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Sampling Sets for the Nevanlinna class

Xavier Massaneda and Pascal J. Thomas

Abstract

We propose a definition of sampling set for the Nevanlinna and
Smirnov classes in the disk and show its equivalence with the notion of
determination set for the same classes. We also show the relationship
with determination sets for related classes of functions and deduce a
characterization of Smirnov sampling sets. For Nevanlinna sampling
we give general conditions (necessary or sufficient), from which we
obtain precise geometric descriptions in several regular cases.

1. Introduction

Let Λ be a subset in the unit disk D. In general Λ is called sampling for a
space of holomorphic functions X when any function f ∈ X is determined
by its restriction f |Λ, with control of norms. For Banach spaces X it is
usually clear what that control of norms means, but for the spaces we have
in mind the situation is not so obvious. Consider the Nevanlinna class

N =
{
f ∈ Hol(D) : lim

r→1

1

2π

∫ 2π

0
log+ |f(reiθ)| dθ <∞

}
,

which is not a Banach space, but enjoys the structure of complete metric
space with the distance d(f, g) = N(f − g) induced by

N(f) = lim
r→1

1

2π

∫ 2π

0
log(1 + |f(reiθ)|) dθ .

The subharmonicity of log(1 + |f |) yields the pointwise estimate

(1 − |z|) log(1 + |f(z)|) ≤ 2N(f),

which shows that convergence in the distance d implies uniform convergence
on compact sets [11, Proposition 1.1].
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The Nevanlinna class N coincides with the set of functions f ∈ Hol(D)
such that log(1+|f |) admits a harmonic majorant (see [4, p.69] or (2.2) later
on). The value N(f) can then be rewritten in terms of an extremal problem
for harmonic majorants. Let Har+(D) denote the space of non-negative
harmonic functions in the disk; then

N(f) = inf{h(0) : h ∈ Har+(D) with log(1 + |f |) ≤ h} .

This expression makes sense for any f measurable in D, in particular for
a restriction f |Λ extended to be 0 on D \ Λ, and suggests the following
definition.

Definition. A set Λ is sampling for N if there exists C > 0 such that

N(f) ≤ N(f |Λ) + C ∀f ∈ N .

In Section 2 we study first the relationship between Nevanlinna sam-
pling sets and determination sets for the same class and for the space H∞ of
bounded holomorphic functions. We prove that sampling and determination
sets for N are the same. Also, from the characterization of H∞ determi-
nation sets given by Brown, Shields and Zeller [2] we deduce a complete
description of sampling sets for the Smirnov class

N+ =
{
f ∈ N : lim

r→1

∫ 2π

0
log+ |f(reiθ)| dθ

2π
=

1

2π

∫ 2π

0
log+ |f ∗(eiθ)| dθ <∞

}
.

Here f ∗(eiθ) denotes the non-tangential limit of f at the boundary point eiθ.
Next we study the relationship between sampling sets for N and de-

termination sets for the class Har±(D) of harmonic functions which can be
written as the difference of two positive harmonic functions. This is relevant
because the Riesz-Smirnov factorization implies that for any f ∈ N there
exist a Blaschke product B and h ∈ Har±(D) such that log |f | = log |B|+h.
From the characterization of determination sets for Har±(D) given by Hay-
man and Lyons [5] we deduce a necessary geometric condition for sampling
in N . Some examples show that this condition is far from being sufficient.

In Section 3 we give general conditions for Nevanlinna sampling (Theo-
rem 3.2), which in Section 4 are used to obtain a precise geometric descrip-
tion for three different types of regular sampling sets: fine nets of points,
regular sequences on circles tending to the unit circle, and uniformly dense
unions of hyperbolic disks, as considered by Ortega-Cerdà and Seip in [8].

A final remark about notation. The expression A � B means that there
exists a constant C > 0, independent of whatever arguments are involved,
such that A ≤ CB. If both A � B and B � A then we write A � B.
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2. Determination sets and necessary conditions

In this section we describe the relationship between our definition of sam-
pling and other related notions studied previously.

2.1. Sampling and determination sets

We begin with an easy observation: in the definition of sampling given in
the introduction N(f) can be equivalently replaced by

N+(f) = lim
r→1

1

2π

∫ 2π

0
log+ |f(reiθ)|dθ

= inf{h(0) : h ∈ Har+(D) with log+ |f | ≤ h} .
This is an immediate consequence of the inequalities

log+ |f | ≤ log(1 + |f |) ≤ log 2 + log+ |f | .
Also, if we use N+(f) instead of N(f) the constant C can be assumed to

be 0, as the following Lemma shows.

Lemma 2.1. A set Λ is sampling for N if and only if N+(f) = N+(f |Λ)
for all f ∈ N .

Proof. Of course, we only need to see that the equality is necessary. Since
N is an algebra, the sampling inequality N+(f) ≤ N+(f |Λ) + C yields
automatically

N+(fn) ≤ N+(fn|Λ) + C ∀f ∈ N ∀n ∈ N .

By definition N+(fn) = nN+(f), so

N+(f) ≤ N+(f |Λ) +
C

n
∀f ∈ N ∀n ∈ N ,

and the result follows letting n tend to ∞. �
Let us consider also two related notions for a set Λ in D. A priori, one

seems weaker and the other stronger than the sampling property.

Definition. A set Λ is a determination set for N if N ∩L∞(Λ) ⊂ H∞, i.e.
if any f ∈ N with supΛ |f | <∞ must be bounded on the whole unit disk.

A set Λ is strongly sampling for N if whenever f ∈ N and h ∈ Har+(D)
are such that log+ |f(λ)| ≤ h(λ) for all λ ∈ Λ, then necessarily log+ |f | ≤ h.

When Λ is strongly sampling the distance d(f, g) between two functions
f, g ∈ N coincides with the distance between their restrictions f |Λ and g|Λ.
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Remark 1. A set Λ is a determination set for H∞ when ‖f‖∞ = supΛ |f |
for all f ∈ H∞. It is easy to see that determination sets for N are also
determination sets for H∞, which therefore satisfy ‖f‖∞ = supΛ |f | for
all f ∈ N .

Indeed, assume that there exists f ∈ H∞ such that ‖f‖∞ = 1 and
supΛ |f | = s < 1. Take {zk}k ⊂ D such that limk |f(zk)| = 1 and consider
any accumulation point ζ ∈ T of {f(zk)}k. Then the function g = 1/(ζ − f)
belongs to N , is not bounded, but supΛ |g| ≤ 1/(1 − s).

Brown, Shields and Zeller showed that Λ is a determination set for H∞ if
and only if the set NT (Λ) consisting of the ζ ∈ T which are a non-tangential
limit of points in Λ has full measure, i.e. |NT (Λ)| = 2π [2]. It was shown
in [12] that the same condition also characterizes sampling sets for the Hardy
spaces Hp (0 < p <∞), if appropriately defined. This condition is therefore
necessary for Λ to be a determination set for N .

Our first result shows that the previous notions are all equivalent.

Theorem 2.2. Let Λ be a subset of D. The following properties are equiv-
alent:

(a) Λ is a sampling set for N .

(b) Λ is a determination set for N .

(c) Λ is a strongly sampling set for N .

It is clear from (c) that the sampling property is invariant under auto-
morphisms of the disk: if Λ is sampling for N and φ(z) = eiθ z−a

1−āz , a ∈ D, is
an automorphism of D, then φ(Λ) is also sampling for N .

Before the proof we need to recall some well-known facts about the struc-
ture of the Nevanlinna class (general references are e.g. [4], [7] or [9]).

For a set Z ⊂ D with multiplicities, the Blaschke product with zeros
on Z is

BZ(z) :=
∏
a∈Z

ā

|a|
a− z

1 − zā
,

where the points are repeated according to multiplicities. This is convergent,
not identically equal to 0, if and only if

∑
a∈Z(1−|a|) <∞. When this is the

case, we say that Z is a Blaschke sequence, or verifies the Blaschke condition.
A function f is called outer if it can be written in the form

f(z) = C exp

{ ∫ 2π

0

eiθ + z

eiθ − z
log v(eiθ)

dθ

2π

}
,

where |C| = 1, v > 0 a.e. on T and log v ∈ L1(T). Such a function is
the quotient f = f1/f2 of two bounded outer functions f1, f2 ∈ H∞ with



Sampling Sets for the Nevanlinna class 357

‖fi‖∞ ≤ 1, i = 1, 2. In particular, the weight v is given by the boundary
values of |f1/f2|. Setting w = log v, we have

log |f(z)| = P [w](z) :=
∫ 2π

0
Pz(e

iθ)w(eiθ)
dθ

2π
,

where

Pz(e
iθ) :=

1 − |z|2
|eiθ − z|2

denotes the Poisson kernel at z ∈ D.
In general, for any finite measure µ on T, the Poisson integral of µ is the

harmonic function given by

P [µ](z) :=
∫ 2π

0
Pz(e

iθ) dµ(θ).

