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A note on lifting of Carnot groups

Andrea Bonfiglioli and Francesco Uguzzoni

Abstract

We prove that every homogeneous Carnot group can be lifted to
a free homogeneous Carnot group. Though following the ideas of
Rothschild and Stein, we give simple and self-contained arguments,
providing a constructive proof, as shown in the examples.

1. Introduction and main results

The analysis of partial differential operators of the form L =
∑

j≤mX
2
j ,

where the Xj’s are smooth vector fields on RN , started with Hörmander’s
paper [15], in which the celebrated maximum rank condition was introduced
in relation to the study of the hypoellipticity of L. Afterwards, Rothschild
and Stein [18] obtained sharp regularity results for L by using analysis on
nilpotent Lie groups. Harmonic analysis on stratified groups was further-
more systematically developed by Folland [8] and by Folland and Stein [10].

A crucial step in [18] is the construction of vector fields X̃1, . . . , X̃m on a
manifold larger than R

N which lift the Xj’s and which can be locally ap-
proximated by left-invariant vector fields on a stratified group.

In recent years, the study of stratified groups (also known as Carnot
groups) and their related sub-Laplacians has experienced an increasing de-
velopment in several different directions of research. Since sub-Laplacians
can be viewed as suitable local approximations of general Hörmander sum
of squares L, a prominent role in this rising interest is undoubtedly played
by the lifting result of Rothschild and Stein.

Different proofs of the lifting procedure have then been provided by other
authors (see Hörmander-Melin [16], Folland [9], Goodman [11]) who felt the
need to give direct and geometric proofs of this result. In [9], for example,
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it is considered the case when X1, . . . , Xm already generate a nilpotent Lie
algebra with homogeneous properties.

The aim of our paper is to deal with a case similar to this last one. Indeed,
we treat the case when the Xj’s generate the Lie algebra of a Carnot group G

and we prove that G can be directly lifted to a free group G̃ which preserves
the homogeneous structure of G, besides being itself a homogeneous Carnot
group. We shall explain below our main motivation for this precise study.
Here, we would like to remark that, even if we follow the idea in [18], our
main result (see Theorem 1.1 below) is not explicitly given in none of the
papers quoted above. Our scope is also to provide a simple proof, the most
direct and self-contained as possible. We investigate homogeneous Carnot
groups and the lifting process to free homogeneous ones, from the point of
view of PDE’s and our arguments are mainly addressed to non specialists
in Lie group theory (to this end, the Appendix provides a few background
material). The lifting theorem we are concerned with can be summarized as
follows.

Theorem 1.1 Let G be a homogeneous Carnot group on RN . Then, there
exists a free homogeneous Carnot group G̃ on RH (with H ≥ N) such that,
denoting by π : R

H → R
N the projection on the first N coordinates (up to a

permutation of the coordinates of RH), we have

X̃i(u ◦ π) = (Xiu) ◦ π, ∀u ∈ C∞(RN),

where
∑m

i=1X
2
i and

∑m
i=1 X̃

2
i are the canonical sub-Laplacians ∆G and ∆

�G
,

respectively. Moreover π : G̃→ G is a Lie group morphism.

We refer to Theorem 2.4 for a more detailed statement and to the end of this
section for the notation and definitions. We now would like to stress that a
lifting result such as Theorem 1.1 (preserving the well-behaved properties of
homogeneous Carnot groups) is a crucial step in a wider project which we
now briefly recall. Indeed, we are interested in applying analysis on Carnot
groups to the study of non-linear subelliptic PDE’s arising in the geometric
theory of several complex variables such as the Levi-curvature equation,
which has achieved rising concern in the last few years (see [19, 17, 6, 5]).
The starting point of this programme is to study the fundamental solution
of linear parabolic-type operators in non-divergence form

H =
∑

i,jai,j(x)XiXj − ∂t,

being {Xi}i a stratified system of Hörmander vector fields and ai,j Hölder
continuous functions. In the forthcoming paper [3], we construct the funda-
mental solution forH via the Levi-parametrix method: this is made possible
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by means of the uniform Gaussian estimates established in [2] for the fun-
damental solutions of the frozen operators. We explicitly remark that in [2]
these uniform estimates are derived by making a crucial use of our Theo-
rem 1.1, as we hereafter precise.

Indeed, consider the frozen operators HA =
∑m

j=1 ai,j XiXj − ∂t, where
A = (ai,j) is a positive-definite matrix belonging to a suitable class of el-

lipticity. Let G be the Carnot group related to the Xj’s and let G̃ be the
free Carnot group lifting G as in Theorem 1.1. The family of heat operators
{HA} is then lifted to a corresponding family {H̃A}. Since G̃ is free, the op-

erators H̃A are all diffeomorphically equivalent to the canonical one related
to the identity matrix: this is proved by the authors in [4] (we highlight
that this fact is not true in general, if the group is not free). The related

fundamental solutions Γ̃A are hence all diffeomorphic to the one related to
the identity matrix, whence they satisfy the uniform Gaussian estimates
in [2, Theorem 2.7]. Finally, the fundamental solutions ΓA of HA are ex-

plicitly represented by integrating Γ̃A with respect to the added variables.
As a straightforward consequence, the uniform Gaussian estimates can be
obtained for the fundamental solutions ΓA on the general non-free group G.

In this paper, we also give a direct example of application of Theorem 1.1
to PDE’s. Indeed, in Section 4 we write an explicit formula for the funda-
mental solutions for all the sub-Laplacians on Carnot groups of step two.
This formula is given in terms only of the fundamental solution for the
canonical sub-Laplacian on a fixed free Carnot group. The latter fundamen-
tal solution can be written in a somewhat explicit form by means of a result
by Beals, Gaveau and Greiner [1].

We now introduce a few basic notation and definitions about Carnot
groups. Let ◦ be an assigned Lie group law on RN . We suppose RN is
endowed with a homogeneous structure by a given family of Lie group au-
tomorphisms {δλ}λ>0 (called dilations) of the form

(1.1) δλ(x) = δλ(x
(1), . . . , x(r)) = (λx(1), . . . , λrx(r)).

Here x(i) ∈ R
Ni for i = 1, . . . , r and N1 + · · · + Nr = N . We denote by g

the Lie algebra of (RN , ◦). For i = 1, . . . , N1, let Xi be the vector field in g

that agrees at the origin with ∂/∂x
(1)
i . We make the following assumption:

the Lie algebra generated by X1, . . . , XN1 is the whole g. With the above
hypotheses, we call G = (RN , ◦, δλ) a homogeneous Carnot group (this is not
the classical definition, but it is an equivalent one, see Proposition 5.3 and
Theorem 5.6 in the Appendix). We also say that G is of step r and has m :=
N1 generators. We denote by Q =

∑r
j=1 j Nj the homogeneous dimension

of G. The canonical sub-Laplacian on G is the second order differential
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operator ∆G =
∑m

i=1X
2
i . If Y1, . . . , Ym is any basis for span{X1, . . . , Xm},

the second order differential operator L =
∑m

i=1Y
2
i will be called a sub-

Laplacian on G. We explicitly remark that L is hypoelliptic since Y1, . . . , Ym

Lie-generate g and hence they satisfy Hörmander’s condition

rank
(
Lie{Y1, . . . , Ym}(x)

)
= N, ∀x ∈ R

N .

