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On the verbal width of finitely
generated pro-p groups

Andrei Jaikin-Zapirain

Abstract
Let p be a prime. It is proved that a non-trivial word w from a

free group F has finite width in every finitely generated pro-p group
if and only if w �∈ (F ′)pF ′′. Also it is shown that any word w has
finite width in a compact p-adic group.

1. Introduction

Let F be a free group on k independent generators. We will call an element w
from F a word. If G is a group, then we say that g ∈ G is a w-value in G if
there are g1, . . . , gk ∈ G such that g = w(g1, . . . , gk)

±1. We denote the set of
the all w-values in G by G{w}. A simple argument (see [6]) shows that if G
is profinite, then w(G) (the abstract subgroup generated by G{w}) is closed
if and only if there exists l such that any element from w(G) is a product
of at most l elements from G{w}. The smallest such number l is called the
width of w in G.

In this paper we consider a particular case of the following question:
which words do have finite width in a finitely generated profinite group G?
The most important achievement in this subject is a recent work of N. Niko-
lov and D. Segal (see [13]), where they proved that if w is either d-locally
finite or w is a simple commutator, then w has finite width in any d-generated
profinite group G (we recall that a group word w is d-locally finite if every
d-generator group H satisfying w(H) = 1 is finite).

The main result of this paper is as follows.

Theorem 1.1. Let w �= 1 be an element of a free group F . Then the
following are equivalent:

1. w(H) is closed for every finitely generated pro-p group H;

2. w �∈ (F ′)pF ′′.
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The proofs of two implications in Theorem 1.1 are quite different. In
order to prove 2 ⇒ 1 we characterize the words w ∈ F satisfying w �∈
(F ′)pF ′′. We say that w is a Np-word if for every finitely generated pro-p

group H , H/w(H) is nilpotent-by-finite, where w(H) denotes the closure of
w(H) in H . For example, xpn

is a Np-word by Zelmanov’s solution of the
restricted Burnside problem. An Engel word is another example of Np-word
(see [21]).

Theorem 1.2. Let w be an element of a free group F . Then the following
are equivalent:

1. w is a Np-word;

2. if H is a free pro-p group on two generators then H/w(H) is nilpotent-
by-finite;

3. w(Cp � Z) �= {1};
4. w �∈ (F ′)pF ′′.

This theorem reduces the proof of the implication 2 ⇒ 1 from The-
orem 1.1 to the case when H is virtually nilpotent. This case is solved
using the following more general result, which also answers a question posed
by L. Pyber:

Theorem 1.3. Let G be a compact p-adic analytic group. Then any word w
of a free group F has finite width in G.

Note that in Theorem 1.3 we do not assume that G is a pro-p group.
In order to prove other implication from Theorem 1.1 we show that if

w ∈ (F ′)pF ′′ and H is a non-abelian free pro-p group, then H{w} is “very
small” (more concretely we show that no power of H{w} can contain a non-
trivial normal subgroup of H).

We use the following notation. If S is a set and m is a natural number
then S(m) denotes the cartesian product of m copies of S. If S is a subset
of a group H , then S∗m is the set of all products s±1

1 · · · s±1
n , where n ≤ m

and si ∈ S. We will also use the same notation when the operation in H is
additive, so in this case S∗m = {±s1 ±· · ·±sn | n ≤ m, si ∈ S}. We will say
that S has finite width in H if there exists l such that the subgroup 〈S〉
generated by S is equal to S∗l. We use [ , ]L to denote the Lie bracket and
simply [ , ] for the group commutator.

Acknowledgements. I began work on Theorem 1.1 in collaboration with
Pavel Shumyatsky, and thank him for kindly urging me to publish this con-
tribution under my name, as well as for helpful conversations. Also I would
like to thank Laci Pyber and Dan Segal for useful comments on preliminary
versions of this paper.
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2. Proof of Theorem 1.3

In the following | |p is the standard p-adic valuation on Qp: if a ∈ pkZp \
pk+1Zp, then |a|p = p−k. Let X = (X1, . . . , Xm) be m commuting indetermi-
nates and let Qp[[X]] denote the set of formal power series over Qp. The ring
Qp{X} of restricted power series in X over the p-adic field Qp consists of the
formal power series

