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Special Toeplitz operators on strongly
pseudoconvex domains

Željko Čučković and Jeffery D. McNeal

Abstract

Toeplitz operators on strongly pseudoconvex domains in C
n, con-

structed from the Bergman projection and with symbol equal to a
positive power of the distance to the boundary, are considered. The
mapping properties of these operators on Lp, as the power of the
distance varies, are established.

1. Introduction

Let Y ⊂ X be Hilbert spaces and assume X is also an algebra. Let P :
X −→ Y be an orthogonal projection operator from X to Y . If f ∈ X is
a fixed element of X, the Toeplitz operator with symbol f associated to P is
the operator Tf : X −→ Y defined by Tf (g) = P (f · g).

If Ω ⊂ C
n is a bounded domain and H(Ω) denotes the holomorphic func-

tions on Ω, the Bergman projection, B, which orthogonally projects L2(Ω)
onto A2(Ω) =: H(Ω) ∩ L2(Ω), is a projection operator of fundamental im-
portance in complex analysis. One use of the Bergman projection is to show
the existence of holomorphic functions on Ω which have certain additional
properties, for example growth conditions measured with respect to some
functional norm. In order to do this, of course, the mapping properties of
the Bergman projection with respect to these additional side properties must
be understood. For a general domain Ω, the Bergman projection operator
is completely abstract and poorly understood, but there are large classes of
domains where considerable information is known.

We focus on one such class of domains here: the strongly pseudoconvex
domains (the definition is in Section 3). For this class of domains, the map-
ping properties of B in many classical Banach spaces have been established
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–e.g., the Lebesgue spaces Lp [16], the Hölder spaces Λα [1]– all as conse-
quences of the precise information on the Bergman kernel established by
Fefferman [7] on strongly pseudoconvex domains. A common feature of
these mapping results is that B preserves the Banach spaces in question.
The preservation of Banach norms by B is the best possible result one can
expect: the space A2(Ω) contains functions which are sharply in the various
Banach spaces and B leaves the space A2(Ω) invariant.

In many applications, however, one needs an operator which creates holo-
morphic functions and whose output “improves” the global norm behavior,
in some sense, of the input. A crucial feature of the Bergman kernel on a
strongly pseudoconvex domain (and, indeed, on any finite type domain) is
that its singularities occur only on the boundary diagonal, instead of on the
full diagonal in Ω×Ω. This suggests that a Toeplitz operator, built from B,
with symbol equal to a positive power of δbΩ = the distance to the bound-
ary, bΩ, of Ω, will be an operator which has better “smoothing” behavior
than B.

We call such operators distance-symbol Toeplitz operators. Thus a distance-
symbol Toeplitz operator, on a domain Ω ⊂ CN has the form

Tδη (g) (z) =: Tη (g) (z) =

∫
Ω

B(z, w)δ(w)ηg(w) dV (w)(1.1)

for some power η > 0, where B(z, w) denotes the Bergman kernel function
associated to Ω. The main result of this paper is to show how the power of
the distance in the symbol of Tη in (1.1) is related to the mapping properties
of Tη in the Lebesgue classes Lp.

Theorem 1.2. Let Ω ⊂⊂ CN be a smoothly bounded, strongly pseudoconvex
domain.

(a) For 0 ≤ η < N + 1, let E = N+1
N+1−η

. The distance-symbol Toeplitz

operator Tη of the form (1.1) has the following mapping properties:

(i) If 1 < p < ∞ and E < p
p−1

, then

Tη : Lp(Ω) −→ Lp+G(Ω), where G =
p2

N+1
η

− p

boundedly. Note that G > 0 if η > 0.

(ii) If 1 < p < ∞ and E ≥ p
p−1

, then

Tη : Lp(Ω) −→ Ls(Ω) for any s < ∞
boundedly.

(b) For η ≥ N + 1, the operator of the form (1.1) maps L1(Ω) −→ L∞(Ω)
boundedly.
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Most work on Bergman–Toeplitz operators usually considers holomor-
phic (or harmonic) symbols and poses questions involving algebraic proper-
ties of the operators or preservation of Hardy or Bergman classes of func-
tions. Our result focuses on Bergman-Toeplitz operators as fractional in-
tegral operators, very much in the spirit of Hardy-Littlewood and Sobolev,
and addresses how the size of η effects the “smoothing” properties of these
operators on the entire Lp class of functions. Additionally, previous work
on Bergman–Toeplitz operators have primarily dealt with cases where an
explicit formula for the Bergman kernel is known, for example on euclidean
balls in Cn. It seems that the type of results in Theorem 1.2, especially in
the absence of an explicit formula for the Bergman kernel, have not been
considered before.

