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Large scale Sobolev inequalities on
metric measure spaces and applications

Romain Tessera

Abstract
For functions on a metric measure space, we introduce a notion of

“gradient at a given scale”. This allows us to define Sobolev inequal-
ities at a given scale. We prove that satisfying a Sobolev inequality
at a large enough scale is invariant under large-scale equivalence, a
metric-measure version of coarse equivalence. We prove that for a
Riemmanian manifold satisfying a local Poincaré inequality, our no-
tion of Sobolev inequalities at large scale is equivalent to its classi-
cal version. These notions provide a natural and efficient point of
view to study the relations between the large time on-diagonal be-
havior of random walks and the isoperimetry of the space. Special-
izing our main result to locally compact groups, we obtain that the
Lp-isoperimetric profile, for every 1 ≤ p ≤ ∞ is invariant under quasi-
isometry between amenable unimodular compactly generated locally
compact groups. A qualitative application of this new approach is a
very general characterization of the existence of a spectral gap on a
quasi-transitive measure space X, providing a natural point of view
to understand this phenomenon.

1. Introduction

We introduce a notion of “gradient at a certain scale” for bounded functions
defined on a general metric measure space. This allows us to define Sobolev
inequalities “at a given scale”. We say that a Sobolev inequality holds “at
large scale” if it holds at scale h, with h large enough. The central result of
this paper is to show that these so-called large-scale Sobolev inequalities are
invariant under large-scale equivalence (large-scale equivalence is the natural
metric-measure version of coarse equivalence). Moreover, we show that
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under some uniform (discrete) connectivity assumption, large-scale Sobolev
inequalities are equivalent to Sobolev inequalities at some explicit scale. We
also study the relations between our notion of gradient at given scale and the
well-known infinitesimal notion of upper-gradient. We generalize some sta-
bility results [10] for Sobolev inequalities from the contexts of Riemannian
manifolds and of weighted graphs to our general context. The advantage of
our point of view is to get rid of any condition at small scale and to work
in “highly non-geodesic” spaces. This latter generality may be really useful,
for instance when one has to deal with a subspace of a metric space, which
can be quite wild in general. This level of generality is also necessary for
the study of (non-necessarily compactly generated) locally compact groups
where no nice local structure is available. Moreover, note that a locally
compact group has no quasi-geodesic left invariant proper metric unless it
is compactly generated (see Proposition 6.6). This functional analysis ap-
proach generalizes the purely geometric notion of large-scale isoperimetry
that we introduced in [30].

These notions provide a natural and efficient point of view to study the
relations between the large time on-diagonal behavior of random walks and
the isoperimetry of the space. In particular, we obtain that, under mild
assumptions on a metric measure space, upper bounds on the probability of
return of symmetric random walks are characterized by large-scale Sobolev
inequalities, and therefore are invariant under large-scale equivalence (see
Theorem 3.5 for a precise statement).

As a qualitative application, we prove that a reversible random walk on
a quasi-transitive measure space has spectral radius equal to 1 if and only if
the group acting is amenable and unimodular. This provides a general and
direct explanation for a phenomenon that has been pointed out in particular
cases1 [20, 1, 27, 29, 22, 26].

Notation: Throughout this paper, B(x, r) will denote the closed ball of
center x, and of radius r. If A is a measurable subset of a measure space
(X,µ), Lp(A) will denote the space of functions in Lp(X), supported in A,
for every 1 ≤ p ≤ ∞.

Statement of the main results in the homogeneous setting

Let us present our results in a very special –though interesting– case, namely
when X = G is a group. Let G be a locally compact, compactly generated
group equipped with a left-invariant Haar measure µ. Let S be a symmetric
compact neighborhood of 1 in G such that

⋃
n∈N

Sn = G. Equip G with its

1Note that some of the results of these articles are more precise than ours and in a
sense, more general when they manage to deal with non-reversible random walks.
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left-invariant word metric associated to S, i.e. dS(g, h) = inf{n, g−1h ∈ Sn}.
In particular, we have B(1, n) = Sn for all n ∈ N.

Quantitative results

Recall that a quasi-isometry between two metric spaces (X, dX) and (Y, dY )
is a map F : X → Y which is bi-Lipschitz for large distances, i.e.

C−1dX(x, y) − C ≤ dY (F (x), F (y)) ≤ CdX(x, y) + C,

for any x, y ∈ X, C being a positive constant; and almost surjective, i.e.

sup
z∈Y

d(z, F (X)) <∞.

Let λ be the action of G by left-translations on functions on G, i.e.
λ(g)f(x) = f(g−1x). For any 1 ≤ p ≤ ∞, and any subset A of G, define

Jp(A) = sup
f∈L(A)

‖f‖p

sups∈S ‖f − λ(s)f‖p

.

We can define two kinds of “Lp-isoperimetric profile”, depending on if we
want to optimize Jp(A) fixing the volume of A, or its diameter. In the
first case, we obtain what is often called the Lp-isoperimetric profile (see for
instance [6, 7]),

jG,p(v) = sup
µ(A)=v

Jp(A).

In the second case, we obtain what we call the Lp-isoperimetric profile inside
balls since it is given by

J b
G,p(n) = Jp(B(1, n)).

We will be interested in the “asymptotic behavior” of these nondecreasing
functions. Precisely, let f, g : R+ → R+ be nondecreasing functions. We
write respectively f � g, f ≺ g if there exists C > 0 such that f(t) =
O(g(Ct)), resp. f(t) = o(g(Ct)) when t → ∞. We write f ≈ g if both
f � g and g � f . The asymptotic behavior of f is its class modulo the
equivalence relation ≈.

Now, we can state our main results in this setting.

Theorem 1. (See Corollary 10.2) Assume that (G, S) and (H, T ) are two
unimodular compactly generated, locally compact groups, equipped with sym-
metric generating subsets S and T respectively. Then, the asymptotic behav-
iours of jG,p, J

b
G,p, for any 1 ≤ p ≤ ∞ do not depend on S. Moreover, if G

is quasi-isometric to H, then

jG,p ≈ jH,p, and J b
G,p ≈ J b

H,p.
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A qualitative result

We also derive a qualitative result on quasi-transitive spaces. Let G be a lo-
cally compact, compactly generated group. Let (X,µ) be a quasi-transitive
G-space, i.e. a locally compact Borel measure space on which G acts mea-
surably, co-compactly, properly, and almost preserving the measure µ, i.e.

sup
g∈G

sup
x∈X

d(g · µ)

dµ
(x) <∞.

For every x ∈ X, let νx be a probability measure on X which is absolutely
continuous with respect to µ. We assume that there exist S ⊂ S ′, two
compact generating subsets of G, and a compact subset K of X satisfying
GK = X, such that for every x ∈ X, the support of νx is contained in gS ′K,
for some g ∈ G such that x ∈ gSK. Let us also suppose that (dνx/dµ)(y)
is larger than a constant c > 0 for y in gSK. Denote by P the Markov
operator on L2(X) defined by

Pf(x) =

∫
f(y)dνx(y).

We make the (important) assumption that P is self-adjoint.

Theorem 2. (see Theorem 11.4 and Corollary 11.14) The following are
equivalent

• the spectral radius of P is less than 1;

• G is either non-unimodular or non-amenable.

• G is quasi-isometric to a graph (of bounded degree) with positive Chee-
ger constant.

This theorem is a slight generalization of the following recent result of
Saloff-Coste and Woess [26], which they obtained by completely different
(and less elementary) methods.

Corollary 3. [26] Let (X, d) be a geodesic metric space and let G be a closed
subgroup of Isom(M) acting co-compactly on X by isometries. Fix r > 0.
Then G is unimodular and amenable if and only if the spectral radius of the
average operator on balls of radius r is 1.

Our approach unifies the following results, enhancing their “large-scale”
nature. An obvious particular case is when the space X is the group itself.
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Corollary 4. Let G be a locally compact group equipped with a left Haar
measure µ. Then G is unimodular and amenable if and only if for every
compactly supported, symmetric (with respect to µ) random walk on G has
spectral radius 1.

Corollary 5. [27] Let X be a connected graph of bounded degree and let G
be a closed subgroup of Aut(X) such that X/Aut(X) is finite. Then G is
unimodular and amenable if and only if the spectral radius of the simple
random walk equals 1.

When G is transitive this theorem has been proved in [29].

Corollary 6. [26](see Corollary 11.6) Let M be a Riemannian2 manifold and
let G be a closed subgroup of Isom(M) acting co-compactly on M . Then G is
unimodular and amenable if and only if the spectral radius of the heat kernel
on M equals 1, or in other words, if the (Riemannian) Laplacian on M has
no spectral gap at zero.

The case where G is transitive has been treated in [22] and the case where
M is the universal cover of a compact manifold has been proved in [1].

Organization of the paper

• In Section 2, we introduce a notion of Sobolev inequalities that cap-
tures the geometry at a scale larger than h > 0.

• In Section 3, we discuss the geometric and probabilistic interpretations
of these Sobolev inequalities.

• In Section 4, we discuss the relations between Sobolev inequalities and
the isoperimetric profile.

• In Section 5, we introduce the notion of large-scale equivalence, which
is a metric-measure version of the well-known notion of coarse equiv-
alence (see [24]).

• In Section 6, we discuss some examples of large-scale equivalences in
the contexts of locally compact groups, manifolds, graphs etc.

• In Section 7, we prove a technical but important fact: the definition
of large-scale Sobolev inequalities does not depend on the choice of a
“large-scale” gradient.

2Actually the authors give a method that allows them to treat a large class of examples,
like all the examples given here, included the case (not explicitly mentioned) of a locally
compact, compactly generated group.
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• In Section 8.3, we prove our main result, namely that large-scale
Sobolev inequalities are invariant under large-scale equivalence.

