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Sums of Toeplitz products
with harmonic symbols

Boo Rim Choe, Hyungwoon Koo and Young Joo Lee

Abstract

On the Bergman space of the unit disk, we consider a class of
operators which contain sums of finitely many Toeplitz products with
harmonic symbols. We give characterizations of when an operator in
that class has finite rank or is compact. Our results provide a unified
way of treating several known results.

1. Introduction

Let D denote the unit disk of the complex plane C. The Bergman space L2
a

is the closed subspace of the usual Lebesgue space L2 = L2(D,A) consisting
of all holomorphic functions on D where the measure dA is the normalized
area measure on D. We let P be the Hilbert space orthogonal projection
from L2 onto L2

a. For a bounded measurable function u on D, the Toeplitz
operator Tu with symbol u is defined by

Tuf = P (uf)

for functions f ∈ L2
a. Clearly, Tu is a bounded linear operator on L2

a. In this
paper we are mainly concerned with harmonic symbols. So, we introduce
the notation h∞ for the space of all bounded harmonic functions on D. Also,
we let H∞ denote the space of all bounded holomorphic functions on D.

In a recent paper [11], Guo, Sun and Zheng characterized finite rank
(semi-) commutators of two Toeplitz operators with harmonic symbols. Mo-
tivated by such results, we consider in this paper a more general class of op-
erators which contain sums of finitely many Toeplitz products with harmonic
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symbols. More explicitly, we consider operators T of the form

(1.1) T = Tλ +

N∑
j=1

Tuj
Tvj

where uj, vj ∈ h∞ for each j and λ is a finite sum of finite products of
h∞-functions. We first investigate the problem of when an operator of this
type has finite rank. In addition, we also consider the problem of when
such an operator is compact on L2

a. Our results generalize several known
results concerning (semi-) commutators of Toeplitz operators with harmonic
symbols.

To state our results, we introduce some notation. Given f, g ∈ L2
a, we

let f ⊗ g be the rank one operator on L2
a defined by(

f ⊗ g
)
h =

〈
h, g

〉
f, h ∈ L2

a

where the notation 〈 , 〉 denotes the inner product in L2. We will often use
the letter z not only to denote points in D, but also to denote the identity
function on D.

Our first result is a characterization for operators of the form (1.1) to
have finite rank in terms of symbols and functions that generate their ranges.
In case λ = 0, our result is as follows.

Theorem 1.1. Let u1, . . . , uN , v1, . . . , vN ∈ h∞ and x1, . . . , xn, y1, . . . , yn ∈
L2

a. Then
N∑

j=1

Tuj
Tvj

=

n∑
j=1

xj ⊗ yj

if and only if the following two conditions hold:

(a)

N∑
j=1

ujvj =
(
1 − |z|2)2

n∑
j=1

xjyj.

(b)
N∑

j=1

[
Puj − uj(0)

][
Pvj − vj(0)

]
= 0.

This will be deduced as a special case of a more general result Theo-
rem 3.5. As an immediate consequence, we give a characterization of when
an operator T in (1.1) is the zero operator (Theorems 3.7 and 3.8). These
special cases are also new. We also apply Theorem 3.5 to recover theorems
concerning finite rank sums of finitely many (semi-)commutators (Corollar-
ies 3.9 and 3.10) and finite rank Toeplitz products (Corollary 3.11), which
have been (essentially) noticed in [11].
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Note that, although we have Theorem 1.1, whether or not there are
examples of functions satisfying conditions (a) and (b) above is another
separate problem in general. For example, the case N = 1 admits only
trivial examples by Corollary 3.11. When N > 1, however, it turns out that
there are nontrivial examples; see the examples at the end of Section 3.

Our next result is a characterization of compactness of operators under
consideration. To state it, we introduce more notation. Given a ∈ D, we
let ϕa denote the standard Möbius map on D. Namely,

ϕa(z) =
a− z

1 − az
, z ∈ D.

Also, we let ∆̃ denote the invariant Laplacian on D defined by

∆̃ψ = (1 − |z|2)2∆ψ

for C2-functions ψ on D where ∆ is the ordinary Laplacian. This invariant
Laplacian is easily seen to be Möbius invariant by a direct calculation. The
notation C0 stands for the class of all continuous functions ψ on D such that
ψ(a) → 0 as |a| → 1.

In case λ = 0, our result concerning compactness is as follows.

Theorem 1.2. Let u1, . . . , uN , v1, . . . , vN ∈ h∞. Then the following state-
ments are equivalent:

(a)
N∑

j=1

Tuj
Tvj

is compact.

(b)

N∑
j=1

∆̃[PujPvj] ∈ C0 and

N∑
j=1

ujvj ∈ C0.

(c)

N∑
j=1

ujvj ∈ C0 and

lim
|a|→1

∫
D

∣∣∣∣ N∑
j=1

[
P (uj ◦ ϕa) − uj(a)

][
P (vj ◦ ϕa) − vj(a)

]∣∣∣∣ dA = 0.

This will also be deduced from a more general result Theorem 4.3. As
applications of Theorem 4.3, we also obtain compact versions of all the
results mentioned earlier; see Theorem 4.4, Corollaries 4.5 and 4.6 . These
corollaries generalize the main results in [15] and [16].

In Section 2 we collect some basic facts and known results that we use
later. In Section 3 we prove a more general version of Theorem 1.1 and
derive its applications. As a preliminary step, we give a characterization
for harmonicity of functions of certain type. At the end of the section we
construct examples related to Theorem 1.1. In Section 4 we prove compact
versions of all the results obtained in Section 3.
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2. Preliminaries

Throughout the section we let a ∈ D denote an arbitrary point, unless
otherwise specified.

Since every point evaluation is a bounded linear functional on L2
a, there

corresponds to every a ∈ D a unique function Ka ∈ L2
a which has following

reproducing property:

f(a) =
〈
f,Ka

〉
(2.1)

for f ∈ L2
a. The function Ka is the well-known Bergman kernel and its

explicit formula is given by

Ka(z) =
1

(1 − az)2
, z ∈ D.

We let ka denote the normalized kernel, namely,

ka(z) =
1 − |a|2

(1 − az)2
, z ∈ D.

By the reproducing property (2.1) we see that the projection P can be
realized as an integral operator

Pu(a) =
〈
u,Ka

〉
for u ∈ L2. Moreover, this integral representation allows us to extend P
to L1. It is well known that

Pf = f, P (fKa) = f(a)Ka(2.2)

for holomorphic functions f ∈ L1. Here, Lp = Lp(D,A) denotes the usual
Lebesgue space. See [12, Chapter 1] for details of what have been mentioned
above and related facts.

We now recall the well-known Berezin transform, which is one of the
main tools in the theory of Toeplitz operators. Let L(L2

a) be the algebra of
bounded linear operators on L2

a. The Berezin transform of S ∈ L(L2
a) is the

function B[S] on D defined by

B[S](a) =
〈
Ska, ka

〉
.

