $T_{q}\left(H P(\boldsymbol{v},\langle q, \boldsymbol{v}\rangle) \cap H_{+}^{3}(-1)\right)$. Observe that when $q$ is on $H P(\boldsymbol{v}, 0) \cap H_{+}^{3}(-1)$,
then $\boldsymbol{v}^{*}=\boldsymbol{v}$. The map $\boldsymbol{v} \mapsto \boldsymbol{v}^{*} /\left\|\boldsymbol{v}^{*}\right\|$ from $S_{1}^{3} \rightarrow T_{q} H_{+}^{3}(-1) \cap S_{1}^{3}$ is a submersion. In this case, the pre-image of a unit direction in $T_{q} H_{+}^{3}(-1)$ is a curve on $S_{1}^{3}$. The geodesic through a point $q \in H P(\boldsymbol{v}, 0) \cap H_{+}^{3}(-1)$ with tangent $\boldsymbol{v}$ at $q$ intersects orthogonally any equidistant surface at some point $p$ and its tangent there is the parallel transport of $\boldsymbol{v}$ to $p$, which is the vector $\boldsymbol{v}^{*} /\left\|\boldsymbol{v}^{*}\right\|$.

Theorem 4.4 Let $M$ be an embedded surface in $H_{+}^{3}(-1)$ and $\boldsymbol{v} \in S_{1}^{3}$.
(1) The projection $P_{P}^{\boldsymbol{v}}$ is singular at a point $p \in M$ if and only if the parallel transport $\boldsymbol{v}^{*}$ of $\boldsymbol{v}$ to the point $p$ is in $T_{p} M$.
(2) The singularity of $P_{P}^{\boldsymbol{v}}$ at $p$ is of type cusp or worse if and only if $\boldsymbol{v}^{*}$ is a de Sitter asymptotic direction at $p$. In particular, $p$ is a de Sitter hyperbolic or parabolic point.
(3) The singularity of $P_{P}^{\boldsymbol{v}}$ at $p$ is of type 5 (swallowtail) or worse if and only if $\boldsymbol{v}^{*}$ is a de Sitter asymptotic direction and $p$ is a point on the horosphere flecnodal curve (see Theorem 3.5(3)).
(4) The singularity of $P_{P}^{\boldsymbol{v}}$ at $p$ is of type 6 if and only if $\boldsymbol{v}^{*}$ is a de Sitter asymptotic direction and $p$ is a point on the horosphere flecnodal curve where the asymptotic curve has a higher geodesic inflection. There is a unique direction $\boldsymbol{v} \in S_{1}^{3}$ where the singularity becomes of type 7 .
(5) The singularities of $P_{P}^{\boldsymbol{v}}$ at $p$ is of type $4_{k}, k=2,3,4$, if and only if $p$ is a de Sitter parabolic point but not a swallowtail point of the de Sitter Gauss map and $\boldsymbol{v}^{*}$ is the unique de Sitter asymptotic direction there. There is a unique direction $\boldsymbol{v} \in S_{1}^{3}$ where the singularity becomes of type $4_{3}$, and isolated points on the parabolic set where it becomes of type 4. At a swallowtail point of the de Sitter Gauss map, the singularity is of type $11_{5}$ in general and for single directions $\boldsymbol{v} \in S_{1}^{3}$, it becomes of type $11_{7}$ or of type 12 .

Proof. The proof follows by similar calculations to those in the proof of Theorem 3.5. We take the surface in H-Monge form at $\boldsymbol{e}_{0}$. When the projection is singular, we set $\boldsymbol{v}=\left(v_{0}, 0,0, v_{3}\right)$ and consider the singularities of the modified projection $\pi \circ P_{P}^{\boldsymbol{v}}$ given by

$$
\pi \circ P_{P}^{\boldsymbol{v}}(x, y)=\left(\frac{f(x, y)}{\lambda \boldsymbol{v}(x, y)}, \frac{x}{\lambda \boldsymbol{v}(x, y)}\right)
$$

with $\lambda \boldsymbol{v}(x, y)=\left(1+\left(-v_{0} \sqrt{f^{2}(x, y)+x^{2}+y^{2}+1}+v_{3} y\right)^{2}\right)^{1 / 2}$ and $\pi$ is as in the proof of Theorem 3.5. The results can then be obtained by analysing the map-germ $\pi \circ P_{P}^{\boldsymbol{v}}$.