• In Section 9, we relate Sobolev inequalities with upper bounds on the
probability of return of symmetric random walks.

• In Section 10, we discuss the validity of Sobolev inequalities at a given
scale when it is true at large-scale. In particular, in Sections 10.2
and 10.3, we prove that under some mild local assumptions, the large-
scale Sobolev inequalities are equivalent to their classical versions on
a Riemaniann manifold.

• Finally, in Section 11, we prove the results announced in the intro-
duction in the context of locally compact groups and quasi-transitive
spaces.

2. Functional analysis at a given scale

2.1. Local norm of gradient at scale h

Let (X, d) be a metric space. The purpose of this section is, given a function
f : X → R, to introduce a quantity that measures the variations of f at
a certain scale –say h. This notion will have to play the same role as for
instance the length of the gradient |∇f(x)| on a Riemannian manifold, or its
well-known version for graphs (see [6] for instance). For this reason, we will
call it a “local norm” of the gradient of f , even if no real notion of gradient
is introduced (see Remark 2.6 for an alternative approach).

The first naive idea to do this is to define

|∇f |h(x) = sup
y∈B(x,h)

|f(y) − f(x)|

for any function f ∈ L∞(X), B(x, h) denoting the closed ball of center x
and radius h. Note that this can be written in the following form:

|∇f |h(x) = ‖f − f(x)‖∞,B(x,h)

which emphasizes the fact that we actually consider a “local” L∞-norm.
Naturally, we would like to define also the local Lp-norm of the gradient
of f , for every 1 ≤ p ≤ ∞. For this, we obviously need a measure on X.
What we could do is start from a measure on X and define a local Lp-norm
as the Lp norm restricted to balls with respect to this measure. However,
when we consider a random process on X, the notion of local L2-norm that
naturally emerges is the L2-norm with respect to the probability transition.
This motivates the following definition.
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Let (X, d, µ) be a metric measure space. Consider a family P = (Px)x∈X

of probability measures on X. Then for every p ∈ [1,∞], we define an
operator |∇|P,p on L∞(X) by

∀f ∈ L∞(X), |∇f |P,p(x) = ‖f−f(x)‖Px,p =

(∫
|f(y) − f(x)|pdPx(y)

)1/p

,

if p <∞; and for p = ∞, we decide that

|∇f |P,∞(x) = ‖f − f(x)‖Px,∞ = sup{|f(y)− f(x)|, y ∈ Supp(Px)}.
Definition 2.1. A family of probabilities P = (Px)x∈X on X is called a
viewpoint at scale h > 0 on X if there exist a large constant 1 ≤ A < ∞
and a small constant c > 0 such that for (µ-almost) every x ∈ X:

• Px � µ;

• px = dPx/dµ is supported in B(x,Ah);

• px is larger than c on B(x, h).

Remark 2.2. Note that a viewpoint at scale h is also a viewpoint at scale h′

for any h′ < h.

Example 2.3. A basic example of viewpoint at scale h is given by

Px =
1

V (x, h)
1B(x,h), ∀x ∈ X,

where V (x, r) denotes the volume of the closed ball centered at x of radius r.
We denote the associated Lp-gradient by |∇|h,p. Note that with our previous
notation,

|∇|h = |∇|h,∞.

Example 2.4. (For more details, see [6]) To any connected simplicial graph,
we associate a metric measure space, whose elements are the vertices of the
graph, the measure is the counting measure and the distance is the usual
discrete geodesic distance for which two distinct points joined by an edge
are at distance 1 from one another. For simplicity, we will simply call such
a metric measure space a graph. The usual discrete local norm of gradient
on a graph, usually denoted by |∇f(x)|, corresponds3 with our notations to

|∇f |1,2(x) =

(
1

V (x, 1)

∑
y∈B(x,1)

|f(x) − f(y)|2
)1/2

.

3In [6], they consider a slightly different definition, where the average is taken over the
set of neighbors of x instead of the ball B(x, 1).
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Remark 2.5. (Interpretations of the notion of viewpoint at scale h).
A viewpoint at scale h has at least two interesting interpretations: one as a
transition operator of a random walk on X; the other as a Markov operator
acting on Lp(X) for every p ≥ 1. This operator is defined by

Pf(x) =

∫
X

f(y)dPx(y).

Consequently, there is a natural semi-group structure on the set of view-
points at scale h on space X. Indeed, it is straightforward to check4 that
if P is a viewpoint at scale h and Q is a viewpoint at scale h′, then P ◦ Q
is a viewpoint at any scale h”, with h” ≥ max{h, h′}. Moreover, if (X, d) is
coarsely b-geodesic with b ≤ min{h, h′} (see Definitions 6.1), then P ◦Q is
a viewpoint at scale h” for every h” < h+ h′.

Remark 2.6. (Alternative definition of gradient at scale h). Let us
indicate another way of describing the objects that we introduced. Instead
of directly defining a local norm of the gradient at scale h, we could first
define a gradient at scale h on a fiber space over X and then take a local
norm of the gradient on the fibers. Here the fiber space would be Yh =
{(x, y) ∈ X2, d(x, y) ≤ h} with projection π : Y → X on the first factor,
so that π−1(x) = B(x, h). The gradient at scale h of f is then ∇hf(x, y) =
f(x) − f(y), where (x, y) ∈ Yh. A viewpoint at scale h on X is now a
probability measure on every fiber of some YAh for A large enough; and the
Lp-gradient of f associated to such a viewpoint corresponds to the Lp-norm
of f in every fiber with respect to this measure5.

2.2. Laplacian at scale h

We can also define a Laplacian w.r.t. a viewpoint P = (Px)x∈X by

∆Pf(x) = (id− P )f(x) =

∫
(f(x) − f(y))dPx(y),

and more generally a p-Laplacian for any p > 1 by

∆P,pf(x) =

∫
|f(x) − f(y)|p−2(f(x) − f(y))dPx(y).

4One has to suppose that the space is locally doubling, see Definitions 5.1.
5Note that we can also define the gradient of f without referring to the scale: ∇f :

X × X → R, ∇f(x, y) = f(x) − f(y), looking at X × X as a fiber space over the first
factor. Then the scale appears when choosing a norm on every fiber.
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If P is self-adjoint with respect to the scalar product associated to µ, then
we have the usual relations

〈∆P,pf, g〉 =

∫ (∫
|f(x)−f(y)|p−2(f(x)−f(y))(g(x)−g(y))dPx(y)

)
dµ(x),

〈∆P,pf, f〉 =

∫ ∫
|f(x) − f(y)|ppx(y)dµ(y)dµ(x) = ‖|∇f |P,p‖p

p,

and in particular, for p = 2,

〈∆Pf, f〉 =

∫ ∫
|f(x) − f(y)|2px(y)dµ(x)dµ(y) = ‖|∇f |P,2‖2

2.

In particular, if A is a measurable subset of X with finite volume, The
first non-zero eigenvalue δP of ∆P acting Lp(A) is

δP (A) = inf
f∈Lp(A)

‖|∇f |P,2‖2
2

‖f‖2
2

.

2.3. Sobolev inequalities at scale h

Let ϕ : R+ → R+ be an increasing function and let p ∈ [1,∞]. The following
formulation of Sobolev inequality was first introduced in [5]. We refer to [7]
for the link with more classical formulations, for instance in R

n.

Definition 2.7. One says that X satisfies a Sobolev inequality (Sp
ϕ) at scale

(at least) h > 0 if there exists some finite positive constants C, C ′ depending
only on h, p and ϕ such that

‖f‖p ≤ Cϕ(C ′|Ω|)‖|∇f |h‖p

where Ω ranges over all compact subsets of X, |Ω| denotes the measure µ(Ω),
and f ∈ L∞(Ω).

Definition 2.8. We say that X satisfies a large-scale Sobolev inequality
(Sp

ϕ) if it satisfies (Sp
ϕ) at some scale h (equivalently, for h large enough).

Crucial remark 2.9. Note that to define the Sobolev inequalities at large
scale, we arbitrarily chose to write them with |∇|h whereas we could have
defined them with |∇|P,q for any viewpoint (Px)x∈X at scale h and any q ≥ 1.
A crucial and useful fact that we prove in Section 7 is that satisfying a large-
scale Sobolev inequality does not depend on this choice.

Remark 2.10. Note that for large-scale Sobolev inequalities, we only need
to consider subsets Ω with large. In fact, we will only be interested in the
asymptotic behavior of ϕ.
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Remark 2.11. It is easy to prove that (Sp
ϕ) implies (Sq

ϕ) whenever p ≤
q < ∞ for any choice of gradient (see [7] for a proof in the Riemannian
setting). It is proved in [9] that the converse is false for general Riemannian
manifolds. This is likely to be true for groups, although it is still open.

2.4. Link with Sobolev inequalities for infinitesimal gradients

Other notions of “local norm of gradient” have been introduced and studied
for general metric spaces. In particular the notion of upper gradient plays a
crucial role in the study of doubling metric spaces equipped with the Haus-
dorff measure (see for instance [17, 28], or Definition 10.4). These spaces
naturally appear as boundaries of Gromov-hyperbolic spaces and are often
studied up to quasi-conformal maps. Such a point of view is quite different
from ours since it focuses on the local properties of the space, which is often
supposed compact. However, it is natural to ask under what condition on
the space a large-scale Sobolev inequality is equivalent to the same Sobolev
inequality w.r.t. some upper gradient. In particular, given a Riemannian
manifold, is it true that it satisfies a Sobolev inequality at large scale if and
only if it satisfies it for its usual gradient? Proposition 10.9 says that if a
Riemannian manifold satisfies a Sobolev inequality for its usual gradient,
then it also satisfies it at large scale (but the proof is not as obvious as
one could expect). However, the converse can be false, for instance if the
Riemannian manifold contains a sequence of open submanifolds isometric to
open half-spheres of radius going to zero. A sufficient condition to get a pos-
itive answer is to ask for a local Poincaré inequality (see Proposition 10.7).