For u ∈ L∞, we simply let Bu = B[Tu]. Since |ϕ′
a(z)|2 = |ka(z)|2 by a

straightforward calculation, we have

Bu(a) =
〈
uka, ka

〉
=

∫
D

(u ◦ ϕa) dA.(2.3)
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The integral representation (2.3) allows us to extend the notion of the
Berezin transform to functions u ∈ L1. Note that the mean value prop-
erty yields Bu = u for harmonic functions u ∈ L1. Also, it is known that
the Berezin transform commutes with the invariant Laplacian:

B[∆̃u] = ∆̃(Bu)(2.4)

when u ∈ L1 ∩ C2(D) and ∆̃u ∈ L1; see [2, Lemma 1].
The Berezin transform turns out to provide a compactness criterion for

certain classes of operators. Here, we consider operators S which are finite
sums of finite products of Toeplitz operators with bounded symbols. Thus,
such an operator S is of the form

S =

M∑
i=1

Tui1
· · ·TuiNi

(2.5)

where each uij ∈ L∞. The compactness of operators of this form is charac-
terized by the boundary vanishing property of the Berezin transform as in
the next theorem.

Theorem 2.1 ([5]).Let S be as in (2.5). Then S is compact if and only if
B[S] ∈ C0.

In conjunction with Theorem 2.1 we record here the following identity
for easier reference later:

B[TuTv] − uv = B[gh] − gh(2.6)

for u, v ∈ h∞ such that u = f+g, v = h+k where f, g, h, k are holomorphic
functions on D. This easily follows from (2.2).

Recall that the pseudohyperbolic distance between two points z, w ∈ D
is defined by |ϕz(w)|. Let A ⊂ L∞ denote the algebra of all functions that
are uniformly continuous with respect to the pseudohyperbolic distance. It
is not hard to see that h∞-functions are Lipschitz continuous with respect
to the pseudohyperbolic distance. So, in particular, we have h∞ ⊂ A .
We remark in passing that Coburn [10] has recently proved a more general
result asserting that the Berezin transform B[S] of an arbitrary S ∈ L(L2

a)
is Lipschitz continuous with respect to the pseudohyperbolic distance. For
Toeplitz operators with symbols in A , the compactness has been recently
characterized by the boundary vanishing property of symbol functions as in
the next theorem.

Theorem 2.2 ([9]). Let σ ∈ A . Then Tσ is compact if and only if σ ∈ C0.
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Let Ua denote the isometry on L2
a defined by

Uaf =
(
f ◦ ϕa

)
ka

for f ∈ L2
a. It is easily seen that UaUa = I and thus U−1

a = Ua. Now, being
an invertible linear isometry, Ua is unitary. Thus, since ka = −ϕ′

a, a direct
calculation yields

B[UaSUa] = B[S] ◦ ϕa(2.7)

for S ∈ L(L2
a) and

Ua(S1 · · ·SN)Ua = (UaS1Ua) · · · (UaSNUa)(2.8)

for S1, . . . , SN ∈ L(L2
a). Also, for u ∈ L∞, it is well known that

(2.9) UaTuUa = Tu◦ϕa ;

see, for example, [4] or [5] (where Ua is defined with an extra factor −1).

The following theorem is taken from [11, Theorem 2].

Theorem 2.3 ([11]). Suppose that u ∈ L∞ and u =
∑
fjgj for finitely many

holomorphic functions fj and gj on D. If Tu has finite rank, then u = 0.

3. Finite rank operators

In this section, we prove a more general version of Theorem 1.1, derive some
applications and construct some examples. In order to do so, we give a char-
acterization for harmonicity of functions which are finite sums of products of
an holomorphic function and a co-holomorphic function. For that purpose
we first make an observation that characterizes two holomorphic mappings
having mutually orthogonal ranges.

We start with the well-known “complexification” lemma; see, for exam-
ple, the proof of [7, Lemma 10] or the proof of [3, Theorem II].

Lemma 3.1. Let Ω be a domain in Cn and assume that Φ is holomorphic
on Ω ×Ω∗ where Ω∗ = {z : z ∈ Ω}. If Φ(z, z) = 0 for all z ∈ Ω, then Φ = 0
on Ω × Ω∗.

Given a positive integer N , we let IN denote the N ×N identity matrix
and SN denote the set of all permutations on {1, . . . , N}. Given vectors
a = (a1, . . . , aN), b = (b1, . . . , bN) ∈ CN , we let a · b =

∑N
j=1 ajbj denote

the Hermitian inner product of a and b on CN . Also, we let at denote the
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transpose of a and put aσ = (aσ1 , . . . , aσN
) for σ ∈ SN . In the exposition be-

low the dimension N in these notations might vary and dimensions involved
should be clear from the context.

Let Ω be a domain in Cn and consider holomorphic mappings

F,G : Ω → C
N

such that the ranges are mutually orthogonal, i.e., F ·G = 0. One may easily
modify the proof of [3, Theorem II] to see that there exists an orthonormal
basis {µ1, . . . , µN} of CN such that F and G are of the form

F =
(
F · µ1, . . . , F · µk, 0, . . . , 0

)
and

G =
(
0, . . . , 0, G · µk+1, . . . , G · µN

)
for some k relative to the orthonormal basis {µ1, . . . , µN}. Here, we provide
some more characterizations, which seem (to us) more concrete, as in the
next theorem.

Theorem 3.2. Given finitely many holomorphic functions f1, ..., fN and
g1, ..., gN on a domain Ω ⊂ C

n, put F = (fj) and G = (gj). Then the
following statements are equivalent:

(a) F ·G = 0 on Ω.

(b) There exist some positive integer k < N , some permutation σ ∈ SN

and some (N − k) × k matrix A such that

F t
σ =

(
Ik
A

) (
fσ1 , . . . , fσk

)t

and

Gt
σ =

(−A∗

IN−k

) (
gσk+1

, . . . , gσN

)t

where A∗ = At.

(c) There exist vectors µ1, . . . , µN , τ1, . . . , τN ∈ CN such that

F =

N∑
j=1

µjfj, G =

N∑
i=1

τigi

and
µi · τj = 0, i, j = 1, . . . , N.
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Proof. We first assume (a) and prove (b). Let Ω∗ = {z : z ∈ Ω} and
consider a holomorphic function Φ on Ω × Ω∗ defined by

Φ(z, w) = F (z) ·G(w)

for (z, w) ∈ Ω × Ω∗. Then, since Φ(z, z) = 0 for z ∈ Ω by assumption, we
see that Φ identically vanishes on Ω × Ω∗ by Lemma 3.1.

We may assume that functions fj, gj are all nontrivial. Choose a maximal
collection of functions {fj1, . . . ,fjk

} subject to the condition that {fj1, . . . ,fjk
}

is linearly independent. Note that {f1, . . . , fN} is linearly dependent, be-
cause Φ = 0. So, we have k < N . Put m = N − k for convenience. Now,
after permutation if necessary, we may assume that {f1, . . . , fk} is linearly
independent. Now, since {f1, . . . , fk, fj} is linearly dependent for each j > k
by maximality, there exists some m× k matrix A such that

(fk+1, . . . , fN)t = A(f1, . . . , fk)
t

which yields the desired representation of F . Put F̃ = (f1, . . . , fk). Then,
inserting the above into the identity Φ = 0, we have

0 = F (z) ·G(w) = F̃ (z)(Ik, A
t)G(w)t

for z, w ∈ Ω. Since {f1, . . . , fk} is linearly independent, it follows that

(Ik, A
t)Gt = 0,

or equivalently,
(g1, . . . , gk)

t = −A∗(gk+1, . . . , gN)t

which yields the desired representation of G.
Next, we assume (b) and prove (c). Put m = N − k. Let ai =

(ai1, . . . , aik) be the i-th row of A and bj = (a1j , . . . , amj)
t be the j-th column

of A. Also, let ej
� be the j-th row of I�. Then we have by assumption

Fσ =
k∑

j=1

(ej
k, b

t
j)fσj

and Gσ =
m∑

i=1

(−ai, e
i
m)gσk+i

.