However, experts will recognize that our proof of Theorem 1.2 goes
through, with minimal changes, on other classes of domains where good
estimates on the Bergman kernel are known, e.g. finite type domains in C2,
convex domains of finite type in CN . It is also clear that further results can
be obtained by substituting for Lp other Banach spaces – e.g. the Hölder
spaces Λα, the Sobolev spaces Lp

s – though this would require somewhat
more complicated functional analysis than we use for the Lp spaces. Our
justification for presenting only Theorem 1.2 in this paper is that the hy-
potheses (and conclusions) allow us to show the simple size estimates which
are involved in any result of this type, with minimal geometric notation and
functional analytic setup. Our methods are very simple, and they are closely
related to widely used techniques, cf. [18, Chapter 7] and [16], but they also
contain some modifications of these techniques.

We also want to emphasize that our theorem concerns only Toeplitz
operators built from the Bergman projection. For other projection operators,
e.g. the Szegö projection, there is no indication that the type of result
in Theorem 1.2 will occur for any corresponding Toeplitz operator. The
singularities of the Szegö kernel, for example, are spread throughout the
diagonal of the region where the kernel is integrated; thus, there is no positive
function, analogous to δbΩ in Theorem 1.2, which could serve as the symbol
of a Szegö-Toeplitz operator and reduce the singularity of the Szegö kernel.

The paper is laid out as follows. In Section 2 we prove some general
functional analysis results about operators from Lp to Ls, in Section 3 we
recall the estimates on the Bergman kernel we shall need and prove Theo-
rem 1.2, and in Section 4 we examine the sharpness of the estimates stated
in Theorem 1.2.

Acknowledgement. The authors thank the referee for his careful read-
ing of this paper and, especially, for his suggestions for improving Section 4.
The sharpness results in Section 4 were significantly extended in the range
of p because of the suggestions made by the referee.
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2. Kernels which “gain” in Lebesgue classes

In this section, we prove two results about the Lp −→ Ls mapping properties
of general integral operators. These theorems simply account for how inte-
grability conditions on the kernel of an integral operator imply integrability
conditions on the output of the operator.

Results of this type are widely used and well-known, for instance Young’s
inequality [9] and Schur’s lemma [17]. However, the authors were unable to
find Proposition 2.1 and Proposition 2.8 in the literature and so feel obliged
to provide their (simple) proofs. As with Young’s inequality and Schur’s
lemma, our proofs are elementary and use only Hölder’s inequality. Indeed,
our statements reduce to Young’s inequality and Schur’s lemma when p = s.

The first result concerns integral operators on a general measure space.

Proposition 2.1. Let (M,µ) be a σ-finite measure space. Suppose that K
is a measurable function on M × M , and consider the integral operator

Of(x) =

∫
M

K(x, y)f(y) dµ(y)(2.2)

(a) Let 1 < p < ∞ and 1 ≤ s < ∞. Let q be the conjugate exponent
of p, 1

p
+ 1

q
= 1 and suppose that for some 0 ≤ t ≤ 1,

sup
x

∫
M

|K(x, y)|tq dµ(y) = Ct,q < ∞(2.3)

and

sup
y

∫
M

|K(x, y)|(1−t)s dµ(x) = Ct,s < ∞.(2.4)

Then (2.2) defines a bounded linear operator O : Lp(M) −→ Ls(M) and

||O||op ≤ C
1
q

t,q · C
1
s
t,s.

(b) Suppose that 1 < p < ∞ and

sup
x

∫
M

|K(x, y)|q dµ(y) = C1,q < ∞.(2.5)

Then (2.2) defines a bounded linear operator O : Lp(M) −→ L∞(M) and

||O||op ≤ C
1
q

1,q.