Theorem 4.5 (Koenderink type theorem) Let $\kappa_{c}$ be the curvature of the contour and $\kappa_{n}$ the curvature of the normal section in the projection direction. In general, the product of the hyperbolic curvature of the profile and of the normal section depends on the plane of projection. However, if the point on the surface is also on the plane of projection (alternatively, if $\boldsymbol{v} \in T_{p} M$ ) then

$$
K_{e}=\kappa_{n} \kappa_{c} .
$$

Proof. We consider the H-Monge form setting of the proof of Theorem 3.5 and take $\boldsymbol{v}=\left(v_{0}, 0,0, v_{3}\right) \in S_{1}^{3}$. We assume that the singularity of the projection is a fold at $\boldsymbol{e}_{0}$, so $a_{22} \neq 0$. Then the 2-jet of the profile is given by
$\frac{1}{\sqrt{1+v_{0}^{2}}}\left(\left(\frac{3}{2}+v_{0}^{2}\right) t^{2}, \frac{4 a_{20} a_{22}-a_{21}^{2}}{4 a_{22}} t^{2}, t-\frac{v_{0} v_{3} a_{21}}{2\left(1+v_{0}^{2}\right) a_{22}} t^{2}, v_{0} v_{3}+\frac{v_{0} v_{3}}{2\left(1+v_{0}^{2}\right)} t^{2}\right)$.
A calculation shows that its curvature at $\boldsymbol{e}_{0}$ is given by

$$
\kappa_{c}^{2}=\left(1+v_{0}^{2}\right) \frac{K^{2}}{\kappa_{n}^{2}}+v_{0}^{6} \frac{a_{21}^{2}}{a_{22}^{2}} .
$$

The above expression depends on $\boldsymbol{v}$. If $v_{0}=0$ (equivalently, if $\boldsymbol{v}^{*}=\boldsymbol{v}$ which means that $\boldsymbol{e}_{0}$ is on the hyperplane $H P(\boldsymbol{v}, 0) \cap H_{+}^{3}(-1)$ so $\left.\boldsymbol{v} \in T_{\boldsymbol{e}_{0}} M\right)$ then $K_{e}^{2}=\left(\kappa_{c} \kappa_{n}\right)^{2}$.

Remark 4.6 The locus of points on $M \subset H_{+}^{3}(-1)$ where degenerate singularities occur for $P_{H S}^{\boldsymbol{v}}$ and $P_{P}^{\boldsymbol{v}}$ coincide (de Sitter parabolic set and the horosphere flecnodal curve for the local singularities in Theorems 3.5 and 4.4). This is not surprising as both maps measure the contact of $M$ with geodesics in $H_{+}^{3}(-1)$. The families $P_{H S}$ and $P_{P}$ have parameter spaces with different dimensions, so more singularities occur in the family $P_{P}$ than in $P_{H S}$. Also, the target spaces of the projections are different. This influences the curvature of the profile and we get two different Koenderink type theorems.

### 4.2. Duality

We consider here the $\Delta_{5}$-dual (see [11] and Section 2) of some components of the bifurcation set of the family $P_{P}$ of orthogonal projections of an embedded surface $M$ in $H_{+}^{3}(-1)$ to planes. Here the concepts of asymptotic directions and parabolic points are those associated to the de Sitter shape operator.