Other ideas for ignoring the local geometry of a Riemannian mani-
fold

Different strategies have been used to ignore the local geometric prop-
erties of a manifold. In [3] for instance, they avoid the local behavior of
the isoperimetric profile on a manifold by restricting it to subsets contain-
ing a geodesic ball of fixed radius. In [4], they consider Nash inequalities
restricted to functions convoluted by the heat kernel at time 1 and obtain
in this way the invariance under quasi-isometries of certain upper bounds
of the on-diagonal behaviour of the heat kernel: this idea is quite closed to
ours (see Remark 10.11). This issues are discussed in Sections 10.3 and 10.2.
Among other things, we prove under a very weak property of bounded geom-
etry that a manifold satisfies a Sobolev inequality at large scale if and only
if it satisfies it for the usual gradient in restriction to functions of the form
g = Pf , where P is the Markov operator associated to any viewpoint at
some scale h > 0.
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3. Sobolev inequalities (Sp
ϕ) at scale h for p = 1, 2, ∞

Now let us give characterizations of (Sp
ϕ) at given scales for the important

values of p = 1, 2,∞ (see [6] for the case of graphs and [7] for Riemannian
manifolds).

3.1. Geometric interpretations of (Sp
ϕ) at scale h for p = 1, ∞

In [4] (see also [7, proposition 22]), it is proved that (S∞
ϕ ) can only hold if

ϕ is unbounded and then is equivalent to the volume lower bound

V (x, r) ≥ ϕ−1(r)

where ϕ−1(r) = {v, ϕ(v) ≥ r}, for every x ∈ X and every r > 0. The original
proof works formally in our setting.

Proposition 3.1. Let (X, dµ) be a metric measure space. The Sobolev in-
equality (S∞

ϕ ) at scale h can only hold if ϕ is unbounded and then is equivalent
to the volume lower bound

V (x, r) ≥ ϕ−1(r)

for r ≥ h.

The inequality (S1
ϕ) at scale h is equivalent to the isoperimetric inequality

(at scale h)
|∂hΩ|
|Ω| ≥ 1

Cϕ(C ′|Ω|)
where the boundary of A is defined by

∂hA = [A]h ∩ [Ac]h

with the usual notation [A]h = {x ∈ X, d(x,A) ≤ h}. The usual proof of
this equivalence (see [7]) works formally in our context, using the following
version of the co-area formula:

(3.1)
1

2

∫
R+

µ (∂h{f ≥ t}) dt ≤
∫

X

|∇f |h(x)dµ(x) ≤
∫

R+

µ (∂h{f ≥ t}) dt

where f is a non-negative measurable function defined on X. Indeed, for
every measurable subset A ⊂ X, we have

µ(∂hA) =

∫
X

|∇1A|h(x)dµ(x).
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Thus, (3.1) follows by integrating over X the following local inequalities

(3.2)
1

2

∫
R+

|∇1{f≥t}|h(x)dt ≤ |∇f |h(x) ≤
∫

R+

|∇1{f≥t}|h(x)dt,

for every x ∈ X. The right-hand inequality results from the fact that f =∫
R+

1{f≥t}dt and from the sub-additivity of |∇|h. To prove the left-hand,

note that |∇1{f≥t}(x)|h = 1 if and only if

inf
B(x,h)

f < t ≤ sup
B(x,h)

f

or
inf

B(x,h)
f ≤ t < sup

B(x,h)

f ;

Hence, ∫
R+

|∇1{f≥t}|h(x)dt ≤ sup
B(x,h)

f − inf
B(x,h)

f ≤ 2|∇f |h(x),

which proves (3.2).

3.2. Probabilistic interpretation of (S2
ϕ) at scale h

The case p = 2 is of particular interest since it contains some probabilistic
information on the space X. It is proved in [8] that for manifolds with
bounded geometry, upper bounds of the large-time on-diagonal behavior of
the heat kernel are equivalent to some Sobolev inequality (S2

ϕ). In [6], a
similar statement is proved for the standard random walk on a weighted
graph. In Section 9, we give a discrete-time version of this theorem in our
general setting. The proof of Theorem 3.5 below emphasizes the fact that
the notion of viewpoint at scale h is likely to be the most natural way of
capturing the link between large-scale geometry and the long-time behavior
of random walks on X.

Definition 3.2. Let (X, d, µ) be a metric measure space and consider some
h > 0. A view-point P = (Px)x∈X at scale h on X is called symmetric if one
of the following equivalent statement holds.

• The random walk whose probability of transition at every x ∈ X is
given by Px is reversible with respect to the measure µ.

• The associated operator on L2(X,µ) defined by

Pf(x) =

∫
X

f(y)dPx(y)

is self-adjoint.

• For a.e. x, y ∈ X, px(y) = py(x).
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Definition 3.3. We call a reversible random walk at scale h a random walk
whose associated transition operator P is a symmetric view-point at scale h.

Example 3.4. Let (X, d, µ) be a metric measure space. Consider the stan-
dard viewpoint at scale h of density px = 1B(x,h)/V (x, h) with respect to
µ. In general, this is not a symmetric viewpoint, i.e. the random walk of
probability transition dPx(y) = px(y)dµ(y) is not reversible with respect to
µ. However, it is reversible with respect to the measure µ′ defined by

dµ′(x) = V (x, h)dµ(x).

It is easy to check that if (X, d, µ) is locally doubling, then so is (X, d, µ′).
Moreover, if x �→ V (x, h) is bounded from above and from below, then P
defines a symmetric viewpoint on (X, d, µ′).

The relations between large-scale Sobolev inequalities (S2
ϕ) and random

walks on a metric measure space are summarized in the following theorem,
whose proof is adapted from [7, Theorem 7.2]. We use the notation dP n

x (y) =
pn

x(y)dµ(y).

Theorem 3.5. (see Section 9) Let X = (X, d, µ) be a metric measure space
and let P = (Px)x∈X be a symmetric view-point at scale h on X. Let ϕ be
some increasing positive function. Define γ by

t =

∫ 1/γ(t)

0

(ϕ(v))2
dv

v
.

(i) Assume that X satisfies a large-scale Sobolev inequality (S2
ϕ). Then

p2n
x (x) ≤ γ(cn) ∀n ∈ N, a.e∀x ∈ X,

for some constant c > 0.

(ii) If the logarithmic derivative of γ has at most polynomial growth6 and if

p2n
x (x) ≤ γ(n) ∀n ∈ N, a.e∀x ∈ X,

then X satisfies (S2
ϕ) w.r.t. |∇|P,2.

6This condition, called (δ) in [6, p. 18] is very weak since it is satisfied by all functions
(log t)atbectd

for any real numbers a, b, c, d.
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4. Sobolev and isoperimetry at scale h

4.1. Isoperimetric profile at scale h

Generalizing the case p = 1, Sobolev inequalities (Sp
ϕ) can be also understood

as Lp-isoperimetric inequalities. Let A be a measurable subset of X. For
every p > 0, define

Jp(A) = sup
f∈L∞(A)

‖f‖p

‖|∇f |h‖p
.

Note that for p = 2, this is just the square root of the inverse of the first
eigenvalue of the Laplacian ∆P acting on L2(A) (see Section 2.2).

Now, taking the supremum over subsets A with measure less than m > 0,
we get an increasing function jX,p sometimes called the Lp-isoperimetric pro-
file. Note that the terminology “isoperimetric profile” is somewhat ambigu-
ous since there exist various nonequivalent definitions (see in particular [10,
Chapter 1]). One of them is

jX(m) = sup
|A|≤m

|A|
|∂hA|

which satisfies
jX ≈ jX,1,

taking the same h in the definition of the gradient and in the definition of
the boundary. Clearly, the space X always satisfies the Sobolev inequality
(Sp

ϕ) with ϕ = jX,p. Conversely, if X satisfies (Sp
ϕ) for a function ϕ, then

jX,p � ϕ.

It is easy to check that
jX,p � jX,q

whenever p ≤ q <∞ (see Remark 2.11 about Sobolev inequalities).

4.2. Isoperimetric profile inside balls

Definition 4.1. Let us fix a gradient at scale h on X. The Lp-isoperimetric
profile inside balls is the nondecreasing function J b

G,p defined by

J b
X,p(t) = sup

x∈X
Jp(B(x, t)).

Note that J b
X,p(t) is asymptotically equivalent to the supremum of Jp(A)

over subsets A of diameter7 less than t. The Lp-isoperimetric profile inside

7This profile is associated to another kind of Sobolev inequalities, where the function
ϕ of the volume is replaced by a function Φ of the diameter.
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balls plays a crucial role in the study of uniform embeddings of amenable
groups into Lp-spaces (see [31]). It is also central in the proof [32] that a
closed at infinity, homogenous manifold does not carry any non-constant
p-harmonic function with gradient in Lp.