(c) Suppose that

sup
x,y

|K(x, y)| = C∞,∞ < ∞.(2.6)

Then (2.2) defines a bounded linear operator O : L1(M) −→ L∞(M) and
||O||op ≤ C∞,∞.
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Proof. (a) From (2.3) and Hölder’s inequality, we obtain

|Of(x)| =

∣∣∣∣
∫

M

K1−t(x, y)f(y)Kt(x, y) dµ(y)

∣∣∣∣
≤
(∫

M

|K(x, y)|(1−t)p|f(y)|p dµ(y)

)1/p

· C
1
q

t,q.

Thus

|Of(x)|s ≤ C
s
q

t,q ·
(∫

M

|K(x, y)|(1−t)p|f(y)|p dµ(y)

)s/p

,

which implies

(∫
M

|Of(x)|s dµ(x)

)p/s

≤ C
p
q

t,q

(∫
M

(∫
M

|K(x, y)|(1−t)p|f(y)|p dµ(y)

)s/p

dµ(x)

)p/s

≤ C
p
q

t,q

∫
M

(∫
M

|K(x, y)|(1−t)s|f(y)|s dµ(x)

)p/s

dµ(y)

≤ C
p
q

t,q · C
p
s
t,s

∫
M

|f(y)|p dµ(y).

(2.7)

The second inequality in (2.7) follows from Minkowski’s integral inequality,
see for example [8, page 194], and the third inequality follows from (2.4).
The statements of (a) all follow from inequality (2.7).

(b) Hölder’s inequality directly gives

|Of(x)| ≤
(∫

M

|K(x, y)|q dµ(y)

)1/q

· ||f ||p,

from which the conclusions of (b) follows.

(c) In this case, one simply notes that

sup
x

|Of(x)| ≤ C∞,∞

∫
M

|f(y)| dµ(y),

and from this the conclusions of (c) follow. �
There are several parameters present in the statement of Proposition 2.1,

and these can be manipulated in various ways, depending on the problem
at hand. In this paper, the theorem will be used as follows: given a kernel
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K(x, y) and a given integrability class Lp, we shall seek the largest s, s > p,
such that both (2.3) and (2.4) hold for some t, 0 ≤ t ≤ 1. We seek the largest
such s since our measure spaces will be Lp classes of functions on bounded
domains in euclidean space with Lebesgue measure (thus, µ(X) < ∞), and
we are trying to understand the “smoothing” properties of the operator
associated to K(x, y). Clearly, larger s in Proposition 2.1 means better
mapping behavior in this case. In a different direction, notice that if p = s,
then choosing t = 1

q
in Proposition 2.1 causes (2.3) and (2.4) to become the

hypotheses for Young’s inequality.
The second result concerns integral operators defined on Lp classes of

functions on smoothly bounded domains D in RN , and is a direct extension
of Proposition 2.1 to these type of operators. The point of this extension is
most easily illustrated by an example. Let D ⊂⊂ R2 be a smoothly bounded
domain in the plane and consider the kernel

K(x, y) = (δbD(x) + δbD(y) + |x − y|)−2 , x, y ∈ D.

Let 1 < p < ∞ and q be the conjugate exponent of p. The best result that
Proposition 2.1 implies is that the operator

Of(x) =

∫
D

K(x, y)f(y) dy

maps Lp −→ Ls for any s < p. This is so because (2.3) holds only for
t < 1

q
, which forces 1 − t > 1

p
, and, thus, s must be strictly less than p in

order that (2.4) holds. For this simple operator though, one expects that O
actually maps Lp to Lp boundedly. Notice that if one takes t = 1

q
and s = p,

the left hand sides of (2.3) and (2.4) just barely fail to be finite: the best
bounds on the integrals blow up like the logarithm of the distance of x or y
to the boundary of D, respectively. The hypotheses of Proposition 2.2 below
give substitute inequalities to (2.3) and (2.4) which do allow one to conclude
the “endpoint” mapping property that was expected.

We formulate the theorem for domains in CN , because of our applications
in the next section, but note that the complex structure plays no role in the
actual result.

Proposition 2.8. Let Ω ⊂⊂ C
N be a smoothly bounded domain defined by

the real-valued function r, i.e. Ω = {z : r(z) < 0} and dr �= 0 when r = 0.
Let 1 < p < ∞ be given and let q be the conjugate exponent of p, 1

p
+1

q
= 1.