So, taking vectors

µ̃j =

{
(ej

k, b
t
j) if j ≤ k

0 if j > k

and

τ̃i =

{
0 if i ≤ k

(−ai, e
i
m) if i > k,
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we obtain

Fσ =
N∑

j=1

µ̃jfσj
and Gσ =

N∑
i=1

τ̃igσi
.

Note that

µ̃j · τ̃i = (ej
k) · (−ai) + (btj) · (ei

m) = −aij + aij = 0

for all i > k and j ≤ k. So, (c) holds.
Finally, the implication (c) =⇒ (a) is straightforward. The proof is com-

plete. �
Now, we give the following characterization, which will be a key tool in

proving Theorem 1.1.

Theorem 3.3. Let f1, . . . , fN and g1, . . . , gN be finitely many holomorphic
functions on D. If

∑N
j=1 fjgj is harmonic on D, then

N∑
j=1

(
fj − fj(0)

)(
gj − gj(0)

)
= 0

holds on D.

Proof. Let F = (fj) and G = (gj). Assuming F (0) = G(0) = 0 without

loss of generality, we need to prove F · G = 0 on D. Since
∑N

j=1 fjgj is

harmonic on D, we have F ′ ·G′ = 0 on D. It follows from Theorem 3.2 that
there exist vectors µ1, . . . , µN , τ1, . . . , τN ∈ CN such that

F ′ =

N∑
j=1

µjf
′
j , G′ =

N∑
i=1

τig
′
i

and
µi · τj = 0, i, j = 1, . . . , N.

Now, since F (0) = G(0) = 0, we have

F =

N∑
j=1

µjfj , G =

N∑
i=1

τigi

and thus

F ·G =
N∑

i,j=1

(µi · τj)figj = 0

as desired. The proof is complete. �
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The Bloch space B is the space of all holomorphic functions f on D for
which

sup
z∈D

(
1 − |z|2)∣∣f ′(z)

∣∣ <∞.

It is easily seen that Bloch functions are of logarithmic growth near the
boundary and thus B ⊂ Lp for all 0 < p <∞. In particular, we have

(3.1) fg ∈ L2 and ∆̃(fg) ∈ L∞

for functions f, g ∈ B. Also, it is well known that, given a function u =
f + g ∈ h∞ where f, g are holomorphic functions on D, we have f, g ∈ B;
see, for example, [15].

In what follows, given u, v ∈ h∞, we let

Qu,v( · , a) =
[
P (u ◦ ϕa) − u(a)

][
P (v ◦ ϕa) − v(a)

]
for a ∈ D and put

Ru,v = Qv,u.

More explicitly, if u = f + g and v = h + k where f, g, h, k ∈ B, then

Qu,v( · , a) = [ g ◦ ϕa − g(a)
][
h ◦ ϕa − h(a)

]
Ru,v( · , a) =

[
f ◦ ϕa − f(a)

]
[ k ◦ ϕa − k(a)

](3.2)

for a ∈ D. Also, we let F denote the class of all functions λ of the form

λ =
M∑
i=1

ui1ui2 · · ·uiNi
(3.3)

where each uij ∈ h∞. We need the following simple fact.

Lemma 3.4. ∆̃λ ∈ L∞ for each λ ∈ F .

Proof. Let λ ∈ F . We may assume λ = u1 · · ·uN where each uj ∈ h∞. Let
∂ = ∂

∂z
and put

‖λ‖∗ = sup
z∈D

(
1 − |z|2)[|∂λ(z)| + |∂λ(z)|],

‖λ‖∗∗ = sup
z∈D

(
1 − |z|2)2∣∣∂∂λ(z)

∣∣
for simplicity. It is clear that ‖λ‖∗ < ∞ and ‖λ‖∗∗ < ∞ in case N = 1.
Now, given u ∈ h∞, an elementary calculation yields inequalities

‖λu‖∗ ≤ ‖u‖∞‖λ‖∗ + ‖λ‖∞‖u‖∗,
‖λu‖∗∗ ≤ ‖u‖∞‖λ‖∗∗ + ‖λ‖∗‖u‖∗.

So, an induction on N shows that ‖λ‖∗ < ∞ and thus ‖λ‖∗∗ < ∞ for arbi-
trary N . The proof is complete. �
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Now, we are ready to prove the following more general version of Theo-
rem 1.1.

Theorem 3.5. Let u1, . . . , uN , v1, . . . , vN ∈ h∞, x1, . . . , xn, y1, . . . , yn ∈ L2
a

and λ ∈ F . Then

Tλ +
N∑

j=1

Tuj
Tvj

=
n∑

j=1

xj ⊗ yj(3.4)

if and only if the following two conditions hold:

(a) λ+
N∑

j=1

ujvj =
(
1 − |z|2)2

n∑
j=1

xjyj.

(b) λ+

N∑
j=1

Puj Pvj is harmonic.

The idea of the proof of the necessity below comes from the argument
in [11].

Proof. For each j = 1, . . . , N , we write uj = fj + gj and vj = hj + kj where
fj , gj, hj and kj are all in B. Also, we write

(
1 − |z|2)2

n∑
j=1

xjyj =
(
1 − 2zz + z2z2

) n∑
j=1

xjyj =

3n∑
j=1

αjβj

where αj, βj are all in L2
a.

First suppose (3.4) holds. Note that we have by (2.6)

B[Tuj
Tvj

] = B[hjgj ] +
(
fjhj + gjkj

)
+ fjkj

for each j. Also, note that

B[xj ⊗ yj] =
(
1 − |z|2)2

xjyj

for each j. Thus, taking the Berezin transforms of both sides of (3.4), we
obtain

(3.5) Bλ+
N∑

j=1

B[hjgj ] +
N∑

j=1

(
fjhj + gjkj

)
+

N∑
j=1

fjkj =
3n∑
j=1

αjβj .