4.3. Link with the large-scale isoperimetry introduced in [30]

One can also define another kind of isoperimetric profile at scale h:

I(t) = inf
µ(A)≥t

µ(∂hA)

which can be specialized on a family of (measurable) subsets of finite vol-
ume A: we call lower (resp. upper) profile at scale h restricted to A the
nondecreasing function I↓A defined by

I↓A(t) = inf
µ(A)≥t,A∈A

µ(∂hA)

(resp. I↑A(t) = supµ(A)≤t,A∈A µ(∂hA)). We can then study the large-scale
isoperimetric properties of a family A considering the asymptotic behavior
of these two increasing functions [30]. In [30], we used this variant to investi-
gate the question: are balls always asymptotically isoperimetric in a metric
measure space with doubling property? For that purpose, we introduced a
general setting adapted to the study of asymptotic isoperimetry on metric
measure spaces. An important consequence of the geometric interpretation
of Sobolev inequalities in L1 (see Section 3.1) is that every geometric no-
tion that we introduced in [30, Section 3] appears as a particular case of
the functional point of view adopted in the present paper. In particular,
[30, Theorem 3.10] that implied the invariance under large-scale equivalence
of isoperimetric properties is now covered by the lemmas of Section 8.3.
Moreover, we choose here to treat separately the large-scale setting, where
no connectivity hypotheses are required on the spaces, and the control on
the scale that really depends on a connectivity assumption (see Section 10).

5. Large-scale Sobolev inequalities

In this section, we define an equivalence relation, called large-scale equiva-
lence between metric measure spaces. This notion is simply a metric measure
version of the notion of coarse equivalence for metric spaces introduced by
Roe in [24].

The metric measure spaces that we will consider satisfy a very weak
property of bounded geometry introduced in [10].
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Definition 5.1. We say8 that a space X is locally doubling at scale r > 0
if there exists a constant Cr such that

∀x ∈ X, V (x, 2r) ≤ CrV (x, r)

where V (x, r) = µ(B(x, r)). If it is locally doubling at every scale r > 0,
then we just say that X is locally doubling.

Crucial remark 5.2. Since the constant Cr depends on r, the locally dou-
bling property has absolutely no influence on the volume growth. In par-
ticular, one should be careful to distinguish it from the well-known dou-
bling property stating that there exists a constant C < ∞ (not depending
on the radius) such that V (x, 2r) ≤ CV (x, r) for all x ∈ X and r > 0.
Contrary to the locally doubling property, the doubling property implies
polynomial growth, i.e. that there exists a constant D < ∞ such that
V (x, r) ≤ rDV (x, 1) for every x ∈ X and r ≥ 1.

For most of the results proved in this paper9, we only use the locally
doubling property at scale r ≥ h/2, if the gradient considered is at scale h.
However, to simplify the exposition, we will always assume that the space
is locally doubling.

Clearly, the locally doubling property is a very weak property of con-
trolled geometry: for instance, every graph with bounded degree, equipped
with the counting measure is locally doubling. Other examples are Rie-
mannian manifolds with Ricci curvature bounded from below. Assume that
the volume of balls of fixed radius is bounded from above and from below by
constants depending on r. Then one can check easily that X is locally dou-
bling. It is important to note that the locally doubling property is strictly
weaker than this property. One can easily construct weighted graphs or Rie-
mannian manifolds which are locally doubling but with unbounded volume
of balls of radius 1.

Example 5.3. Let X be a connected graph with degree bounded by d,
equipped with the counting measure. The volume of balls of radius r satisfies

∀x ∈ X, 1 ≤ V (x, r) ≤ dr.

In particular, X is locally doubling.

Example 5.4. Let (X, d, µ) be a metric measure space and let G be a
locally compact group acting by isometries that preserve the measure. If G
acts co-compactly, then X is locally doubling.

8In [10] and in [30], the local doubling property is denoted (DV )loc.
9In fact all the results except the few ones where the infinitesimal structure of the

space is clearly involved.
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Definition 5.5. Let (X, d, µ) and (X ′, d′, µ) two spaces satisfying the locally
doubling property. Let us say that X and X ′ are large-scale equivalent if
there is a function F from X to X ′ with the following properties

(a) for every sequence of pairs (xn, yn) ∈ (X2)N

(d(F (xn), F (yn)) → ∞) ⇔ (d(xn, yn) → ∞) .

(b) F is almost onto, i.e. there exists a constant C such that [F (X)]C =X ′.

(c) For r > 0 large enough, there is a constant Cr > 0 such that for
all x ∈ X

C−1
r V (x, r) ≤ V (F (x), r) ≤ CrV (x, r).

Crucial remark 5.6. Note that being large-scale equivalent is an equiva-
lence relation between metric measure spaces with locally doubling property.

Remark 5.7. If X and X ′ are quasi-geodesic, then (a) and (b) imply that F
is roughly bi-Lipschitz: there exists C ≥ 1 such that

C−1d(x, y) − C ≤ d(F (x), F (y)) ≤ Cd(x, y) + C.

This is very easy and left to the reader. In this case, (a) and (b) correspond
to the classical definition of a quasi-isometry.

Example 5.8. Consider the subclass of metric measure spaces including
graphs with bounded degree, equipped with the countable measure; Rieman-
nian manifolds with Ricci curvature bounded from below and sectional cur-
vature bounded from above, equipped with the Riemannian measure. In
this class, quasi-isometries are always large-scale equivalences.

6. Examples

6.1. Discretization

Recall that a weighted graph is a connected graph X equipped with a struc-
ture of metric measure space on the set of its vertices, the distance being the
usual geodesic one. Similarly, a weighted manifold is a Riemannian mani-
fold equipped with a measure dµ absolutely continuous with respect to the
Riemannian measure. A discretization [14, 19] of a weighted Riemannian
manifold X can be defined as a weighted graph large-scale equivalent to X.
More generally, a discretization of a metric measure space is a weighted
graph large-scale equivalent to X.
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Consider some b > 0. We call a b-chain between two points x, y ∈ X
a chain x = x1 . . . xm = y such that for every 1 ≤ i < m, d(xi, xi+1) ≤ b.
Define another distance on X by setting

db(x, y) = inf
γ
l(γ)

where γ runs over every b-chains x = x0 . . . xm = y and where l(γ) =∑m
i=1 d(xi, xi−1) is the length of γ.
Let us introduce various natural notions of geodesicity.

Definition 6.1. We say that a metric space (X, d) is

• b-geodesic if d(x, y) equals the minimal length of a b-chain between x
and y, or equivalently if d = db.

• quasi-geodesic if there exists b > 0 such that the identity map (X, d) →
(X, db) is a quasi-isometry;

• coarsely geodesic if there exists b > 0 such that (X, db) → (X, d) is a
uniform embedding.

Being coarsely geodesic is actually equivalent to being large-scale uniformly
connected (see [30]): a space X is large-scale uniformly connected if there
exists b > 0 such that every x, y ∈ X can be connected by a b-chain whose
length only depends on d(x, y).

Clearly, being coarsely geodesic is preserved by large-scale equivalence.

Proposition 6.2. A metric measure space with locally doubling Property
admits a discretization if and only if it is coarsely geodesic. Moreover X is
quasi-isometric to a graph if and only if it is quasi-geodesic.

Proof. Assume that X = (X, d, µ) is metrically proper, coarsely geodesic
and locally doubling. Consider a minimal covering of X with balls of ra-
dius h. We construct a weighted graph G(X) as follows; the vertices of G(X)
are the centers of the balls; we put an edge between two vertices if the balls
intersect. Since X is coarsely geodesic, G(X) is connected as soon as h is
large enough. Moreover, coarse geodesicity and locally doubling Property
imply that the injection map G(X) ↪→ X is a large-scale equivalence. The
converse is obvious. �

6.2. Locally compact groups

Let G be a group. Recall that a length function on G is function L : G→ R+

such that L(1) = 0 and

∀g, h ∈ G, L(gh) ≤ L(g) + L(h).
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If L is a length function, then d(g, h) = L(g−1h) defines a left-invariant
pseudo-metric on G. Conversely, if d is a left-invariant pseudo-metric on G,
then L(g) = d(1, g) defines a length function on G.

Definition 6.3. Let G be a locally compact group. A metric d on G is
called uniform if for any of sequence (gn, hn) ∈ (G×G)N, d(gn, hn) → ∞ if
and only if g−1

n hn leaves every compact eventually.

By the Birkhoff-Kakutani metrization theorem [18, Theorem 7.2], G ad-
mits uniform left-invariant metrics if and only if G is σ-compact. The fol-
lowing proposition is straightforward and left to the reader.

Proposition 6.4. Let (X, d, µ) and (Y, d, µ) be a metric measure space and
let G be a locally compact group acting properly and co-compactly by isome-
tries that preserve the measure. Then X is locally doubling and X and Y
are large-scale equivalent.

Corollary 6.5. Let d and d′ be two uniform metrics on G. The spaces
(G, d) and (G, d′) are doubling at any (large enough) scale and the identity
map (G, d) → (G, d′) is a large-scale equivalence.

Proposition 6.6. Let G be a locally compact group. The following state-
ments are equivalent.

(i) G admits a uniform, coarsely geodesic metric;

(ii) G admits a uniform, quasi-geodesic metric;

(iii) G admits a left-invariant, proper, quasi-geodesic metric;

(iv) G admits a left-invariant proper metric, quasi-isometric to a graph
with bounded degree;

(v) G is compactly generated.

Proof. Clearly, (iii) ⇒ (ii) ⇒ (i) are obvious, (iii) ⇔ (iv) results from
Proposition 6.2. Let us prove that (v) ⇒ (iv). Assume that G is compactly
generated and let S be a compact symmetric subset S. One can equip G
with a uniform quasi-geodesic length function setting

∀g ∈ G, |g|S = inf{n ∈ N, g ∈ Sn}.
Now, let us prove that (i) ⇒ (v). Suppose that G has a uniform, coarsely
geodesic metric d with constant C. Since d is uniform, there exists R < ∞
such that for all g ∈ G, the closed ball B(g, C) is compact and contained in
g ·B(1, R).