Also, let 1 < s < ∞.
Suppose that K is a measurable function on Ω × Ω and, for some 0 ≤

t ≤ 1, and for all small ε > 0

(2.9)

∫
Ω

|K(x, y)|tq|r(y)|−ε dy ≤ Ct,q · |r(x)|−ε
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and

(2.10)

∫
Ω

|K(x, y)|(1−t)s|r(x)|−ε dx ≤ Ct,s · |r(y)|−ε.

Then, for any f ∈ Lp(Ω), the function

(2.11) Of(x) =

∫
Ω

K(x, y)f(y) dy

belongs to Ls(Ω). Here dy denotes integration, in the y variables, with respect
to the euclidean volume form. Moreover, the operator O : Lp(Ω) −→ Ls(Ω)

is a bounded linear operator and ||O||op ≤ C
1
q

t,q · C
1
s
t,s.

Proof. The proof is quite similar to the proof of Proposition 2.1. From (2.9)
and Hölder’s inequality, we obtain, for small δ > 0,

|Of(x)| =

∣∣∣∣
∫

Ω

K1−t(x, y)|r(y)|δf(y)Kt(x, y)|r(y)|−δ dy

∣∣∣∣
≤
(∫

Ω

|K(x, y)|(1−t)p|f(y)|p|r(y)|pδ dy

)1/p(∫
Ω

|K(x, y)|tq|r(y)|−qδ dy

)1/q

≤
(∫

Ω

|K(x, y)|(1−t)p|f(y)|p|r(y)|pδ dy

)1/p

C
1
q

t,q · |r(x)|−δ

≤ C
1
q

t,q

(∫
Ω

|K(x, y)|(1−t)p|f(y)|p|r(y)|pδ|r(x)|−pδ dy

)1/p

.

Thus Minkowski’s inequality and (2.10) yield(∫
Ω

|Of(x)|s d(x)

)p/s

≤ C
p
q

t,q

(∫
Ω

(∫
Ω

|K(x, y)|(1−t)p|f(y)|p |r(y)|pδ|r(x)|−pδdy

)s/p

dx

)p/s

≤ C
p
q

t,q

∫
Ω

(∫
Ω

|K(x, y)|(1−t)s|f(y)|s|r(y)|sδ|r(x)|−sδ dx

)p/s

dy

= C
p
q

t,q

∫
Ω

|f(y)|p|r(y)|pδ

(∫
Ω

|K(x, y)|(1−t)s|r(x)|−sδ dx

)p/s

dy

≤ C
p
q

t,q · C
p
s
t,s

∫
Ω

|f(y)|p|r(y)|pδ|r(y)|−pδ dy

= C
p
q

t,qC
p
s
t,s||f ||pp.

(2.12)

The desired conclusions follow from (2.12). �
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We point out that the defining function r is not the only function which
could be used in the proof above. Other auxiliary functions, suited to the
problem at hand, could replace r in (2.9) and (2.10); the cancellation of
powers of this auxiliary function would still occur in the penultimate line
of (2.12), resulting in the conclusion stated in Proposition 2.8. The for-
mulation of (a version of) Proposition 2.8 on more general manifolds with
boundary is similarly straightforward.

3. Estimates on the Bergman kernel

Let Ω ⊂ C
N be a domain, and let H(Ω) denote the holomorphic functions

on Ω. The Bergman projection, B, is the orthogonal projection operator
B : L2(Ω) −→ H(Ω), where L2(Ω) is standard space of square-integrable
functions with respect to Lebesgue measure and orthogonality is meant in
the sense of the standard L2 inner product. The Bergman kernel function,
B(z, w) ∈ H(Ω) × H(Ω), represents the Bergman projection as an integral
operator

Bf(z) =

∫
Ω

B(z, w)f(w) dw, f ∈ L2(Ω),

where dw denotes integration in the w variables, with respect to the euclid-
ean volume form. The Bergman kernel function is a highly domain depen-
dent function, whose behavior at the boundary of Ω is not known, in general.