We now recall the definition of fm,r, the free nilpotent Lie algebra of
step r with m (≥ 2) generators x1, . . . , xm. By definition, fm,r is the unique
(up to isomorphism) nilpotent Lie algebra of step r generated by m of its
elements x1, . . . , xm, such that for every nilpotent Lie algebra n of step r and
for every map ϕ from {x1, . . . , xm} to n, there exists a (unique) Lie algebra
morphism ϕ̃ from fm,r to n extending ϕ. The construction of such a Lie
algebra fm,r is classical (see e.g., [20, 21]). We say that the Carnot group G

is a free Carnot group if its Lie algebra g is isomorphic to fm,r, for some m
and r. R

N equipped with the ordinary abelian structure is an example of free
Carnot group. The Heisenberg group H

1 is also a free Carnot group, while
Hn is not free, for any n ≥ 2, as can be seen by a dimensional argument. We
refer the reader to [14] for the construction of a basis for fm,r (see also [12]).

The paper is organized as follows. Section 2 contains the proof of our
main result Theorem 2.4: the proof describes in details how to realize the
lifting process. Section 3 provides an explicit example of our lifting, il-
lustrating the constructive proof of the previous section. In Section 4, we
prove our explicit formula for the fundamental solutions on step two Carnot
groups. Finally, the Appendix collects a few results on Carnot groups. We
warn the reader that known basic properties of Carnot groups will be used
throughout Section 2 and 3, without mention. Some of these properties are
recalled in the Appendix, where we also prove that our operative definition
of homogeneous Carnot group is equivalent to the classical one.

2. Lifting to free Carnot groups

For the rest of this section, (G, ◦) will be a (fixed) homogeneous Carnot
group on R

N with dilations δλ(x
(1), . . . , x(r)) = (λx(1), . . . , λrx(r)), x(i) ∈ R

Ni ,
and we set for brevity m = N1. Moreover, Z = (Z1, · · · , ZN ) will denote
the Jacobian basis of the Lie algebra g of G, i.e., Zi is the vector field
in g agreeing at the origin with ∂/∂xi. We explicitly recall that g is a
N -dimensional nilpotent Lie algebra of step r generated by Z1, . . . , Zm. If
Z

(i)
j ∈ g agrees at the origin with ∂/∂x

(i)
j , then it is easy to see that Z

(i)
j is δλ-

homogeneous of degree i. Finally, let fm,r be the free nilpotent Lie algebra of
step r, with m generators F1, . . . , Fm. By the definition of fm,r, there exists
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a unique Lie algebra morphism Π from fm,r to g such that Π(Fi) = Zi (i =
1, . . . ,m). Clearly, Π is surjective, whence dim fm,r = dim ker(Π) + dim g.
We set H = dim fm,r. The following result will be of relevance in the sequel.

Proposition 2.1 There exists a basis F = (F1, . . . , FH) for fm,r such that

(2.1) Π(Fj) = Zj, j = 1, . . . , N, Π(Fj) = 0, j = N + 1, . . . , H,

and each Fj (j = 1, . . . , H) is a homogeneous Lie polynomial in F1, . . . , Fm.

Proof. Let αj denote the δλ-homogeneity degree of Zj. In particular α1 =
. . . = αm = 1. For a multi-index I = (i1, . . . , ik) with i1, . . . , ik ∈ {1, . . . ,m},
we set |I| = k (the height of I) and define ZI := [Zi1, [Zi2 . . . [Zik−1

, Zik ] . . . ]].
Then, by simple homogeneity arguments, we have

Zj =
∑

I∈Ij
c
(j)
I ZI , c

(j)
I ∈ R,

where Ij is a set of multi-indices all with height αj . If we analogously set

FI := [Fi1 , [Fi2 . . . [Fik−1
, Fik ] . . . ]],

the first N elements of the basis F can be chosen as

Fj =
∑

I∈Ij
c
(j)
I FI , j = 1, . . . , N.

Indeed Π(Fj) = Zj and F1, . . . , FN are linearly independent homogeneous

Lie polynomials in the generators F1, . . . , Fm. Let now F̂N+1, . . . , F̂H be a
basis for ker(Π). We can write

F̂j =
∑

I∈Aj
q

(j)
I FI , j = N + 1, . . . , H,

for a certain set of multi-indices Aj and scalars q
(j)
I ’s. For every k = 1, . . . , r,

we set A(k)
j := {I ∈ Aj : |I| = k }. Then

F̂j =
∑

I∈A(1)
j
q

(j)
I FI + · · ·+∑

I∈A(r)
j
q

(j)
I FI =: F̂

(1)
j + · · ·+ F̂

(r)
j .

The system of vectors F̂ := {F̂ (k)
j : j = N + 1, . . . , H, k = 1, . . . , r} has the

following properties: each of its vectors is a homogeneous Lie polynomial
in the generators F1, . . . , Fm; the system spans ker(Π); for every j = N +

1, . . . , H and k = 1, . . . , r, we have F̂
(k)
j ∈ ker(Π). The last assertion can be

proved by simple homogeneity arguments. Finally, the lemma is proved by
extracting from the system of vectors F̂ a basis FN+1, . . . , FH for ker(Π). �
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In the sequel, we shall consider some abstract finite-dimensional algebras;
we hence introduce a useful notation, which will allow us to restrict to deal
with ordinary R

n spaces. Let h be a finite-dimensional nilpotent real Lie
algebra. It is possible to prove that h is equipped with a Lie group structure
by the so-called Campbell-Hausdorff composition law, defined by (5.4) in
the Appendix (see, for example, Corollary 5.5). For X, Y ∈ h, the first few
terms in the sum (5.4) (which is finite since h is nilpotent) are given by

X � Y = X + Y + 1
2
[X,Y ] + 1

12
[X, [X,Y ]]− 1

12
[Y, [X,Y ]] + · · ·

We explicitly remark that � is defined in a universal way (independent of h)
as a Lie polynomial in X and Y . We now fix a basis E = (E1, . . . , EN )
for h (N := dim h) and we identify h with RN via the map πE : h → RN ,∑N

i=1 ξiEi �→ (ξ1, . . . , ξN ). The group law � is then turned into a group
law �E on R

N in the natural way:

a �E b := πE
(
π−1
E (a) � π−1

E (b)
)
, a, b ∈ R

N .

The Lie groups (RN , �E) and (h, �) are clearly isomorphic via πE . We stress
that the Lie group morphism πE is also a linear map.

With the above notation, we now consider the Lie groups (RN , �Z) and
(RH , �F), where Z is the Jacobian basis of g, whereas F is the basis of fm,r

introduced in Proposition 2.1. Let rN and rH denote their Lie algebras,
respectively. First of all, we remark that the map

π := πZ ◦ Π ◦ π−1
F : (RH , �F)→ (RN , �Z)

is a surjective Lie group morphism coinciding with the usual projection of R
H

onto R
N . Indeed, if ξ ∈ R

H we have (by means of (2.1))

π(ξ) = πZ
( H∑

i=1

ξi Π(Fi)
)

= πZ
( N∑

i=1

ξi Zi

)
= (ξ1, . . . , ξN ).