∑
i aiX

i in Qp[[X]] such that |ai|p → 0 as |i| → ∞. Here

i = (i1, . . . , im) ranges over Z
(m)
≥0 , |i| = i1 + · · · + im, X i = X i1

1 · · ·X im
m . Let

f =
∑

i aiX
i be in Qp{X} and x ∈ Z

(m)
p . Then the series

∑
i aix

i converges
to a limit in Qp which we denote by f(x). The subring Zp{X} of Qp{X}
consists of the series

∑
i aiX

i in Qp{X} all of whose coefficients are in Zp.

Let L = (Z
(m)
p , +). We will consider L as a p-adic manifold. Hence for

each points a of L we can define a local ring Ha at a with the maximal
ideal ma. The dual of ma/m

2
a is the tangent space of L at a and it is denoted

by TaL. If K is another p-adic manifold and g : K → L is an analytic map,
then the induced map of the tangent spaces TxK → TyL (y = g(x)) is
denoted by Txg. For details, see [18, Part II. Chapter III]. We denote the
element (0, . . . , 0) by e.

Lemma 2.1. Let Y = (Y1, . . . , Yn) and f = (f1, . . . , fm) be a m-tuple con-
sisting of m formal power series from Zp{Y } such that f(e) = e. Put

S = f(Z(n)
p ) = {(f1(x), . . . , fm(x)) | x ∈ Z(n)

p } ⊆ Z(m)
p .

Then the width of S in (Z
(m)
p , +) is finite.

Proof. Put K = Z
(n)
p and L = (Z

(m)
p , +) and let A be the closed subgroup

of L generated by S. If L1 = {l ∈ L|pkl ∈ A for some k}, then we can find
a subgroup L2 of L such that L = L1 ⊕ L2. We can choose new coordinates
{x1, . . . , xm} of L such that L1 is given by equations {xs+1 = · · · = xm = 0}.
Then in new coordinates the map f looks like (h1, . . . , hs, 0, . . . , 0). Hence,
without loss of generality, we can suppose that S generates an open subgroup
in L. We may clearly assume that L �= 0.

For any a ∈ K define ga(Y ) = f(Y ) − f(a). Then ga is an analytic map
from K to L and ga(a) = e. This analytic map induces a map between the
tangent space Taga : TaK → TeL. Let us calculate the image of this map.

Let ∂i be the partial derivation with respect to the ith coordinate. Then
the functionals ei : ma/m

2
a → Qp defined by ei(q) = (∂iq)(a) form a basis

of TaK. In the same way the functionals hi : me/m
2
e → Qp defined by

hi(q) = (∂iq)(e) form a basis of TeL.
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Notice that (Taga)(ei)(xj) = ei(fj − fj(a)) = ∂ifj(a). Thus,

(Taga)(ei) =

m∑
j=1

∂ifj(a)hj .

Now consider the subspace of TeL generated by all images of Taga for
all a. If this subspace is different from TeL, then there are constants
α1, . . . , αm, not all zero, such that for all a ∈ K and 1 ≤ i ≤ N ,

0 =

m∑
j=1

αj∂ifj(a) = ∂i

( m∑
j=1

αjfj

)
(a).

Thus ∂i(
∑m

j=1 αjfj) = 0 for all i. Hence g =
∑m

j=1 αjfj is a constant func-
tion. But since g(e) = e, g is the zero function. But this contradicts the
assumption that S generates an open subgroup in L.

Hence the subspace of TeL generated by all images of Taga is equal to
TeL. Therefore we can find m elements a1, . . . am in K such that

(2.1) Ta1ga1(Ta1K) + · · · + Tamgam(TamK) = TeL.

Define a map h from K(m) to L by h(b1, . . . , bm) = ga1(b1) + · · · + gam(bm).
Put b = (a1, . . . , am). Then, by 2.1, Tbh(TbK

(m)) = TeL. Hence from
[18, Theorem 10.2, p.85] we obtain that h is a submersion and so h(K(m))
contains an open in L subset. Thus S∗m contains an open in A = 〈S〉 subset.