Suppose that Ω is smoothly bounded, that is: there exists a C∞, real-
valued function r : nbhd

(
Ω
)
−→ R such that Ω = {z : r(z) < 0} and dr �= 0

when r = 0. If Ω is strongly pseudoconvex, i.e. i∂∂̄r(p)
(
ξ, ξ̄
)

> 0 for all
p ∈ bΩ and all nonzero vectors ξ ∈ CN satisfying ∂r(p) (ξ) = 0, the bound-
ary behavior of the Bergman kernel function associated to Ω is understood
quite precisely. In fact, Fefferman [7] has established a complete asymptotic
expansion of B(z, w), in terms of r(z), r(w) and a pseudo-distance between
z and w, as z, w → bΩ (see also [2]). We do not need the precision of an as-
ymptotic expansion here, and so we recall only the (essentially sharp) upper
bounds on the Bergman kernel.

Proposition 3.1. Let Ω = {r < 0} be a smooth, bounded, strongly pseudo-
convex domain in C

N . For each p ∈ bΩ, there exists a neighborhood U of p,
holomorphic coordinates (ζ1, . . . , ζN ) and a constant C > 0, such that for
a, b ∈ U ∩ Ω

(3.2) |B(a, b)| ≤ C

(
|r(a)| + |r(b)| + |a1 − b1| +

N∑
k=2

|ak − bk|2
)−(N+1)

.

Here a = (a1, . . . , aN ) in the ζ-coordinates, and similarly for b.
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The earlier works of [10] and [5] were important precursors to Fefferman’s
result; however the results there contained only estimates on the Bergman
kernel restricted to the diagonal, which are not sufficient for obtaining map-
ping properties of the Bergman projection. Inequality (3.2) can be extracted
from the results in [7]; it may also be obtained by simpler methods than those
used by Fefferman. The simplest known derivation of Proposition 3.1 uses
the scaling methods developed in [12] and [15], see the remark (5.3) in [12].
For more details on this proof, see [13].

It is elementary to see that a defining function is uniformly comparable
to δbΩ: there exist constants c1, c2, which depend on r but not on z ∈ Ω,
such that c1δbΩ(z) ≤ |r(z)| ≤ c2δbΩ(z) for all z ∈ Ω (implicit function
theorem). So, for our distance-symbol Toeplitz operators, we may consider
the operators

Tηf(z) = B (|r|ηf) (z) =

∫
Ω

B(z, w)|r(w)|ηf(w) dw

=

∫
Ω

Kη(z, w)f(w) dw,

(3.3)

for any defining function r, establish mapping properties of the operators Tη,
then infer the same properties on the operators Tη.

In order to apply Proposition 2.8, we examine the size of powers of Kη

integrated against |r|−ε. To avoid writing irrelevant constants below, we
use the notation f(z) � g(z) to denote that there exists a constant C,
independent of z, such that f(z) ≤ Cg(z).

Proposition 3.4. Let Ω = {r < 0} be a smooth, bounded, strongly pseudo-
convex domain in CN , and let B(z, w) = BΩ(z, w) be the Bergman kernel
associated to Ω.

If Kη(z, w) = B(z, w)|r|η(w), if 0 ≤ η < N + 1, and if ρ ≤ N+1
N+1−η

,
then

(3.5)

∫
Ω

|Kη(z, w)|ρ |r(w)|−ε dw � |r(z)|−ε,

for all 0 < ε < 1.

Proof. The proof follows the lines of Lemma 1 in [14]. Let ∆b = {(z, z) :
z ∈ bΩ} be the boundary diagonal of Ω × Ω. We recall that

(3.6) B(z, w) ∈ C∞ (Ω × Ω \ ∆b

)
,

see [11].
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Cover bΩ by neighborhoods U1, . . . UM given by Proposition 3.1; we may
assume that the neighborhoods are so small that the quantity in parenthesis
on the right hand side of (3.2) is less than 1. If U0 = Ω \ ∪M

j=1Uj then, it

follows from (3.6) that
∫

U0
|Kη(z, w)|ρ |r(w)|−ε dw � 1, if z ∈ Ω.

Now consider an arbitrary Uj, 1 ≤ j ≤ M , and work in the coordinates
associated to Uj by Proposition 3.1. It follows from (3.2) that if a, b ∈ Ω∩Uj,

(3.7) |Kη(a, b)| �
(
|r(a)| + |r(b)| + |a1 − b1| +

N∑
k=2

|ak − bk|2
)−(N+1)+η

.