We now turn to the Lie algebras: since π is a Lie group morphism, then
its differential dπ : rH → rN is a Lie algebra morphism with the following
property (see the Appendix, Theorem 5.2)

(2.2)
(
dπ(E)

)
π(ξ)

= dπ(Eξ), ∀ E ∈ rH , ∀ ξ ∈ R
H .

Roughly speaking, the differential of a Lie group morphism which coincides
with a projection gives a lifting of vector fields. More precisely, we have the
following lemma.
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Lemma 2.2 With the above notations, if E ∈ rH then E is a lifting of
dπ(E) in the following sense: if f ∈ C∞(RH) depends only on ξ1, . . . , ξN
i.e., f(ξ1, . . . , ξH) = g(ξ1, . . . , ξN ) for every ξ ∈ R

H (with g ∈ C∞(RN)),
then we have(

Ef
)
(ξ1, . . . , ξH) =

(
dπ(E)g

)
(ξ1, . . . , ξN ), ∀ ξ ∈ R

H .

Proof. Let g ∈ C∞(RN) and f ∈ C∞(RH) be such that f = g ◦ π. We
have to prove Eξ(f) =

(
dπ(E)

)
π(ξ)

(g), for every ξ ∈ RH . From (2.2), we

immediately obtain
(
dπ(E)

)
π(ξ)

(g) =
(
dπ(Eξ)

)
(g) = Eξ(g ◦ π) = Eξ(f).

This ends the proof. �

The rest of the lifting method consists in transferring this result to the
group G, after a suitable definition of the larger group which projects onto G.
We refer the reader to the following diagram of Lie group morphisms:

(fm,r, �) Π−→ (g, �) Exp←→ (G, ◦)
πF 	 	 πZ

(G× RH−N , •) Φ←→ (RH , �F)
π−→ (RN , �Z)

We recall that (RN , �Z) is isomorphic to (g, �) via πZ . On the other hand,
the exponential map Exp : (g, �) → (G, ◦) is a Lie group isomorphism. As
a consequence, the map Ψ := Exp ◦ π−1

Z is a Lie group isomorphism from
(RN , �Z) to (G, ◦).

We then look for a suitable group structure on G × R
H−N and a Lie

group isomorphism

Φ : (RH , �F)→ (G× R
H−N , •)

such that ϑ := Ψ ◦ π ◦ Φ−1 is the projection of G × RH−N onto G. To this
end, we set

Φ(ξ1, . . . , ξH) := (Ψ(ξ1, . . . , ξN ), ξN+1, . . . , ξH).

Clearly, Φ is a diffeomorphism of class C∞. We then define on G × RH−N

the composition law induced by Φ

(g1, a1) • (g2, a2) := Φ
(
Φ−1(g1, a1) �F Φ−1(g2, a2)

)
,

so that Φ becomes a Lie group isomorphism between (RH , �F) and (G ×
RH−N , •). Finally, the Lie group morphism

ϑ := Ψ ◦ π ◦ Φ−1 : (G× R
H−N , •)→ (G, ◦)

is, by construction, the natural projection. Indeed,

ϑ(x1, . . . , xH) = (Ψ ◦ π)(Ψ−1(x1, . . . , xN ), xN+1, . . . , xH)

= Ψ(Ψ−1(x1, . . . , xN)) = (x1, . . . , xN ).
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We denote by g rH−N the Lie algebra of (G×RH−N , •). The proof of the
following result is simply a restatement of the proof of Lemma 2.2.

Lemma 2.3 If W ∈ g rH−N , then W is a lifting of dϑ(W ) in the fol-
lowing sense: if f ∈ C∞(G × RH−N) depends only on x1, . . . , xN , i.e.,
f(x1, . . . , xH) = g(x1, . . . , xN) for every x ∈ G × RH−N (with g ∈ C∞(G)),
then we have(

Wf
)
(x1, . . . , xH) =

(
dϑ(W )g

)
(x1, . . . , xN ), ∀x ∈ G× R

H−N .

We claim that the first N vector fields of the Jacobian basis W1, . . . ,WH

for g rH−N lift orderly the Jacobian basis Z1, . . . , ZN for g. Indeed, by
Lemma 2.3, it suffices to show that dϑ(Wk) = Zk for every k = 1, . . . , N .
On the other hand, for all f ∈ C∞(G) we have(

dϑ(Wk)
)
0
(f) = (Wk)0(f ◦ ϑ) = (∂xk

f)(0) =
(
Zk

)
0
f.

We are now in the position to prove the main result of this section.

Theorem 2.4 (Lifting) Let G be a homogeneous Carnot group on RN of
step r and m (= N1) generators. Then, there exists a free homogeneous

Carnot group G̃ on RH (H = dim fm,r) with the properties (i) and (ii)
stated below.

We fix the following notations:

δλ(x) = δλ(x
(1), x(2), . . . , x(r)) = (λx(1), λ2x(2), . . . , λrx(r)),

δ̃λ(x̃) = δ̃λ(x̃
(1), x̃(2), . . . , x̃(r)) = (λx̃(1), λ2x̃(2), . . . , λrx̃(r))

denote the dilations on G and G̃, respectively (x(i) ∈ RNi i = 1, . . . , r,

N1 + · · · + Nr = N ; x̃(i) ∈ R
�Ni i = 1, . . . , r, Ñ1 + · · · + Ñr = H); Z

(i)
j

(i ≤ r, j ≤ Ni) denote the Jacobian basis of the Lie algebra g of G and Z̃
(i)
j

(i ≤ r, j ≤ Ñi) denote the Jacobian basis of the Lie algebra g̃ of G̃.

(i) G̃ has step r and m generators and its Lie algebra is isomorphic
to fm,r.

(ii) For a certain i0 ∈ {1, . . . , r} we have

Ñi = Ni (i = 1, . . . , i0) and Ñi > Ni (i = i0 + 1, . . . , r);

moreover, if 	(i) : R
�Ni → R

Ni denotes the projection on the first Ni coordi-
nates and 	 : RH → RN is defined by 	(x̃) = (	(1)(x̃(1)), . . . , 	(r)(x̃(r))), then

(2.3) Z̃
(i)
j (u ◦ 	) =

(
Z

(i)
j u
) ◦ 	, ∀u ∈ C∞(RN), i ≤ r, j ≤ Ni,

i.e., Z̃
(i)
j lifts Z

(i)
j . Moreover, 	 is a Lie group morphism.
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Proof. Let (G× RH−N , •) be the Lie group on RH previously defined. We

show that G̃ can be constructed from G × RH−N by a permutation of the
coordinates. Let F = (F1, . . . , FH) be the basis for fm,r as in Proposition 2.1.
Then Fj is a homogeneous Lie polynomial of degree αj in the generators
F1, . . . , Fm. We stress that, by Proposition 2.1, αj is also the δλ-homogeneity
degree of Zj, for j = 1, . . . , N , i.e., the dilation δλ on RN can be written as
δλ(x1, . . . , xN ) = (λα1x1, . . . , λ

αNxN ). We also observe that only F1, . . . , Fm

have degree 1. We define dilations on fm,r as follows:

δ̂λ
(∑H

i=1ξi Fi

)
:=
∑H

i=1λ
αiξi Fi.