Another important family in this context are inner functions: I ∈ H∞

such that |I| = 1 almost everywhere on T. Any inner function I can be
factorized into a Blaschke product B carrying the zeros of I, and a singular
inner function S defined by

S(z) = exp

{
−

∫ 2π

0

eiθ + z

eiθ − z
dµ(eiθ)

}
,

for some positive Borel measure µ singular with respect to Lebesgue measure.
According to the Riesz-Smirnov factorization, any function f ∈ N is

represented as

(2.1) f = α
BS1f1

S2f2
,

with fi outer, ‖fi‖∞ ≤ 1, Si singular inner, B a Blaschke product and
|α| = 1.

Remark 2. Let Har±(D) denote the set of harmonic functions h that can be
written h = h1 − h2, with h1, h2 ∈ Har+(D). The factorization above shows
that for f ∈ N there exist always h ∈ Har±(D) and a Blaschke product B
such that

(2.2) log |f | = log |B| + h ,

and reciprocally, for any h ∈ Har±(D) and any Blaschke product B there
exists f ∈ N satisfying (2.2).
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Notice also that when Λ is a determination set for N and f, g ∈ N are
such that |f(λ)| ≤ |g(λ)| for all λ ∈ Λ, then |Bf | ≤ |g|, where B indicates
the Blaschke product associated to the zeros of g. To see this factorize
g = Bg0, with g0 non-vanishing. Then |f(λ)|/|g0(λ)| ≤ |B(λ)| ≤ 1 and by
hypothesis |f | ≤ |g0|, as desired.

Proof of Theorem 2.2. (c)⇒(a) is immediate from the definition.

(a)⇒(b). Let f ∈N with sΛ =: supΛ |f | <∞ and consider g =f/sΛ ∈ N .
Since Λ is sampling and log+ |g(λ)| = 0 for all λ ∈ Λ we have, according
to Lemma 2.1, N+(g) = N+(g|Λ) = 0. Thus

∫ 2π
0 log+ |g(reiθ)| dθ = 0 for all

r < 1, hence ‖g‖∞ ≤ 1.

(b)⇒(c). Let f ∈ N and h ∈ Har+(D) be such that log |f(λ)| ≤ h(λ)
for all λ ∈ Λ. By Remark 2, there exists a function g ∈ N such that
log |g| = log |f |−h . We have then log |g(λ)| ≤ 0 for all λ ∈ Λ, and as pointed
out in Remark 1, this implies ‖g‖∞ ≤ 1, i.e. log |g| = log |f | − h ≤ 0. �

2.2. Sampling in the Smirnov class

All the definitions and proofs above can be similarly given for the Smirnov
class N+ defined in the introduction. The Smirnov class consists of those
f ∈ N for which the harmonic majorant of log+ |f | is quasi-bounded (the
Poisson integral of some w ∈ L1(T)). Equivalently, it consists of those f ∈ N
with no singular factor S2 in the factorization (2.1).

The geometric description of sampling sequences for N+ is a straight-
forward consequence of the results in [2] and Remark 1. Recall that NT (Λ)
denotes the non-tangential accumulation set of Λ in T.

Theorem 2.3. Let Λ be a subset of D. The following properties are equiv-
alent:

(a) Λ is a sampling set for N+.

(b) Λ is a determination set for N+.

(c) Λ is a strongly sampling set for N+.

(d) |NT (Λ)| = 2π.

Proof. The equivalence between (a), (b) and (c) is seen as in Theorem 2.2.
The necessity of (d) is pointed out in Remark 1. The sufficency is imme-

diate: for almost every θ ∈ [0, 2π) there exists a sequence {λk}k ⊂ Λ tend-
ing non-tangentially to eiθ, and therefore f ∗(eiθ) = limk→∞ f(λk) [4, Theo-
rem 5.3]. Then, if f ∈ N+ and h ∈ Har+(D) are such that log+ |f(λ)| ≤ h(λ)
for all λ ∈ Λ we have log+ |f ∗(eiθ)| ≤ h(eiθ) a.e. θ ∈ T. This yields
N+(f) ≤ N+(f |Λ). �



Sampling Sets for the Nevanlinna class 359

2.3. Determination sets for harmonic functions and a necessary
condition for Nevanlinna sampling

From previous results on determination sets for harmonic functions and the
equivalences of Theorem 2.2 we deduce a first necessary condition for Nevan-
linna sampling (Corollary 2.4). This can be obtained directly, as shown in
the Appendix.

Given z, w ∈ D let

ρ(z, w) :=
∣∣∣∣ z − w

1 − zw̄

∣∣∣∣
stand for the the pseudohyperbolic distance. For r ∈ (0, 1) and z ∈ D let
D(z, r) = {w ∈ D : ρ(z, w) < r}.

A sequence Λ = {λk}k is called separated when

inf
j �=k

ρ(λj , λk) > 0 .

For any set Λ ⊂ D and δ ∈ (0, 1), consider the pseudohyperbolic dilation

Λδ =
⋃
λ∈Λ

D(λ, δ),

and given ζ ∈ T denote

I(Λ, ζ, δ) :=
∫
Λδ

1

|ζ − z|2 dm(z) ,

where dm stands for the usual area measure.
We note that for any fixed ζ ∈ T, the values I(Λ, ζ, δ) are either finite

or infinite simultaneously for all values of δ ∈ (0, 1). That they are finite is
equivalent to the fact that for any maximal separated subsequence Λ′ ⊂ Λ,
we have ∑

λ∈Λ′

(
1 − |λ|2
|ζ − λ|

)2

=
∑
λ∈Λ′

(1 − |λ|2)Pλ(ζ) <∞.

We recall the following characterization of determination sets for the class
Har±(D) given by Hayman and Lyons [5]. This is elaborated upon in [3].

Theorem A. Let Λ ⊂ D. The following properties are equivalent.

(a) supΛ h = supD h for all h ∈ Har±(D).

(b) There exists δ ∈ (0, 1) such that I(Λ, ζ, δ) = ∞ for all ζ ∈ T.

We shall call the sets satisfying these conditions Hayman-Lyons sets.
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Condition (b) is more restrictive than Brown, Shields and Zeller’s condi-
tion |NT (Λ)| = 2π. In fact, |NT (Λ)| = 2π is equivalent to I(Λ, ζ, δ) = ∞
a.e. ζ ∈ T [3, Corollary 2]. On the other hand, it is clear that if NT (Λ) = T

then (b) is satisfied, since the Poisson kernel P (z, ζ) is bounded below by
C(1 − |λ|−1) in any Stolz angle with vertex at ζ .

Corollary 2.4. A Nevanlinna sampling set is a Hayman-Lyons set.

Proof. By Theorem 2.2, Λ is a determination set for N , hence supΛ log |f | =
supD log |f | for all f ∈ N . By Remark 2, this implies (a) in Theorem A. �

The Hayman-Lyons condition is not sufficient for sampling in N , as
shown in the following example.

Example 1. Take a dyadic partition of the disk: for any (n, k) in the set
of indices I = {(n, k) : n ∈ N, 0 ≤ k ≤ 2n − 1} consider the interval

(2.3) In,k := {eiθ : θ ∈ [2πk2−n, 2π(k + 1)2−n)},

and the associated Whitney partition in “dyadic squares”:

(2.4) Qn,k := {reiθ : eiθ ∈ In,k, 1 − 2−n ≤ r < 1 − 2−n−1}.

Observe that the pseudohyperbolic diameter of each Whitney square Qn,k is
bounded between two absolute constants.

Let Λ be the sequence consisting of the centers cn,k ofQn,k. An immediate

computation shows that I(Λ, ζ, δ) � ∫
D

dm(z)
|z−ζ|2 = ∞ for every ζ ∈ T, or

equivalently:

∞∑
n=1

2n−1∑
k=0

(1 − |cn,k|2)Pcn,k(ζ) =
∞∑
n=1

2n−1∑
k=0

(1 − |cn,k|2
|ζ − cn,k|

)2

�
∞∑
n=1

2n−1∑
k=0

( 2−n

2−n + k2−n
)2

= ∞.

Therefore Λ is a Hayman-Lyons set.
In order to see that Λ is not a determination set for N fix ζ = 1 ∈ T

and consider a horocycle {z : Pz(1) = c}, the boundary of the euclidian disk
B( c

1+c
, 1

1+c
) (see Figure 1). Then Z = Λ∩B( c

1+c
, 1

1+c
) is a Blaschke sequence:

∑
a∈Z

1 − |a| �
∞∑
n=1

∑
0≤k<√

2n

(1 − |cn,k|) �
∞∑
n=1

2−n/2 <∞ .
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Qn,k

cn,k

Pz(1) = c

ζ

Figure 1. Upper half-plane representation of Λ and the horocycle Pz(1) = c.

Therefore, there exists f ∈ N such that

log |f(z)| = log |BZ(z)| + Pz(1) z ∈ D .

Clearly log |f(λ)| ≤ c for all λ ∈ Λ. The fact that f is not bounded rests
on the following more general lemma.

Lemma 2.5. [11, Lemma 2.3] For any Blaschke product B and any ζ ∈ T,

lim sup
r→1

(1 − r) log |B(rζ)| = 0.