We claim that G is generated by B(1, R). Fix g ∈ G. Indeed, let g1 =
1, . . . , gn = g be a chain such that d(gi, gi+1) ≤ C for every 1 ≤ i ≤ n − 1.
We have gi+1 ∈ B(gi, C) ⊂ gi · B(1, R). Hence, an immediate induction
shows that g ∈ B(1, R)n and we are done. �



844 R. Tessera

7. Equivalence of Sobolev inequalities with respect to
different gradients

Here, we show that large-scale Sobolev inequalities do not really depend on
the kind of gradient that we use to write them. In spite of its easy and short
proof, this result is crucial for our purpose since it shows that our definitions
are natural.

The following proposition is an immediate consequence of the definitions.

Proposition 7.1. If h′ ≥ h > 0, then

‖|∇f |h′‖p ≥ ‖|∇f |h‖p.

Moreover, if P is a viewpoint at scale h with constants c and A (see the
definition below) and if q ≤ q′ ≤ ∞, then

c|∇f |h,q ≤ |∇f |P,q ≤ |∇f |P,q′ ≤ |∇f |Ah ∀f ∈ L∞(X).

The non-trivial comparisons between different gradients are summarized
in the following proposition.

Proposition 7.2. Let X be some metric measure space satisfying a Sobolev
inequality (Sp

ϕ) at scale h. Then, for any viewpoint P = (Px)x∈X at scale
2h, X satisfies (Sp

ϕ) w.r.t. |∇|P,q for any q ≥ 1.

Proof. By Proposition 7.1, it suffices to prove that X satisfies (Sp
ϕ) w.r.t.

|∇|2h,1. Write

Px =
1

V (x, h)
1B(x,h) ∀x ∈ X.

For every f ∈ L∞(X) we write

Pf(x) =

∫
fdPx, ∀x ∈ X.

Lemma 7.3. There exists C <∞ such that

|∇Pf |h(x) ≤ C|∇f |h,1(x) ∀f ∈ L∞(X), ∀x ∈ X.

Proof. Consider some y ∈ B(x, h).

|Pf(x) − Pf(y)| ≤ |Pf(x) − f(x)| + |Pf(y)− f(x)| ≤ C|∇|2h,1f(x).

with C <∞ depending only on the doubling constant at scale h. �
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Now apply the Sobolev inequality (Sp
ϕ) at scale h to Pf ,

‖|∇Pf |h‖p ≥ ϕ−1(Ω)‖Pf‖p ≥ ϕ−1(Ω)‖f‖p − ϕ−1(Ω)|‖f‖p − ‖Pf‖p|.
Now, if ‖|∇f |h,1‖p ≥ ‖f‖p/2, there is nothing to prove. Hence, assuming
the contrary, and since |‖f‖p − ‖Pf‖p| ≤ ‖|∇f |h,1‖p, we obtain

‖|∇Pf |h‖p ≥ ϕ−1(Ω)‖f‖p/2,

which yields
‖|∇f |h,1‖p ≤ C−1ϕ−1(Ω)‖f‖p/2

thanks to the lemma. �

8. Invariance of Sobolev inequalities under large-scale

equivalence

The aim of this section is to prove the following theorem.

Theorem 8.1. Let F : X → X ′ be a large-scale equivalence between two
spaces X and X ′ satisfying the locally doubling property. Assume that for
h > 0 fixed, the space X satisfies a Sobolev inequality (Sp

ϕ) at scale h, then
there exists h′, only depending on h and on the constants of F such that X ′

satisfies (Sp
ϕ) at scale h′. In particular, large-scale Sobolev inequalities are

invariant under large-scale equivalence.

Before proving Theorem 8.1, we will need a few preliminary technical
results.

8.1. Thick subsets

Definition 8.2. A subset A of a metric space is called h-thick if it is a
reunion of closed balls of radius h.

Roughly speaking, the following proposition says that we can focus on
functions with thick support.

Proposition 8.3. Let X = (X, d, µ) be a metric measure space. Fix some
h > 0 and some p ∈ [1,∞]. There exists a constant C > 0 such that for any
f ∈ L∞(X), there is a function f̃ ∈ L∞(X) whose support is included in a
h/2-thick subset Ω such that

µ(Ω) ≤ µ(Supp(f)) + C

and for every p ∈ [1,∞],

‖|∇f̃ |h/2‖p

‖f̃‖p

≤ C
‖|∇f |h‖p

‖f‖p
.
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Proof. Let us prove the proposition for p < ∞. Let f ∈ L∞(X) be such
that ‖f‖p = 1. Assume that f satisfies

‖|∇|hf‖p ≥ 1

2
.

Then, for f̃ , consider for instance the indicator function of a ball B(x, a) of
volume 1 (so that ‖f̃‖p = 1). We have

‖|∇f̃ |h/2‖p
p ≤ µ(B(1 + h/2)) ≤ Cµ(B(x, a)) = C.

Thus, let us assume that

‖|∇f |h‖p ≤ 1

2
.

Let Ω be the subset of Supp(f) defined by

Ω = {x ∈ X, d(x, Supp(f)c) ≥ h/2}
and set

f̃ = f · 1Ω.

Note that for every x ∈ Supp(f) � Ω, there exists some y ∈ B(x, h) such
that f(y) = 0. Therefore, we have |f(x)| ≤ |∇f |h(x). Hence,∫

X

|f̃ |pdµ ≥
∫

X

|f |pdµ−
∫

X

(|∇f |h)pdµ ≥ 1

2
.

On the other hand, let x ∈ Ω. If d(x, Supp(f)) ≥ h, then

|∇f̃ |h/2 = |∇f |h/2 ≤ |∇|hf.
Otherwise,

|∇f̃ |h/2 ≤ max
{
|f(x)|, sup

y∈B(x,h/2)

|f(x) − f(y)|
}

and

|∇f |h = sup
y∈B(x,h)

|f(x) − f(y)| = max
{
|f(x)|, sup

y∈B(x,h)

|f(x) − f(y)|
}
.

Thus
|∇f̃ |h/2 ≤ |∇f |h;

so we are done. �

On the other hand, the locally doubling property “extends” to thick
subsets in the following sense.
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Proposition 8.4. Let X be a metric measure space satisfying the locally
doubling property. Fix two positive numbers u and v. There exists a constant
C = C(u, v) <∞ such that for any u-thick subset A ⊂ X, we have

µ([A]v) ≤ Cµ(A).

Proof. The proof follows from standard covering arguments. �

8.2. Rough volume-preserving property

Let us prove a useful volume “roughly preserving” property of large-scale
equivalences.

Proposition 8.5. Let X = (X, d, µ) and X ′ = (X ′, d′, µ′) be two spaces
satisfying the locally doubling property and let F : X → X ′ be a large-scale
equivalence. Let u > 0, then there exists a constant C = C(u, F ) such that

(1) If A ⊂ X and A′ ⊂ X ′ are such that [F−1(A′)]u ⊂ A, then µ′(A′) ≤
Cµ(A).

(2) If A ⊂ X and A′ ⊂ X ′ are such that [F (A)]u ⊂ A′, then µ(A) ≤
Cµ′(A′).

Proof. Let us prove (1). Let Z be a maximal set of 2u-separated points of
F−1(A′). Clearly, the balls (B(z, u))z∈Z are disjoint and included in A. On
the other hand, maximality of Z implies that the family (B(z, 2u))z∈Z forms
a covering of A. So we have

(8.1)
∑
z∈Z

µ(B(z, u)) ≤ µ(A) ≤
∑
z∈Z

µ(B(z, 2u))

By property (a) of a large-scale equivalence, there exists v such that for every
x ∈ X, F (B(x, 2u)) ⊂ B(F (x), v). In particular, the family ((B(F (z), v))z∈Z

forms a covering of F (A). Using Property (c) of a large-scale equivalence
and Doubling Property at any scale of X together with (8.1), we get

µ(A′) ≤ µ′(F (A)) ≤
∑
z∈Z

µ′(B(F (z), v)) ≤ C ′ ∑
z∈Z

µ(B(z, v))

≤ C
∑
z∈Z

µ(B(z, u)) ≤ Cµ(A)

which proves the proposition. �
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8.3. Proof of the invariance under large-scale equivalence

Let F : X → X ′ be a large-scale equivalence between two spaces X and X ′

satisfying the locally doubling property. Assume that f ∈ L∞(X ′). For
every h > 0, define a function on X

∀x ∈ X, ψh(x) = sup
y∈B(x,h)

|f ◦ F (y)|.

Lemma 8.6. For h large enough, there exists a constant c = c(h, f) > 0
such that

µ({ψp
h ≥ t}) ≥ cµ′({|f |p ≥ t}).

In particular, for every p > 0,

‖ψh‖p ≥ c‖f‖p.

Proof. We can obviously assume that p = 1 and that f ≥ 0. Thanks to
Proposition 8.5, we only have to check that

[F−1({f ≥ t})]h ⊂ {ψh ≥ t}.

Indeed, let x ∈ F−1({f ≥ t}). Then f ◦F (x) ≥ t. So for all y ∈ B(x, h), we
have ψh(y) ≥ t. �

Lemma 8.7. For h′ large enough, there exists a constant C <∞ such that

µ({(|∇ψh|h)q > t}) ≤ Cµ′({|(∇f |h′)q > t/2}).

In particular, for every q > 0,

‖|∇ψh|h‖q ≤ C‖|∇f |h′‖q.

Proof. We can of course assume that q = 1. Thanks to Proposition 8.5, it
suffices to prove that for h′ large enough,

[F ({|∇ψh|h > t})]h′/2 ⊂ {|∇f |h′ > t/2}.

Indeed, let x ∈ X be such that |∇ψh|h(x) > t. This means that there
exists y ∈ B(x, h) such that |f ◦ F (x) − f ◦ F (y)| > t. On the other hand,
by property (a) of a large-scale equivalence, one can choose h′ such that
d(F (x), F (y)) ≤ h′/2. Hence,

∀z ∈ B(F (x), h′/2), |∇f |h′(z) ≥ max{|f(x) − z|, |f(y)− z|} ≥ t/2.