Let $p(t), t \in I$, be a parametrisation of the parabolic set of $M$ and $\boldsymbol{u}_{i}(t)$, $i=1,2$, denote the unit principal directions of $M$ at $p(t)$. Suppose, without loss of generality, that the unique asymptotic direction at $p(t)$ is along $\boldsymbol{u}_{1}(t)$.

Theorem 4.7 Let $M^{*}$ be the $\Delta_{1}$-dual of the surface $M$ embedded in $H_{+}^{3}(-1)$. Then,
(1) The local stratum Bif( $P_{P}$, lips/beaks $)$ of the bifurcation set of $P_{P}$, which consits of vectors $\boldsymbol{v} \in S_{1}^{3}$ for which the projection $P_{P}^{\boldsymbol{v}}$ has a lips/beaks singularity, is a ruled surface parametrised by $\cosh (s) \boldsymbol{u}_{1}(t)+$ $\sinh (s) p(t)$, with $t \in I$ and $s \in \mathbb{R}$. The $\Delta_{5}$-dual of Bif $\left(P_{P}\right.$, lips/beaks $)$ is the cuspidaledge of $M^{*}$.
(2) The multi-local stratum Bif $\left(P_{P}, D T F\right)$ of the bifurcation set of $P_{P}$, which consits of vectors $\boldsymbol{v} \in S_{1}^{3}$ for which the projection $P_{P}^{\boldsymbol{v}}$ has a multi-local singularity of type double tangent fold, is a ruled surface. The $\Delta_{5}$-dual of this ruled surface is the self-intersection line of $M^{*}$.

Proof. (1) It follows from Theorem 4.4(5) that the lips/beaks stratum Bif $\left(P_{P}\right.$, lips $/$ beaks $)$ of the family $P_{P}$ is given by the set of $\boldsymbol{v} \in S_{1}^{3}$ such that $\boldsymbol{v}^{*}$ is an asymptotic direction at a parabolic point $p$, where $\boldsymbol{v}^{*}$ denotes the parallel transport of $\boldsymbol{v}$ to $p$. So $\boldsymbol{v}^{*}=\boldsymbol{u}_{1}(t)$ when $\boldsymbol{v} \in \operatorname{Bif}\left(P_{P}\right.$, lips/beaks $)$. We have then

$$
\boldsymbol{u}_{1}(t)=\boldsymbol{v}^{*}=\frac{1}{\sqrt{1+\langle p(t), \boldsymbol{v}\rangle^{2}}}(\boldsymbol{v}+\langle p(t), \boldsymbol{v}\rangle p(t))
$$

and hence

$$
\boldsymbol{v}=\sqrt{1+\langle p(t), \boldsymbol{v}\rangle^{2}} \boldsymbol{u}_{1}(t)-\langle p(t), \boldsymbol{v}\rangle p(t) .
$$

If we set $\sinh (s)=\langle p(t), \boldsymbol{v}\rangle$ we get

$$
\text { Bif }\left(P_{P}, \text { lips } / \text { beaks }\right)=\left\{\cosh (s) \boldsymbol{u}_{1}(t)+\sinh (s) p(t), t \in I, s \in \mathbb{R}\right\}
$$

For the duality result, following Remark 2.2, we need to find the unit normal vector to $\operatorname{Bif}\left(P_{P}\right.$, lips/beaks $)$. Following the same argument in the proof of Theorem 3.8(1) and using Lemma 3.11, we find that the normal vector is constant along the rulings of the surface $\operatorname{Bif}\left(P_{P}\right.$, lips $/$ beaks $)$ and is along $\boldsymbol{e}(t)$, and the result follows.
(2) Let $q(t)$ and $\boldsymbol{u}(t)$ be as in the proof of Theorem 3.8(2). Then $\boldsymbol{u}(t)=\boldsymbol{v}^{*}$, so

$$
\boldsymbol{v}=\sqrt{1+\langle q(t), \boldsymbol{v}\rangle^{2}} \boldsymbol{u}(t)-\langle q(t), \boldsymbol{v}\rangle q(t)
$$