This implies that lim supr→1(1 − r) log |f(r)|=lim supr→1(1 − r)Pr(1)=2,
so f cannot be bounded on (0, 1).

We finish this section by proving a general necessary condition in terms
of approach regions.

Let

F =
{
ψ : [0, 1) −→ R+ non-decreasing, continuous,

with ψ(0) = 0 and
∫
0
ψ(x)/x2 dx <∞

}
.

Given ζ ∈ T define the approach region Γψ(ζ) = {z ∈ D : ψ(|z − ζ |) ≤
1 − |z|}.
Theorem 2.6. If Λ is a sampling set for N then

(2.5)
∑

λ∈Λ∩Γψ(ζ)

1 − |λ| = ∞ for all ζ ∈ T and all ψ ∈ F .

The results of Section 4.3 show that this is not always sufficient, not even
when Λ is a sequence.
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We first give a reformulation of Example 6.4 in [5], where we look at when
the outside of an approach region Γψ(ζ) is, or is not, Hayman-Lyons. All
computations should be done in the disc, depending only on what happens
in a neighbourhood of a point ζ on the boundary. Passing to the upper
half-plane U with the standard conformal mapping, we may perform the
corresponding computations in a disc of fixed radius centered at any point
of the real axis.

Lemma 2.7. Let ψ : (0,∞) −→ (0, 1] be a non-decreasing continuous func-
tion with ψ(0) = 0. The set Dψ := {x+ iy ∈ C : 0 < y < ψ(|x|) or y ≥ 1}
is a Hayman-Lyons set if and only if∫

0

ψ(x)

x2
dx = ∞.

Furthermore, if Dψ is not a Hayman-Lyons set, there exists a harmonic
function h ∈ Har±(U), non-positive on Dψ, and with lim inf

y→0
yh(iy) > 0.

Proof. For any point ζ ∈ R except the origin (but including the point
at infinity), Dψ contains a half-disc centered at ζ , so that the integral
I(Dδ

ψ, ζ, δ) ≥ I(Dψ, ζ, δ) = ∞. There remains the case ζ = 0.
A direct computation shows that

I(Dψ, 0, 0) =
∫
Dψ

dx dy

x2 + y2
�

∫ 1

0

∫ ψ(x)

0

1

x2 + y2
=

∫ 1

0

arctan(ψ(x)/x)

x
dx ,

which is finite if and only if
∫
0 ψ(x)/x2 dx < ∞. Hence I(Dψ, 0, 0) = ∞

when
∫
0 ψ(x)/x2 dx = ∞.

This same estimate shows that in order to prove that I(Dψ, 0, δ) < ∞
when

∫
0 ψ(x)/x2 dx <∞ it is enough to see that for any δ > 0, there exists

a non-decreasing function ψδ ≥ 0 with ψδ(0) = 0 and such that

(i) Dδ
ψ ⊂ Dψδ

(ii)
∫
0 ψδ(x)/x

2 dx � ∫
0 ψ(x)/x2 dx.

In the construction of ψδ only the behavior near zero is relevant, hence
we restrict our attention to x ∈ [0, 1/2]. Recall that the pseudohyperbolic
distance between two points z, ζ ∈ U is given by ρ(z, ζ) = |z − ζ |/|z − ζ̄|.

Let η > 0 (to be chosen later) and consider the function

ψη(x) =
∞∑
n=0

1 + η

1 − η
ψ(2−n)χ[2−(n+2),2−(n+1))(x) .

This corresponds to “raising” the value of ψ at x = 2−n by η (in the pseudo-
hyperbolic metric) and assigning it to the whole interval [2−(n+2), 2−(n+1))
(see Figure 2).
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0 2−n2−(n+1)2−(n+2)2−(n+3)

ψ(|x|)

Dψ

η

ψη(x)

R

Figure 2.

It is clear that ψη satisfies (ii) for any η > 0:

∫
0

ψη(x)

x2
dx =

1 + η

1 − η

∞∑
n=0

ψ(2−n)
∫ 2−(n+1)

2−(n+2)

dx

x2
�

∞∑
n=0

ψ(2−n)
2−n

�
∫
0

ψ(x)

x2
dx .

Let us see that the pseudohyperbolic distance between the graph of ψη
and the graph of ψ is bigger than δ if η is big enough, and therefore (i)
holds as well. In the vertical direction it is clear that we only need to take
η ≥ δ, by construction of ψη. For the horizontal direction we have, for any
x ∈ [2−(n+1), 2−n),

ρ
(
(2−(n+2), ψη(2

−(n+2))), (x, ψ(x))
)

=

=

∣∣∣x− 2−(n+2) + i(ψ(x) − 1+η
1−ηψ(2−(n+1)))

∣∣∣∣∣∣x− 2−(n+2) + i(ψ(x) + 1+η
1−ηψ(2−(n+1)))

∣∣∣ ≥
1∣∣∣1 + i 1+η

1−η
ψ(x)+ψ(2−(n+1))

x−2−(n+2)

∣∣∣
This is clearly bounded below, since the integrability condition on ψ gives
in particular

lim
n→∞

ψ(x) + ψ(2−(n+1))

x− 2−(n+2)
≤ lim

n→∞
2ψ(2−n)

2−(n+1) − 2−(n+2)
= 8 lim

n→∞
ψ(2−n)

2−n
= 0 .

In the case where the integral is convergent, denoting temporarily Px+iy(t)
:= 1

π
y

(x−t)2+y2
, let

h(x+ iy) := Px+iy(0) − Chψ(x+ iy),

where C > 0 and hψ is the Poisson integral of the integrable function ψ(t)/t2

restricted to the interval [−1, 1].
It is well known that the growth of the Poisson integral of an integrable

function is such that limy→0 yhψ(x+iy) = 0 (see for instance [11, Coroll. 2]),
thus it will be enough to prove that for C > 0 sufficiently big h ≤ 0 on Dψ.
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This will be done as soon as we see that h ≤ 0 for points z = x0 + iy0 ∈
∂Dψ. Since lim

x→0
ψ(x)/x = 0, we have then

Pz(0) =
ψ(x0)

x2
0 + ψ2(x0)

� ψ(x0)

x2
0

.

On the other hand

hψ(x0 + iy0) 
∫
|x−x0|<ψ(x0)

1

ψ(x0)

ψ(x)

x2
dx  1

ψ(x0)

∫ x0+ψ(x0)

x0

ψ(x)

x2
dx

≥
( 1

x0
− 1

x0 + ψ(x0)

)
=
ψ(x0)

x2
0

1

1 + ψ(x0)/x0
� ψ(x0)

x2
0

,

hence with C big enough we get the desired estimate. �

Proof of Theorem 2.6. Assume that there exist ψ ∈ F and ζ ∈ T such
that

∑
λ∈Λ∩Γψ(ζ) 1 − |λ| <∞. Similarly to Example 1, consider the function

f ∈ N such that
log |f | = log |BZ| + hψ ,

where BZ is the Blaschke product associated to Z = Λ∩Γψ(ζ) and hψ is the
harmonic function obtained by transporting to the disk the function given
by the previous lemma.

It is clear then that f is bounded on Λ. But by the properties of hψ and
by Lemma 2.5 we see that f cannot be bounded in the whole disk. Thus Λ
is not a determination set for N . �

3. General conditions

In order to see what extra conditions are required on a Hayman-Lyons
set Λ to be a determination set for N , assume that f ∈ N is such that
supΛ |f | ≤ 1. According to Remark 2, there exist a Blaschke product B
(with zero-sequence Z) and F ∈ Har±(D) such that log |f | = log |B| + F .

It will enough to see that F is quasi-bounded, that is, that f belongs to
the Smirnov class. This is so because the Hayman-Lyons condition implies
that |NT (Λ)| = 2π, and we deduce then from Theorem 2.3 that supΛ |f | =
supD |f | (see Remark 1).

The hypothesis is, in these terms,

F (λ) ≤ log
1

|B(λ)| λ ∈ Λ ,

and we would like to impose certain conditions on Λ so that this estimate
implies that F has a quasi-bounded harmonic majorant.



Sampling Sets for the Nevanlinna class 365

A first observation is that the zeros of B far from a given λ are no
obstruction to such a majorization. The following is a restatement of [6,
Proposition 4.1, pp. 13–14], and of part of its proof.

Lemma 3.1. Let B be the Blaschke product associated to a Blaschke se-
quence Z. For any δ ∈ (0, 1), there exists a positive quasi-bounded har-
monic function HB = P [w], w ∈ L1(T), such that − log |B(z)| ≤ HB(z) −∑
a∈Z∩D(z,δ) log ρ(z, a), for any z ∈ D. Furthermore

w(ζ) = c0
∑
a∈Z

χIa(ζ),

where c0 is an appropriate positive constant, and Ia = {ζ ∈ T : |ζ − a
|a| | ≤

1 − |a|} is the “Privalov shadow” of a on T.

Given δ ∈ (0, 1), there exists thus HB harmonic, quasi-bounded and
positive such that,

(3.1) F (λ) ≤ HB(λ) +
∑

a∈Z∩D(λ,δ)

log
1

ρ(λ, a)
λ ∈ Λ .