So z ∈ {|∇f |h′ > t/2}. �
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Lemma 8.8. For u large enough, there exists a constant C <∞ such that

µ′ (Supp(ψh)) ≤ Cµ ([Supp(f)]u) .

Proof. This follows trivially from Proposition 8.5.

Proof of Theorem 8.1. Let Ω be a compact subset of X ′ of measure m.
We want to prove that every f ∈ L∞(Ω) satisfies

‖f‖p ≤ Cϕ(Cm)‖|∇f |h‖p

with h′ and C depending only on F , h and X. Thanks to Proposition 8.3
and up to choose a larger h′, we can assume that Ω is v-thick for any v > 0.
Then, thanks to Lemma 8.8 and to Proposition 8.4, we have

Supp(ψh) ≤ C ′m

for some constant C ′. So apply (Sp
ϕ) to ψh and then conclude thanks to

Lemmas 8.6 and 8.7. �

9. Sobolev inequality (S2
ϕ) and on-diagonal upper bounds

for random walks

In this section, we revisit the relations (see [6] for a survey) between Sobolev
inequalities (S2

ϕ) and on-diagonal upper bounds for random walks in our
general context. The main purpose is to prove a version of [6, Theorem 7.2]
(see also [7, Theorem 7.2]) to our more general context.

Theorem 9.1. Let X = (X, d, µ) be a metric measure space and let P =
(Px)x∈X be a symmetric view-point at scale h on X. Let ϕ be some increasing
positive function. Define γ by

t =

∫ 1/γ(t)

0

(ϕ(v))2
dv

v
.

(i) Assume that X satisfies a Sobolev inequality (S2
ϕ) w.r.t. |∇f |P 2,2.

Then
p2n

x (x) ≤ γ(cn) ∀n ∈ N,

for some constant c > 0.

(ii) If the logarithmic derivative of γ has at most polynomial growth and if

p2n
x (x) ≤ γ(n) ∀n ∈ N,

then X satisfies (S2
ϕ) w.r.t. |∇|P,2.
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Similarly we have the following version10 of [6, Theorem 7.1]

Theorem 9.2. Let X = (X, d, µ) be a metric measure space and let P =
(Px)x∈X be a symmetric view-point at scale h on X. Define γ by

t =

∫ 1/γ(t)

0

(jX,2(v))
2 dv

v
.

where jX,2 is the isoperimetric profile of X defined with the gradient |∇f |P 2,2.
If the logarithmic derivative of γ has at most polynomial growth, then there
exists a constant C > 0 such that

γ(Cn) ≤ sup
x∈X

p2n
x (x) ≤ γ(n) ∀n ∈ N.

Proof of Theorem 9.1. In [6, Theorem 7.2], the same result is proved for
a weighted graph (X,µ) using the usual notion of gradient on graphs (see
Example 2.4) and where P is the standard random walk on (X,µ). Their
proof only relies on the following formal link between P and the gradient.

c(‖f‖2
2 − ‖Pf‖2

2) ≤ ‖∇f‖2
2 ≤ C(‖f‖2

2 − ‖Pf‖2
2).

Here, this relation is satisfied when considering the gradient |∇|P 2,2 and we
even have the equality

Lemma 9.3. For every f ∈ L2(X), we have

‖|∇f |P 2,2‖2
2 = ‖f‖2

2 − ‖Pf‖2
2.

Proof. We have (see section 2.2)

‖|∇f |P 2,2‖2
2 = 〈∆P 2f, f〉

= 〈(id− P 2)f, f〉
= ‖f‖2

2 − 〈P 2f, f〉
= ‖f‖2

2 − 〈Pf, Pf〉
�

So the proof of [6, Theorem 7.2] can be used formally in our context.
However, for the sake of completeness, we give a sketch of this proof. First,
using that P n is symmetric, one checks easily that

sup
x∈X

p2n
x (x) = ‖P 2n‖1→∞

where ‖ · ‖p→q denotes the operator norm form Lp(X,µ) to Lq(X,µ).

10The proofs are straightforward adaptations of their versions for graphs in [6] so we
will only prove Theorem 9.1.
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Proof of (i). Assume that (S2
ϕ) holds. Let us start with an important

lemma.

Lemma 9.4. The Sobolev inequality (S2
ϕ) for the L2-gradient w.r.t. the

viewpoint P is equivalent to the so-called Nash inequality

‖f‖2
2 ≤ Cϕ2

(
C
‖f‖2

1

‖f‖2
2

)
‖|∇|P,2‖2

2.

Proof. Assume that a function f satisfies Nash inequality. Using Schwarz
inequality and the fact that ϕ is nondecreasing, we obtain

‖f‖2
2 ≤ ϕ2

(‖f‖2
2

‖f‖2
1

)
‖|∇f |P 2,2‖2

2 ≤ ϕ2(|Ω|)‖|∇f |P 2,2‖2
2.

The proof of the other implication relies on an argument of Grigor’yan in [12].
Assume that (S2

ϕ) holds. Let f ∈ L∞(X). For every λ > 0, since f < 2(f−λ)
on {f > 2λ}, we may write∫

f 2 =

∫
f>2λ

f 2 +

∫
f≤2λ

f 2

≤ 4

∫
f>2λ

(f − λ)2 + 2λ

∫
f≤2λ

f

≤ 4

∫
f>2λ

(f − λ)2 + 2λ‖f‖1

Now applying (S2
ϕ) to (f − λ)+ gives
∫

(f − λ)2
+ ≤ ϕ2(µ({f > 2λ}))‖|∇f |P 2,2‖2

2,

that is, since

µ({f > λ}) ≤ ‖f‖1

λ
and ϕ is non-decreasing,∫

(f − λ)2
+ ≤ ϕ2

(‖f‖1

λ

)
‖|∇f |P 2,2‖2

2.

Therefore ∫
f 2 ≤ 4ϕ2

(‖f‖1

λ

)
‖|∇f |P 2,2‖2

2 + 2λ‖f‖1.

Letting ε > 0 and taking λ = ε‖f‖2
2/‖f‖1 in this equation yields

‖f‖2
2 ≤ 4ϕ2

( ‖f‖2
2

ε‖f‖2
1

)
‖|∇f |P 2,2‖2

2 + 2ε‖f‖2
2
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or equivalently,

‖f‖2
2 ≤

4

1 − 2ε
ϕ2

( ‖f‖2
2

ε‖f‖2
1

)
‖|∇f |P 2,2‖2

2

Taking ε = 1/4, for example yields

‖f‖2
2 ≤ 8ϕ2

(
4
‖f‖2

2

‖f‖2
1

)
‖|∇f |P 2,2‖2

2

which is the expected Nash inequality. �

Now, consider f ∈ L1(X,µ), non-negative, with ‖f‖ = 1 and define a
sequence un = ‖P nf‖2

2. The above inequality applied to the function P nf
thus reads as

un ≤ ϕ2(1/un)(un − un+1)

since ‖P nf‖1 = ‖f‖1 = 1 by Markov property of P . Let t → ut be the
increasing, piecewise linear function extending un on R+. If we put vt = 1/ut,
then the above inequality becomes

dt ≤ ϕ2(vt)
dvt

vt
,

hence, by integrating between 0 and t, we obtain

t ≤
∫ 1/vt

v0

ϕ2(s)
ds

s
;

and since by definition

t =

∫ 1/γ(t)

0

(ϕ(v))2
dv

v
,

this means that γ(t) ≤ vt, i.e.

‖P nf‖2
2 ≤ γ(n)

from which we deduce
‖P n‖1→2 ≤

√
γ(n).

Now, using the fact that P n is symmetric,

‖P n‖2→∞ = ‖P n‖1→2 ≤
√
γ(n).

Hence
‖P 2n‖1→∞ ≤ ‖P n‖2→∞‖P n‖1→2 ≤ γ(n).

So (i) follows.
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Proof of (ii). Assume that the decay ‖P 2n‖1→∞ ≤ γ(n) holds. Observe
that ‖P 2n‖1→∞ = ‖P n‖1→2, then take f with ‖f‖1 = 1 and define as above
un = ‖P nf‖2

2. Since P is self-adjoint,

‖P nf‖2
2 = 〈P nf, P nf〉 = 〈P n−1f, P n+1f〉 ≤ ‖P n−1f‖2‖P n+1f‖2.

In other words, u2
n ≤ un−1un+1 and un+1/un is nondecreasing in n. It follows

that (
u1

u0

)n

≤ u1

u0

u2

u1

. . .
un

un−1

=
un

u0

.

Now, since by assumption un ≤ γ(n),

log
‖f‖2

2

γ(n)
≤ log

u0

un

≤ n log
u0

un

≤ n

(
u0

u1

− 1

)
,

hence

‖Pf‖2
2 ≤

(
n

log
‖f‖2

2

γ(n)

)
(‖f‖2

2 − ‖Pf‖2
2), ∀n ∈ N.

Finally, for all f such that ‖f‖1 = 1,

‖f‖2
2 ≤

(
n

log
‖f‖2

2

γ(n)

+ 1

)
(‖f‖2

2 − ‖Pf‖2
2), ∀n ∈ N.

An optimization11 in n yields the Nash inequality that is equivalent to (S2
ϕ)

by Lemma 9.4. �

10. Controlling the scale of Sobolev Inequalities

10.1. Going down the scale

In this section, we address the following question. Let X = (X, d, µ) be a
metric measure space X satisfying a Sobolev inequality at scale h; we know
that it automatically satisfies the same Sobolev inequalities at any larger
scale; but under what assumptions does it satisfy this inequality at some
smaller scale h′? This can be compared to a similar discussion in [30] where
we considered the isoperimetric properties of a metric measure space12.