First we prove that δ̂λ is a Lie algebra automorphism of fm,r. Indeed, for all
i, j ∈ {1, . . . , H}

δ̂λ
(
[Fi, Fj]

)
= λαi+αj [Fi, Fj ] = [λαiFi, λ

αjFj ] = [δ̂λ(Fi), δ̂λ(Fj)].

The first equality holds since [Fi, Fj] is a homogeneous Lie polynomial in

F1, . . . , Fm of degree αi + αj. Then, δ̂λ is also a Lie group automorphism of

(fm,r, �), by Remark 5.5. As a consequence, δ∗λ := πF ◦ δ̂λ ◦π−1
F is a Lie group

automorphism of (RH , �F). Analogously, δ̃λ := Φ ◦ δ∗λ ◦ Φ−1 is a Lie group
automorphism of (G× RH−N , •). If x ∈ G× RH−N , we have

δ̃λ(x) = ((Ψ ◦ δλ ◦Ψ−1)(x1, . . . , xN ), λαN+1xN+1, . . . , λ
αHxH)

= (δλ(x1, . . . , xN ), λαN+1xN+1, . . . , λ
αHxH).

Indeed, as we recall in the Appendix, Ψ commutes with the dilations of G.
We then reorder the coordinates of G×RH−N in the following way. Let

(x, y) ∈ G×RH−N , where x = (x(1), . . . , x(r)) ∈ G and y = (yN+1, . . . , yH) ∈
RH−N . We can suppose that the coordinates of y are ordered in such
a way that αN+1 ≤ · · · ≤ αH . Setting i0 := αN+1 − 1, we can write
y = (y(i0+1), . . . , y(r)), where to each coordinate yl of y(k) (i0 + 1 ≤ k ≤ r)
corresponds a degree of homogeneity αl equal to k. We now set

P : G×R
H−N → R

H , (x, y) �→ (x(1); . . . ;x(i0);x(i0+1), y(i0+1); . . . ;x(r), y(r)).

We define G̃ as RH with the group structure naturally induced by P from
(G×R

H−N , •). With respect to the coordinates of G̃, δ̃λ assumes the usual
form

(λx(1); . . . ;λi0x(i0);λi0+1x(i0+1), λi0+1y(i0+1); . . . ;λrx(r), λry(r)).

We now set 	 := ϑ◦P−1. It is then easy to recognize that (2.3) follows from
Lemma 2.3.
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In order to complete the proof, we have to show that G̃ is a homogeneous
Carnot group with Lie algebra g̃ isomorphic to fm,r. To this purpose, let
(Gm,r, ∗) be a free homogeneous Carnot group on R

H whose Lie algebra is
isomorphic to fm,r: the existence of such a group can be easily derived by
the Third Fundamental Theorem of Lie and by our Theorem 5.6. It is then
non-restrictive to consider fm,r to be the Lie algebra of Gm,r itself. If we
denote by Exp ∗ the exponential map from (fm,r, �) to (Gm,r, ∗), then

Exp ∗ ◦ π−1
F : (RH , �F)→ (Gm,r, ∗)

is a Lie group isomorphism. As a consequence, by Theorem 5.2 in the
Appendix, d(Exp ∗ ◦ π−1

F ) is a Lie algebra isomorphism from rH to fm,r. Let
E1, . . . , EH be the Jacobian basis for rH . We now prove that

(2.4) d(Exp ∗ ◦ π−1
F )(Ei) = Fi, i = 1, . . . ,m.

In particular, since F1, . . . , Fm are generators for fm,r, this will prove that
E1, . . . , Em are generators for rH . If f ∈ C∞(Gm,r), we have(

d (Exp ∗ ◦ π−1
F )(Ei)

)
0
(f) = (Ei)0

(
f ◦ Exp ∗ ◦ π−1

F
)

= (∂ξi
|ξ=0)f

(
Exp ∗

(∑H
j=1ξjFj

))
=

d

dt

∣∣∣
t=0
f
(
Exp ∗(t Fi)

)
=

d

dt

∣∣∣
t=0
f
(
expFi

(t)
)

= (Fi)0(f).

Since a left-invariant vector field is determined by its value at the origin,
this proves (2.4). An analogous argument shows that

dΦ : rH → g rH−N

maps the first m vector fields of the Jacobian basis for rH into the first
m vector fields of the Jacobian basis for g rH−N . Finally, since G̃ is ob-
tained from G × RH−N by the Lie group isomorphism P (which permutes

the coordinates, leaving the first m ones unaltered) we can assert that G̃ is
a homogeneous Carnot group. Moreover, g̃ is isomorphic to fm,r via the Lie
algebra isomorphism

d(Exp ∗ ◦ π−1
F ◦ Φ−1 ◦ P−1).

This ends the proof. �

In Section 3 below, we give an example of the lifting method just described.
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3. An example of lifting

We here give an example of a homogeneous Carnot group and we lift it to a
free homogeneous Carnot group. We shall follow the notations introduced in
Section 2. We consider the homogeneous Carnot group G on R

5 with group
law and dilations defined as follows: δλ(x) = (λx1, λ x2, λ x3, λ x4, λ

2x5) and

x ◦ y = (x1 + y1, x2 + y2, x3 + y3, x4 + y4, x5 + y5 + x1 y3 + x2 y4).

The Jacobian basis Z for g is given by

Z1 = ∂1, Z2 = ∂2, Z3 = ∂3 + x1 ∂5, Z4 = ∂4 + x2 ∂5, Z5 = ∂5.

The Campbell-Hausdorff formula on a Lie algebra nilpotent of step 2 is given
by X � Y = X + Y + 1

2
[X,Y ]. Hence the group (R5, �Z) has composition

law given by:

ξ �Z η = (ξ1 + η1, ξ2 + η2, ξ3 + η3, ξ4 + η4,

ξ5 + η5 + 1
2
(ξ1 η3 − ξ3 η1 + ξ2 η4 − ξ4 η2)).

With few modifications, we recognize that �Z is the usual group law on H2,
the Heisenberg group on R

5. The Jacobian basis X for r5 is given by:

X1 = ∂1− ξ3
2
∂5, X2 = ∂2− ξ4

2
∂5, X3 = ∂3 + ξ1

2
∂5, X4 = ∂4 + ξ2

2
∂5, X5 = ∂5.

We now turn to consider f4,2. We have dim f4,2 = 10. Let Π : f4,2 → g be
the Lie algebra morphism such that Π(Fi) = Zi for every i = 1, . . . , 4. The
following is a basis F for f4,2 as in Proposition 2.1:

F1, F2, F3, F4, [F1, F3] ; [F1, F2], [F1, F4], [F2, F3], [F3, F4], [F2, F4]−[F1, F3].