It is clear that we cannot expect to bound the local sum in the right hand
side of this inequality by a quasi-bounded harmonic function on all λ ∈ Λ (it
could happen, for example, that Z ∩ Λ �= ∅). Rather, we would like to find
conditions on Λ that ensure such a bound for a subset Λ′ ⊂ Λ big enough so
that the estimate of F by a quasi-bounded harmonic function on Λ′ implies
the same estimate everywhere (in the spirit of the Hayman-Lyons condition
for functions in Har±(D)).

For that purpose we need a measure of the “vulnerability” of Λ to the
presence of zeros of a Blaschke product.

Consider the dyadic squares {Qn,k}(n,k)∈I defined in (2.4) and denote by

Q̃n,k the union of all Qm,j such that Qn,k ∩ Qm,j �= ∅. There exists δ0 > 0

such that the dilation Qn,k
δ0 is contained in Q̃n,k for all (n, k) ∈ I.

To measure the vulnerability of Λ at each Qn,k, for N ∈ N and δ ∈ (0, 1)
consider

wn,k(Λ, N) = sup

⎧⎨
⎩
⎛
⎝ inf
λ∈Λ∩Qn,k

N∑
j=1

log
1

ρ(λ, aj)

⎞
⎠ , a1, . . . , aN ∈ Qn,k

δ

⎫⎬
⎭ .

We take an empty sum to be 0, so that wn,k(Λ, 0) = 0 for any set Λ. Clearly,
wn,k(Λ, N) is an increasing function of N , and there exists C(δ) > 0 such
that wn,k(Λ, N) ≥ NC(δ).
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Given a Blaschke sequence Z let Nn,k = #(Z ∩ Q̃n,k). The Blaschke
condition is thus equivalent to

∑
n 2−n

∑2n−1
k=0 Nn,k < ∞. Any sequence of

integers {Nn,k}(n,k)∈I satisfying this condition will be called a Blaschke dis-
tribution.

Theorem 3.2. Let Λ ⊂ D. Each of the following properties implies the next
one.

(a) For any Blaschke distribution {Nn,k}(n,k)∈I, there exists Q ⊂ I such
that

Λ ∩Qn,k �= ∅ for any (n, k) ∈ Q,(3.2) ∑
(n,k)∈Q

2−nPcn,k(ζ) = ∞(3.3)

for all ζ ∈ T, and

(3.4)
∑

(n,k)∈Q
2−nwn,k(Λ, Nn,k) <∞.

(b) For any Blaschke distribution {Nn,k}(n,k)∈I and any positive finite mea-
sure ν on T, singular with respect to the Lebesgue measure, there exists
Q ⊂ I satisfying (3.2), (3.4) and condition (3.3) almost everywhere
with respect to ν.

(c) Λ is a determination set for the Nevanlinna class.

(d) For any Blaschke distribution {Nn,k}(n,k)∈I and any positive finite mea-
sure ν on T, singular with respect to the Lebesgue measure, there exists
Q ⊂ I satisfying (3.2), (3.4) and

(3.5)
∫

T

∑
(n,k)∈Q

2−nPcn,k(ζ)dν(ζ) = ∞.

(e) For any Blaschke distribution {Nn,k}(n,k)∈I and any ζ ∈ T, there exists
Q ⊂ I satisfying (3.2), (3.3) and (3.4).

As pointed out before the statement of Theorem A, condition (3.3) is
precisely the Hayman-Lyons condition for the set Λ ∩ {Qn,k}(n,k)∈Q.

We will see in the next Section how these somewhat cumbersome con-
ditions can be used to provide precise geometric conditions, at least when
then set Λ has some regularity.

Open question: are there examples of sets Λ to show that the first and
last of those properties are actually different?
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Proof. (a) ⇒ (b). Obvious.

(b) ⇒ (c). Start, as in the general scheme, with f ∈ N such that
supΛ |f | ≤ 1 and consider the decomposition log |f | = log |B| + F . By the
Riesz-Smirnov factorization (2.1), the function F can be written as

F = h1 − h2 +H1 −H2,

where hi, Hi ∈ Har+(D), Hi are quasi-bounded and hi = P [νi], with νi
positive finite measure in T, singular with respect to the Lebesgue measure.

In order to see that f ∈ N+ it will be enough to prove that h1 has a
quasi-bounded majorant. To do that we use (b) with the singular measure
ν1 and the Blaschke distribution determined by B. Let Q ⊂ I be the set of
indices for which (b) holds.

Let g ∈ N be such that log |g| = log |f | − H1 = log |B| + h1 − h2 − H2

(explicitly g = fe−(H1+iH̃1), where H̃1 denotes the harmonic conjugate of
H1). Then, the corresponding estimate (3.1) for g becomes

h1(λ) − h2(λ) −H2(λ) ≤ HB(λ) +
∑

a∈Z∩D(λ,δ)

log
1

ρ(λ, a)
λ ∈ Λ ,

for some positive quasi-bounded harmonic function HB.
For each (n, k) ∈ Q there is a particular j = j(n, k) such that λj(n,k) ∈

Λ ∩Qn,k and

∑
a∈Z∩Qδ

n,k

log
1

ρ(λj(n,k), a)
= inf

λj∈Λ∩Qn,k

∑
a∈Z∩Qδ

n,k

log
1

ρ(λj , a)
≤ wn,k(Λ, Nn,k).

Let In,k be the dyadic arcs defined in (2.3) and let C > 0. According to (3.4)
the function HL = P [W ], with

W := C
∑

(n,k)∈Q
wn,k(Λ, Nn,k)χIn,k ,

is a positive quasi-bounded harmonic function. The usual estimate of the
Poisson kernel by a “square” kernel (or a direct computation) shows that
P [χIz ](z) ≥ c > 0, with c independent of z. Hence for C well chosen,

wn,k(Λ, Nn,k) ≤ HL(λj(n,k)), (n, k) ∈ Q .

Then, defining Λ′ = {λj(n,k)}(n,k)∈Q we have h1 −h2 −H2 ≤ HB +HL on Λ′.
Condition (3.3) being satisfied ν1-a.e. and [3, Theorem 2] show then that

1 ≤ inf
Λ′

h2 +H2 +HB +HL

h1
= inf

D

h2 +H2 +HB +HL

h1
.

Thus h1 − h2 − H2 ≤ HB + HL everywhere, and log |f | ≤ log |B| + H1 +
HB +HL, as desired.
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(c) ⇒ (d). Following the original ideas of Beurling [1], and similarly to
the proof of Lemma 1 in [5], for a given set of indices Q ⊂ I satisfying (3.2)
and for (n, k) ∈ Q, let λn,k ∈ Λ ∩ Qn,k, and define the (possibly divergent)
series

Hν(z) :=
∑

(n,k)∈Q
2−nP [ν](λn,k)Pz(λ

∗
n,k),

where λ∗n,k = λn,k/|λn,k|.
The terms of this series are positive harmonic functions so by Harnack’s

theorem Hν is either identically +∞ or it defines a positive harmonic func-
tion.

Suppose that Q is a set for which (3.5) fails. Then the series defining
Hν(0) converges, and therefore Hν is a positive harmonic function. Notice
also that lim|z|→1(1 − |z|)Hν(z) = 0, since each term of the sum has this
property, and we can apply dominated convergence.

By retaining only the (n, k) term of the sum, we see that

Hν(λn,k)  2−nP [ν](λn,k)
1

1 − |λn,k|  P [ν](λn,k).

Thus, using Harnack’s inequality and choosing an appropriate constant
C0 > 0, we obtain a function

hν := P [ν] − C0Hν

which is non-positive on
⋃

(n,k)∈QQn,k, and tends to infinity as z tends radi-
ally to the boundary a.e. with respect to ν.

Now suppose that (d) doesn’t hold. This means that we are given a
Blaschke distribution {Nn,k}(n,k)∈I and a singular measure ν such that for
any Q such that (3.4) holds, then (3.5) fails.

Claim. There exist a constant γ > 0 and a subset Λ0 ⊂ Λ such that

(i)
∑

(n,k):(Λ\Λ0)∩Qn,k �=∅
2−nP [ν](λn,k) �

∑
(n,k):(Λ\Λ0)∩Qn,k �=∅

2−n
∫

T

Pcn,k(ζ)dν(ζ) <∞,

(ii) γP [ν](λn,k) ≤ wn,k(Λ, Nn,k) for any (n, k) with Λ0 ∩Qn,k �= ∅.
To see this, define

Lj := {(n, k) ∈ I : Λ ∩Qn,k �= ∅ and wn,k(Λ, Nn,k) ≤ 2−jP [ν](λn,k)}.
If there exists some j0 such that∑

(n,k)∈Lj0
2−nP [ν](λn,k) <∞,

then define Λ\Λ0 := Λ∩⋃
(n,k)∈Lj0 Qn,k, and we have the result with γ = 2−j0.
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Otherwise, set j1 = 1 and define recursively jm+1 > jm and subsets
Am ⊂ Ljm such that

• Am+1 ∩ Al = ∅, 1 ≤ l ≤ m, and

• 1 ≤ ∑
(n,k)∈Am

2−nP [ν](λn,k) ≤ M .