Let

σ = ∆̃λ+

N∑
j=1

∆̃(hjgj).
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Note that σ is bounded by (3.1) and Lemma 3.4. Now, applying the invariant
Laplacian to both sides of (3.5), we have by (2.4)

Bσ =

3n∑
j=1

∆̃(αjβj) −
N∑

j=1

∆̃(fjkj) =
(
1 − |z|2)2

( 3n∑
j=1

α′
jβ

′
j −

N∑
j=1

f ′
jk

′
j

)
.(3.6)

Dividing by (1 − |z|2)2, we obtain∫
D

σ(ζ)

|1 − zζ |4 dA(ζ) =
3n∑
j=1

α′
j(z)β

′
j(z) −

N∑
j=1

f ′
j(z)k

′
j(z)

for z ∈ D. Now, by Lemma 3.1, we have∫
D

σ(ζ)

(1 − zζ)2(1 − wζ)2
dA(ζ) =

3n∑
j=1

α′
j(z)β

′
j(w) −

N∑
j=1

f ′
j(z)k

′
j(w)

for every z, w ∈ D. Differentiate both sides of the above as many times as
needed with respect to w variable and then insert w = 0. The result is

Tσζ
�(z) =

∫
D

σ(ζ)ζ�

(1 − zζ)2
dA(ζ)

=

3n∑
j=1

aj�α
′
j(z) +

N∑
j=1

bj�f
′
j(z), 
 = 0, 1, 2, . . .

for some coefficients aj� and bj�. Now, by the same argument as in the proof
of [11, Proposition 4], we see that Tσ has finite rank. Note that σ can be
represented as a sum of finitely many products of a holomorphic function
and a co-holomorphic function, because λ ∈ F . So, Theorem 2.3 gives
σ = 0. Namely, the function λ+

∑N
j=1 hjgj is harmonic. Accordingly, noting

that

Pvj = hj + kj(0) and Puj = gj + fj(0),(3.7)

we conclude (b). Also, it follows from (3.6) that the function

N∑
j=1

fjkj −
3n∑
j=1

αjβj

is harmonic. Since harmonic L1-functions are invariant under the Berezin
transform, it follows that

N∑
j=1

fjkj −
3n∑
j=1

αjβj =

N∑
j=1

B[fjkj] −
3n∑
j=1

B[αjβj].
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Combining this with (3.5), we obtain

Bλ+

N∑
j=1

B[ujvj ] = Bλ+

N∑
j=1

(
fjhj + gjkj

)
+

N∑
j=1

B
[
fjkj + hjgj

]
=

N∑
j=1

B[fjkj] +
3n∑
j=1

αjβj −
N∑

j=1

fjkj

=

3n∑
j=1

B[αjβj].

So, we conclude (a), because the Berezin transform is one-to-one (see, for
example, [12, Chapter 2]).

Now, suppose (a) and (b). Note that the set {Ka : a ∈ D} spans a dense
subset of L2

a. So, to prove (3.4), it is sufficient to show

(3.8)
[
Tλ +

N∑
j=1

Tuj
Tvj

]
Ka =

n∑
j=1

(xj ⊗ yj)Ka

for all a ∈ D. Let a ∈ D be an arbitrary point. First, note that we have
by (2.2)

Tuj
Tvj

Ka = P
[(
fj + gj

)(
hj + kj(a)

)
Ka

]
= P

[(
fjhj + hjgj + gj(a)kj(a)

)
Ka

]
+ fjkj(a)Ka

= P
[(
fjhj + hjgj + gjkj

)
Ka

]
+ fjkj(a)Ka

= P
[(
ujvj − fjkj

)
Ka

]
+ fjkj(a)Ka

for each j. Also, note that (xj ⊗ yj)Ka = xjyj(a) for each j. So, by (a), in
order to prove (3.8), it is necessary and sufficient to show

(3.9)

3n∑
j=1

P [αjβjKa] −
N∑

j=1

P [fjkjKa] =

n∑
j=1

xjyj(a) −
N∑

j=1

fjkj(a)Ka.

Since the function λ+
∑N

j=1 hjgj is harmonic by (b) and (3.7), the function

λ+
∑N

j=1(ujvj − fjkj) is also harmonic. Note that
∑N

j=1(ujvj − fjkj) ∈ L2,

because fjkj ∈ L2
a by (3.1) for each j. Thus, we have by (a)

3n∑
j=1

αjβj −
N∑

j=1

fjkj = F +G

for some holomorphic functions F,G ∈ L2
a.
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Thus, multiplying by Ka and then applying the projection P to both
sides of the above, we obtain by (2.2)

3n∑
j=1

P [αjβjKa] −
N∑

j=1

P [fjkjKa] = [F +G(a)]Ka.

Meanwhile, we have by Lemma 3.1

F +G(a) =

3n∑
j=1

αjβj(a) −
N∑

j=1

fjkj(a) = K−1
a

n∑
j=1

xjyj(a) −
N∑

j=1

fjkj(a).

Combining these equalities, we obtain (3.9). The proof is complete. �
Taking λ = 0 in Theorem 3.5, we obtain Theorem 1.1 which we restate

here for convenience.

Theorem 3.6. Let u1, ..., uN , v1, ..., vN ∈ h∞ and x1, ..., xn, y1, ..., yn ∈ L2
a.

Then

(3.10)

N∑
j=1

Tuj
Tvj

=

n∑
j=1

xj ⊗ yj

if and only if the following two conditions hold:

(a)

N∑
j=1

ujvj =
(
1 − |z|2)2

n∑
j=1

xjyj.

(b)

N∑
j=1

Quj ,vj
( · , 0) = 0.

Proof. The theorem follows from Theorem 3.5 and the fact that

N∑
j=1

Puj Pvj

is harmonic if and only if (b) holds by Theorem 3.3. �
As another special case of Theorem 3.5, we have the following character-

izations for operators under consideration to be the zero operator.

Theorem 3.7. Let u1, · · · , uN , v1, · · · , vN ∈ h∞ and λ ∈ F . Then

Tλ +
N∑

j=1

Tuj
Tvj

= 0

if and only if the following two conditions hold:
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(a) λ+

N∑
j=1

ujvj = 0.

(b)
N∑

j=1

Ruj ,vj
(·, 0) = 0.

Proof. If λ+
∑N

j=1 ujvj = 0, then it is easily seen that λ+
∑N

j=1 Puj Pvj is

harmonic if and only if
∑N

j=1 PujPvj is harmonic. Thus the theorem holds
by Theorems 3.5 and 3.3. The proof is complete. �

In case N =1 Theorem 3.7 is known to hold for general λ∈L∞ (see [1,
Corollary 1]) and we do not know whether such a general result holds for
arbitrary N .

Combining Theorems 3.6 and 3.7, we have the following characterization.

Theorem 3.8. Let u1, . . . , uN , v1, . . . , vN ∈ h∞. Then the following state-
ments are equivalent:

(a)

N∑
j=1

Tuj
Tvj

= 0.

(b)

N∑
j=1

Tvj
Tuj

= 0.

(c)

N∑
j=1

Quj ,vj
( · , 0) =

N∑
j=1

ujvj = 0.

(d)

N∑
j=1

Ruj ,vj
( · , 0) =

N∑
j=1

ujvj = 0.

We now apply our theorems to recover results in [11] concerning sums
of finitely many (semi-)commutators. Given Toeplitz operators Tu and Tv,
we let [

Tu, Tv

]
= TuTv − TvTu,(

Tu, Tv

]
= TuTv − Tuv

denote the commutator and the semi-commutator, respectively.
Theorem 3.5 also has some consequences for sums of finitely many (semi-)

commutators of Toeplitz operators with harmonic symbols as in the next
two corollaries. For semi-commutators, we have the following consequence,
which is a slightly different form of [11, Theorem 8].
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Corollary 3.9. Let u1, . . . , uN , v1, . . . , vN ∈ h∞. Then the following state-
ments are equivalent:

(a)

N∑
j=1

(
Tuj

, Tvj

]
= 0.