One can easily recognize that the last 5 vectors in F form a basis for ker(Π).
The Lie group (R10, �F) has composition law given by:

ξ �F η =
(
ξ1 + η1, ξ2 + η2, ξ3 + η3, ξ4 + η4,

ξ5 + η5 + 1
2
(ξ1 η3 − ξ3 η1 + ξ2 η4 − ξ4 η2), ξ6 + η6 + 1

2
(ξ1 η2 − ξ2 η1),

ξ7 + η7 + 1
2
(ξ1 η4 − ξ4 η1), ξ8 + η8 + 1

2
(ξ2 η3 − ξ3 η2),

ξ9 + η9 + 1
2
(ξ3 η4 − ξ4 η3), ξ10 + η10 + 1

2
(ξ2 η4 − ξ4 η2)

)
.

The first 5 vector fields of the Jacobian basis for r10 are then given by:

E1 = ∂1 − ξ3
2
∂5 − ξ2

2
∂6 − ξ4

2
∂7, E2 = ∂2 − ξ4

2
∂5 + ξ1

2
∂6 − ξ3

2
∂8 − ξ4

2
∂10,

E3 = ∂3 + ξ1
2
∂5 + ξ2

2
∂8 − ξ4

2
∂9, E4 = ∂4 + ξ2

2
∂5 + ξ1

2
∂7 + ξ3

2
∂9 + ξ2

2
∂10,

E5 = ∂5.
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It is evident that Ei lifts dπ(Ei) = Xi, for every i = 1, . . . , 5, as stated in
Lemma 2.2. By a straightforward calculation of the exponential map from g

to G, we have

Ψ = Exp ◦π−1
Z : (R5, �Z)→ (G, ◦), Ψ(ξ) = (ξ1, ξ2, ξ3, ξ4, ξ5+

1
2
(ξ1 ξ3+ξ2 ξ4)).

In particular, the Lie group isomorphism Φ : (R10, �F) → (G × R5, •) is
defined by

Φ(ξ) = (ξ1, ξ2, ξ3, ξ4, ξ5 + 1
2
(ξ1 ξ3 + ξ2 ξ4); ξ6, ξ7, ξ8, ξ9, ξ10).

As a consequence, the group law on G× R
5 is given by:

x • y =
(
x1 + y1, x2 + y2, x3 + y3, x4 + y4, x5 + y5 + x1 y3 + x2 y4,

x6 + y6 + 1
2
(x1 y2 − x2 y1), x7 + y7 + 1

2
(x1 y4 − x4 y1),

x8 + y8 + 1
2
(x2 y3 − x3 y2), x9 + y9 + 1

2
(x3 y4 − x4 y3),

x10 + y10 + 1
2
(x2 y4 − x4 y2)

)
.

The first 5 vector fields of the Jacobian basis for g r5 are then given by:

W1 = ∂1 − x2

2
∂6 − x4

2
∂7, W2 = ∂2 + x1

2
∂6 − x3

2
∂8 − x4

2
∂10,

W3 = ∂3 + x1 ∂5 + x2

2
∂8 − x4

2
∂9, W4 = ∂4 + x2 ∂5 + x1

2
∂7 + x3

2
∂9 + x2

2
∂10,

W5 = ∂5.

As stated in Lemma 2.3, Wi lifts dϑ(Wi) = Zi, for every i = 1, . . . , 5. Finally,

in this case the free homogeneous Carnot group G̃ which lifts G has the same
group law as (G×R5, •) since the permutation of the coordinates P can be

chosen as the identity map. We remark that the dilations of G̃ are

δλ(x) = (λx1, λ x2, λ x3, λ x4, λ
2x5, λ

2x6, λ
2x7, λ

2x8, λ
2x9, λ

2x10).

4. An example of application to PDE’s

In this Section, we focus on Carnot groups of step two. We characterize
the composition law on such groups and we explicitly exhibit their lifting.
As a consequence, we derive a direct formula for the fundamental solutions
for all the sub-Laplacians on groups of step two. This formula is given in
terms only of the fundamental solution for the canonical sub-Laplacian on
a fixed free Carnot group. The latter fundamental solution can be written
in a somewhat explicit form by means of a result by Beals, Gaveau and
Greiner [1].

The result below easily follows from Proposition 5.1 in the Appendix.
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Remark 4.1 The N -dimensional homogeneous Carnot groups of step two
and m generators are characterized by being (RN , ◦) with the following Lie
group law (N = m+ n, x ∈ R

m, t ∈ R
n)

(x, t) ◦ (ξ, τ) =

(
xj + ξj , j = 1, . . . ,m

tj + τj + 1
2
〈x,B(j)ξ〉, j = 1, . . . , n

)
,

where the B(j)’s are m×m matrices, whose skew-symmetric parts 1
2
(B(j)−

(B(j))T ) are linearly independent. (Up to a Lie group isomorphism, the
matrices B(j)’s can be supposed to be themselves skew-symmetric.)

We fix G = (RN , ◦) a Carnot group of step two as above, i.e., we fix
matrices B(1), . . . , B(n) as in Remark 4.1. Let L =

∑m
j=1 Y

2
j be a fixed sub-

Laplacian on G. Then, there exists a non-singularm×mmatrix A = (ak,j)k,j

such that Yj =
∑m

k=1 ak,j Zk, where Z1, . . . , Zm denote the first m vector
fields of the Jacobian basis of g. Our aim here is to write the fundamental
solution for L in terms only of A, B(1), . . . , B(n) and the fundamental solution
for the canonical sub-Laplacian of the prototype free Carnot group (Fm,2, �)
which we describe below. Let i, j ∈ {1, . . . m} with i > j be fixed and let
S(i,j) be the m × m skew-symmetric matrix whose entries are +1 in the
position (i, j), −1 in the position (j, i) and 0 elsewhere. Then, we agree
to denote by (Fm,2, �) the Carnot group associated to these m(m − 1)/2
matrices according to Remark 4.1. Here and in the sequel we shall use the
following notation: we denote the point of Fm,2 by (x, γ) and we also write
the coordinates of γ by γi,j where (i, j) varies in the set I = {(i, j) | 1 ≤ j <
i ≤ m}. Then, the composition law � is given by

(x, γ) � (x′, γ′) =

(
xh + x′h, h = 1, . . . ,m

γi,j + γ′i,j + 1
2
(xi x

′
j − xj x

′
i), (i, j) ∈ I

)
.

It is easily proved that the Lie algebra of (Fm,2, �) is (isomorphic to) fm,2.
Then Fm,2 is a free homogeneous Carnot group of step two on R

m(m+1)/2,
with m generators.

Since, by assumption, the skew-symmetric parts of B(1), . . . , B(n) are
linearly independent, there exists indices (i1, j1), . . . , (in, jn) ∈ I such that
the following n× n matrix((

AT B(r)−(B(r))T

2
A
)

is,js

)
1≤r,s≤n

is non-singular. We denote by K = (kr,s)r,s the inverse of the above matrix.
We also define the subset of indices C = I \ {(i1, j1), . . . , (in, jn)}. With the
above notation, we shall also denote the point of Fm,2 by (x, t, β), where
x ∈ Rm, t ∈ Rn, β = (βh,k)(h,k)∈C ∈ Rm(m−1)/2−n. We are now in the position
to state the main result of this section.
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Proposition 4.2 With the above notations, let ΓL and Γm,2 denote respec-
tively the fundamental solutions of L and of ∆Fm,2. Then, the following
formula holds

ΓL(x, t) =
| detK|
| detA|

∫
β∈Rm(m−1)/2−n

dβ Γm,2

(
A−1x,

[∑
s≤n kr,s

(
ts − 1

4
〈x, B(s)x〉

−
∑

(h,k)∈C
βh,k

(
AT B(s)−(B(s))T

2
A
)

h,k

)]
r≤n

, β

)
.