Let a ∈ Uj be temporarily fixed. If ρ ≤ N+1
N+1−η

, it follows from (3.7) that

Ij =

∫
Uj

|Kη(a, b)|ρ |r(b)|−ε db

�
∫

CN

(
|r(a)| + |r(w)| + |a1 − w1| +

N∑
k=2

|ak − wk|2
)ρ(−(N+1)+η)

|r(w)|−ε dw

�
∫

CN

(
|r(a)| + |r(w)| + |a1 − w1| +

N∑
k=2

|ak − wk|2
)−(N+1)

|r(w)|−ε dw.

Now change coordinates: w̃k = wk − ak, k = 2, . . . , N , Re w̃1 = r(w),
Im w̃1 = Im w1. And to simplify notation, let x = Re w̃1 and y = Im a1 −
Im w1. We then obtain

(3.8) Ij �
∫

CN

(
|r(a)| + |x| + |y| +

N∑
k=2

|w̃k|2
)−(N+1)

|x|−ε dw̃2 . . . dw̃N dx dy.

First consider the w̃2 integration in (3.8). Define

R1 =

{
w̃2 : |w̃2|2 > |r(a)| + |x| + |y| +

N∑
k=3

|w̃k|2
}

R2 =

{
w̃2 : |w̃2|2 < |r(a)| + |x| + |y| +

N∑
k=3

|w̃k|2
}

.

Using polar coordinates on the region R1 we have∫
R1

(
|r(a)| + |x| + |y| +

N∑
k=2

|w̃k|2
)−(N+1)

|x|−ε dw̃2 ≤
∫

R1

(
|w̃2|2

)−(N+1) |x|−ε dw̃2

�
∫ ∞

L

R−2(N+1)R|x|−ε dR �
(
|r(a)| + |x| + |y| +

N∑
k=3

|w̃k|2
)−N

|x|−ε,
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where L =
(
|r(a)| + |x| + |y| +

∑N
k=3 |w̃k|2

)1/2

. However, on the region R2

we obtain the same upper bound by elementary estimation:

∫
R2

(
|r(a)| + |x| + |y| +

N∑
k=2

|w̃k|2
)−(N+1)

|x|−ε dw̃2

≤
(
|r(a)| + |x| + |y| +

N∑
k=3

|w̃k|2
)−(N+1)

|x|−ε vol(R2)

�
(
|r(a)| + |x| + |y| +

N∑
k=3

|w̃k|2
)−N

|x|−ε.

The same type of estimation may be performed on the dw̃3, . . . dw̃N inte-
grals, reducing one negative power of the integrand at each step, to obtain

Ij �
∫

C

(|r(a)| + |x| + |y|)−2 |x|−ε dx dy.

For this final integral, estimate the y integration first, in the same manner
as above. Then, noting that the extra power of −ε for the x integral avoids
the occurrence of a logarithm term, we obtain as above that,

Ij � |r(a)|−ε, a ∈ Ω ∩ Uj.

Since we obtain the identical bounds on each of the open sets U1, . . . , UM ,
and since Ij � 1 if z /∈ Uj by (3.6), we have shown (3.5). �

We are now prepared to give the

Proof of Theorem 1.2. First consider the case where η ≥ N +1. It follows
directly from (3.2) and (3.6) that

sup
z,w∈Ω

|Kη(z, w)| � 1.

Part (c) of Proposition 2.1 thus implies that Tη : L1(Ω) −→ L∞(Ω) bound-
edly, so (b) of Theorem 1.2 holds.

Next consider the case where η < N + 1. Let 1 < p < ∞ and suppose
that E(= N+1

N+1−η
) ≥ p

p−1
. Then Proposition 3.4 says that∫

Ω

|Kη(z, w)|q |r(w)|−ε dw � |r(z)|−ε,

so (2.9) holds for any t < 1. Taking t arbitrarily close to 1, we then see
that (2.10) holds for any s < ∞ by Proposition 3.4. Thus, (a) part (ii) of
Theorem 1.2 holds, by Proposition 2.8.
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Finally, in the case where the hypotheses of (a) part (i) of Theorem 1.2
are satisfied, it follows from Proposition 3.4 that (2.9) and (2.10) will hold
for an s, 1 < s < ∞, if we can find a t, 0 ≤ t ≤ 1 such that both

(3.9) t
p

p − 1
≤ E and (1 − t)s ≤ E,

hold. Making the first inequality in (3.9) an equality defines the largest
possible t for the first inequality to hold; substituting this value of t into the
second inequality then gives the stated relationship on s in Theorem 1.2 (a)
part (i). �

4. On sharpness of the mapping properties

We shall consider the results of Theorem 1.2 in the special case of the
Bergman spaces Ap(D), for D the unit disc in complex plane, for 1 < p < ∞.
Thus, we have N = 1 in Theorem 1.2 and we look at the Toeplitz operator
T(1−|z|)η .