This is possible because the terms to be summed belong to a divergent series,
and are all bounded by a constant. Now, taking Q := ∪Am, we have∑

(n,k)∈Q
2−nwn,k(Λ, Nn,k) ≤

∑
m

2−jm
( ∑

(n,k)∈Am
2−nP [ν](λn,k)

)

≤ M
∑
m

2−jm <∞,

while ∑
(n,k)∈Q

2−nP [ν](λn,k) = ∞,

which contradicts the hypothesis. The claim is proved.

We now proceed to prove that the set Λ is not of determination for the
Nevalinna class. Let hν be the function constructed above, using the set
Λ \ Λ0 as the set which doesn’t satisfy (3.5). Let B be a Blaschke product
with Nn,k zeros b1, . . . , bNn,k located in Qδ

n,k chosen as the solution to the
extremal problem in the definition of wn,k:

inf
λ∈Λ∩Qn,k

Nn,k∑
j=1

log
1

ρ(λ, bj)
= sup

a1,...,aNn,k∈Qδn,k
inf

λ∈Λ∩Qn,k

Nn,k∑
j=1

log
1

ρ(λ, aj)

= wn,k(Λ, Nn,k).

Choose an integer m such that mγ ≥ 1 and pick a function f ∈ N with

log |f | = m log |B| + hν .

By construction hν ≤ 0 on Λ \ Λ0 and hν ≤ P[ν] on Λ. Also, (ii) implies
that log |f | ≤ 0 on Λ0, so altogether log |f | ≤ 0 on the whole of Λ. On the
other hand the fact that

lim sup
|z|→1

(1 − |z|)[log |B(z)| +Hν(z)] = 0

shows that f cannot be bounded on the disk.

(d) ⇒ (e). Condition (e) is the special case of (d) where ν is a point
mass. �
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4. Regular sampling sequences

In this section we give precise conditions for three types of regular sets to
be sampling for N .

4.1. Fine nets

Let g : (0, 1] −→ (0, 1] be a non-decreasing continuous function with g(0) = 0.
A sequence Λ is called a g-net if and only if

(i) The disks D(λ, g(1− |λ|)), λ ∈ Λ, are mutually disjoint,

(ii) There exists C > 0 such that
⋃
λ∈ΛD(λ, Cg(1− |λ|)) = D.

We characterize sampling g-nets in terms of the growth of g.

Theorem 4.1. Let Λ be a g-net. The following properties are equivalent:

(a) Λ is a sampling sequence for N .

(b) Condition (2.5) holds.

(c)
∫
0

dt

t1/2g(t)
= ∞.

Remark 3. The conditions above can be formulated also in terms of the
number Mn,k of points of Λ in a dyadic square Qn,k. In this case Mn,k is
essentially independent of k, in the sense that there exist Mn and a constant
C > 0 such that C−1Mn ≤ Mn,k ≤ CMn for all 0 ≤ k < 2n. Then the
conditions in the theorem above are equivalent to

∑
n(Mn2

−n)1/2 = ∞ (see
Lemma 4.2).

Proof of Theorem 4.1. (a)⇒(b) is a particular case of Theorem 2.6.
(b)⇒(c). It will be enough to prove the following lemma.

Lemma 4.2. Assume that Λ is a g-net satisfying condition (2.5). Let
Mn,k = #Λ ∩ Qn,k and assume that there exist C > 0 and positive inte-
gers Mn such that C−1Mn ≤Mn,k ≤ CMn. Then

∑
n

(Mn2
−n)1/2 = ∞.

A volume estimate shows that Mn � (g(2−n))−2, and therefore

∫
0

dt

t1/2g(t)
� ∑

n

2−n/2
1

g(2−n)
� ∑

n

(Mn2
−n)1/2 = ∞ .
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Proof. We want to prove that if
∑
n(Mn2

−n)1/2 < ∞ there exists ψ ∈ F
such that

∑
λ∈Λ∩Γψ(ζ) 1 − |λ| <∞, thus contradicting (2.5).

It will be expedient to write the computation in the upper half-plane U
after a conformal mapping. Calling again the resulting sets Λ and Γψ(ζ), we
need to prove that there exists ψ ∈ F such that

(4.1)
∑

λ∈Λ∩Γψ(ζ)

1− |λ| � ∑
n≥0

2−n#
(
Λ ∩ Γψ(ζ) ∩ {2−n−1 < y ≤ 2−n}

)
<∞ .

Since ψ is an increasing function, the set Γψ(ζ) ∩ {2−n−1 < y ≤ 2−n} is
contained in the rectangle {|x| ≤ ψ−1(2−n), 2−n−1 < y ≤ 2−n}. Therefore,
splitting the sum for the different Qn,k and using that Mn � g−2(2−n) we
have

∑
λ∈Λ∩Γψ(ζ)

1 − |λ| � ∑
n≥0

2−n
∑

k:k2−n≤ψ−1(2−n)

Mn,k �
∑
n≥0

Mnψ
−1(2−n)

� ∑
n≥0

ψ−1(2−n)
g2(2−n)

.

It will be enough to see that ψ defined by ψ−1(t) =
√
tg(t) is in F , since

then ∑
λ∈Λ∩Γψ(ζ)

1 − |λ| � ∑
n≥0

2−n/2

g(2−n)
�

∫
0

dt√
tg(t)

<∞ .

By definition ψ is non-decreasing, continuous and ψ(0) = 0. Also

∫ 1

0

dt√
tg(t)

=
∫ 1

0

dt

ψ−1(t)
=

∫ ∞

1

∣∣∣{t : 1/ψ−1(t) ≥ α}
∣∣∣ dα

=
∫ 1

0

∣∣∣{t : ψ−1(t) ≤ s}
∣∣∣ ds
s2

=
∫ 1

0
|{t : t ≤ ψ(s)}| ds

s2

=
∫ 1

0

ψ(s)

s2
ds <∞ ,

as desired. �

(c)⇒(a). Given a Blaschke sequence Z we want to choose a family of
indices Q ⊂ I satisfying the conditions of Theorem 3.2(a). First we need
a control of the vulnerability on the squares where Nn,k = #(Z ∩ Q̃n,k) is
small.

Lemma 4.3. If Λ is a g-net, there exist ε > 0, n0 ∈ N and C > 0 such that
whenever n ≥ n0 and N ≤ ε#(Λ ∩Qn,k), then wn,k(Λ, N) ≤ CN .
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Proof. Denote Q = Qn,k, Q̃ = Q̃n,k and M = #(Λ ∩ Q). Then M �
g(2−n)−2 and there exist constants c < C such that the disks D(λ, cg(2−n)),
λ ∈ Q, are mutually disjoint and the disks D(λ, Cg(2−n)) cover the whole

set Q. Let Z = {a1, . . . , aN} ⊂ Q
δ

and consider

Λ′
Q :=

{
λ ∈ Λ ∩Q : ρ(λ, a) ≥ Cg(2−n), for all a ∈ Z ∩ Q̃

}
.

For ε small enough, and n (and therefore M) large enough, #Λ′
Q ≥M/2.

For λ′ ∈ Λ′
Q and z ∈ D(λ′, cg(2−n)) we have ρ(z, aj) � ρ(λ′, aj) for all

aj ∈ Q̃, and therefore

(4.2) log
1

ρ(λ′, aj)
� 1

m(D(λ′, cg(2−n))

∫
D(λ′,cg(2−n))

log
1

ρ(z, aj)
dm(z).

Choose r ∈ (0, 1) large enough so that Q ⊂ D(a, r) for any a ∈ Q̃. Then,
for any a1, . . . , aN ∈ Q̃,

∑
λ′∈Λ′

Q

N∑
j=1

log
1

ρ(λ′, aj)
=

N∑
j=1

∑
λ′∈Λ′

Q

log
1

ρ(λ′, aj)

�
N∑
j=1

1

(g(2−n)2−n)2

∫
D(aj ,r)

log
1

ρ(z, aj)
dm(z),

Since 1 − |aj| � 2−n, applying an automorphism of the disk sending aj
to the origin, we see that

1

(2−n)2

∫
D(aj ,r)

log
1

ρ(z, aj)
dm(z) �

∫
D(0,r)

log
1

|z|dm(z) ≤ C.

Finally, ∑
λ′∈Λ′

Q

⎛
⎝ N∑
j=1

log
1

ρ(λ′, aj)

⎞
⎠ � 1

g2(2−n)
N �MN,

and since #Λ′
Q ≥M/2, the average value of the summands in the first sum

is bounded by a constant multiple of N . �
For ε ∈ (0, 1) small enough, define

(4.3) Q = {(n, k) : Nn,k ≤ ε#(Λ ∩Qn,k)} .