For example, consider X = Z
d (d ≥ 2) equipped with the distance

d(x, y) =
∑d

i=1 |yi − xi| and with the countable measure. It is well known
that X satisfies a Sobolev inequality S(d/(d−1), 1) at any scale ≥ 1. But no

11This is where condition (δ) is needed.
12This is a particular case of the present discussion corresponding to p = 1.
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Sobolev inequality is available at a scale s < 1 since for every f ∈ L∞(X),
|∇f |s = 0. Clearly, the problem comes from the lack of connectivity at
scale < 1.

The following proposition shows that Property13 of coarse b-geodesicity
(also called uniform b-connectedness) together with Property of locally dou-
bling are sufficient to control the minimal scale at which Sobolev inequalities
may be valid.

Proposition 10.1. Assume that X is a coarse b-geodesic space satisfying
the locally doubling property r ≥ b. Then X satisfies a large-scale Sobolev
inequality if and only if it satisfies the same Sobolev inequality at scale 2b
(but with different constants). In other words, the asymptotic behavior of the
isoperimetric profile jX,p does not depend on the scale, provided it is larger
than 2b.

Proof. Let f ∈ L∞(X). Let us prove that for all h ≥ 2b, there is a constant
C = C(h) <∞ such that for every t > 0

(10.1) µ({|∇f |h > t}) ≤ Cµ({|∇f |2b > t/C}).
Consider a point x ∈ {|∇f |h > t}: there is y ∈ B(x, h) such that |f(x) −
ϕ(y)| > t. Now, let x = x1 . . . xm = y be a b-connecting chain between
x and y (with m only depending on h). Clearly, there exists 1 ≤ i < m
such that |ϕ(xi) − ϕ(xi+1)| > t/m. So in particular, for all z ∈ B(xi, b),
|∇f |2b(z) > t/(2m). Let Z be a maximal 2E-separated subset of {|∇f |h >
t}. The balls (B(z, 2E))z∈Z form a covering of {|∇f |h > t}. On the other
hand, by the previous discussion, in each ball B(z, E), one can find a ball
B(xz, b) included in {|∇f |2b > t/(2m)}. Since the balls (B(xz, b))z∈Z are
disjoint, (10.1) follows from locally doubling property r ≥ b. �

As an interesting corollary of Proposition 10.1 and Proposition 6.6, we
obtain that if h is large enough, a Sobolev inequality is satisfied at scale h
on a locally compact compactly generated group if and only if it is satisfied
at large scale. It also allows to define an Lp-isoperimetric profile on locally
compact compactly generated groups, whose asymptotic behavior does not
depend on the scale, provided it is large enough. As a corollary of Theo-
rem 8.1, we therefore have

Corollary 10.2. Let H and G be quasi-isometric amenable unimodular lo-
cally compact compactly generated group. Then,

(1) jH,p ≈ jG,p;

(2) J b
H,p ≈ J b

G,p.

13See definition 6.1.
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Remark 10.3. In particular, for p = 2, the asymptotic behavior when
r → ∞ of first eigenvalue δP (r) of the Laplacian associated to any viewpoint
P whose support generates the group, acting on square-integrable functions
supported in balls of radius r, does not depend on P . We therefore denote it
by δG. Part (2) of Corollary 10.2 for p = 2 says that the asymptotic behavior
of δG is invariant under quasi-isometry (see Section 2.2).

10.2. From finite scale to infinitesimal scale

Definition 10.4. (see for instance [28, Definition 1.18]) Let (X, d) be a
metric space, and let u and g be two Borel measurable functions defined on
X, with u real-valued and g taking values in [0,∞]. We say that g is an
generalized gradient of u if

|u(γ(a)) − u(γ(b))| ≤
∫ b

a

g(γ(t))dt

whenever a, b ∈ R and γ : [a, b] → X is 1-Lipschitz (so that d(γ(s), γ(t)) ≤
|s− t| for all s, t ∈ [a, b]).

Example 10.5. [28, Lemma 1.20] The function g defined by

g(x) = lim inf
r→0

r−1 sup
y∈B(x,r)

|u(y) − u(x)|

is a generalized gradient of u. Let us call g the standard upper gradient of
u and we denote it by |∇u|.

The following proposition is obvious by passing to the limit.

Proposition 10.6. Fix p ∈ [1,∞]. Assume that for every h > 0, (X, d, µ)
satisfies a Sobolev inequality (Sp

ϕ) w.r.t. the gradient |∇|h. Suppose that
the constants appearing in these inequalities are uniform with respect to h,
then X satisfies (Sp

ϕ) w.r.t. the standard upper gradient.

The following fact had already been noticed in the case of a discretization
of a manifold [10]. Its proof, here, is straightforward from the definition
of |∇|P,p.

Proposition 10.7. Fix some h > 0 and p ∈ [1,∞]. Let (X, d, µ) be a metric
measure space with doubling property at radius ≥ h, and let P be a viewpoint
at scale h on X. Suppose that a function u ∈ L∞(X) satisfies (Sp

ϕ) w.r.t.
|∇|P,p. Let g be an generalized gradient of u. We assume that u satisfies the
following local Poincaré inequality (P (1, p))loc∫

B(x,h)

|h(y) − h(x)|pdPx(y) ≤ C

∫
B(x,h′)

gp(y)dµ(y)

for some constants C, h <∞. Then u satisfies (Sp
ϕ) w.r.t. g.
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Example 10.8. Let M be a Riemannian manifold. Then the local norm
of its usual gradient trivially coincides with the standard upper gradient
on M . Now, assume that M satisfying a local Poincaré inequality (as in the
Proposition) and let X be a discretization of M . According to Theorem 8.1,
if X satisfies (Sp

ϕ), then M also satisfies (Sp
ϕ) w.r.t. its usual gradient.

10.3. From infinitesimal scale to finite scale

In this last section, we will prove that if a metric measure space satisfies a
Sobolev inequality w.r.t. the standard upper gradient (see Example 10.5),
then it satisfies this Sobolev inequality at any scale.

Theorem 10.9. Fix p ∈ [1,∞]. Let (X, d, µ) be a metric measure space
satisfying the locally doubling property. Assume that (X, d, µ) satisfies a
Sobolev inequality (Sp

ϕ) w.r.t. the standard upper gradient |∇|. Then X
satisfies (Sp

ϕ) w.r.t. |∇|h for every h > 0.

Proof. Assume that X satisfies (Sp
ϕ) w.r.t. the standard upper gradient.

Using the same tools as in the proof of Proposition 7.2, one can see that it
suffices to show that for every h > 0 and every function f , there exists a
viewpoint P at scale h/2 such that

(10.2) ‖Pf‖p ≤ Cϕ(µ(Ω))‖|∇Pf |h‖p

where Ω is a measurable subset containing the support of f . According
to Proposition 8.3, we can assume that Supp(f) is thick. Thus, thanks
to Proposition 8.4, we can replace Ω by [Ω]Ah that14 contains Supp(Pf).
Finally, it suffices to prove that (Sp

ϕ) w.r.t. |∇|h is satisfied for functions of
the form Pf , with f ∈ L∞(X).

Define a 1-Lipschitz map θ : X × X → R+ by θ(x, y) = d(y, B(x, h)c).
Write

px(y) =
θ(x, y)

K(x)
,

where

K(x) =

∫
B(x,h)

θ(x, z)dµ(z).

Since X is locally doubling, one can easily check that px(y) is the density of
a viewpoint P at scale h. Moreover, D−1V (x, h) ≤ K(x′) ≤ DV (x, h) where
D ≥ 1 only depends on the doubling constant at scale h.

14A is the large constant appearing in the definition of a viewpoint at scale h.
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Let x′ be a point distinct from x. We have

Pf(x′) − Pf(x) =

∫
X

(px′(y) − px(y))f(y)dµ(y)

=

∫
X

(px′(y) − px(y))(f(y)− f(x))dµ(y)

=

∫
X

θ(x′, y)K(x) − θ(x, y)K(x′)
K(x)K(x′)

(f(y) − f(x))dµ(y)

=

∫
X

(θ(x′, y)−θ(x, y))K(x)−θ(x, y) (K(x′)−K(x))

K(x)K(x′)
(f(y)−f(x))dµ(y)

Since X is locally doubling, it is not difficult to see that for x′ closed to x,
C−1K(x) ≤ K(x′) ≤ CK(x) where C ≥ 1 only depends on the doubling
constant at scale h. Hence,

|∇Pf |(x) ≤ C

∫
X

|∇xθ|(x, y)K(x) + θ(x, y)|∇K|(x)
K(x)2

|f(y) − f(x)|dµ(y)

On the other hand, note that

|∇K|(x) ≤
∫

X

|∇xθ|(x, z)dµ(z) ≤ V (x, h).

Up to change the constant C, we conclude that

|∇Pf |(x) ≤ C
1

V (x, h)

∫
B(x,h)

|f(y)− f(x)|dµ(y)

≤ C|∇f |h(x).

Now, to conclude, it remains to apply (Sp
ϕ) w.r.t. the standard upper

gradient to Pf . Together with the above inequality, we obtain (10.2). �

Corollary 10.10. If a Riemannian manifold M with locally doubling prop-
erty satisfies (Sp

ϕ) for the usual gradient, then it satisfies it at any scale.
If X is a discretization of M , then it also satisfies (Sp

ϕ).