The above result can be applied in order to manage, with uniformity, families
of sub-Laplacians (letting A vary) and families of step two Carnot groups
with the same number of generators (letting B(1), . . . , B(n) vary). Indeed, an
example of application is given in [2, 3] where uniform estimates for some
families of sub-Laplacians are derived and, as a consequence, the funda-
mental solutions for non-divergence form operators with Hölder continuous
coefficients are constructed.

Remark 4.3 We explicitly remark that a rather explicit formula is given
by Beals, Gaveau and Greiner in [1], for the fundamental solution of the
canonical sub-Laplacian on any step two Carnot group G:

Γ∆G
(x, t) =

∫
Rn

V (ρ) f(x, t, ρ)(2−Q)/2 dρ,

where f is the action associated to a complex Hamiltonian problem and V
solves a transport equation. Collecting together this formula in the case of
the free group Fm,2 and our Proposition 4.2, we obtain the following formula:

ΓL(x, t) =
| detK|
| detA|

∫
β∈Rm(m−1)/2−n

dβ

∫
ρ∈Rm(m−1)/2

dρ

{
det

(
S(ρ)

sinhS(ρ)

)}1/2

×

×
{

1

2

〈
S(ρ) cothS(ρ)A−1x, A−1x

〉
−ι
(

n∑
r=1

ρir,jr

[∑
s≤n kr,s

(
ts− 1

4
〈x, B(s)x〉

−
∑

(h,k)∈C
βh,k

(
AT B(s)−(B(s))T

2
A
)

h,k

)]
+
∑
i,j∈C

ρi,j βi,j

)}(2−m2)/2

.

Here, S(ρ) is the matrix S(ρ) = −ι∑i,j∈I ρi,j S
(i,j), where the matrices S(i,j)

have been introduced above and ι is the imaginary unit. As an example,
if m = 3, Γ3,2 has been explicitly written in [1, p.322]. Hence, the above
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formula writes

ΓL(x, t) = −Gamma(7/2)

(2π)7/2

| detK|
| detA|

∫
β∈R3−n

dβ

∫
ρ∈R3

dρ
2|ρ|

sinh(2|ρ|) ×

×
{
〈A−1x, ρ〉2

2|ρ|2 + |ρ| coth(2|ρ|)
[
|A−1x|2 − 〈A

−1x, ρ〉2
|ρ|2 +

− ι
( n∑

r=1

ρr

{∑
s≤n

kr,s

(
ts− 1

4
〈x, B(s)x〉 −

∑
(h,k)∈C

βh,k

(
AT B(s)−(B(s))T

2
A
)

h,k

)}
+

+
3∑

r=n+1

ρr βr−n

)]}−7/2

.

Proof of Proposition 4.2. As a first step, we turn the arbitrary sub-
Laplacian L on G into the canonical sub-Laplacian on a new group G: this
can be done by the isomorphism of Lie groups G � (x, t) �→ (Ax, t) ∈ G

which turns the composition ◦ on G into

(x, t)◦(x′, t′) =

(
xj + x′j , j = 1, . . . ,m,

tj + t
′
j + 1

2
〈x,AT B(j)Ax′〉, j = 1, . . . , n

)
.

Then, it is easy to see that we have the relation

(4.1) ΓL(x, t) = | detA|−1Γ∆
G
(A−1x, t).

As a second step, we turn the composition law ◦ into a composition law ◦
whose associated matrices (according to Remark 4.1) are skew-symmetric.
This can be done by identifying G with its Lie algebra via the exponential
map. Then, the isomorphism of Lie groups

G � (x, t) �→ (x, tj +
1

4
〈x,AT B(j)Ax〉) ∈ G

turns the composition ◦ on G into

(x, t)◦(x′, t′) =

(
xj + x′j , j = 1, . . . ,m,

tj + t′j + 1
2
〈x,AT (B(j)−(B(j))T

2
)Ax′〉, j = 1, . . . , n

)
,

where the associated matrices are skew-symmetric. It is easy to see that we
have the relation

(4.2) Γ∆
G
(x, t) = Γ∆G

(x, tj − 1
4
〈x,AT B(j)Ax〉).
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As a third step, we lift G to a free Carnot group G̃ as in Theorem 2.4. In
[2, Theorem 2.4] it is proved that the fundamental solution of the canonical
sub-Laplacian on G can be obtained by integrating the fundamental solution
of the canonical sub-Laplacian on G̃ with respect to the added variables, i.e.,

(4.3) Γ∆G
(x, t) =

∫
β∈Rm(m−1)/2−n

Γ∆
�G
(x, t, β) dβ.

We need the explicit form of the lifting for an arbitrary group of step two
(with associated skew-symmetric matrices). This is given in the following
lemma, which can be proved retracing the proof of Theorem 2.4.

Lemma 4.4 Let (RN , ◦) be a Carnot group of step two and m generators as
in Remark 4.1, where its associated matrices B(j)’s are linearly independent
and skew-symmetric.

Then, (RN , ◦) is lifted to the group (RN × Rm(m−1)/2−n, ◦̃) (according to
Theorem 2.4), where (x ∈ Rm, t ∈ Rn, β ∈ Rm(m−1)/2−n)

(x, t, β) ◦ (x′, t′, β′) =

⎛⎜⎝ xj + x′j, j = 1, . . . ,m

tj + t′j + 1
2
〈x,B(j)x′〉, j = 1, . . . , n

βi,j + β′
i,j + 1

2
(xix

′
j − xjx

′
i), (i, j) ∈ C

⎞⎟⎠ .

The next step is to explicitly write a Lie group isomorphism between G̃

and Fm,2. This can be obtained by the composition Exp ◦ ϕ ◦ Log =: T ,
where Exp is the exponential map on Fm,2, Log is the logarithmic map

on G̃, and ϕ is the unique Lie algebra morphism mapping the first m vector
fields of the Jacobian basis related to G̃ into the first m vector fields of the
Jacobian basis related to Fm,2. A laborious computation shows that the map

T : (G̃, ◦̃)→ (Fm,2, �), is defined by

T (x, t, β) :=

(
x,
[∑n

s=1 kr,s

(
ts −

∑
(h,k)∈C βh,k

(
AT B(s)−(B(s))T

2
A
)

h,k

)]
r≤n

, β

)
.

It is easy to see that we have the relation

(4.4) Γ∆
�G
(x, t, β) = | detK|Γm,2(T (x, t, β)).

Finally, collecting together equations (4.1) to (4.4), we obtain the desired
formula in Proposition 4.2. �
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5. Appendix: Basic results on Carnot groups

The main aim of this section is to compare the definition of homogeneous
Carnot group in the introduction, to the one usually given in literature. To
this end, we first recall some known results on homogeneous Lie groups.