Since A is a profinite group, there exists an open subgroup B of A and a ∈
A such that a + B ⊆ S∗m. Since A = S∗l + B for some l, A = S∗(m+l). �

Recall that a pro-p group G is called powerful if [G, G] ≤ Gp when
p > 2 or [G, G] ≤ G4 when p = 2. We say that a finitely generated pro-p
group G is uniform if G is powerful and without torsion. A uniform Zp-
Lie lattice is a Lie ring L such that L is a finitely generated free Zp-module
and [L, L]L ≤ pL when p > 2 or [L, L]L ≤ 4L when p = 2. According to
Lazard (see, for example, [4]), there is an equivalence between the category
of uniform pro-p groups and the category of uniform Zp-Lie lattices. The
uniform Zp-Lie lattice H corresponding to a uniform pro-p group H has H
itself as its underlying set and the Lie ring operations are given in terms of
the group operations as follows: for all z ∈ Zp and all x, y ∈ H we have

z · x = xz,

g + h = lim
n→∞

(gpn

hpn

)p−n

,

[g, h]L = lim
n→∞

[gpn

, hpn

]p
−2n

.

(2.2)
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Conversely, given a uniform Zp-Lie lattice H of rank m, the uniform pro-p
group H corresponding to H can be constructed via the Baker-Campbell-
Hausdorff formula. Its underlying set is again H, and the group product of
x, y ∈ H is given by xy = Φ(x, y). Recall that the Baker-Campbell-Hausdorff
formula is Φ(x1, x2) = log(ex1ex2) regarded as a formal power series in two
non-commuting variables (see [4, Section II.6.5]).

From now on we fix a system of free Zp-generators of H. Thus to any

element x from H corresponds a m-tuple (x1, . . . , xm) from Z
(m)
p . We will

refer to this m-tuple as coordinates of x and we will regard H (and so H) as

Z
(m)
p . Then, by [2, Proposition II.8.1]), the multiplication in H is given by

a m-tuple (F1, . . . , Fm) where Fi ∈ Zp{X}.
Corollary 2.2. Let Y = (Y1, . . . , Yn) and f = (f1, . . . , fm) be a m-tuple
consisting of m formal power series from Zp{Y }. Put

S = f(Z(n)
p ) = {(f1(x), . . . , fm(x)) | x ∈ Z(n)

p } ⊆ H.

Suppose that f(e) = e and the group generated by S is abelian. Then the
width of S in H is finite.

Proof. Since the group 〈S〉 is abelian, we can apply Lemma 2.1, because
the width of S in H is the same as the width of S in (H, +). �

Lemma 2.3. Let Y = (Y1, . . . , Yn) and f = (f1, . . . , fm) be a m-tuple con-
sisting of m formal power series from Zp{Y }. Put

S = f(Z(n)
p ) = {(f1(x), . . . , fm(x)) | x ∈ Z(n)

p } ⊆ H.

Suppose that f(e) = e and S is a normal set in H. Then the width of S
in H is finite.

Proof. Let T be the closed subgroup generated by S. Since S is a normal
set in H , T is a normal subgroup of H . Hence the set

R = {x ∈ H|xpk ∈ [T, T ] for some k}
is also normal subgroup in H . Put H̄ = H/R. Note that H̄ is a uniform
pro-p group. Moreover, R is an ideal of H. Hence we can choose new
coordinates {x1, . . . , xm} of H in such way that R is defined by equations
{x1 = · · · = xs = 0}. Suppose that in these new coordinates the map f looks
like (g1, . . . , gm). Note that the first s coordinates (x1, . . . , xs) of H determine
uniquely an element x̄ from H and they are coordinates of x̄ with respect
to some system of Zp-generators of H. Thus, the composition of f with the
natural epimorphism to H looks like (g1, . . . , gs). Since the set S̄ = SR/R
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generates an abelian subgroup in H̄, we obtain from the previous corollary
that there exists l1 such that T = S∗l1R. On the other hand R/[T, T ] is
finite, whence we also obtain that T = S∗l2 [T, T ] for some l2.