Claim: For any 1 < p < ∞, and for any 0 < η < 2
p
, the operator T(1−|z|)η

maps Lp(D) to no higher Ls(D) class than that stated in Theorem 1.2 (i).

In order to show the Claim, we first collect 2 one variable facts.

Lemma 4.1. If f ∈ L1 (D) is a real-valued, radial function, we have for all
integers k ≥ 0 that

Tf zk = ck zk, where ck = (2k + 2)f̂(2k + 2).

Here

f̂(x) =

∫ 1

0

f(ρ)ρx−1 dρ

is the Mellin transform of f .

Proof. If {ej} = {
√

j + 1zj}, j = 0, 1, . . . denotes the standard orthonormal
basis for A2(D), then

Tf zk =
∞∑

j=0

(j + 1)〈fzk, zj〉zj.

It is easy to see that 〈fzk, zj〉 = f̂(2k +2) if j = k and 〈fzk, zj〉 = 0 if j �= k
(see [4] for more details on the Mellin transform and Toeplitz operators).�

Suppose now that f is a real-valued, bounded, radial function on D. Since
the Bergman projection B is a bounded operator from Lp(D) to Ap(D) for
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1 < p < ∞, it is clear that Tf is a bounded operator from Lp(D) to Ap(D)
for 1 < p < ∞. It is well-known that for this range of p, the partial
sums of the Taylor series of a function in Ap(D) converge, in norm, to the
function. Hence, if h(z) =

∑∞
k=0 akz

k ∈ Ap(D), then Tfh(z) =
∑∞

k=0 akckz
k

by Lemma 4.1. Recall that a sequence {λk} is a coefficient multiplier from
Ap(D) to Aq(D) if

∑∞
k=0 λkakz

k ∈ Aq(D) whenever
∑∞

k=0 akz
k ∈ Ap(D).

Thus for Tf , with f as above, we have that the sequence {ck} given in
Lemma 4.1 is a coefficient multiplier on Ap(D) to itself, for 1 < p < ∞. For
an extensive treatment of coefficient multipliers of the Bergman space on
the unit disc, see the recent book [6].

The second one variable result we need is the following:

Lemma 4.2. Let f(z) = (1 − |z|)η, for η > 0, on D. Then

(2k + 2)f̂(2k + 2) ∼ k−η.

Proof. If ck = (2k + 2)f̂(2k + 2), then integrating by parts repeatedly gives

ck = 2(k + 1)

∫ 1

0

(1 − ρ)ηρ2k+1 dρ = const.
(2k + 2)!

(η + 1) . . . (η + 2k + 2)
.

This can be expressed using the gamma function as

ck = const.
Γ(2k + 3)Γ(η + 1)

Γ(η + 2k + 3)
,

which is asymptotic to k−η, by Stirling’s formula. �

Remark: From the formula for ck above, notice that ck can be expressed
in terms of the Beta function, instead of the Mellin transform. That is,

ck = (2k + 2)B(2k + 2, η + 1) where B(a, b) =

∫ 1

0

sa−1(1 − s)b−1 ds.

To prove the sharpness of our Theorem 1.2, part (i), we will use some
results from [3]. We also mention the paper [19] which contains related,
precursor results to those in [3]. In Theorem 1.3, part (a), of [3], it is shown
that the sequence {k−η} multiplies Ap(D) into As(D) with s = 2p

2−ηp
. For

η < 2/p (so that s < ∞), we are then in the case of our Theorem 1.2 (i),
and s = 2p

2−ηp
is precisely the value of s that our Theorem 1.2 (i) guarantees

Tη maps Lp(D) to, in dimension 1. Since Lemma 4.2 above shows that the
sequence corresponding to Tη is ck ∼ k−η, the mapping results of the two
papers are consistent with each other (though not sub-Theorems of each
other, for the reason mentioned in the paragraph below).
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Turning now to the question of sharpness, Lemma 3.8 in [3], and the
remark following it, shows that s = 2p

2−ηp
is the best possible integrabil-

ity exponent that the sequence {k−η} multiplies Ap(D) into. Because of
Lemma 4.2 above, it is tempting to conclude immediately, therefore, that
Theorem 1.2 (i) is sharp. The problem, however, is that a bounded se-
quence may not multiply As(D) to itself if s �= 2. (see Section 3 of [3]
regarding the solid sequences and, also, Corollary 4.4). Thus, a little more
work is required to connect the asymptotic statement of our Lemma 4.2 to
the sharpness statements from [3].