We say that a Lie group G = (RN , ◦) is homogeneous if it admits a group
of automorphisms {δλ}λ>0 of the form (1.1). Let g denote the Lie algebra
of G, i.e., the set of ◦-left-invariant vector fields on G. If τx denotes the
left-translation by x on G, then a vector field X belongs to g if and only if
X(x) = Jτx(0)X(0), for every x ∈ G (Jτx denotes the Jacobian matrix of
τx). The map J : RN → g, η �→ X defined by X(x) = Jτx(0) η is then an
isomorphism of vector spaces. As a consequence, any basis for g is the image
via J of a basis of RN . We call the Jacobian basis of g the one resulting
from the canonical basis of R

N , i.e., the basis of vector fields in g agreeing
at the origin with the coordinate partial derivatives.

A real function a(x) defined on G is called δλ-homogeneous of degree
β ∈ R if, for every x ∈ G and λ > 0, it holds a(δλ (x)) = λβa(x). A
linear differential operator X is called δλ-homogeneous of degree β ∈ R if,
for every ϕ ∈ C∞(G) and λ > 0, it holds X

(
ϕ ◦ δλ

)
= λβ

(
Xϕ
) ◦ δλ. It

follows that the only smooth δλ-homogeneous functions of degree β are the
polynomial functions of the form

∑
γ cγ x

γ , where the sum is carried over

the multi-indices γ such that
∑r

i=1

∑Ni

j=1 iγ
(i)
j = β. Consequently, a smooth

vector field δλ-homogeneous of degree k ≤ r (k ∈ N) has the following form∑r
i=k

∑Ni

j=1a
(i)
j (x(1), . . . , x(i−k)) · (∂/∂ x(i)

j ),

where a
(i)
j is a δλ-homogeneous polynomial of degree i− k. In particular, a

smooth vector field δλ-homogeneous of degree k > r is necessarily the null
operator.

The following result describes in an “explicit” way the composition law
of G and the Lie algebra g.

Proposition 5.1 Following the notation in (1.1)

x ◦ y = ((x ◦ y)(1), . . . , (x ◦ y)(r)),

we have

(x ◦ y)(1) = x(1) + y(1), (x ◦ y)(i) = x(i) + y(i) +Q(i)(x, y), 2 ≤ i ≤ r,

where

1. Q(i) depends only on x(1), . . . , x(i−1) and y(1), . . . , y(i−1);

2. the component functions of Q(i) are sums of mixed monomials in x and y;

3. Q(i)(δλx, δλy) = λiQ(i)(x, y).



1030 A. Bonfiglioli and F. Uguzzoni

This has many relevant consequences. Indeed, we have

Jτx(0) =

⎛⎜⎜⎜⎜⎝
IN1 0 · · · 0

J
(1)
2 (x) IN2

. . .
...

...
. . . . . . 0

J
(1)
r (x) · · · J

(r−1)
r (x) INr

⎞⎟⎟⎟⎟⎠ ,

where In is the n × n identity matrix, whereas J
(i)
j (x) is a Nj × Ni matrix

whose entries are δλ-homogeneous polynomials of degree j− i. In particular,
if we let Jτx(0) =

(
Z(1)(x) · · ·Z(r)(x)

)
(where Z(i)(x) is a N × Ni matrix),

then the column vectors of Z(i)(x) (the Jacobian basis for g) define δλ-
homogeneous vector fields of degree i. Consequently, the adjoint operator
of any vector field X in g is −X. This proves that any sub-Laplacian is a
divergence form operator.

Furthermore, if Exp is the exponential map from g to G and Log its
inverse function, then (by making use of the triangular form of Jτx(0)) Exp
and Log turn out to be globally defined diffeomorphisms with polynomial
components and they commute with the dilations δλ (here we are assuming
that g is identified with R

N via the Jacobian coordinates).
Finally, the Jacobian determinant of Exp , Log , of the inversion and

of right and left translations on G are identically one. In particular, the
Lebesgue measure is a Haar measure on G.

To end this survey of known facts, we recall a general result concerning
with abstract Lie groups. Let ϕ : G→ H be a Lie group morphism. Since ϕ
maps the identity of G into the identity of H, then dϕ (the differential of ϕ)
is a linear map from the tangent space to G at the identity (say, Ge) to
the tangent space to H at the identity (say, He). By means of the natural
identification between Ge and g (the Lie algebra of G) and between He and h

(the Lie algebra of H), dϕ induces a linear map from g to h, which we shall
still denote by dϕ. We have the following remarkable result (if X ∈ g and
x ∈ G, we shall denote by Xx the value of the vector field X at the point x).

Theorem 5.2 (see e.g. [22, Theorem 3.14]) Let G and H be Lie groups with
related Lie algebras g and h, respectively. Let ϕ : G → H be a Lie group
morphism. Then,

1. for every X ∈ g and every x ∈ G, we have
(
dϕ(X)

)
ϕ(x)

= dϕ(Xx);

2. dϕ : g→ h is a Lie algebra morphism.

We now turn to recall some known properties of the exponential map. Let r

be the Lie algebra of (R,+) and let X ∈ g be fixed. The map ψ : r → g,
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λ d/dt �→ λX is a Lie algebra morphism, whence there exists a unique Lie
group morphism expX : R → G whose differential is ψ. In particular, if e
denotes the identity of G, we have

(5.1) d
dt

∣∣
t=0
f(expX(t)) = Xe(f), ∀ f ∈ C∞(G).

With the above notations, Exp : g→ G, defined by Exp (X) := expX(1) is
the exponential map related to G. A useful property of Exp is the follow-
ing one

(5.2) Exp (tX) = expX(t), ∀ t ∈ R, X ∈ g.

We are now able to prove Theorem 5.6, the main result of the Appendix.
The definition of homogeneous Carnot group provided in Section 1 may seem
slightly different from the one usually given in literature. Indeed (see e.g.,
[8, 18, 21, 13]) a Carnot group (or stratified group) H is defined to be a
connected and simply connected Lie group whose Lie algebra h admits a
stratification, i.e., a direct sum decomposition

(5.3) h = V1⊕V2⊕· · ·⊕Vr such that

{
[V1, Vi−1] = Vi if 2 ≤ i ≤ r,
[V1, Vr] = {0}.

Here, for any two subsets V , W of h we have let [V,W ] = span
{
[v, w]

∣∣ v ∈
V, w ∈W }. As we prove in Proposition 5.3 and in Theorem 5.6 below, the
operative definition of homogeneous Carnot group given in the introduction,
is equivalent (up to isomorphism) to the classical one.

Proposition 5.3 A homogeneous Carnot group is a classical Carnot group.

Proof. Let G = (RN , ◦, δλ) be a homogeneous Carnot group. Clearly G

is connected and simply connected. For i = 1, . . . , r and j = 1, . . . , Ni,
let Z

(i)
j be the vector field of g agreeing with ∂/∂ x

(i)
j at the origin. We

set Vi := span{Z(i)
1 , . . . , Z

(i)
Ni
}. Then g = V1 ⊕ V2 ⊕ · · · ⊕ Vr. Moreover,

we know that Z
(i)
j is δλ-homogeneous of degree i. This immediately yields

[V1, Vr] = {0}. Moreover, a field belonging to [V1, Vi−1] is δλ-homogeneous
of degree i, hence, as an element of g = V1 ⊕ · · · ⊕ Vr, it must necessarily
belong to Vi, by simple homogeneity arguments. This proves [V1, Vi−1] ⊆ Vi.