If we set $\sinh (s)=\langle q(t), \boldsymbol{v}\rangle$ we get

$$
\operatorname{Bif}\left(P_{P}, D T F\right)=\{\cosh (s) \boldsymbol{u}(t)+\sinh (s) q(t), t \in I, s \in \mathbb{R}\}
$$

The normal to this surface is along $\cosh (s) V_{1}(t)+\sinh (s) V_{2}(t)$ with $V_{1}(t)=q(t) \wedge \boldsymbol{u}(t) \wedge q^{\prime}(t)$ and $V_{2}(t)=q(t) \wedge \boldsymbol{u}(t) \wedge \boldsymbol{u}^{\prime}(t)$. The same argument in the proof of Theorem 3.8(2) shows that $V_{1}(t)$ and $V_{2}(t)$ are parallel, so the normal to $\operatorname{Bif}\left(P_{P}, D T F\right)$ is constant along the rulings of this surface. On the curve $\boldsymbol{u}(t)$, the normal to $\operatorname{Bif}\left(P_{P}, D T F\right)$ is along the normal to the surface $M$ at $q(t)$, so the $\Delta_{5}$-wavefront of $\operatorname{Bif}\left(P_{P}, D T F\right)$ is $\left\{\boldsymbol{e}(p), p \in C_{1}\right\}=\left\{\boldsymbol{e}(p), p \in C_{2}\right\}$. This is precisely the self-intersection line of $M^{*}$, the $\Delta_{1}$-dual surface of $M$.