Remark 10.11. Assume that X is coarsely b-geodesic for every b > 0
(e.g. X is a Riemannian manifold), so that Proposition 10.1 applies. Note
that in the proof of Theorem 10.9, we actually show that a Sobolev inequality
at large scale is equivalent to the Sobolev inequality for the standard upper
gradient restricted to functions of the form g = Pf , where P is a viewpoint
at some positive scale.
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11. Applications to quasi-transitive spaces

11.1. Existence of a spectral gap on a quasi-transitive metric mea-
sure space

The main result

Definition 11.1. A quasi-transitive measure space (X,µ) is a locally com-
pact Borel measure space on which a locally compact group G acts measur-
ably, co-compactly, properly, and almost preserving the measure µ, i.e.

sup
g∈G

sup
x∈X

d(g · µ)

dµ
(x) <∞.

Definition 11.2. We call a metric measure space (X, d, µ) a quasi-transitive
metric measure space if (X,µ) is a quasi-transitive measure space and if d is
a G-invariant metric on X which is proper and finite on compact sets (note
that d is not supposed to be continuous on X).

Proposition 11.3. If G is σ-compact, then every G-quasi-transitive mea-
sure space (X,µ) can be equipped with a metric d such that (X, d, µ) is a
quasi-transitive metric measure space.

Proof. We start with a proper G-invariant metric on G [18, Theorem 7.2].
Take a fundamental domain D in X relative to the G-action. As the ac-
tion is co-compact, we can assume that D is relatively compact. Let K
be the intersection of all stabilizers of elements of D. As the action is
proper, K is a compact subgroup of G. Consider the G-invariant metric on
G/K obtained, first by averaging our metric on G over K (i.e. replacing it
by

∫
K
d(gk, hk)dk), and then by pushing the corresponding bi-K-invariant

metric to G/K. We have a natural map α : X → G/K, where α(x) is the
unique gK such that x ∈ gD. Pulling the metric of G/K to X yields a
G-invariant pseudo-metric on X which is proper and finite on compact sets.
To obtain a true metric, one can for instance add the discrete metric on X
(i.e. such that two distinct points are at distance 1). �

Theorem 2 now appears as a corollary of

Theorem 11.4. Let G be a locally compact group and let (X, d, µ) be a quasi-
G-transitive metric measure space. Then G is unimodular and amenable if
and only if for h large enough (resp. for any h) and every reversible viewpoint
P at scale h on (X, d, µ), the spectral radius ρ(P ) = 1, or in other words, if
the discrete Laplacian ∆ = I − P has no spectral gap around zero.

Proof. The proof splits into three parts. First, by Theorem 3.5, one checks
easily that ρ(P ) = 1 if and only if the large-scale profile jX,2(t) → ∞
when t→∞. Indeed, jX,2(t) ≤ C means thatX satisfies a large-scale Sobolev



Large-scale Sobolev inequalities 859

inequality (S2
ϕ) with ϕ(t) = C. Thus by Theorem 3.5, this happens if and

only if p2n
x (x) has exponential decay, i.e. if and only if ρ(P ) < 1.

Second, take a uniform left-invariant metric on G. The co-compactness,
properness of the G-action on X, plus the fact that µ is almost-preserved
by G imply that G and X are large-scale equivalent (this is straightforward).
Hence, by Theorem 8.1, it is enough to prove Theorem 11.4 for X = G. This
third step will be achieved by Corollary 11.13.

Remark 11.5. Note that if we assume G compactly generated, then it is
classical and not difficult to see that a quasi-G-transitive metric measure
space is quasi-isometric to G, equipped with the word metric dS correspond-
ing to a compact generating subset S of G.

Corollary 11.6. Let M be a Riemannian manifold and let G be a closed
subgroup of Isom(M) acting co-compactly on M . Then G is unimodular and
amenable if and only if the spectral radius of the heat kernel on M equals 1,
or in other words, if the (Riemannian) Laplacian on M has no spectral gap
around zero.

Proof. The Laplacian has a spectral gap if and only if M satisfies a Sobolev
inequality ‖∇f‖2 ≥ c‖f‖2 for the usual gradient. As M is quasi-transitive,
it is easy to check that it satisfies a local Poincaré inequality as in Propo-
sition 10.7. Indeed, one has to prove that such a local Poincaré inequal-
ity (P (1, q))loc holds, for any q ≥ 1 on a compact subset K such that
X = ∪g∈GgK. But this results from the fact that such inequality holds
in R

d. Now, applying Proposition 10.7 and Theorem 10.9, we see that the
spectral gap is equivalent to a large-scale Sobolev inequality. We conclude
thanks to Theorem 11.4. �

Locally compact groups

All the locally compact groups considered here are σ-compact. Recall (see
Section 6.2) that a σ-compact locally compact group can be endowed with a
“large-scale” structure of metric measure space. Let us consider the follow-
ing natural question: is amenability a geometric property among compactly
generated locally compact groups? Recall that a locally compact group is
called amenable if it admits a left invariant mean [21]. By geometric prop-
erty, we mean a property characterized in terms of metric measure space.
Moreover, we expect such a property to be invariant under large-scale equiv-
alence. Følner’s characterization of amenability implies that the answer is
positive when the group is finitely generated. On the opposite, note that any
connected Lie group admits a co-compact amenable subgroup (take for in-
stance a maximal solvable subgroup) and therefore is always quasi-isometric
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to a compactly generated locally compact amenable group. So the answer is
negative in general. Actually, we will see that the answer is yes if and only
if the group is unimodular.

Let G be a σ-compact locally compact group equipped with some proper
left-invariant metric d and with its Haar measure µ. Fix some h > 0. We
define the boundary of a subset A of G by

∂hA = AB(e, h) ∩ AcB(e, h).

It is important to note that the multiplication by elements of B(e, h) is
on the right, so that AB(e, h) has the following metric interpretation:

AB(e, h) = ∪x∈AB(x, h) = [A]h

where [A]h = {x ∈ G, d(x,A) ≤ h}. In particular, this definition of bound-
ary coincides with the one we gave in introduction for a general metric space.

For any sequence of compact subsets with positive measure (Fn) of G
and for every g ∈ G, we define φn(g) = µ(gFn � Fn)/µ(Fn). Note that here,
the multiplication by g is on the left.

Recall [21] that the group G is amenable if and only one of the following
equivalent statements holds:
(1) There exists a sequence (Fn) such that φn(g) is pointwise converging to
zero.
(2) There exists a sequence (Fn) such that φn(g) converges to zero uniformly
on compact sets.
(3) There exists a sequence (Fn) such that µ(QFn ∩ QF c

n)/µ(Fn) → 0 for
every compact subset Q.

If a sequence (Fn) satisfies (1), or equivalently, (2), then it is called a
Følner sequence.

Remark 11.7. Generally, in the definition of Følner sequence, (Fn) is also
asked to be an increasing exhaustion of G (this also characterizes amenabil-
ity).

Here, the multiplication by Q is on the left, so that amenability is not
a priori characterized in terms of isoperimetry, or in other words, in terms
of metric measured space properties. Let us define a geometric version of
amenability.

Definition 11.8. The group G is called geometrically amenable if it admits
a sequence of compact subsets (Fn) such that one of the following equivalent
statements holds:
(1) µ(Fn � Fng)/µ(Fn) → 0 for every g ∈ G.
(2) For every compact subset Q of G,

(11.1) µ(FnQ ∩ F c
nQ)/µ(Fn) → 0.
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Our terminology is justified by the following proposition.

Proposition 11.9. A σ-compact locally compact group G is geometrically
amenable if and only if for h large enough, the isoperimetric profile jG,1

(resp. jG,p for any p ≥ 1) at scale h is unbounded.

Proof. Clearly, (11.1) implies that the large-scale profile jG,1 is unbounded.
Conversely, the negation of (11.1) together with the σ-compacity of G yields
the existence of a compact subset K of G such that for every measurable
subset A with finite measure,

µ(A) ≤ Cµ(AK � A)

for some constant C <∞. Let h be such that K ⊂ B(e, h). It follows that

µ(A) ≤ Cµ(∂hA),

which means that the profile jX,1 at scale h is bounded. �

If G is unimodular, up to replacing Fn with F−1
n , it is equivalent for G to

have left or right Følner sequences. In particular, if a group is unimodular,
then it is geometrically amenable if and only if it is amenable.

Lemma 11.10. If the group G is non-unimodular, then it satisfies the fol-
lowing isoperimetric inequality for h large enough

µ(∂hA) ≥ cµ(A) ∀A ⊂ G

where c is some positive constant.

Proof. Let δ be the modular function of G. Since G is non-unimodular,
there exists g ∈ G such that δ(g) > 1. So, choosing h large enough, we can
assume that g ∈ B(e, h). Then for any compact subset A ⊂ G, we have

µ(∂hA) ≥ µ(Ag � A) ≥ µ(Ag) − µ(A) = (δ(g) − 1)µ(A). �
Proposition 11.11. Let G be a σ-compact locally compact group equipped
with a left Haar measure. Then G is amenable and unimodular if and only if
it admits a geometric Følner sequence. In particular if G is compactly gen-
erated, then G is amenable and unimodular if and only if it is geometrically
amenable.

Proof. This is a direct consequence of Lemma 11.10 and of the above
discussion. �

Recall that quasi-isometries between homogeneous metric measure spaces
are large-scale equivalences. We have the following corollaries to Theo-
rem 8.1.
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Corollary 11.12. Geometric amenability is invariant under large-scale equiv-
alence between σ-compact locally compact groups.

Corollary 11.13. Geometric amenability is invariant under quasi-isometry
between compactly generated locally compact groups.

The following corollary follows from Propositions 11.11, 6.6 and Theo-
rem 8.1.

Corollary 11.14. A compactly generated locally compact group is not geo-
metrically amenable if and only if it is quasi-isometric to a graph with posi-
tive Cheeger constant.

Corollary 11.15. Being amenable and unimodular is invariant under large-
scale equivalence between σ-compact locally compact groups.
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