So suppose, on the contrary, that ck = (2k+2)B(2k+2, η+1) does mul-
tiply Ap(D) to As+ε(D), with s = 2p

2−ηp
and ε > 0. Consider the quotient k−η

ck
:

k−η

ck

=
1

kη
· 1

(2k + 2)B(2k + 2, η + 1)
(4.3)

=
(2k + 1

k

)η

· 2k + 1

2k + 2
· 1

(2k + 1)η+1B(2k + 2, η + 1)

=
[
2η 2k + 1

2k + 2

]
·
(
1 +

1

2k

)η

· 1

(2k + 1)η+1B(2k + 2, η + 1)
.

We consider the three factors in (4.3) separately. Recall that a sequence
{λk} is of bounded variation if

∑∞
k=0 |λk+1 − λk| < ∞. The first factor

in (4.3) is trivially of bounded variation. The sequence in the second fac-
tor in (4.3),

{
(1 + 1

2k
)η
}
, is also of bounded variation. To see that, apply

the mean value theorem to the function g(x) = (1 + 1
2x

)η on each interval
[k, k + 1] and estimate the derivative by |g′(x)| ≤ 1

4
η
x2 ≤ η

k2 . By Proposi-
tion 3.7 in [3], sequences of bounded variation multiply Ap(D) to itself, for
1 < p < ∞; thus both of the first two factors in (4.3) multiply As+ε(D)
to itself. Finally, we consider the third factor in (4.3). The sequence
{(2k + 1)η+1B(2k + 2, η + 1)} is precisely the type of sequence considered
in Lemma 3.4 of [3]; this lemma asserts that the sequence

(4.4)
{ [

(2k + 1)η+1B(2k + 2, η + 1)
]−1 }

has the so-called Taylor form, defined on page 376 of the same paper. How-
ever, Lemma 3.2 of [3] deals with sequences of Taylor form, and it follows
from this lemma that the sequence (4.4) multiplies As+ε(D) to itself.

Taken together, these facts imply that the sequence {k−η/ck} multiplies
As+ε(D) to itself. Since we are assuming that {ck} multiplies Ap(D) to
As+ε(D), we may compose {k−η/ck} and {ck} and conclude that {k−η} mul-
tiplies Ap(D) into As+ε(D) with s = 2p

2−ηp
. But this contradicts Theorem 1.3

of [3]. This contradiction proves the Claim above.
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Our results about the sharpness of the mapping properties in Theo-
rem 1.2 are not definitive. Even for the unit disc in C, note that we have
restricted attention to small values of η > 0 above (0 < η < 2

p
), i.e. the

case dealt with by our Theorem 1.2 (a) (i). This is because if, for example,
η ≥ 2, Theorem 1.2 (b) says that Tη maps L1(D) into L∞(D) and this is
tautologically sharp within the Lq classes. But it is reasonable to expect
that, as η gets large, Tη will map L1 into better and better subclasses of
L∞; here “better” can be interpreted in several ways, e.g. having fractional
derivatives, or being in some weighted Lq class with weights which blow-
up at the boundary. At least in C, we are certain that numerous results
which refine our Theorem 1.2 (b) can be obtained, by considering various
subclasses of L∞ as the target space, but we do not have a guess about an
ultimate sharpness result in this direction. More importantly, however, is
our lack of knowledge about how sharp our Theorem 1.2 is for domains in
C

n, n > 1. We have no results indicating whether the dimension dependent
gain in Theorem 1.2 is sharp or simply an artifact of our proof; it may be
possible that distance-symbol operators TδbΩ

map Lp to some Ls class where
s is independent of the dimension. A result of this type would be quite
useful in several applications.
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