Lemma 4.3 together with the Blaschke condition give (3.4) in Theorem 3.2.
In order to prove (3.3) in Theorem 3.2, for each (n, k) pick cn,k ∈ Qn,k,

for instance its center. By rotation invariance of the properties of being a
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g-net or a Blaschke sequence we can assume that ζ = 1, so it will be enough
to see that

(4.4)
∑

(n,k)∈Q

(
1 − |cn,k|2
|1 − cn,k|

)2

= ∞.

Let

(4.5) Ln := #{k : (n, k) /∈ Q}.

Observe that 1−|c|2
|1−c| is bigger when the argument of c in (−π, π] is closer to 0.

So we must have, for any fixed n,

(4.6)
∑

k:(n,k)∈Q

(
1 − |cn,k|2
|1 − cn,k|

)2

 ∑
k≥Ln

(
2−n

k2−n

)2

� 1

Ln
.

On the other hand

∑
k:(n,k)/∈Q

Nn,k ≥ ε
∑

k:(n,k)/∈Q
#(Λ ∩Qn,k) ≥ εC

Ln
(g(2−n))2

,

and the Blaschke condition implies

∑
n

2−nLn
(g(2−n))2

<∞.

If (4.4) doesn’t hold we have
∑
n 1/Ln <∞, and

∫
0

dt

t1/2g(t)
� ∑

n≥0

2−n/2

g(2−n)
=

∑
n≥0

1

L
1/2
n

2−n/2L1/2
n

g(2−n)

≤
(∑
n≥0

1

Ln

)1/2(∑
n≥0

2−nLn
(g(2−n))2

)1/2
<∞,

which contradicts the hypothesis. �

4.2. Discretized rings

Let rm ∈ (0, 1) be an increasing sequence of radii with limm rm = 1 and
supm

1−rm+1

1−rm < 1. Let εm be a decreasing sequence of hyperbolic distances
such that limm εm = 0. The discretized rings associated to {rm}m and {εm}m
is the sequence Λ = {λm,j}m,j, where

λm,j = rm exp

(
j

2πi

(1 − rm)εm

)
m ∈ N, 0 ≤ j <

[
1

(1 − rm)εm

]
.



374 X. Massaneda and P. J. Thomas

Theorem 4.4. Let Λ be discretized rings associated to {rm}m and {εm}m.
The following properties are equivalent:

(a) Λ is a sampling sequence for N .

(b) Condition (2.5) holds.

(c)
∞∑
m=0

(
1 − rm
εm

)1/2

= ∞.

The proof follows the same scheme as the proof of Theorem 4.1.

Proof. (a)⇒(b) is a particular case of Theorem 2.6.

(b)⇒(c). Assume that

∑
m

(
1 − rm
εm

)1/2

<∞.

Consider the sequence ηm = [(1 − rm)εm]1/2 decreasing to zero. Let ψ be a
continuous, non-decreasing function such that for all m ∈ N, ψ(ηm) = 1−rm
and ∫ ηm

ηm+1

ψ(x)

x2
dx ≤ 2

∫ ηm

ηm+1

1 − rm+1

x2
dx .

It is clear that ψ ∈ F :

∫
0

ψ(x)

x2
dx � ∑

m≥1

∫ ηm

ηm+1

1 − rm+1

x2
dx � ∑

m≥1

(1 − rm+1)

(
1

ηm+1
− 1

ηm

)

≤ ∑
m≥1

1 − rm+1

ηm+1

=
∑
m≥1

(
1 − rm+1

εm+1

)1/2

<∞.

On the other hand, a length estimate shows that the number of j such

that λm,j ∈ Γψ(ζ) is approximately ψ−1(1−rm)
(1−rm)εm

. Since ψ−1(1 − rm) = ηm we
have

∑
λ∈Λ∩Γψ(ζ)

1 − |λ| � ∑
m≥0

(1 − rm)
ψ−1(1 − rm)

(1 − rm)εm
=

∑
m≥0

ηm
εm

=
∑
m≥0

(
1 − rm
εm

)1/2

<∞ ,

which contradicts (b).

(c)⇒(a). Given a Blaschke sequence Z, we want to choose a family of
indices Q satisfying the conditions of Theorem 3.2(a).
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We begin by showing that Lemma 4.3 still holds for discretized rings.

Proof of Lemma 4.3 for discretized rings. Let Q = Qn,k, Q̃ = Q̃n,k

and M = #(Λ ∩Q).

Since supn
1−rn+1

1−rn < 1, there is at most a finite number of rm with

2−(n+1) < 1 − rm ≤ 2−n. There is no loss of generality in assuming that
there is just one such rm, and therefore M � 1/εm. In particular, there exist
c < C such that D(λ, cεm), λ ∈ Q, are mutually disjoint and D(λ, Cεm)
cover the segment {z : |z| = rm} ∩Q.

Given Z = {a1, . . . , aN} ⊂ Q
δ

consider now

Λ′
Q :=

{
λ ∈ Λ ∩Q : ρ(λ, a) ≥ Cεm, for all a ∈ Z ∩ Q̃

}
.

Again, for suitable C, m and r ∈ (0, 1), we have #Λ′
Q ≥ M/2 and Q ⊂

D(a, r) for any a ∈ Q̃. We proceed as before, but replacing the area averages
in (4.2) by the line averages. For λ′ ∈ Λ′

Q,

log
1

ρ(λ′, aj)
� 1

|J(λ′, cεm)|
∫
J(λ′,cεm)

log
1

ρ(z, aj)
|dz|

� 1

(1 − rm)εm

∫
J(λ′,cεm)

log
1

ρ(z, aj)
|dz|,

where J(λ′, cεm) = {z : |z| = rm}∩D(λ′, cεm). Then, for any a1, . . . , aN ∈ Q̃,

∑
λ′∈Λ′

Q

N∑
j=1

log
1

ρ(λ′, aj)
=

N∑
j=1

∑
λ′∈Λ′

Q

log
1

ρ(λ′, aj)

�
N∑
j=1

1

(1 − rm)εm

∫
Q∩{|z|=rm}

log
1

ρ(z, aj)
|dz| .

Since the length of Q ∩ {|z| = rm} is approximately 2−n � 1− rm, we have,
for some r′ < 1,

1

1 − rm

∫
Q∩{|z|=rm}

log
1

ρ(z, aj)
|dz| �

∫ r′

−r′
log

1

|x| dx � 1 .

Hence ∑
λ′∈Λ′

Q

N∑
j=1

log
1

ρ(λ′, aj)
� N/εm ,

and using that #Λ′
Q ≥ 1/(2εm) we get the desired result. �
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From here we proceed as in the proof of Theorem 4.1. Let N0 denote
the set of n ∈ N for which there is some rm with 2−(n+1) < 1 − rm ≤ 2−n.
As pointed out before, there is no loss of generality in assuming that there
is just one such rm. To simplify the notation we re-index rm and call it rn
(i.e. {rm}m∈N is re-indexed as {rn}n∈N0).

Given a Blaschke sequence Z and ε small enough, define Q as in (4.3).
The previous lemma ensures (3.4) in Theorem 3.2. In order to see that (3.3)
also holds it is enough to show (4.4). Let Ln as in (4.5). Since #(Λ∩Qn,k) �
1/εn for n ∈ N0, we have now

∑
k:(n,k)∈Q

Nn,k ≥ ε
∑

k:(n,k)∈Q
#(Λ ∩Qn,k) ≥ εCLn/εn,

hence the Blaschke condition implies
∑
n∈N0

(1 − rn)Ln/εn < ∞ . If (4.4)
does not hold by (4.6) we have

∑
n∈N0

1/Ln <∞, and

∑
n∈N0

(
1 − rn
εn

)1/2

≤
( ∑
n∈N0

1

Ln

)1/2( ∑
n∈N0

1 − rn
εn

Ln

)1/2

<∞ ,

which contradicts the hypothesis. �

4.3. Uniformly dense disks

In this section we consider a different kind of sampling sets. We begin with
the sequences considered by Ortega-Cerdà and Seip in [8].

Definition. A sequence Λ ⊂ D is uniformly dense if

(i) Λ is separated, i.e. infλ�=λ′ ρ(λ, λ′) > 0.

(ii) There exists r < 1 such that D =
⋃
λ∈ΛD(λ, r).

Notice that, in the terminology of Section 4.1, uniformly dense sequences
correspond to 1-nets.

Let ϕ be a non-decreasing continuous function, bounded by some con-
stant less than 1. Given Λ uniformly dense define rλ = ϕ(1 − |λ|), Dϕ

λ =
D(λ, rλ) and the unions of disks

Λ(ϕ) :=
⋃
λ∈Λ

Dϕ
λ .

Theorem 4.5. The set Λ(ϕ) is sampling for N if and only if

(4.7)
∫ 1

0

dt

t log(1/ϕ(t))
= ∞ .
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In Section 5 we will see that this condition actually characterizes deter-
mination sets for the space of subharmonic functions in the disk having the
characteristic growth of the Nevanlinna class.

Remark 4. Condition (4.7) is equivalent to the fact that the harmonic
measure of the exterior boundary ∂D of D\Λ(ϕ) is zero, see [8, Theorem 1].
Notice also that for any fixed K > 1 condition (4.7) is equivalent to

(4.8)
∑
n

1

log(1/ϕ(K−n))
= ∞ .