## References

[1] Arnol'd, A. I.: Singularities of systems of rays. Russ. Math. Surv. 38 (1983), 87-176.
[2] Arnol'd, V. I., Gusein-Zade, S. M. and Varchenko, A. N. Singularities of differentiable maps. Vol. I. The classification of critical points, caustics and wave fronts. Monographs in Mathematics 82. Birkhäuser Boston, Inc., Boston, MA, 1985.
[3] Bruce, J. W.: Generic geometry and duality. In Singularities (Lille, 1991), 29-59. London Math. Soc. Lecture Note Ser. 201. Cambridge Univ. Press, Cambridge, 1994.
[4] Bruce, J. W.: Generic geometry, transversality and projections. J. London Math. Soc. 49 (1994), 183-194.
[5] Bruce, J. W. and Giblin, P. J.: Outlines and their duals. Proc. London Math. Soc. (3) 50 (1985), 552-570.
[6] Bruce, J. W., Giblin, P. J. and Tari, F.: Families of surfaces: height functions and projections to planes. Math. Scand. 82 (1998), 165-185.
[7] Bruce, J. W. and Romero-Fuster, M. C.: Duality and orthogonal projections of curves and surfaces in Euclidean 3-space. Quart. J. Math. Oxford Ser. (2) 42 (1991), 433-441.
[8] Bryant, R. L.: Surfaces of mean curvature one in hyperbolic space. In Théorie des variétés minimales et applications, (Palaiseau, 1983-1984). Astérisque, No. 154-155 (1987), 12, 321-347.
[9] Cipolla, R. and Giblin, P. J.: Visual motion of curves and surfaces. Cambridge University Press, Cambridge, 2000.
[10] Golubitsky, M. and Guillemin, V.: Stable mappings and their singularities. Graduate Texts in Mathematics 14. Springer-Verlag, New YorkHeidelberg, 1973.
[11] Izumiya, S.: Timelike hypersurfaces in de Sitter space and Legendrian singularities. J. Math. Sciences. 144 (2007), 3789-3803.
[12] Izumiya, S.: Legendrian dualities and spacelike hypersurfaces in the lightcone. To appear in Moscow Math. J.
[13] Izumiya, S., Pei, D. and Romero-Fuster, M. C.: The horospherical geometry of surfaces in hyperbolic 4-space. Israel J. Math. 154 (2006), 361-379.
[14] Izumiya, S., Pei, D., Romero-Fuster, M. C. and M. Takahashi: The horospherical geometry of submanifolds in hyperbolic space. J. London Math. Soc. (2) 71 (2005), 779-800.
[15] Izumiya, S., Pei, D., Romero-Fuster, M. C. and M. Takahashi: On the horospherical ridges of submanifolds of codimension 2 in hyperbolic n-space. Bull. Braz. Math. Soc. (N.S.) 35 (2004), 177-198.
[16] Izumiya, S., Pei, D. and Sano, T.: Horospherical surfaces of curves in hyperbolic space. Publ. Math. Debrecen 64 (2004), 1-13.
[17] Izumiya, S., Pei, D-H. and Sano, T.: Singularities of hyperbolic Gauss maps. Proc. London Math. Soc. (3) 86 (2003), 485-512.
[18] Izumiya, S., Pei, D-H., Sano, T. and E. Torii: Evolutes of hyperbolic plane curves. Acta Math. Sin. (Engl. Ser.) 20 (2004), 543-550.
[19] Izumiya, S., Pei, D-H. and Takahashi, M.: Singularities of evolutes of hypersurfaces in hyperbolic space. Proc. Edinb. Math. Soc. (2) 47 (2004), 131-153.
[20] Izumiya, S., Pei, D-H. and Takahashi, M.: Curves and surfaces in hyperbolic space. In Geometric singularity theory, 197-123. Banach Center Publ. 65. Polish Acad. Sci., Warsaw, 2004.
[21] Izumiya, S. and Romero-Fuster, M. C.: The horospherical GaussBonnet type theorem in hyperbolic space. J. Math. Soc. Japan 58 (2006), 965-984.
[22] Izumiya, S. and Takahashi, M.: Spacelike parallels and evolutes in Minkowski pseudo-spheres. J. Geom. Phys. 57 (2007), 1569-1600.
[23] Koenderink, J. J.: Solid shape. MIT Press Series in Artificial Intelligence. MIT Press, Cambridge, MA, 1990.
[24] Koenderink, J. J.: What does the occluding contour tell us about solid shape? Perception 13 (1984), 321-330.
[25] Montaldi, J. A.: On generic composites of maps. Bull. London Math. Soc. 23 (1991), 81-85.
[26] Ratcliffe, J. G.: Foundations of hyperbolic manifolds. Graduate Texts in Mathematics 149. Springer-Verlag, New York, 1994.
[27] Rieger, J. H.: Families of maps from the plane to the plane. J. London Math. Soc. (2) 36 (1987), 351-369.
[28] Rieger, J. H.: Versal topological stratification and the bifurcation geometry of map-germs of the plane. Math. Proc. Cambridge Philos. Soc. 107 (1990), 127-147.
[29] Shcherbak, O. P.: Projectively dual space curves and Legendre singularities. Sel. Math. Sov 5 (1986), 391-421.
[30] Zakaljukin, V. M.: Lagrangian and Legendre singularities. Funkcional. Anal. i Priložen. 10 (1976), 26-36.

Recibido: 19 de abril de 2007
Revisado: 11 de octubre de 2007

Shyuichi Izumiya
Department of Mathematics
Hokkaido University
Sapporo 060-0810, Japan
izumiya@math.sci.hokudai.ac.jp
Farid Tari
Department of Mathematical Sciences
Durham University, Science Laboratories
South Road, Durham DH1 3LE, UK
farid.tari@durham.ac.uk

[^1]
[^0]:    2000 Mathematics Subject Classification: 53A35, 58K05.
    Keywords: Bifurcation sets, contours, Legendrian duality, projections, profiles, hyperbolic space, singularities, de Sitter space, lightcone.

[^1]:    The results in this paper were established during the visit of the first author to Durham University in October 2006. The visit was supported by the EPSRC Maths Small Grant EP/E000851. We would like to thank EPSRC for their support. We would also like to thank the referee for very useful suggestions.