(b)
N∑

j=1

(
Tuj

, Tvj

]
has finite rank.

(c)
N∑

j=1

Ruj ,vj
( · , 0) = 0.

Proof. The equivalence (a) ⇐⇒ (c) holds by Theorem 3.7 (with λ =
−∑N

j=1 ujvj). The implication (a) =⇒ (b) is trivial.

We now assume (b) and prove (a). Since
∑N

j=1(Tuj
, Tvj

] has finite rank,

we have
∑N

j=1(Tuj
, Tvj

]=
∑n

j=1 xj⊗yj for some functions x1, ..., xn, y1, ..., yn∈
L2

a. We may assume that x1, ..., xn are linearly independent. We have∑n
j=1 xjyj = 0 by Theorem 3.5 and thus

n∑
j=1

xj(z)yj(w) = 0

for all z, w ∈ D by Lemma 3.1. Since x1, . . . , xn are linearly independent,
it follows that yj = 0 for all j and thus

∑N
j=1(Tuj

, Tvj
] = 0. The proof is

complete. �
Since a commutator is the difference of associated semi-commutators,

Corollary 3.9 yields yet another corollary for commutators as follows. An-
other way of deriving this corollary is to take λ = 0 in Theorem 3.5 (or
Theorem 3.7).

Corollary 3.10. Let u1, . . . , uN , v1, . . . , vN ∈ h∞. Then the following state-
ments are equivalent:

(a)
N∑

j=1

[
Tuj

, Tvj

]
= 0.

(b)

N∑
j=1

[
Tuj

, Tvj

]
has finite rank.

(c)
N∑

j=1

Quj ,vj
( · , 0) =

N∑
j=1

Ruj ,vj
( · , 0).

Also, we can recover the result on finite rank Toeplitz products with
harmonic symbols, which is proved in [11, Theorem 7].

Corollary 3.11. Let u, v ∈ h∞. Then TuTv has finite rank if and only if
either u = 0 or v = 0.
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Proof. The sufficiency is trivial. We prove the necessity. Suppose that TuTv

has finite rank. Let u = f +g and v = h+k where f, g, h, k are holomorphic
functions. By Theorem 3.6 we have

(i) uv = (1 − |z|2)2
∑n

j=1
xjyj

(ii) hg is harmonic on D

for some finitely many functions x1, . . . , xn, y1, . . . , yn ∈ L2
a. It follows from

(i) that uv has a continuous extension on D and uv = 0 on ∂D (see [14,
Theorem 7.2.5]). Being bounded harmonic functions, u and v have radial
limits almost everywhere on ∂D. So, there are two possibilities: one is that u
or v vanishes almost everywhere on ∂D and the other is that u and v vanish
on some sets of positive measures on ∂D. Note that u or v is holomorphic
by (ii). Therefore, in either case, we conclude either u = 0 or v = 0 on D.
The proof is complete. �

In view of Theorem 3.6, one may ask whether (3.10) can actually hap-
pen. In other words, one may ask whether there are examples of functions
satisfying conditions (a) and (b) of Theorem 3.6. The answer is yes. For
example, given x1, . . . , xn, y1, . . . , yn ∈ H∞, put

uj1 = xj , uj2 = −2zxj , uj3 = z2xj

vj1 = yj, vj2 = z yj, vj3 = z2 yj

for j = 1, . . . , n. Then one can easily check that conditions (a) and (b) of
Theorem 3.6 are satisfied and thus

n∑
j=1

3∑
i=1

Tuji
Tvji

=

n∑
j=1

xj ⊗ yj.

In particular, the operator

I − 2TzTz + Tz2Tz2 = 1 ⊗ 1

is simply the point evaluation at the origin, which one may also verify by a
direct calculation.

The above examples shows that, given an n-dimensional subspace Xn

of L2
a generated by bounded holomorphic functions, we can find 3n pairs

of symbols uj , vj ∈ h∞ such that the range of
∑3n

j=1 Tuj
Tvj

is precisely Xn.
In prescribing ranges like that, we do not know whether we can control
the number of pairs of symbols in general. However, as far as the rank
is concerned, the next example shows that just two pairs of symbols are
enough to produce arbitrary ranks. Note that at least two pairs of symbols
are required in prescribing ranks by Corollary 3.11.

Example 3.12. Given a positive integer n, there exist some u1, u2, v1, v2 ∈
h∞ such that

∑2
j=1 Tuj

Tvj
has rank n.
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Proof. Let a positive integer n be given and let pn be the polynomial of
degree (n− 1) such that

zn+1 − (n+ 1)z + n = (z − 1)2pn.

An elementary calculation yields

pn =

n−1∑
j=0

(
zj + zj−1 + · · ·+ 1

)
=

n−1∑
j=0

(
n− j

)
zj .

Choose real numbers a, b such that |a| + |b| < n and put

y =
1

azn+1 + bz + n
.

Note that y ∈ H∞, because |a| + |b| < n. We may choose a, b with the
additional property that the polynomials zn+1 − a and (n+ 1)z + b have no
common zeros and therefore we have∣∣zn+1 − a

∣∣ +
∣∣(n+ 1)z + b

∣∣ ≥ δ, z ∈ D(3.11)

for some positive number δ. So, there exist some functions h1, h2 ∈ H∞ such
that

(zn+1 − a)h1 −
(
(n+ 1)z + b

)
h2 = 1(3.12)

on D by the corona theorem.
Now, given a nontrivial function x ∈ H∞, take functions fj, kj ∈ H∞ as

follows:

f1 = (zn+1 − a)x, f2 = −(
(n + 1)z + b

)
x,

k1 = zn+1y, k2 = zy.

Using these functions, we put

uj = fj , vj = hj + kj, j = 1, 2.

Then we have by (3.7)

Puj − uj(0) = fj(0) − fj(0) = 0(3.13)

for j = 1, 2 and

u1v1 + u2v2 =
(
f1h1 + f2h2

)
+ f1k1 + f2k2

= x+
(
zn+1 − a

)
zn+1xy − (

(n+ 1)z + b
)
zxy

= xy
[
y−1 + (zn+1 − a)zn+1 − (

(n+ 1)z + b
)
z
]

=
(
1 − |z|2)2

pn

(|z|2)xy.
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Thus, setting
xj =

(
n− j

)
zjx, yj = zj

for j = 0, . . . , n− 1, we obtain

u1v1 + u2v2 =
(
1 − |z|2)2

n−1∑
j=0

xjyj(3.14)

on D. Now, having (3.13) and (3.14), we conclude

Tu1Tv1 + Tu2Tv2 =

n−1∑
j=0

xj ⊗ yj

by Theorem 3.6. Since {xj} and {yj} are both linearly independent, this
shows that the operator

∑2
j=1 Tuj

Tvj
has rank n. The proof is complete. �

4. Compact operators

In this section, we prove compact versions of results obtained in the previous
section. For that purpose, we first recall the notion of maximal ideal space.
The maximal ideal space M of H∞ is the space (endowed with the weak*
topology of the dual of H∞) of all nonzero multiplicative linear functionals
on H∞. As is well known, we have H∞ ⊂ C(M) via the Gelfand transform.
Moreover, it is known ([13, Lemma 4.4]) that h∞ ⊂ C(M). We will use the
same notation for a function u ∈ h∞ and its continuous extension u on the
whole M. Identifying z ∈ D with the multiplicative evaluation functional
f �→ f(z), we can freely regard D as a subset of M. The corona theorem
says that D is dense in M.