Remark 5. The above family of examples allows us to see that there is no
general relationship between A−α-sampling sets and Nevanlinna sampling
sets.

A set Λ ⊂ D is sampling for the space

A−α = {f ∈ Hol(D) : ‖f‖α := sup
z∈D

(1 − |z|)α|f(z)| <∞} α > 0,

when there exists C > 0 such that

‖f‖α ≤ C sup
λ∈Λ

(1 − |λ|)α|f(λ)|

for all f ∈ A−α.
A well-known result of K. Seip [10, Theorem 1.1] characterizes A−α-

sampling sets as those Λ for which there exists a separated subsequence
Λ′ ⊂ Λ such that

D−(Λ′) := lim inf
r→1−

inf
z∈D

∑
λ:1/2<ρ(λ,z)<r

log 1
ρ(λ,z)

log 1
1−r

> α .

Let Λg be a fine net associated to a function g with
∫
0

dt
t1/2g(t)

< ∞, for

instance g(t) = t1/4. According to Theorem 4.1, Λg is not a Nevanlinna
sampling set. On the other hand, for any given α > 0, we can extract a
maximal separated sequence Λ′ with the separation small enough so that
D−(Λ′) > α, hence Λg is A−α-sampling for all α > 0.

Also, given α>0, consider a uniformly dense sequence Λ with D−(Λ)<α
and take ϕ satisfying limt→0 ϕ(t) = 0 and (4.7). Then Λ(ϕ) is Nevanlinna
sampling but it is not A−α-sampling, since D−(Λ′) < α for any separated
Λ′ ⊂ Λ(ϕ).

Alternatively, take a set Λ as in Section 4.2, sampling for N , with
lim
n→∞

1−rn+1

1−rn = 0. Then D−(Λ) = 0, so it cannot be A−α-sampling for

any α > 0.
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Proof. Assume that (4.7) does not hold. We will exhibit a function f ∈ N
such that log |f(z)| = log |B(z)| + δPz(1) is bounded on Λ(ϕ), for an ap-
propriate choice of the Blaschke product B and the constant δ > 0. Since,
according to Lemma 2.5, f /∈ H∞, this will contradict the fact that Λ(ϕ) is
sampling.

Let Z be the set of λ ∈ Λ such that mλ :=
[

Pλ(1)
log 1/ϕ(1−|λ|)

]
≥ 1, where each

point λ is taken with multiplicity mλ.
In order to see that the Blaschke sum of Z (with multiplicities) is finite,

split it into the different dyadic squares Qn,k. Notice that for λ ∈ Qn,k

Pλ(1) =
1 − |λ|2
|1 − λ|2 � 2−n

(2−n + k2−n)2
=

2n

(1 + k)2
.

Also, the uniform density condition implies #Z ∩ Qn,k ≤ #Λ ∩ Qn,k � 1.
Therefore

∑
a∈Z

(1 − |a|) � ∑
n≥0

2n−1∑
k=0

∑
λ∈Z∩Qn,k

mλ(1 − |λ|)

� ∑
n≥0

2−n
2n−1∑
k=0

∑
λ∈Z∩Qn,k

Pλ(1)

log(1/ϕ(1 − |λ|))

� ∑
n≥0

1

log(1/ϕ(2−n))

(2n−1∑
k=0

1

1 + k2

)
�

∫ 1

0

dt

t log(1/ϕ(t))
<∞.

On the other hand, if z ∈ Dϕ
λ we have

log |B(z)| ≤ log[ρ(z, λ)]mλ � Pλ(1)

log 1/ϕ(1 − |λ|) logϕ(1 − |λ|) = −Pλ(1).

Therefore log |f | is bounded on
⋃
λ∈ΛD

ϕ
λ if δ is chosen small enough.

Assume now that (4.7) holds. By the uniform density condition, there
exists K > 1 such that for some C > 0

1 ≤ #{λ : Dϕ
λ ∩D(z, 1 − 1/K) �= ∅} ≤ C for all z ∈ D.

There is no restriction in assuming that K = 2, and equivalently, that

1 ≤ #{λ : Dϕ
λ ∩Qn,k �= ∅} ≤ C for all n ∈ N and k = 0, . . . , 2n − 1.

In order to check the conditions of Theorem 3.2(a), and given a Blaschke
sequence Z, let us see first that

wn,k(Λ(ϕ), Nn,k) � Nn,k log
1

ϕ(2−n)
.
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Let λ be such that Dϕ
λ ∩ Qn,k �= ∅. Take a1, . . . , aN ∈ Dϕ

λ ; then ρ(aj , λ) ≤
ϕ(2−n) and therefore, if there is only one such disk overlapping with Qn,k,

wn,k(Λ(ϕ), Nn,k) ≥
Nn,k∑
j=1

log
1

ρ(z, aj)
 Nn,k log

1

ϕ(2−n)
.

If there is a finite number C of such disks, put Nn,k/C points in each disk,
and the same result will hold.

On the other hand

1

|Dϕ
λ |

∫
Dϕ
λ

Nn,k∑
j=1

log
1

ρ(z, aj)
dm(z) �

Nn,k∑
j=1

1

(2−nϕ(2−n))2

∫
Dϕ
λ

log
1

ρ(z, aj)
dm(z)

�
Nn,k∑
j=1

1

(ϕ(2−n))2

∫
D(0,ϕ(2−n))

log
1

|z| dm(z)

=
Nn,k∑
j=1

log
1

ϕ(2−n)
= Nn,k log

1

ϕ(2−n)
,

which proves the reverse estimate.

LetNn =
2n−1∑
k=0

Nn,k, γn∈(0, 1) to be determined later, and Ln=[(1−γn)Nn].

Fixed n ∈ N, let Qc
n be the set of indices (n, k) corresponding to the Ln

dyadic squares Qn,k with the largest values of Nn,k. By definition∑
(n,k)∈Qcn

Nn,k ≥ Ln .

Call Qn the remaining indices (n, k) and define Q = ∪nQn. Then

∑
(n,k)∈Q

2−nwn,k(Λ(ϕ), Nn,k) �
∑
n

2−n
(
log

1

ϕ(2−n)

)( ∑
(n,k)∈Qn

Nn,k

)
.

Since ∑
(n,k)∈Qn

Nn,k = Nn −
∑

(n,k)∈Qcn
Nn,k ≤ Nn − Ln ≤ Nnγn ,

condition (3.4) is now equivalent to

∑
n

γn
(
log

1

ϕ(2−n)

)
2−nNn <∞ .

Condition (4.8) implies

lim inf
n→∞

(
log

1

ϕ(2−n)

)
2−nNn = 0 ,
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since otherwise 2−nNn  (log 1/ϕ(2−n))−1 and the Blaschke condition would
be violated. In particular, there exists a subsequence such that

∑
j

(log
1

ϕ(2−nj)

)
2−njNnj <∞ .

Define

γn =

⎧⎨
⎩1 − 1/Nn if n = nj

(log 1/ϕ(2−n))−1
if n �= nj .

Then (3.4) holds:

∑
n

γn
(
log

1

ϕ(2−n)

)
2−nNn ≤ ∑

j

(
log

1

ϕ(2−nj)

)
2−njNnj +

∑
n

2−nNn <∞ .

To prove (3.3) in Theorem 3.2 we use an argument as in (4.6). Here

∞∑
n=0

∑
(n,k)∈Qcn

(
2−n

2−n + k2−n

)2

≥ ∑
n

1

Ln
≥ ∑

n

1

(1 − γn)Nn
≥ ∑

j

1 = ∞ ,

as desired. �

5. Uniformly dense disks for subharmonic functions

In this section we show that Theorem 4.5, with a different proof, can be
extended to the class

SN =
{
u : D −→ R subharmonic with sup

r<1

∫ 2π

0
u+(reiθ) dθ <∞

}
.

A set Λ ⊂ D is called a determination set for SN if supΛ u = supD u for
all u ∈ SN .

Theorem 5.1. A uniformly dense family of disks Λ(ϕ) is a determination
set for SN if and only if (4.7) holds.

Proof. The necessity of (4.7) is contained in Theorem 4.5, since log |f | ∈
SN whenever f ∈ N .

Assume now that (4.7) holds. Let u ∈ SN be such that supΛ(ϕ) u ≤ 0.
We want to prove that u(p) ≤ 0 for all p /∈ Λ(ϕ).

Let Rn = 1 −K−n, where K > 1 will be chosen later on, and consider
the domains

Ωn(p,Λ, ϕ) = D(p, Rn) \
⋃

λ:Dϕ
λ
⊂D(p,Rn)

Dϕ
λ .
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Let ω(A; p,Ω) denote the harmonic measure at p of a set A ⊂ ∂Ω, and let φp
denote the automorphism of D exchanging p and 0. The subharmonicity
of u+ gives then

u+(p) ≤
∫
∂Ωn(p,Λ,ϕ)

u+(ζ) dω(ζ ; p,Ωn(p,Λ, ϕ))

=
∫
∂D(p,Rn)

u+(ζ) dω(ζ ; p,Ωn(p,Λ, ϕ))

=
∫
|ζ|=Rn

(u+ ◦ φp)(ζ) dω(ζ ; 0, φp(Ωn(p,Λ, ϕ))) .