On the other hand, by the definition of homogeneous Carnot group,
any element X of Vi belongs to the Lie algebra generated by Z

(1)
1 , . . . , Z

(1)
N1

:
by homogeneity arguments, X must necessarily be a linear combination
of brackets of height i of Z

(1)
1 , . . . , Z

(1)
N1

. In particular, it follows that X
belongs to [V1, Vi−1]. Hence Vi ⊆ [V1, Vi−1] and the proposition is completely
proved. �
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Before proving that, up to isomorphism, the converse of Proposition 5.3
holds, we recall some results about the Campbell-Hausdorff formula. Let h

be a nilpotent Lie algebra. For X, Y ∈ h we set1

X � Y :=
∑
n≥1

(−1)n+1

n

∑
pi+qi≥1
1≤i≤n

(ad X)p1(ad Y)q1 · · · (ad X)pn(ad Y)qn−1Y

(
∑n

j=1(pj + qj)) p1! q1! · · · pn! qn!

= X + Y + 1
2
[X,Y ] + 1

12
[X, [X,Y ]]− 1

12
[Y, [X,Y ]] + brackets of height≥4.

(5.4)

Since h is nilpotent, (5.4) is a finite sum and � defines a composition law on h.
The following remarkable result gives the well known Campbell-Hausdorff
formula.

Theorem 5.4 (see e.g. [7, Theorem 1.2.1]) Let (H, ∗) be a connected and
simply connected Lie group. Suppose that the Lie algebra h of H is nilpotent.
Then � defines a Lie group structure on h and Exp : (h, �)→ (H, ∗) is a Lie
group-isomorphism. In particular, we have

Exp (X) ∗ Exp (Y ) = Exp (X � Y ), ∀ X, Y ∈ h.

If h is a finite-dimensional Lie algebra, then (by the Third Fundamental
Theorem of Lie, see [20, Theorem 3.15.1]) there exists a connected and
simply connected Lie group whose Lie algebra is isomorphic to h. As a
consequence, we obtain the following result.

Corollary 5.5 Let h be a finite-dimensional nilpotent Lie algebra. Then
� defines a Lie group structure on h. Moreover, if h and g are finite-
dimensional nilpotent Lie algebras and ϕ : h→ g is a Lie algebra morphism,
then ϕ is also a Lie group morphism between (h, �) and (g, �).
The second assertion of the above remark holds since, for every X, Y ∈ h,
ϕ(X � Y ) equals

ϕ(X)+ϕ(Y )+ 1
2
[ϕ(X), ϕ(Y )]+ 1

12
[ϕ(X), [ϕ(X), ϕ(Y )]]+· · · = ϕ(X) � ϕ(Y ).

We are now in the position to prove the main result of the Appendix.

Theorem 5.6 Let H be a classical Carnot group. Then there exists a ho-
mogeneous Carnot group G isomorphic to H. We can choose as G the Lie
algebra of H (identified with RN by a suitable choice of a basis) equipped
with the composition law defined by the Campbell-Hausdorff formula. In this
case, a group-isomorphism from G to H is the exponential map.

1We use the notation (ad A)B = [A, B]. Moreover, if qn = 0, the term in the sum (5.4)
is by convention · · · (ad X)pn−1(adY)pn−1(adX)pn−1X. Clearly, if qn > 1, or qn = 0 and
pn > 1, the term is zero.
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Proof. Let (H, ∗) be a Carnot group, according to the classical definition.
Let h be the algebra of H. Let h = V1⊕· · ·⊕Vr be a stratification as in (5.3).
Obviously, the brackets in h of height > r vanish. Thus h is nilpotent. Then,
Theorem 5.4 yields that Exp : (h, �) → (H, ∗) is a Lie group-isomorphism
when � is as in (5.4). We now prove that (h, �) is a homogeneous Carnot
group according to the definition in Section 1.

We fix a basis for h adapted to its stratification: for i = 1, . . . , r, set
Ni := dimVi and let (E

(i)
1 , . . . , E

(i)
Ni

) be a basis for Vi. Then consider the
basis for h given by

E
(1)
1 , . . . , E

(1)
N1

; . . . ;E
(r)
1 , . . . , E

(r)
Nr
.

By means of this basis, we fix a coordinate system on h and we identify h

with RN , where N := N1 + · · · + Nr. We then define a family of dilations
{δλ}λ>0 as follows:

δλ : h→ h, δλ
(∑r

i=1Xi

)
:=
∑r

i=1λ
iXi, where Xi ∈ Vi.

With the above choice of coordinates, δλ is as in (1.1). We next show that
δλ is an automorphism of (h, �). Recalling Remark 5.5, it is enough to prove

δλ
(
[X,Y ]

)
= [δλ(X), δλ(Y )],

for every X, Y ∈ h. If X =
∑r

i=1Xi and Y =
∑r

i=1 Yi, where Xi, Yi ∈ Vi,
we have [Xi, Yj] ∈ Vi+j, whence δλ

(
[X,Y ]

)
equals

r∑
i,j=1

δλ
(
[Xi, Yj]

)
=

r∑
i,j=1

λi+j[Xi, Yj ]

=

r∑
i,j=1

[δλ(Xi), δλ(Yj)] = [δλ(X), δλ(Y )].

Let now g be the Lie algebra of (h, �). The proof is complete if we show that
the Lie algebra generated by the N1 vector fields Z1, . . . , ZN1 in g agreeing
at the origin with the first N1 partial derivatives coincides with the whole g.
Since Exp : h→ H is a Lie group-isomorphism, then d Exp : g→ h is a Lie
algebra-isomorphism (see Theorem 5.2). Since moreover E

(1)
1 , . . . , E

(1)
N1

is a
system of Lie-generators for h, it is enough to prove that for all k = 1, . . . , N1

we have d Exp (Zk) = E
(1)
k . To show this, being a left-invariant vector field

determined by its value at the identity, it suffices to prove(
d Exp (Zk)

)
e
= (E

(1)
k )e.
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For every f ∈ C∞(H), we have (see (5.1) and (5.2))(
d Exp (Zk)

)
e
(f) =

(
d Exp (Zk)0

)
(f) = (Zk)0(f ◦ Exp )

= (∂/∂x
(1)
k )|x=0f

(
Exp

(∑r
i=1

∑Ni

j=1x
(i)
j E

(i)
j

))
= d

dt

∣∣
t=0
f
(
Exp (t E

(1)
k )
)

= d
dt

∣∣
t=0
f
(
exp

E
(1)
k

(t)
)

= (E
(1)
k )e(f).

The theorem is thus completely proved. �

From Theorem 5.6 it is evident that any Carnot group is isomorphic to
a homogeneous Carnot group for which the group inverse is simply given
by x−1 = −x.
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