For each m ∈ M, K. Hoffman ([13]) constructed a canonical map Lm

from D into M. This map Lm is defined by taking a net {zα} in D such
that zα → m and defining

Lm(z)(h) = lim
α
h ◦ ϕzα(z)

for z ∈ D and h ∈ H∞. The above limit exists and is independent of the
net {zα} provided that zα → m. For each f ∈ H∞, the map f ◦ Lm is in
H∞. Moreover, if u is continuous on M and {zα} is a net converging to m
in M, then it is known ([15, Lemma 5]) that u ◦ϕzα → u ◦Lm uniformly on
compact subsets of D and thus

(∆̃u) ◦ ϕzα = ∆̃(u ◦ ϕzα) → ∆̃(u ◦ Lm).(4.1)

In particular, we have u◦Lm ∈ h∞ for u ∈ h∞. Also, λ◦Lm ∈ F for λ ∈ F ;
recall that F is the class introduced in (3.3).
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The following lemma is implicit in the proof of [6, Lemma 5.1].

Lemma 4.1. Suppose that {zα} is a net in D such that zα → m ∈ M. Then

∆̃[PuPv ] ◦ ϕzα → ∆̃[P (u ◦ Lm)P (v ◦ Lm) ]

(pointwise) on D for u, v ∈ h∞.

Also, we need the following fact.

Lemma 4.2. Suppose that {zα} is a net in D such that zα → m ∈ M. Let
λ1, . . . , λM ∈ F . Then

TλM◦ϕwα
· · ·Tλ1◦ϕwα

→ TλM◦Lm · · ·Tλ1◦Lm

in the weak operator topology.

Proof. Fix f ∈ L2
a. Recall λ1◦ϕwα → λ1◦Lm uniformly on compact subsets

of D. So, since λ1 is bounded, the dominated convergence theorem yields

(λ1 ◦ ϕwα)f → (λ1 ◦ Lm)f in L2

and thus
P [(λ1 ◦ ϕwα)f ] → P [(λ1 ◦ Lm)f ] in L2

a

by continuity of P . This proves the lemma for M = 1. We now proceed
by induction on M . Assume M ≥ 2 and suppose that the lemma holds for
M − 1. Put

hα = TλM−1◦ϕwα
· · ·Tλ1◦ϕwα

f and g = TλM−1◦Lm · · ·Tλ1◦Lmf

for simplicity. Then we have by induction hypothesis hα → g in L2
a and thus

uniformly on compact subsets of D. Now, since λM ◦ ϕwα is bounded and
converges pointwise to λM ◦ Lm, we have

‖(λM ◦ ϕwα)hα − (λM ◦ Lm)g‖L2

≤ ‖λM‖L∞‖hα − g‖L2 + ‖(λM ◦ ϕwα)g − (λM ◦ Lm)g‖L2 → 0

by the dominated convergence theorem and thus

P [(λM ◦ ϕwα)hα] → P [(λM ◦ Lm)g] in L2
a

by continuity of P . In other words, TλM◦ϕwα
hα → TλM◦Lmg in L2

a. This
completes the induction and the proof of the lemma. �

We are now ready to prove the compact version of Theorem 3.7.



Sums of Toeplitz products with harmonic symbols 63

Theorem 4.3. Let u1, . . . , uN , v1, . . . , vN ∈ h∞ and λ ∈ F . Then the
following statements are equivalent:

(a) Tλ +

N∑
j=1

Tuj
Tvj

is compact.

(b) Tλ◦Lm +

N∑
j=1

Tuj◦LmTvj◦Lm = 0 for each m ∈ M \D.

(c) ∆̃λ+

N∑
j=1

∆̃
[
PujPvj

] ∈ C0 and λ+

N∑
j=1

ujvj ∈ C0.

(d)

N∑
j=1

∆̃
[
Puj Pvj

] ∈ C0 and λ+

N∑
j=1

ujvj ∈ C0.

(e)

N∑
j=1

(
Tuj

, Tvj

]
is compact and λ+

N∑
j=1

ujvj ∈ C0.

(f) lim
|a|→1

∫
D

∣∣∣ N∑
j=1

Ruj ,vj
(z, a)

∣∣∣ dA(z) = 0 and λ+
N∑

j=1

ujvj ∈ C0.

We will complete the proof by proving the following sequences of implications:

(b) ⇐⇒ (c),

(b) ⇐⇒ (d),

(a) =⇒ (b) =⇒ (e) =⇒ (a),

(b) =⇒ (f) =⇒ (e).

Since proofs are somewhat long, we will prove each case separately.

Proof of (b) ⇐⇒ (c). First we assume (b) and prove (c). It is sufficient to
show that, for a given net {wα} in D converging to some m ∈ M\D, we have

(4.2) ∆̃
[
λ+

N∑
j=1

PujPvj

]
(wα) → 0

and

(4.3)
[
λ+

N∑
j=1

ujvj

]
(wα) → 0.

So, fix a net {wα} in D such that wα → m for some m ∈ M \ D. To
prove (4.2), note that we have

∆̃
[
λ ◦ Lm +

N∑
j=1

P (uj ◦ Lm)P (vj ◦ Lm)
]

= 0
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by assumption (b) and Theorem 3.5. Thus, we have (4.2) by (4.1) and
Lemma 4.1 (with evaluation at the origin). Also, note that[

λ+
N∑

j=1

ujvj

]
◦ Lm = 0

holds by assumption (b) and Theorem 3.5. Thus, we have (4.3) by a similar
argument.

Now, we assume (c) and prove (b). Let m ∈ M\D and choose a net {wα}
in D such that wα → m. Fix an arbitrary point a ∈ D. Put zα = ϕwα(a)
and ma = Lm(a). Since h(zα) = h

(
ϕwα(a)

)→ ma(h) for h ∈ H∞, we have
zα → ma in M.

By the Schwarz lemma there are rotations, say Wa,α, such that

ϕzα = ϕwα ◦ ϕa ◦Wa,α.

Since the set of rotations is compact, we may assume Wa,α converges to some
rotation Wa. Now, for a given function f ∈ H∞, since f ◦ ϕwα → f ◦ Lm

uniformly on compact subsets of D, we see that f ◦ ϕzα → f ◦ Lm ◦ ϕa ◦Wa

on D. Thus, Lma = Lm ◦ ϕa ◦Wa. It follows that

∆̃
[
P (u ◦ Lma)P (v ◦ Lma)

]
= ∆̃

[
P (u ◦ Lm)P (v ◦ Lm)

] ◦ ϕa ◦Wa(4.4)

for u, v ∈ h∞ by the Möbius invariance of ∆̃.
Note that m ∈ M \D implies |wα| → 1 and thus |zα| → 1. Now, since

|zα| → 1, we obtain by (4.1), (4.4) and Lemma 4.1 (with evaluation at the
origin)

0 = lim
α

∆̃
[
λ+

N∑
j=1

Puj Pvj

]
(zα) = ∆̃

[
λ◦Lm+

N∑
j=1

P (uj ◦ Lm)P (vj◦Lm)
]
(a).