Since H is uniform, T is finitely generated. Let t1, . . . , tl ∈ S be the
generators of T as a pro-p group. Then [T, T ] = [t1, T ] · · · [tl, T ] (see [4,
Proof of Proposition 1.19]) and so, since S is normal, [T, T ] ⊆ S∗2l. Hence
T = S∗(2l+l2). �
Proof of Theorem 1.3 . Since G is p-adic analytic, G has an open uniform
normal pro-p subgroup H (see [4, Corollary 8.34]). Let {ai | 1 ≤ i ≤ |G : H|}
be a tranversal of G over H . For each i = (i1, . . . , ik) define the function
gi : H(2k) → H by means of

gi(h1,i, . . . , h2k,i) = w(ai1h1,i, . . . , aikhk,i)w(ai1hk+1,i, . . . , aikh2k,i)
−1.

Choose any order on k-tuples and put f =
∏

i gi. Then f is a function from

H2k|G:H|k to H . Moreover, if we regard H as Z
(m)
p then f is an m-tuple of

functions from Zp{Y }, where Y = (Y1, . . . , Yn) and N = 2Mk|G : H|k. Put

S = f(Z
(n)
p ) and let T be the closed subgroup generated by S.

If h, h1, . . . , hk ∈ H and 1 ≤ i1, . . . , ik ≤ |G : H|, then

w(ai1h1, . . . , aikhk)
h = w(ai1[ai1 , h]hh

1 , . . . , aik [aik , h]hh
k).

Therefore S is a normal set in H , and so, T is a normal subgroup of G.
By the previous lemma, there exists l such that T = S∗l. Since S∗l ⊆
(G{w})∗2lMk|G:H|k, we obtain that T ⊆ (G{w})∗m1 for some m1 .

Consider the group Ḡ = G/T . Note that the word w takes only finitely
many different values in Ḡ. Since Ḡ is a p-adic analytic group, it is linear.
Hence, by Merzlyakov’s solution of Hall’s problem for linear groups [10],
w(Ḡ) = w(G)/T is finite. Thus, w(G) = (G{w})∗m2T = (G{w})∗(m1+m2) for
some m2. �

We recall that P. Hall’s question is

Question. Let G be a group and w a word from a free group. Suppose that
the word w takes only finitely many different values in G. Is it true that
w(G) is finite?

S. Ivanov [8] answered this question for arbitrary groups in the negative;
he constructed a group H and a word w(x, y) such that w(H) is infinite
cyclic but w(x, y) has only one non-trivial value in H . Ivanov’s example is
not residually finite. So as far as I know, P. Hall’s question for profinite
groups is still open.
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3. Verbal subgroups corresponding to Np -words

In this section we prove that if H is a finitely generated pro-p group then
w(H) is closed for any Np-word w. First we prove Theorem 1.2.

Proof of Theorem 1.2. The implications 1 ⇒ 2 ⇒ 3 ⇒ 4 are clear.
Suppose now that the third condition holds. If w is not a Np-word, then

by [3] (see also [17]), there is a finitely generated non p-adic analytic pro-p
group H such that w(H) = 1. From [19] it follows that w(Cp � Z) = 1, a
contradiction. Hence 3 ⇒ 1.

Now 4 ⇒ 3 follows, for example, from [11, Theorem 22.43]. �
Theorem 3.1. Let w be a Np-word and G a finitely generated pro-p group.
Then w(G) is closed.

Proof. Let d = d(G) and H be a free pro-p group on generators x1, . . . , xd, z.
Since w is a Np-word, γn(Hpt

) ≤ w(H) for some n and t.

Denote by y1, . . . , ys generators of 〈x1, . . . , xd〉pt. Note that yi are pro-p
words in xi (and do not involve z). By Theorem 1.3, there exists k such that
for any, i1, . . . , in ∈ {1, . . . , s},

[z, yi1 , yi2, . . . , yin] ≡ vi1,...,in (mod γn+2(H
pt

)),

where vi1,...,in is a product of at most k w-values in H . Thus,

vi1,...,in(x1, . . . , xd, z) = [z, yi1 , yi2, . . . , yin]ri1,...,in(x1, . . . , xd, z)

with ri1,...,in(x1, . . . , xd, z) ∈ γn+2(H
pt

).
Let h1, . . . , hd be generators of G.