First observe that the harmonic measure in φp(Ωn(p,Λ, ϕ)) can be esti-
mated by the harmonic measure of a domain Ωn(0, Λ̃, ψ), where Λ̃ is uni-
formly dense and ψ is a non-decreasing, continuous function bounded by
some constant less than 1 satisfying (4.7). To see this let Λ̃ = φp(Λ), con-
sider the hyperbolic rings

An = {z ∈ D : Rn−1 ≤ ρ(z, p) < Rn}
and take ψ non-decreasing, continuous, and such that ψ(Rn) = minAn ϕ.
Then Dψ

φp(λ) ⊂ Dϕ
φp(λ) and therefore

ω(A; 0, φp(Ωn(p,Λ, ϕ))) ≤ ω(A; 0,Ωn(0, Λ̃, ψ))

for any A ⊂ {|z| = Rn}. Notice also that minAn ϕ is attained for z with

1 − |z| =
(1 −Rn)(1 − |p|)

1 +Rn|p| ≤ (1 − Rn)(1 − |p|) = K−n(1 − |p|) ,

and therefore

∫ 1

0

dt

t log(1/ψ(t))
�

∞∑
n=1

1

log(1/ψ(K−n))
≤

∞∑
n=1

1

log(1/ϕ(K−n(1 − |p|))
�

∫ 1

0

dt

t log(1/ϕ(t))
.

We have thus

u+(p) ≤
∫
|ζ|=Rn

(u+ ◦ φp)(ζ) dω(ζ ; 0,Ωn(0, Λ̃, ψ)) .

As mentioned in Remark 4, the hypothesis implies ω(∂D; 0,D \ Λ̃(ψ)) = 0.
In order to see that the previous integrals tend to zero we need a slight
refinement of Theorem 1 in [8]. Let dσn = dθ/(2πRn) denote the normalized
Lebesgue measure in |z| = Rn.
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Lemma 5.2. Given a uniformly dense sequence Λ and a non-decreasing
continuous function ϕ satisfying (4.7), there exist Rn < 1 with limnRn = 1,
and εn > 0 with limn εn = 0 such that ω(I; 0,Ωn(0,Λ, ϕ)) ≤ εnσn(I) for all
intervals I ⊂ {ζ : |ζ | = Rn}.

Once this lemma is proved, the above estimate yields

u+(p) ≤ εn

∫
|ζ|=Rn

(u+ ◦ φp)(ζ) dσn(ζ) ≤ εn
Rn

sup
r<1

∫ 2π

0
(u+ ◦ φp)(reiθ) dθ

2π
,

and letting n→ ∞ we obtain u+(p) ≤ 0, as desired. �

Proof of Lemma 5.2. We prove this by induction. We drop the su-
perindex in Dϕ

λ and denote Ωn(0,Λ, ϕ) simply by Ωn.
There is no restriction in assuming that there are no Dλ in D(0, R1);

thus ω(I; 0,Ω1) ≤ |I| for all intervals I ⊂ {ζ : |ζ | = R1}.
We have

ω(I; 0,Ωn) =
∫
|z|=Rn−1

P (z → I) dω(z; 0,Ωn−1) ,

where P (z → I) denotes the probability that a Brownian motion starting
at z exits Ωn through I. The hypothesis of induction gives

(5.1) ω(I; 0,Ωn) ≤ εn−1

∫
|z|=Rn−1

P (z → I) dσn−1(z) .

In the estimate of P (z → I) we use the uniform density of Λ: there exist
δ ∈ (0, 1) and K > 1 (independent of n) such that for each z ∈ {|z| = Rn−1}
there is λ ∈ Λ with Dλ ∈ D(0, Rn) \D(0, Rn−1) and ρ(z, λ) ≤ δ. Then

P (z → I) ≤ ω(I; z,D(0, Rn) \Dλ) .

This harmonic measure can be estimaded by comparing with an explicit
harmonic function. Let Ψn(z) = z/Rn, which sends D(0, Rn) to D, and let

P (n)
z (ζ) denote the Poisson kernel in D(0, Rn). Let λ(n) ∈ D, r

(n)
λ ∈ (0, 1) be

such that Ψn(Dλ) = Ψn(D(λ, rλ)) = D(λ(n), r
(n)
λ ), and define the harmonic

function on D(0, Rn) \Dλ

Fλ(z, I) = ω(I; z,D(0, Rn)) −
(

inf
w∈∂Dλ

ω(I;w,D(0, Rn))
)

log ρ(λ(n),Ψn(z))

log r
(n)
λ

.

It is clear that ω(I; η,D(0, Rn) \ Dλ) ≤ Fλ(η, I) for η in the boundary of
D(0, Rn) \Dλ, and therefore in all D(0, Rn) \Dλ. Hence

P (z → I) ≤ Fλ(z, I) .
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We want to give an estimate of Fλ(z, I) which does not depend on λ.
Using that ω(I; z,D(0, Rn)) =

∫
I P

(n)
z (ζ) dσn(ζ), we can write

Fλ(z, I) =
(∫

I
P (n)
z (ζ) dσn(ζ)

)
×

×
(

1 − infw∈∂Dλ
∫
I P

(n)
w (ζ)dσn(ζ)∫

I P
(n)
z (ζ) dσn(ζ)

log ρ(λ(n),Ψn(z))

log r
(n)
λ

)
.

Since lim|λ|→1 rλ = 0 and ρ(z, λ) ≤ δ, by the Harnack’s estimates (or by a
direct computation), there exists c > 0 such that

infw∈∂Dλ
∫
I P

(n)
w (ζ)dσn(ζ)∫

I P
(n)
z (ζ) dσn(ζ)

≥ c .

Also, there exists δ′ > 0 such that for n big enough ρ(λ(n),Ψn(z)) ≤ δ′.
With this and the fact that K−n−1 ≤ 1 − |λ| < K−n we deduce that there
exists some C > 0 such that

P (z → I) ≤
(∫

I
P (n)
z (ζ) dσn(ζ)

)(
1 − C

log 1/ϕ(K−n)

)
.

From (5.1) we have therefore

ω(I; 0,Ωn) ≤ εn−1

(
1 − C

log 1/ϕ(K−n)

)∫
I

∫
|z|=Rn−1

P (n)
z (ζ) dσn−1(z) dσn(ζ)

= εn−1

(
1 − C

log 1/ϕ(K−n)

)
σn(I) .

Defining

εn = εn−1

(
1 − C

log 1/ϕ(K−n)

)
=

n∏
j=1

(
1 − C

log 1/ϕ(K−j)

)

and using Remark 4 we obtain the stated properties. �

6. Appendix

Here we give a direct proof that determination sets for N are Hayman-Lyons
sets. According to [3, Corollary 2] this implies |NT (Λ)| = 2π, and therefore
Λ is determination set for H∞.

Let δ ∈ (0, 1) and let Λ0 ⊂ Λ be maximal among the subsequences of Λ
such that ρ(λ, λ′) ≥ δ for all λ, λ′ ∈ Λ0, λ �= λ′. We want to prove that∑

λ∈Λ0

(1 − |λ|)Pλ(ζ) = ∞ for all ζ ∈ T.
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There is no loss of generality in reducing ourselves to the case ζ = 1. Also, we
restrict our attention to those λ ∈ Λ0 with Pλ(1) ≥ 1, and denote by Λ̃0

the subsequence made with such points. Notice that Λ ∩ {z : Pz(1) ≤ 1}
cannot be a determination sequence for N anyway, as the function f ∈ N
with log |f(z)| = Pz(1) shows. Thus, let us assume that

∑
λ∈Λ̃0

(1 − |λ|)Pλ(1) <∞

and see that there exists f ∈ N \H∞ with supΛ |f | <∞.
Consider the sequence Z consisting of the points λ ∈ Λ̃0, with multiplicity

[Pλ(1)]. By assumption Z is a Blaschke sequence, and therefore, for any
C > 0, there exists f ∈ N such that

log |f(z)| = log |BZ(z)| + C Pz(1) .

As seen in Example 1, such f cannot be bounded in the whole disk.
We want to choose C so that supΛ |f | < ∞. By construction, we only

need to consider λ /∈ Λ̃0. We separate two cases:

(i) If Pλ(1) ≤ 2 obviously log |f(λ)| ≤ 2C.

(ii) If Pλ(1) > 2 there exists λ0 ∈ Λ̃0 such that ρ(λ, λ0) ≤ δ. By Harnack’s
inequalities we obtain:

log |f(λ)| ≤ log ρ(λ, λ0)
[Pλ0

(1)] + C Pλ(1)

≤ 1

2
(log δ)Pλ0(1) + C

(1 + δ

1 − δ

)
Pλ0(1) .

Choosing C = 1
2

1−δ
1+δ

log 1
δ

we see that in this case log |f(λ)| ≤ 0, as
desired.
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