Since a ∈ D is arbitrary, this shows that λ◦Lm+
∑N

j=1 P (uj ◦ Lm)P (vj◦Lm)

is harmonic. Also, since λ+
∑N

j=1 ujvj ∈C0, we have λ ◦Lm +
∑N

j=1(ujvj) ◦
Lm = 0. Hence, by Theorem 3.5, we conclude (b). The proof is complete. �

Proof of (b) ⇐⇒ (d). By Theorems 3.7 and 3.3 we have (b) if and only if[
λ+

N∑
j=1

ujvj

]
◦ Lm = 0

and

∆̃
[ N∑

j=1

P (uj ◦ Lm)P (vj ◦ Lm)
]

= 0

for each m ∈ M \D. Thus, following the proof of (b) ⇐⇒ (c), we see that
(b) and (d) are equivalent. The proof is complete. �
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Proof of (a) =⇒ (b) =⇒ (e) =⇒ (a). First, we assume (a) and prove (b).
Let m ∈ M \D. Since the set {ka : a ∈ D} spans a dense subset of L2

a, it is
sufficient to show that

(4.5)
[
Tλ◦Lm +

N∑
j=1

Tuj◦LmTvj◦Lm

]
ka = 0, a ∈ D.

Fix a ∈ D and choose a net {wα} in D such that wα → m. Then, since

Tλ◦ϕwα
+

N∑
j=1

Tuj◦ϕwα
Tvj◦ϕwα

−→ Tλ◦Lm +
N∑

j=1

Tuj◦LmTvj◦Lm

in the weak operator topology by Lemma 4.2, we have

∥∥∥[
Tλ◦Lm +

N∑
j=1

Tuj◦LmTvj◦Lm

]
ka

∥∥∥
L2

= lim
α

∥∥∥[
Tλ◦ϕwα

+
N∑

j=1

Tuj◦ϕwα
Tvj◦ϕwα

]
ka

∥∥∥
L2

= lim
α

∥∥∥Uwα

[
Tλ +

N∑
j=1

Tuj
Tvj

]
Uwαka

∥∥∥
L2

(by (2.8) and (2.9))

= lim
α

∥∥∥[
Tλ +

N∑
j=1

Tuj
Tvj

]
Uwαka

∥∥∥
L2
.

Note that |wα| → 1, because m ∈ M \D. Thus, it is easily seen that Uwαka

converges to 0 weakly in L2
a. Hence, the compactness of Tλ +

∑N
j=1 Tuj

Tvj

yields (4.5).
Next, we assume (b) and prove (e). The second part of assertion (e)

is contained in the implication (b) =⇒ (c), which is proved above. By
Theorem 2.2 we see that Tλ + T�N

j=1 ujvj
is compact. So, in order to prove

(e), we need to prove that Tλ +
∑N

j=1 Tuj
Tvj

is compact. By Theorem 2.1, it
is sufficient to prove

B
[
Tλ +

N∑
j=1

Tuj
Tvj

]
∈ C0.(4.6)

Suppose not. Then there is a net {wα} in D converging to some m ∈ M \D
such that

(4.7) lim sup
α

∣∣∣B[
Tλ +

N∑
j=1

Tuj
Tvj

]
(wα)

∣∣∣ > 0.
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Note that we have by Lemma 4.2

B
[
Tλ◦ϕwα

+

N∑
j=1

Tuj◦ϕwα
Tvj◦ϕwα

]
−→ B

[
Tλ◦Lm +

N∑
j=1

Tuj◦LmTvj◦Lm

]
pointwise on D. It follows that

0 = B
[
Tλ◦Lm +

N∑
j=1

Tuj◦LmTvj◦Lm

]
(0)

= lim
α
B

[
Tλ◦ϕwα

+

N∑
j=1

Tuj◦ϕwα
Tvj◦ϕwα

]
(0)

= lim
α
B

[
Uwα

(
Tλ +

N∑
j=1

Tuj
Tvj

)
Uwα

]
(0) (by (2.9))

= lim
α
B

[
Tλ +

N∑
j=1

Tuj
Tvj

](
ϕwα(0)

)
(by (2.7))

= lim
α
B

[
Tλ +

N∑
j=1

Tuj
Tvj

]
(wα),

which contradicts (4.7). Hence we have (4.6), as desired.
Finally, the implication (e) =⇒ (a) holds by Theorem 2.2. The proof is

complete. �
Before proceeding, we recall the well-known notion of Hankel operators.

For u ∈ L∞, the Hankel operator Hu with symbol u is the operator on L2
a

defined by Huf = (I−P )(uf). The relation between Toeplitz operators and
Hankel operators is given by the well-known identity: (Tu, Tv] = H∗

uHv. Us-
ing this identity, one can easily verify that the semi-commutator of Toeplitz
operators Tu and Tv with harmonic symbols are represented as an integral
operator: (

Tu, Tv

]
f(a) =

∫
D

Λu,v(z, a)

(1 − az)2
f(z) dA(z), a ∈ D

where
Λu,v(z, a) =

[
Pu(z) − Pu(a)

][
Pv(z) − Pv(a)

]
.

The kernel Λu,v is closely related with Ru,v in the sense that

Λu,v

(
ϕa(z), a

)
= Ru,v(z, a),

which can be seen by a little manipulation.
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Proof of (b) =⇒ (f) =⇒ (e). First, we assume (b) and prove (f). We only
need to prove the first part of (f). Suppose that the first part of (f) fails to
hold. Then there is a net {wα} in D converging to some m ∈ M \D such
that

lim sup
α

∫
D

∣∣∣ N∑
j=1

Ruj ,vj
(z, wα

)∣∣∣ dA(z) > 0.(4.8)

Note that we have by Lemma 4.2

P (u ◦ ϕwα) − u(wα) −→ P (u ◦ Lm) − u ◦ Lm(0) in L2
a

for each u ∈ h∞. Thus, applying this to functions uj and vj , we obtain

N∑
j=1

Ruj ,vj
( · , wα) −→

N∑
j=1

[
P (uj ◦ Lm) − uj ◦ Lm(0)

][
P (vj ◦ Lm) − vj ◦ Lm(0)

](4.9)

in L1. Meanwhile, we have by (b) and Theorem 3.7

N∑
j=1

[
P (uj ◦ Lm) − uj ◦ Lm(0)

][
P (vj ◦ Lm) − vj ◦ Lm(0)

]
= 0,

which, together with (4.9), is a contradiction to (4.8).