Claim 1. Let a ∈ γm(Gpt
), g ∈ G and r ∈ γl(H

pt
). Then

r(h1, . . . , hd, g) ≡ r(h1, . . . , hd, ga) (mod γm+l−1(G
pt

)).

When l = 1, the claim is clear. The general case follows by induction on l.

Claim 2. γn+1(G
pt

) =
∏

i1,...,in
vi1,...,in(h1, . . . , hd, G

pt
).

By induction on m we prove that if m ≥ n + 1 then

γn+1(G
pt

) =
∏

i1,...,in

vi1,...,in(h1, . . . , hd, H
pt

)γm(Gpt

).

This implies the claim because the set
∏

i1,...,in

vi1,...,in(h1, . . . , hd, H
pt

)

is closed.
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The base of induction m = n + 1 is clear. Suppose it holds for m. Let
prove it for m + 1. Let h ∈ γn+1(G

pt
). By the inductive hypothesis, there

are gi1,...,in ∈ Hpt
and u ∈ γm(Gpt

) such that

h =
∏

i1,...,in

vi1,...,in(h1, . . . , hd, gi1,...,in)u.

We can write

u ≡
∏

i1,...,in

[ti1,...,in, ỹi1 , . . . , ỹin] (mod γm+1(G
pt

)),

where ỹj = yj(h1, . . . , hd) and ti1,...,in ∈ γm−n(Gpt
). Thus,

h ≡
∏

i1,...,in

[gi1,...,inti1,...,in, ỹi1, . . . , ỹin]ri1,...,in(h1, . . . , hd, gi1,...,in)

(mod γm+1(G
pt

)).

By Claim 1,

ri1,...,in(h1, . . . , hd, gi1,...,in) ≡ ri1,...,in(h1, . . . , hd, gi1,...,inti1,...,in)

(mod γm+1(G
pt

)).

Hence we have

h ≡
∏

i1,...,in

vi1,...,in(h1, . . . , hd, gi1,...,inti1,...,in) (mod γm+1(G
pt

)).

This finishes the proof of the claim.
It follows that the closed subgroup γn+1(G

pt
) is contained in w(G).

We may therefore apply Theorem 1.3 and deduce that

w(G)/γn+1(G
pt

) = w(G/γn+1(G
pt

)

is closed. Hence w(G) is closed. �

4. Words of infinite width

In this section we prove that if F is a non-abelian free group and 1 �= w ∈
(F ′)pF ′′, then w(H) is not closed in a free finitely generated non-abelian free
pro-p group H . These examples generalize the example of Roman’kov [15]
who proved the same statement for w = [[x, y], [z, u]].

Theorem 4.1. Let F be a non-abelian free group, p a prime number and H
a non-abelian finitely generated free pro-p group. Suppose that 1 �= w ∈
(F ′)pF ′′. Then the verbal subgroup w(H) is not closed.
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We explain first the strategy of the proof of this theorem. We suppose
the contrary, that there exists k such that any element of w(H) is a product
of at most k w-values in H . Hence since w ∈ (F ′)pF ′′ there exists a number l
depending on w such that any element of w(H) is a product of at most l
values of the word xp[y, z] in H ′. Now, note that H ′ is a free pro-p group
of infinite rank and w(H) is a normal subgroup of H ′. Then the following
proposition leads us to a contradiction.

Proposition 4.2. 1. Let K be a free pro-p group of rank d and {1} �= N a
closed normal subgroup of K. Then there exists an element g ∈ N such that
g cannot be represented as a product of less than [d/3] values of the word
xp[y, z] in K.

2. Let K be a free pro-p group of infinite rank and {1} �= N a closed
normal subgroup of K. Then for any l ∈ N there exists an element g ∈ N
such that g cannot be represented as a product of less than l values of the
word xp[y, z] in K.

Before the proof of the proposition we present an auxiliary result. For
any pro-p group G, let Di(G) be the ith dimension subgroup of G (see
e.g. [4, Chapter 11]). Let K be a free pro-p group of rank d and {1} �= N a
closed normal subgroup of K. Put Ni = N ∩Di(K) and define the following
numbers:

ai = logp |Di(K) : Di+1(K)|, bi = logp |K : Di+1(K)|,
ci = logp |Ni : Ni+1|, di = logp |N : Ni+1| = logp |NDi+1(K) : Di+1(K)|.

Lemma 4.3. When n tends to infinity the following holds

1. an = dn

n
(1 + o(1));

2. bn = dn+1

(d−1)n
(1 + o(1));

3. cn = dn

n
(1 + o(1));

4. dn = dn+1

(d−1)n
(1 + o(1)).

Proof. Let L be a free Lie algebra generated by d elements. Then L can be
graded in a standard way if we suppose that free generators are elements of
degree 1. Then we can write L = ⊕iLi. The following formula

dim Li = Md(n) =
1

n

∑
k|n

µ(k)dn/k

is well-known. Moreover, Md(n) = dn

n
(1 + o(1)) (see [7, Chapter VIII]).
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Recall that if G is a pro-p group, then Lp(G) = ⊕Di(G)/Di+1(G) has
the structure of a restricted Lie Fp- algebra. Moreover, Lp(K) is a free
p-restricted Lie Fp-algebra. The construction of a free Lie restricted Fp-
algebra from a free Lie Fp-algebra is described, for example, in [2, Exer-
cise 2.3.4]. It follows that if n = psm, where m and p are coprime, then

an = logp |Dn(K) : Dn+1(K)| =

s∑
k=0

Md(mpk).

This is an easy exercise to obtain from this that an = dn

n
(1 + o(1)).

Now, since

lim
n→∞

an = lim
n→∞

bn = ∞ and lim
n→∞

an+1 − an

bn+1 − bn
=

d − 1

d
,

we obtain that limn→∞ an

bn
= d−1

d
. Hence bn = dn+1

(d−1)n
(1 + o(1)).

Put G = K/N . Then p-enveloping algebra of Lp(G) is a proper quo-
tient of a free Fp-algebra on d-generators. Hence, by [5] (see also [12, Theo-
rem 3.1] and [14, Theorem 15]), there exists α < d such that

ai − ci = logp |Di(G)/Di+1(G)| ≤ αn

when n tends to infinity. This inequality with the previous estimation for
an implies that cn = dn

n
(1 + o(1)). As in the case bn, we obtain that dn =

dn+1

(d−1)n
(1 + o(1)). �

Now we are ready to prove Proposition 4.2.

Proof of Proposition 4.2. 1. Put Vn = {gp
1[g2, g3] ∈ K/Dn+1(K) | gi ∈

K/Dn+1(K)}. Then, by Lemma 4.3,

|Vn| ≤ |K/Dn(K)|3 = p3bn−1 = p
3dn

(d−1)(n−1)
(1+o(1)).

On the other hand applying again Lemma 4.3, we obtain that

|NDn+1(K)/Dn+1(K)| = p
dn+1

(d−1)n
(1+o(1)).

Comparing these two expressions we obtain 1.

2. In order to prove 2, it is enough to observe that for any d > 1, a free
pro-p group of infinite rank is residually-free pro-p of rank d. Hence for any
d > 1 there exists a homomorphism of K onto a free pro-p group of rank d
such that the image of N is not trivial. Then we can apply 1. Since d is
arbitrary, we obtain 2. �
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Remark 4.4. The first statement of Proposition 4.2 has the following in-
terpretation. For any closed subset V of K define its Hausdorff dimension
(see [1]):

dimH V = lim inf
n→∞

log |V Dn(K) : Dn(K)|
log |K : Dn(K)| .

In the proof of Proposition 4.2 we have shown that dimH N = 1 for any
nontrivial normal subgroup N of K and dimH K{xp[y,z]} ≤ 3

d
.

5. Final remarks

5.1. The finite verbal width and the Restricted Burnside Problem

If H is a finitely generated pro-p group and w = xpn
, then all known proofs

that w(H) is closed use the Zelmanov’s solution of the Restricted Burnside
Problem. For example, from Zelmanov’s result it follows that w is a Np-word
and then we can apply Theorem 3.1. In [16, page 53], Dan Segal suggested
that it would be very interesting to prove that Hpn

is closed without ap-
pealing to Zelmanov’s result. Using the ideas of the previous section we will
show that it would give an alternative solution of the Restricted Burnside
Problem.

Theorem 5.1. Let F be a free group and w ∈ F . Put t = wp. Then if t(G)
is closed for any finitely generated pro-p group G, then w(G) is open for any
finitely generated pro-p group G.

Proof. Note that in the proof of Theorem 3.1 we have used the solution of
the Restricted Burnside Problem (we needed Hps

to be open). However, if
we assume that w satisfies a stronger condition: G/w(G) is nilpotent for any
finitely generated pro-p group G, then we obtain that w is of finite width
without appealing to the solution of the Restricted Burnside Problem.

Let, now, H be a non abelian finitely generated free pro-p group and
w(H) the closure of w(H) in H . First we assume that w(H) is not open.
Since H is a non-abelian free pro-p group, then w(H) is a free pro-p group
of infinite rank. Now, using the argument of the proof of Theorem 4.1, we
obtain that t(H) is not closed.

Hence we can assume that w(H) is open. In particular, H/w(H) is
nilpotent. Thus, from the first paragraph we obtain that w(H) is also closed
and so open. �

5.2. Pronilpotent groups

In this subsection we show how our previous results on pro-p groups can
be generalized on pronilpotent groups. The possibility of this generalization
has been suggested to us by Dan Segal.
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We say that w is a N -word if for any finitely generated pronilpotent
group H , H/w(H) is nilpotent-by-finite, where w(H) denotes the closure of
w(H) in H . The following characterization of N -words is due to Dan Segal.

Theorem 5.2. Let w be an element of a free group F . Then the following
are equivalent

1. w is a N -word;

2. w is a Np-word for all primes p.

Proof. The implication 1 ⇒ 2 is clear. Let us prove 2 ⇒ 1.
Let d be a natural number, U a free group on d generators and T the

maximal residually nilpotent quotient of U/w(U). Since w is a N2-word,
the pro-2 completion T2̂ of T is virtually nilpotent, and so of finite rank.
Using [9, Lemma 9, page 386], we obtain that there exists a finite set π of
primes such that T is embedded in

∏
p∈π Tp̂. Applying again that w is a

Np-word for all primes p ∈ π, we conclude that T is virtually nilpotent.

Let now H be a finitely generated pronilpotent group and H̄ = H/w(H).
Put d = d(H). Let T1 be a dense d-generated subgroup of H̄ . Then, T1 is a
quotient of T . Hence T1 and H̄ are virtually nilpotent. �

Now, we are ready to prove the main theorem of this subsection.

Theorem 5.3. Let 1 �= w be an element of a free group F . Then the
following two statements are equivalent:

1. w(H) is closed for every finitely generated pronilpotent group H;

2. w �∈
⋃

p prime

(F ′)pF ′′.

Proof. The implication 1 ⇒ 2 follows from Theorem 1.1. Now assume that
w �∈ ∪p(F

′)pF ′′. Then by Theorems 1.2 and 5.2, w is a N -word. We will
argue as in the proof of Theorem 3.1.

Let G be a finitely generated pronilpotent group, d = d(G) and H a
free pronilpotent group on generators x1, . . . , xd, z. Since w is a N -word,
γn(H t) ≤ w(H) for some n and t. We write G as G = G1 × G2, where G1

is the product of all the Sylow pro-p subgroups with p ∈ π(t) and G2 is the
product of the rest of the Sylow pro-p subgroups. In the same way we write
H = H1 × H2. Note that w(G) is closed if and only w(G1) and w(G2) are
closed. Since w(G1) is closed by Theorem 1.1, it is enough to prove only
that w(G2) is closed.
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By our construction of H2 we have that γn(H2) ≤ w(H2). Repeating
the argument from the proof of Theorem 3.1, we obtain that any element of
γn(G2) is a product of a bounded number of w-values in G2. The Stroud-
Roman’kov theorem [20, 15] says that any word w has a finite width in a
finitely generated nilpotent group. If the word w has width at most l in the
free d-generator nilpotent group of class n − 1, then w has width at most l
in every finite quotient of this group; consequently w(G2/γn(G2)) is closed.
Thus we conclude that w(G2) is also closed. �
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