Next, we assume (f) and prove (e). For each r ∈ (0, 1), define Sr : L2
a →

L2 by

Srf(a) = χrD(a)

∫
D

Λ(z, a)

(1 − az)2
f(z) dA(z), a ∈ D

for f ∈ L2
a where Λ =

∑N
j=1 Λuj ,vj

and χrD denotes the usual characteristic
function of the set rD. Now, following the proof of of [8, Theorem 1] (or,
easily modifying the proof of [6, Theorem 1.3]), one can verify that each Sr

is compact and that∥∥∥ N∑
j=1

(Tuj
, Tvj

] − Sr

∥∥∥2

≤ C sup
a∈D\rD

{∫
D

|Λ(
ϕa(z), a

)| dA(z)

}1/14

for some constant C independent of r.
Note that Λ(ϕa(z), a

)
=

∑N
j=1Ruj ,vj

(z, a). So, the operator
∑N

j=1(Tuj
, Tvj

]
is approximated in the strong operator topology by compact operators, so
it is compact. The proof is complete. �
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In case N = 1 some characterizations in Theorem 4.3 are already known
for more general λ. Namely, the conditions (a), (d) and (e) are known to
be equivalent for general λ ∈ A , and a version for general λ ∈ L∞ is also
known; see [9, Theorem 4.4]. We do not know whether such general results
hold for arbitrary N .

In case λ = 0 in Theorem 4.3, note that we have

N∑
j=1

Tuj◦LmTvj◦Lm = 0 ⇐⇒
N∑

j=1

Tvj◦LmTuj◦Lm = 0

for m ∈ M \ D by Theorem 3.8. Thus we have the following consequence
of Theorem 4.3, which contains Theorem 1.2 and is the compact version of
Theorem 3.8.

Theorem 4.4. Let u1, . . . , uN , v1, . . . , vN ∈ h∞. Then the following state-
ments are equivalent:

(a)

N∑
j=1

Tuj
Tvj

is compact.

(b)
N∑

j=1

∆̃[PujPvj] ∈ C0 and
N∑

j=1

ujvj ∈ C0.

(c) lim
|a|→1

∫
D

∣∣∣ N∑
j=1

Quj ,vj
(z, a)

∣∣∣ dA(z) = 0 and
N∑

j=1

ujvj ∈ C0.

Moreover, each of the above conditions is equivalent to the similar condition
with uj and vj replaced by each other.

Remark. One may also directly prove the implication (c) =⇒ (a) in the
above theorem as follows. Note that we have by (3.2), (2.3) and (2.6)

N∑
j=1

∫
D

Quj ,vj
(z, a) dA(z) =

N∑
j=1

(
B[Tuj

Tvj
] − ujvj

)(
a
)

for a ∈ D. So, assuming (c), we have
∑N

j=1

(
B[Tuj

Tvj
]−ujvj

) ∈ C0. Combin-

ing this with the assumption
∑N

j=1 ujvj ∈ C0, we have
∑N

j=1B
[
Tuj

Tvj

] ∈ C0.
So, (a) holds by Theorem 2.1.

Another special case λ = −∑N
j=1 ujvj in Theorem 4.3 yields the following

corollary for sums of finitely many semi-commutators, which is the compact
version of Corollary 3.9.



Sums of Toeplitz products with harmonic symbols 69

Corollary 4.5. Let u1, . . . , uN , v1, . . . , vN ∈ h∞. Then the following state-
ments are equivalent:

(a)
N∑

j=1

(
Tuj

, Tvj

]
is compact.

(b)

N∑
j=1

∆̃
[
PujPvj

] ∈ C0.

(c) lim
|a|→1

∫
D

∣∣∣ N∑
j=1

Ruj ,vj
(z, a)

∣∣∣ dA(z) = 0.

For sums of finitely many commutators, one can use Theorem 4.4 or
Corollary 4.5 to derive the following compact version of Corollary 3.10.

Corollary 4.6. Let u1, . . . , uN , v1, . . . , vN ∈ h∞. Then the following state-
ments are equivalent:

(a)
N∑

j=1

[
Tuj

, Tvj

]
is compact.

(b)

N∑
j=1

∆̃
[
Puj Pvj − PujPvj

] ∈ C0.

(c) lim
|a|→1

∫
D

∣∣∣ N∑
j=1

Quj ,vj
(z, a) − Ruj ,vj

(z, a)
∣∣∣ dA(z) = 0.
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[4] Axler, S. and C̆uc̆ković, Z̆.: Commuting Toeplitz operators with har-
monic symbols. Integral Equations Operator Theory 14 (1991), 1–11.

[5] Axler, S. and Zheng, D.: Compact operators via the Berezin transform.
Indiana Univ. Math. J. 47 (1998), no. 2, 387–400.

[6] Choe, B.R., Koo, H. and Lee, Y. J.: Commuting Toeplitz operators
on the polydisk. Trans. Amer. Math. Soc. 356 (2004), no. 5, 1727–1749.



70 B.R. Choe, H. Koo and Y. J. Lee

[7] Choe, B.R. and Lee, Y. J.: Pluriharmonic symbols of commuting
Toeplitz operators. Illinois J. Math. 37 (1993), no. 3, 424–436.

[8] Choe, B.R. and Lee, Y. J.: Pluriharmonic symbols of essentially com-
muting Toeplitz operators. Illinois J. Math. 42 (1998), no. 2, 280–293.

[9] Choe, B., Lee, Y. J., Nam, K. and Zheng, D.: Products of Bergman
space Toeplitz operators on the polydisk. Math. Ann. 337 (2007), 295–316.

[10] Coburn, L.: A Lipschitz estimate for Berezin’s operator calculus. Proc.
Amer. Math. Soc. 133 (2005), no. 1, 127–131.

[11] Guo, K., Sun, S. and Zheng, D.: Finite rank commutators and semi-
commutators of Toeplitz operators with harmonic symbols. Illinois J. Math.
51 (2007), no. 2, 583–596.

[12] Hedenmalm, H., Korenblum, B. and Zhu, K.: Theory of Bergman
space. Graduate Text in Math. 199. Springer-Verlag, New York, 2000.

[13] Hoffman, K.: Bounded analytic functions and Gleason parts. Ann. of
Math. (2) 86 (1967), 74–111.

[14] Rudin, W.: Function theory in the unit ball of C
n. Grundlehren der Math-

ematischen Wissenschaften 241. Springer-Verlag, New York-Berlin, 1980.
[15] Stroethoff, K.: Essentially commuting Toeplitz operators with har-

monic symbols. Can. J. Math. 45 (1993), no. 5, 1080–1093.
[16] Zheng, D.: Hankel operators and Toeplitz operators on the Bergman

space. J. Funct. Anal. 83 (1989), no. 1, 98–120.

Recibido: 21 de diciembre de 2005

Boo Rim Choe
Department of Mathematics

Korea University
Seoul 136-713, Korea

cbr@korea.ac.kr

Hyungwoon Koo
Department of Mathematics

Korea University
Seoul 136-713, Korea
koohw@korea.ac.kr

Young Joo Lee
Department of Mathematics

Chonnam National University
Gwangju 500-757, Korea
leeyj@chonnam.ac.kr

This research was supported by KOSEF(R01-2003-000-10243-0).



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <>
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /PTB <>
    /DAN <>
    /NLD <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
    /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
    /ESP <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice


