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Explicit spectral gap estimates for the
linearized Boltzmann and Landau

operators with hard potentials

Céline Baranger and Clément Mouhot

Abstract
This paper deals with explicit spectral gap estimates for the lin-

earized Boltzmann operator with hard potentials (and hard spheres).
We prove that it can be reduced to the Maxwellian case, for which
explicit estimates are already known. Such a method is constructive,
does not rely on Weyl’s Theorem and thus does not require Grad’s
splitting. The more physical idea of the proof is to use geometrical
properties of the whole collision operator. In a second part, we use
the fact that the Landau operator can be expressed as the limit of the
Boltzmann operator as collisions become grazing in order to deduce
explicit spectral gap estimates for the linearized Landau operator
with hard potentials.

1. Introduction

This paper is devoted to the study of the spectral properties of the linearized
Boltzmann and Landau collision operators with hard potentials. In this
work we shall obtain new quantitative estimates on the spectral gap of these
operators. Before we explain our methods and results in more details, let us
introduce the problem in a precise way. The Boltzmann equation describes
the behavior of a dilute gas when the only interactions taken into account
are binary elastic collisions. It reads in R

N (N ≥ 2)

∂f

∂t
+ v · ∇xf = QBo(f, f),

where f(t, x, v) stands for the time-dependent distribution function of den-
sity of particles in the phase space.
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The N -dimensional Boltzmann collision operator Q is a quadratic op-
erator, which is local in (t, x). The time and position are only parameters
and therefore shall not be written in the sequel: the estimates proven in this
paper are all local in (t, x). Thus it acts on f(v) by

QBo(f, f)(v) =

∫
v∗∈RN

∫
σ∈SN−1

B(cos θ, |v − v∗|) [f ′
∗f

′ − f∗f ] dσ dv∗

where we have used the shorthands f = f(v), f∗ = f(v∗), f
′

= f(v′),
f

′
∗ = f(v

′
∗). The velocities are given by

v′ =
v + v∗

2
+

|v − v∗|
2

σ, v′
∗ =

v + v∗

2
− |v − v∗|

2
σ.

The collision kernel B is a non-negative function which only depends on
|v − v∗| and cos θ = k · σ where k = (v − v∗)/|v − v∗|.

Consider the collision operator obtained by the linearization process
around the Maxwellian global equilibrium state denoted by M

LBoh(v) =

∫
RN

∫
SN−1

B(cos θ, |v − v∗|) M(v∗)
[
h

′
∗ + h

′ − h∗ − h
]

dσ dv∗,

where f = M(1 + h) and M(v) = e−|v|2. Notice that for the associated
linearized equation, the entropy is the L2(M) norm of h and thus by differ-
entiating, the entropy production is

< h,LBoh >L2(M) =

= −1

4

∫
RN

∫
RN

∫
SN−1

B(cos θ, |v − v∗|)
[
h

′
∗ + h

′ − h∗ − h
]2

MM∗dσdv∗dv.

This quantity is non-positive. At the level of the linearized equation, this
corresponds to the first part of Boltzmann’s H-theorem, and it implies that
the spectrum of LBo in L2(M) is non-positive. Let us denote

DBo(h) = − < h,LBoh >L2(M) .

We shall call this quantity “(linearized) entropy production functional” by
analogy with the nonlinear case.

In the case of long-distance interaction, the collisions occur mostly for
very small deviation angle θ. In the case of the Coulomb potential, for
which the Boltzmann collision operator is meaningless (see [18, Annex I,
Appendix A]), one has to replace it by the Landau collision operator

QLa(f, f)(v) = ∇v ·
(∫

v∗∈RN

a(v − v∗) [f∗ (∇f) − f (∇f)∗] dv∗

)
,

with a(z) = |z|2 Φ(z) Πz⊥, where Πz⊥ is the orthogonal projection onto z⊥, i.e.,

(Πz⊥)i,j = δi,j − zizj

|z|2 .
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This operator is used for instance in models of plasma in the case of
a Coulomb potential, i.e., a gas of (partially or totally) ionized particles
(for more details see [16] and the references therein). Applying the same
linearization process than for the Boltzmann operator (around the same
global equilibrium M), we define the linearized Landau operator

LLah(v) = M(v)−1 ∇v ·
(∫

v∗∈RN

a(v − v∗) [(∇h) − (∇h)∗] MM∗ dv∗

)
,

and the (linearized) Landau entropy production functional

DLa(h) = − < h,LLah >L2(M)

=
1

2

∫
RN

∫
RN

Φ(v − v∗)|v − v∗|2
∥∥Π(v−v∗)⊥ [(∇h)−(∇h)∗]

∥∥2
MM∗dv∗dv

which is also non-positive. It implies that the spectrum of LLa in L2(M) is
non-positive.

Let us now write down our assumptions for the collision kernel B:

• B is a tensorial product

(1.1) B = b(cos θ) Φ(|v − v∗|),
where Φ and b are non-negative functions (this is the case for instance
for collision kernels deriving from interaction potentials behaving like
inverse-power laws).

• The kinetic part Φ is bounded from below at infinity, i.e.,

(1.2) ∃R ≥ 0, cΦ > 0 | ∀ r ≥ R, Φ(r) ≥ cΦ.

This assumption holds for hard potentials (and hard spheres).

• The angular part b satisfies

(1.3) cb = inf
σ1,σ2∈SN−1

∫
σ3∈SN−1

min{b(σ1 · σ3), b(σ2 · σ3)} dσ3 > 0.

This covers all the physical cases.

Remarks: 1. Notice that there is no b left in QLa and LLa but the function Φ
is definitely the same in both Landau and Boltzmann operators. Therefore
the assumptions on the Landau operator reduce to (1.2). Thus we deal with
the so-called “hard potentials” case for the Landau operator, which excludes
the Coulomb potential.
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2. The assumption that B is a tensorial product is made for a sake of
simplicity. Indeed, one could easily adapt the proofs in section 2 to relax
this assumption. The price to pay would be a more technical condition on
the collision kernel B.

The spectral properties of the linearized Boltzmann and Landau opera-
tors have been extensively studied. In particular, there are of crucial interest
for perturbative approach issues. For instance, the convergence to equilib-
rium has been studied in this context, as well as the hydrodynamical limit
(see [12]).

On the one hand, for hard potentials, the existence of a spectral gap as
soon as the kinetic part of the collision kernel is bounded from below at in-
finity is a classical result, which can be traced back unto Grad himself. The
only method was up to now to work under the assumption of Grad’s angular
cutoff, and to apply Weyl’s Theorem to LB, written as a compact pertur-
bation of a multiplication operator (a very clear presentation of this proof
can be found in [5]). The picture of the spectrum obtained for the operator
(under Grad’s cutoff assumption) is described by figures 1 and 2 (see [4]).

Figure 1: Spectrum of the collision operator for strictly hard
potential with angular cutoff.
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Figure 2: Spectrum of the collision operator for Maxwell’s mole-
cules with angular cutoff.

A similar method has been applied to the linearized Landau operator with
hard potential in [7].
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On the other hand, for the particular case of Maxwellian molecules
(for LB), a complete and explicit diagonalisation has been obtained first
by symmetry arguments in [19], and then by Fourier methods in [1]. The
spectral gap for the “over-Maxwellian” collision kernel of the linearized Lan-
dau operator (i.e., collision kernels which are bounded from below by one for
Maxwellian molecules) can be derived from results in [11], by a linearization
process. Notice also that in the case of the so-called Kac’s equation, an
explicit entropy production estimate, based on a cancellation method, was
given in [10]; this method can be linearized in order to give explicit spectral
gap estimates for “over-quadratic” linearized Kac’s operator (for which the
physical meaning is not clear!). Nevertheless we did not manage to adapt
this strategy to the Boltzmann operator with hard potentials. Notice how-
ever that Wennberg [20] gave an extension of the very first entropy estimates
of Desvillettes [8] to allow for hard and soft potentials. His idea has some
similarities with ours: to avoid the region in R

N × R
N where Φ(|v − v∗|) is

small.
A specific study of the spectral properties of the linearized operator was

made for non-cutoff hard potentials in [15]. Nevertheless this article was
critically reviewed some years later in [14]. Also another specific study for
“radial cutoff potentials” was done in [6].

Finally notice that it is proved in [2] that the linearized Boltzmann oper-
ator for soft potential with angular cutoff has no spectral gap. The resulting
spectrum is described in figure 3 (see [4]).
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Figure 3: Spectrum of the collision operator for soft potentials
with angular cutoff.

But if one allows a loss on the algebraic weight of the norm, it was proved
in [13] a “degenerated spectral gap” result of the form

‖LBoh‖L2(M) ≥ C ‖h‖L2
γ(M) ∀h⊥{1; v ; |v|2} ,

where γ < 0 is the power of the kernel Φ. It is based on inequalities proven
in [2] and Weyl’s Theorem.
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However, the perturbative method has drawbacks, all coming from the
fact that it does not rely on a physical argument. First it is not explicit, that
is the width of the spectral gap is not known, which is problematic when
one wants to obtain quantitative estimates of convergence to equilibrium.
Secondly it gives no information about how this spectral gap is sensitive to
the perturbation of the collision kernel. Finally approaches based on Weyl’s
Theorem rely strongly on Grad’s cutoff assumption via “Grad’s splitting”,
which means to deal separately with the gain and the loss part of the collision
operator.

Our method is geometrical and based on a physical argument. It gives
explicit estimates and deals with the whole operator, with or without angular
cutoff. Up to our knowledge, as far as spectral gaps are considered, it covers
all the results of the above-mentioned articles dealing with hard potentials,
with or without angular cutoff.
We think likely that this geometrical method could also be adapted to give
explicit versions of “degenerated spectral gap” results in the case of soft
potentials, even if up to now we did not manage to do it.

We now state our main theorems:

Theorem 1.1. (The linearized Boltzmann operator) Under the as-
sumptions (1.1), (1.2), (1.3), the Boltzmann entropy production functional
DBo with B = Φ b satisfies, for all h ∈ L2(M)

(1.4) DBo(h) ≥ CBo
Φ,b DBo

0 (h),

where DBo
0 (h) stands for the entropy production functional with B0 ≡ 1 and

CBo
Φ,b =

(
cΦ cb e−4R2

32 |SN−1|

)

with R, cΦ, cb being defined in (1.2), (1.3).
As a consequence we deduce quantitative estimates on the spectral gap of

the linearized Boltzmann operator, namely for all h ∈ L2(M) orthogonal in
L2(M) to 1, v and |v|2, we have

(1.5) DBo(h) ≥ CBo
Φ.b |λBo

0 | ‖h‖2
L2(M).

Here λBo
0 is the first non-zero eigenvalue of the linearized Boltzmann operator

with B0 ≡ 1 (that is, for Maxwellian molecules with no angular dependence,
sometimes called pseudo-Maxwellian molecules) which equals in dimension 3
(see [1])

λBo
0 = −π5/2

∫ π

0

sin3 θ dθ = −4

3
π5/2.
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Remark: As an application of this theorem, let us give explicit formulas
for the spectral gap SBo

γ of the linearized Boltzmann operator with b ≥ 1
and Φ(z) = |z|γ , γ > 0, in dimension 3. Then cb ≥ |S2| and for any given R
we can take cΦ = Rγ. Thus we get

SBo
γ ≥

(
Rγ e−4R2

32

)
4

3
π5/2

for any R > 0. An easy computation leads to the lower bound

SBo
γ ≥ π5/2 (γ/8)γ/2 e−γ/2

24

by optimizing the free parameter R.

Theorem 1.2. (The Landau linearized operator) Under assump-
tions (1.2), the Landau entropy production functional DLa with collision
kernel Φ satisfies, for all h ∈ L2(M)

(1.6) DLa(h) ≥ CLa
Φ DLa

0 (h)

where DLa
0 (h) stands for the Landau entropy production functional with

Φ0 ≡ 1 and

CLa
Φ =

(
cΦ βR

8 αN

)
with

αN =

∫
RN−1

e−|V |2 dV, βR =

∫{
V ∈RN−1 | |V |≥2R

} e−|V |2 dV.

As a consequence we deduce quantitaves estimates on the spectral gap
of the linearized Landau operator, namely for all h ∈ L2(M) orthogonal in
L2(M) to 1, v and |v|2, we have

(1.7) DLa(h) ≥ CLa
Φ |λLa

0 | ‖h‖2
L2(M).

Here λLa
0 is the first non-zero eigenvalue of the linearized Landau operator

with Φ0 ≡ 1 (that is, for Maxwellian molecules).
Moreover in dimension 3, by grazing collisions limit, we can estimate λLa

0

thanks to the explicit formula on the spectral gap of the linearized Boltzmann
operator for Maxwellian molecules

(1.8) |λLa
0 | ≥ 2 π.
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Remarks: 1. As for the linearized Boltzmann operator, we can deduce from
this theorem an explicit formula for a lower bound on the spectral gap SLa

γ

for the linearized Landau operator with hard potentials Φ(z) = |z|γ , γ > 0,
in dimension 3. We get

SLa
γ ≥

(
Rγ e−4R2

8

)
2π5/2

for any R > 0. An easy computation leads to the lower bound

SLa
γ ≥ π5/2 (γ/8)γ/2 e−γ/2

4

by optimizing the free parameter R.

2. The modulus of the first non-zero eigenvalue of the linearized Lan-
dau operator for Maxwellian molecules is estimated here by grazing collisions
limit. Other methods would have been the linearization of entropy estimates
in [11], or to use the decomposition (established in [17]) of the Landau oper-
ator for Maxwellian molecules into a Fokker-Planck part (for which spectral
gap is already known) and a spherical diffusion process, which can only
increases the spectral gap; and then to linearize the estimate thus obtained.

3. More generally, it is likely that an explicit spectral gap for the lin-
earized Landau operator with hard potentials could be directly computed
by existing methods even if up to our knowledge this is the first explicit
formula. But Theorem 1.2 is stronger: it says that the property proved
on the Boltzmann operator with hard potentials, namely “cancellations for
small relative velocities can be neglected as far as entropy production is
concerned”, remains true for the linearized Landau operator with hard po-
tentials.

The idea of the proof is to reduce the case of hard potentials (in the
generalized sense (1.2)) to the Maxwellian case. The difficulty is to deal with
the cancellations of the kinetic collision kernel Φ on the diagonal v = v∗.

The starting point is the following inequality which is a corollary of [3,
Theorem 2.4]

(1.9)

∫
RN

∫
RN

|ξ(x) − ξ(y)|2 |x − y|γ M(x) M(y) dx dy

≥ Kγ

∫
RN

∫
RN

|ξ(x) − ξ(y)|2 M(x) M(y) dx dy

for γ ≥ 0, ξ some function, and

Kγ =
1

4
∫

RN M
inf

x,y∈RN

∫
RN

min {|x − z|γ, |z − y|γ} M(z) dz.
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It was first suggested by Villani [16, Chap. 5, section 1.4], in the context
of the study of entropy-entropy dissipation inequalities for the Landau equa-
tion with hard potentials, that this inequality could allow to prove that hard
potentials reduce to the Maxwellian case as far as convergence to equilibrium
is concerned.

The proof of (1.9) relies strongly on the existence of a “triangular in-
equality” for some function F (x, y) integrated: in (1.9), the function F is
simply |ξ(x) − ξ(y)|2 which satisfies

F (x, y) ≤ 2F (x, z) + 2F (z, y).

The main difficulty is hence to obtain such a “triangular inequality” adapted
to our case for the linearized Boltzmann operator. It will be discussed in
details in section 2 together with the proof of Theorem 1.1. Section 3 will
be devoted to the linearized Landau operator: using results of section 2, we
will prove Theorem 1.2 thanks to a grazing collision limit.

2. The linearized Boltzmann operator

In this section, we present the proof of inequality (1.4) in Theorem 1.1. In
order to “avoid” the diagonal v ∼ v∗ where Φ is not uniformly bounded
from below, we use the following argument: perfoming a collision with
small relative velocity (i.e., for a small |v − v∗|) is the same than perfom-
ing two collisions with great relative velocity, provided that the pre- and
post-collisionnal velocities are the same. One could summarize the situation
in this way: when a collision with small relative velocity occurs, at the same
time, two collisions with great relative velocity occur, which give the same
pre- and post-collisionnal velocities, and which produce at least the same
amount of entropy.

Before proving (1.4), let us begin with a preliminary lemma dealing with
the angular part of the collision kernel. This lemma is based on the same
geometrical idea as the one we shall use for the treatment of the cancellations
of Φ: the introduction of some well-chosen intermediate collision. This first
step is made for the sake of simplicity: we show that in the sequel of this
section one can set b ≡ 1 without restriction. It makes the proof clearer,
and simplifies somehow the constants.

Let us denote from now on

k(v, v∗, v′, v′
∗) =

[
h(v) + h(v∗) − h(v′) − h(v′

∗)
]2

.
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Lemma 2.1. (Homogeneization of the angular collision kernel b)
Under the assumptions (1.1), (1.2), (1.3), for all h ∈ L2(M),

(2.1) DBo(h) ≥ cb

4 |SN−1|D
Bo
1 (h)

where DBo
1 denotes the entropy production functional with B = Φ(|v − v∗|)

instead of B = Φ(|v − v∗|) b(θ).

Remark: This lemma allows to bound from below the entropy production
functional by one with an “uniform angular collision kernel”, i.e., a constant
cb, even when b is not bounded from below by a positive number uniformly
on the sphere. Notice for instance that the condition cb > 0 is satisfied for
b having only finite number of 0.

Proof of Lemma 2.1. First, we write down an appropriate representation
of the operator. The functional DBo reads in “σ-representation”

DBo(h)=
1

4

∫
RN

∫
RN

∫
SN−1

Φ(|v−v∗|)b
(

v − v∗
|v − v∗| · σ1

)
MM∗k(v, v∗, v′, v′

∗)dσ1dv∗dv.

(for the classical representations of the Boltzmann operator we refer to [16]).
Then keeping σ1 fixed we do the change of variable (v, v∗) → (v+v∗

2
, v−v∗

2
),

whose jacobian is (−1/2)N . Let us denote Ω = v+v∗
2

and Ω′ = v−v∗
2

. We
obtain

DBo(h) =
2N

4

∫
Ω∈RN

∫
Ω′∈RN

∫
SN−1

Φ(2|Ω′|) b

(
Ω′

|Ω′| · σ1

)
k
(
Ω + Ω′, Ω − Ω′, Ω + |Ω′|σ1, Ω − |Ω′|σ1

)
e−2|Ω|2−2|Ω′|2 dσ1 dΩ dΩ′

(recall that |Ω|2 + |Ω′|2 = |v|2+|v∗|2
2

).

We now write Ω′ in spherical coordinates Ω′ = r σ2, the other variables
being kept fixed, and use Fubini’s Theorem

DBo(h) =
2N

4

∫
Ω∈RN

∫
r∈R+

rN−1 Φ(2r) e−2|Ω|2−2r2

∫
σ1∈SN−1

∫
σ2∈SN−1

b(σ1 · σ2)

k
(
Ω + rσ2, Ω − rσ2, Ω + rσ1, Ω − rσ1

)
dσ1 dσ2 dr dΩ.

Now we apply a geometrical idea that we shall also use below in the treat-
ment of cancellations of Φ: namely we add a third artificial variable. Let us
thus introduce two collisions points u and u∗ on the sphere of center Ω and
radius r (see figure 4) and replace the collision “(v, v∗) gives (v′, v′

∗)” by the
two collisions “(v, v∗) gives (u, u∗)” and “(u, u∗) gives (v′, v′

∗)”.
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u

σ
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σ
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3

intermediate collision

1

*

*

*

Figure 4: Introduction of an intermediate collision.

Then, we shall use the following “triangular” inequality on the collision
points:
(2.2)[
(h(v) + h(v∗))−(h(v′) + h(v′

∗))
]2 ≤ 2

[
(h(v) + h(v∗)) − (h(u) + h(u∗))

]2
+ 2
[
(h(u) + h(u∗))−(h(v′) + h(v′

∗))
]2

.

So let us add a third “blind” variable σ3 on the sphere

DBo(h) =
2N

4|SN−1|
∫

Ω∈RN

∫
r∈R+

rN−1Φ(2r)e−2|Ω|2−2r2

∫
σ1∈SN−1

∫
σ2∈SN−1

∫
σ3∈SN−1

b(σ1 · σ2)k
(
Ω + rσ2, Ω − rσ2, Ω + rσ1, Ω − rσ1

)
dσ1dσ2dσ3drdΩ.

As variables σ1, σ2 and σ3 are equivalent, one can change the “blind” variable
into either σ1 or σ2 and compute the mean to get

DBo(h) =
2N

4 |SN−1|
∫

Ω∈RN

∫
r∈R+

rN−1Φ(2r)e−2|Ω|2−2r2

∫
σ1∈SN−1

∫
σ2∈SN−1

∫
σ3∈SN−1

1

2

[
b(σ1 · σ3)k

(
Ω + rσ3, Ω − rσ3, Ω + rσ1, Ω − rσ1

)
+ b(σ2 · σ3)k

(
Ω + rσ2, Ω−rσ2, Ω + rσ3, Ω−rσ3

)]
dσ1dσ2dσ3drdΩ,

which yields

DBo(h) ≥ 2N

4 |SN−1|
∫

Ω∈RN

∫
r∈R+

∫
σ1∈SN−1

∫
σ2∈SN−1

∫
σ3∈SN−1

Φ(2r)

1

2
min{b(σ1 · σ3), b(σ2 · σ3)}

[
k
(
Ω + rσ3, Ω − rσ3, Ω + rσ1, Ω − rσ1

)
+ k
(
Ω + rσ2, Ω − rσ2, Ω + rσ3, Ω − rσ3

)]
e−2|Ω|2−2r2

dσ1dσ2dσ3drdΩ.
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The triangular inequality needed on k is

k
(
Ω + rσ2, Ω− rσ2, Ω + rσ1, Ω − rσ1

)
≤ 2 k

(
Ω + rσ3, Ω − rσ3, Ω + rσ1, Ω − rσ1

)
+ 2 k

(
Ω + rσ2, Ω − rσ2, Ω + rσ3, Ω − rσ3

)
and follows from (2.2). Thus if one sets

cb = inf
σ1,σ2∈SN−1

∫
σ3∈SN−1

min{b(σ1 · σ3), b(σ2 · σ3)} dσ3,

one obtains (going back to the classical representation)

DBo(h) ≥ cb

4 |SN−1|
1

4

∫
SN−1

∫
RN

∫
RN

Φ(|v − v∗|) M M∗ k(v, v∗, v′, v′
∗) dσ dv∗dv

≥ cb

4 |SN−1|D
Bo
1 (h)

which concludes the proof. �

Lemma 2.2. (Treatment of the cancellations of Φ) Under the assump-
tion (1.2) on Φ, for all h ∈ L2(M)

(2.3) DBo
1 (h) ≥

(
cΦ e−4R2

8

)
DBo

0 (h)

where DBo
1 is the entropy production functional with B = Φ(|v − v∗|) and

DBo
0 is the entropy production functional with B = 1.

Proof of Lemma 2.2. We assume here that b ≡ 1. Lemma 2.1 indeed
shows that this is no restriction modulo a factor cb/(4

∣∣SN−1
∣∣). Let us con-

sider the so-called “ω-representation” (see [16] again): the vector σ inte-
grated on the sphere becomes ω = v′−v

|v′−v| and the change of variable changes
the angular kernel into

b̃(θ) = 2N−1 sinN−2

(
θ

2

)
,

where cos θ = 2(k · ω)2 − 1 with k = (v − v∗)/|v − v∗|.
The operator DBo

1 (h) thus becomes

DBo
1 (h) =

1

4

∫
RN

∫
RN

∫
SN−1

Φ(|v − v∗|) b̃(θ) M M∗ k(v, v∗, v′, v′
∗) dω dv dv∗
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where the velocities v′, v′
∗ are given by

v′ = v − (v − v∗, ω)ω, v′
∗ = v∗ + (v − v∗, ω)ω.

Then keeping ω fixed we do the following change of variable

v = r1ω + V1, v∗ = r2ω + V2

with V1, V2 ∈ ω⊥. The Jacobian of the change of variable is 1 since the de-
compositions are orthogonal. Finally we obtain the following representation

DBo
1 (h) =

1

4

∫
SN−1

∫
V1∈ω⊥

∫
V2∈ω⊥

e−|V1|2−|V2|2

∫
r1∈R

∫
r2∈R

e−r2
1−r2

2 Φ
(√

|r2 − r1|2 + |V2 − V1|2
)

b̃(θ) k(r1ω + V1, r2ω + V2, r2ω + V1, r1ω + V2) dr1 dr2 dV2 dV1 dω.

Assume that Φ is non-decreasing. This is no restriction since Φ ≥ Φ̃, with

Φ̃(r) = inf
r′≥r

Φ(r′),

and Φ̃ satisfies assumption (1.2) with the same constant as Φ. This monoto-
nicity yields

DBo
1 (h) ≥1

4

∫
SN−1

∫
V1∈ω⊥

∫
V2∈ω⊥

e−|V1|2−|V2|2
∫

r1∈R

∫
r2∈R

e−r2
1−r2

2 Φ (|r2 − r1|)

b̃(θ) k(r1ω + V1, r2ω + V2, r2ω + V1, r1ω + V2) dr1 dr2 dV2 dV1 dω.

We now introduce two collision points u and u∗ (see figure 5) and replace
the collision “(v, v∗) gives (v′, v′

∗)” by the two collisions “(v, u∗) gives (v′
∗, u)”

and “(u, v∗) gives (u∗, v′)”.

v

collision with small relative velocity 
collisions

intermediate

ω

θ

v’

σ

*v*
v’* u

u

Figure 5: Introduction of an intermediate collision.
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Then, we shall use the following “triangular” inequality on the collision
points:

[
(h(v)+h(v∗))−(h(v′)+h(v′

∗))
]2 ≤2

[
(h(v)+h(u∗))−(h(u)+h(v′

∗))
]2

+2
[
(h(u)+h(v∗))−(h(v′)+h(u∗))

]2
.

Recall that
∫

R
e−r2

dr =
√

π. Let us add a third artificial integration
variable r3 on R

DBo
1 (h) ≥ 1

4
√

π

∫
SN−1

∫
V1∈ω⊥

∫
V2∈ω⊥

e−|V1|2−|V2|2
∫

r1∈R

∫
r2∈R

∫
r3∈R

Φ(|r2 − r1|)b̃(θ1,2)

k(r1ω + V1, r2ω + V2, r2ω + V1, r1ω + V2)e
−r2

1−r2
2−r2

3dr1dr2dr3dV1dV2dω.

From now on, indexes of θ denote the points which are chosen to compute
the angle. Now we rename r1, r2, r3 first in r1, r3, r2, secondly in r3, r2, r1

and we take the mean of these two quantities. We get

DBo
1 (h) ≥ 1

8
√

π

∫
SN−1

∫
V1∈ω⊥

∫
V2∈ω⊥

e−|V1|2−|V2|2
∫

r1∈R

∫
r2∈R

∫
r3∈R

e−r2
1−r2

2−r2
3

[
b̃(θ1,3) Φ(|r3 − r1|) k(r1ω + V1, r3ω + V2, r3ω + V1, r1ω + V2)

+ b̃(θ2,3) Φ(|r2 − r3|) k(r3ω + V1, r2ω + V2, r2ω + V1, r3ω + V2)
]

dr1 dr2 dr3 dV1 dV2 dω.

Then,

DBo
1 (h) ≥ 1

8
√

π

∫
SN−1

∫
V1∈ω⊥

∫
V2∈ω⊥

e−|V1|2−|V2|2
∫

r1∈R

∫
r2∈R

∫
r3∈R

(2.4)

min
{
b̃(θ1,3) Φ(|r3 − r1|), b̃(θ2,3) Φ(|r2 − r3|)

}
[
k(r1ω + V1, r3ω + V2, r3ω + V1, r1ω + V2)+

k(r3ω + V1, r2ω + V2, r2ω + V1, r3ω + V2)
]

e−r2
1−r2

2−r2
3 dr1 dr2 dr3 dV1 dV2 dω.

Now we use the following triangular inequality above-mentioned which
means translated on k

k(r1ω + V1, r2ω + V2, r2ω + V1, r1ω + V2)

≤ 2 k(r1ω + V1, r3ω + V2, r3ω + V1, r1ω + V2)

+ 2 k(r3ω + V1, r2ω + V2, r2ω + V1, r3ω + V2).
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Plugging it in (2.4), we get

DBo
1 (h) ≥ 1

16
√

π

∫
SN−1

∫
V1∈ω⊥

∫
V2∈ω⊥

e−|V1|2−|V2|2
∫

r1∈R

∫
r2∈R

∫
r3∈R

min
{
b̃(θ1,3) Φ(|r3 − r1|), b̃(θ2,3) Φ(|r2 − r3|)

}
k(r1ω + V1, r2ω + V2, r2ω + V1, r1ω + V2) e−r2

1−r2
2−r2

3dr1 dr2 dr3 dV1 dV2 dω,

which yields

DBo
1 (h) ≥ 1

16
√

π

∫
SN−1

∫
V1∈ω⊥

∫
V2∈ω⊥

e−|V1|2−|V2|2
∫

r1∈R

∫
r2∈R(∫

r3∈R

min
{
b̃(θ1,3) Φ(|r3 − r1|), b̃(θ2,3) Φ(|r2 − r3|)

}
e−r2

3 dr3

)
k(r1ω + V1, r2ω + V2, r2ω + V1, r1ω + V2) e−r2

1−r2
2dr1 dr2 dV1 dV2 dω.

We now restrict the domain of integration for r3 to the set

Dr1,r2 =
{
r3 ∈ R | |r3 − r1| ≥ |r1 − r2| and |r2 − r3| ≥ |r1 − r2|

}
.

Since b̃ is non-decreasing, and

cos θ =
|V1 − V2|2 − |r1 − r2|2
|V1 − V2|2 + |r1 − r2|2

which is non-increasing with respect to |r1 − r2| when V1, V2 are kept frozen,
it is easy to check that on this domain we have θ1,3 ≥ θ1,2 and θ2,3 ≥ θ1,2

and thus b̃(θ1,3) ≥ b̃(θ1,2) and b̃(θ2,3) ≥ b̃(θ1,2). Therefore we get

DBo
1 (h) ≥ 1

16
√

π

∫
SN−1

∫
V1∈ω⊥

∫
V2∈ω⊥

e−|V1|2−|V2|2
∫

r1∈R

∫
r2∈R(∫

r3∈Dr1,r2

min
{
Φ(|r3 − r1|), Φ(|r2 − r3|)

}
e−r2

3 dr3

)
b̃(θ1,2)

k(r1ω + V1, r2ω + V2, r2ω + V1, r1ω + V2) e−r2
1−r2

2dr1 dr2 dV1 dV2 dω.

Under assumption (1.2), an easy computation leads to(∫
r3∈Dr1,r2

min
{
Φ(|r3 − r1|), Φ(|r2 − r3|)

}
e−|r3|2 dr3

)
≥ cΦ

√
πe−4R2

> 0

as soon as |r1 − r2| ≤ R, i.e.,(∫
r3∈Dr1,r2

min
{
Φ(|r3 − r1|), Φ(|r2 − r3|)

}
e−|r3|2 dr3

)
≥ cΦ

√
πe−4R2

1|r1−r2|≤R.
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By taking the mean of this estimate and the one obtained by replacing Φ
by its bound from below cΦ 1r≥R, we deduce that

DBo
1 (h) ≥ min

(
cΦ e−4R2

8
,
cΦ

2

)
1

4

∫
SN−1

∫
V1∈ω⊥

∫
V2∈ω⊥

e−|V1|2−|V2|2
∫

r1∈R

∫
r2∈R

k(r1ω + V1, r2ω + V2, r2ω + V1, r1ω + V2) b̃(θ) e−r2
1−r2

2dr1 dr2 dV1 dV2 dω.

If we now go back to the classical representation and simplify the minimum,
we obtain

DBo
1 (h) ≥

(
cΦ e−4R2

8

)
1

4

∫
SN−1

∫
RN

∫
RN

M M∗ k(v, v∗, v′, v′
∗) dσ dv dv∗

=

(
cΦ e−4R2

8

)
DBo

0 (h)

which concludes the proof of the lemma. �
The proof of Theorem 1.1 is a straightforward consequence of inequali-

ties (2.1) and (2.3).

3. The linearized Landau operator

We now prove Theorem 1.2. The idea here is to take the grazing collisions
limit in some inequalities on the linearized Boltzmann operator obtained
thanks to the geometrical method used in Section 2. In fact, the most
natural idea would have been to look for a geometrical property on the
linearized Landau operator similar to the triangular inequality used for the
linearized Boltzmann operator. But as collision circles reduce to lines in the
grazing limit, the triangular inequality becomes trivial, and thus does not
seem sufficient to apply the method of section 2. It could be linked to the
fact that in the grazing collisions limit one loses some information on the
geometry of the collision.

The problem that has to be tackled is to keep track of the angular collision
kernel b. In fact we need it only for particular b, namely

(3.1) bε(θ) =
jε(θ)

ε2 sinN−2 θ
2

where jε(θ) = j(θ/ε)/ε is a sequence of mollifiers (approximating δθ=0) with
compact support in [0, π/2] and non-increasing on this interval. It is easy
to see that b̃ε = 2N−1 sinN−2

(
θ
2

)
bε is also non-increasing on [0, π]. Following

the same strategy as in Lemma 2.2 but keeping track of the angular part of
the collision kernel, one obtains
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Lemma 3.1. Under the assumptions (1.1), (1.2), (1.3), plus the assumption
that b̃ = 2N−1 sinN−2

(
θ
2

)
b is non-increasing, one gets for all h ∈ L2(M)

(3.2) DBo
b,Φ(h) ≥

(
cΦ βR

8αN

)
DBo

b,1(h)

with

αN =

∫
RN−1

e−|V |2 dV, βR =

∫{
V ∈RN−1 | |V |≥2R

} e−|V |2 dV.

Here DBo
b,Φ stands for the entropy production functional with B = Φ b and DBo

b,1

stands for the entropy production functional with B = b.

Proof. The geometrical idea of Lemma 2.2 can be applied to the variables
V1, V2. Let us thus introduce two collisions points u and u∗ (see figure 6)
and replace the collision “(v, v∗) gives (v′, v′

∗)” by the two collisions “(v, u∗)
gives (v′, u)” and “(u, v∗) gives (u∗, v′

∗)”.

σ
θ

v’

v

ω

collision with small relative velocity 
collisions

intermediate

v’*

v*

u

u *

Figure 6: Introduction of an intermediate collision.

Then, we shall use the following “triangular” inequality on the collision
points:[

(h(v)+h(v∗))−(h(v′)+h(v′
∗))
]2 ≤ 2

[
(h(v)+h(u∗))−(h(v′)+h(u))

]2
+2
[
(h(u)+h(v∗))−(h(u∗)+h(v′

∗))
]2

.

Now we introduce an artificial third variable V3 on ω⊥. Let us denote

αN =

∫
RN−1

e−|V |2 dV .



836 C. Baranger and C. Mouhot

By inverting either V1 and V3 or V2 and V3, taking the mean, and using the
“triangular” inequality above-mentioned we get

DBo
b,Φ (h) ≥ 1

16αN

∫
SN−1

∫
r1∈R

∫
r2∈R

e−r2
1−r2

2

∫
V1∈ω⊥

∫
V2∈ω⊥(∫

V3∈ω⊥
min

{
b̃(θ1,3) Φ(|V3 − V1|), b̃(θ2,3) Φ(|V2 − V3|)

}
e−|V3|2 dV3

)

k(r1ω + V1, r2ω + V2, r2ω + V1, r1ω + V2) e−|V1|2−|V2|2dr1 dr2 dV1 dV2 dω.

Let us now restrict the integration along V3 to the domain

DV1,V2 =
{
V3 | |V3 − V1| ≥ |V1 − V2| and |V2 − V3| ≥ |V1 − V2|

}
.

Then since the expression

cos θ =
|V1 − V2|2 − |r1 − r2|2
|V1 − V2|2 + |r1 − r2|2

is non-decreasing according to |V1 − V2| when r1, r2 are kept frozen, and b̃
is non-increasing, we get θ1,3 ≤ θ1,2 and θ2,3 ≤ θ1,2 (see figure 6) and so
b̃(θ1,3) ≥ b̃(θ1,2) and b̃(θ2,3) ≥ b̃(θ1,2). Consequently

DBo
b,Φ (h) ≥ 1

16αN

∫
SN−1

∫
r1∈R

∫
r2∈R

dr2e
−r2

1−r2
2

∫
V1∈ω⊥

∫
V2∈ω⊥(∫

V3∈DV1,V2

min {Φ(|V3 − V1|), Φ(|V2 − V3|)} e−|V3|2 dV3

)
b̃(θ1,2)

k(r1ω + V1, r2ω + V2, r2ω + V1, r1ω + V2) e−|V1|2−|V2|2dr1 dr2 dV1 dV2 dω.

Under assumption (1.2), an easy computation leads to

(∫
V3∈DV1,V2

min
{
Φ(|V3 − V1|), Φ(|V2 − V3|)

}
e−|V3|2 dV3

)

≥ cΦ

∫{
V ∈RN−1 | |V |≥2R

} e−|V |2 dV = cΦ βR > 0

as soon as |V1 − V2| ≤ R, i.e.,

(∫
V3∈DV1,V2

min
{
Φ(|V3 − V1|), Φ(|V2 − V3|)

}
e−|V3|2 dV3

)
≥ cΦ βR 1|V1−V2|≤R .
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Taking the mean of this estimate and the one obtained by the trivial lower
bound Φ(r) ≥ cΦ1{r≥R}, we get in the end

DBo
b,Φ(h)≥min

(
cΦβR

8αN

,
cΦ

2

)
1

4

∫
SN−1

∫
RN

∫
RN

b(θ)MM∗ [h′
∗+h′−h−h∗]

2
dσdv∗dv,

which yields

DBo
b,Φ(h) ≥

(
cΦ βR

8αN

)
DBo

b,1(h)

and concludes the proof of the lemma. �
We now have to take the grazing collisions limit in the entropy production

functional to prove inequality (1.6) of Theorem 1.2 (this limit is essentially
well-known, see for instance [9]).

Lemma 3.2. Let us consider bε as defined in (3.1) and Φ satisfying as-
sumption (1.2). Then for a given h ∈ L2(M),

DBo
bε,Φ(h) −−→

ε→0
cN,j DLa

Φ (h)

where

cN,j =
2N−5 |SN−2|

N − 1

(∫ π

o

j(χ) χ2 dχ

)
depends only on the dimension N and the mollifier j. DBo

bε,Φ stands for the
Boltzmann entropy production functional with B = Φ bε, and DLa

Φ stands for
the Landau entropy production functional with collision kernel Φ.

Proof. The idea of the proof is to expand the expression for small ε and is
very similar to what is done in [9]. Let us write the angular vector σ

σ =
v − v∗
|v − v∗| cos(θ) + n sin(θ),

where n is a unit vector in (v − v∗)⊥. Therefore, we shall write

DBo
bε,Φ (h) =

1

4

∫
RN

∫
RN

Φ(|v − v∗|) M M∗

∫
SN−2((v−v∗)⊥)

∫ π

θ=0

bε(θ)[
h

(
v − v − v∗

2
(1 − cos(θ)) +

|v − v∗|
2

n sin(θ)

)

+ h

(
v∗ +

v − v∗
2

(1 − cos(θ)) − |v − v∗|
2

n sin(θ)

)
− h(v) − h(v∗)

]2

sinN−2 θ dθ dn dv dv∗,

where S
N−2((v − v∗)⊥) denotes the unit sphere in (v − v∗)⊥.
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Let us now focus on the integral on θ∫ π

θ=0

bε(θ)

[
h

(
v − v − v∗

2
(1 − cos(θ)) +

|v − v∗|
2

n sin(θ)

)

+h

(
v∗+

v−v∗
2

(1−cos(θ))−|v−v∗|
2

n sin(θ)

)
−h(v)−h(v∗)

]2

sinN−2 θdθ,

and make the change of variables χ = θ/ε. We get∫ π

χ=0

sinN−2(ε χ)

sinN−2( ε χ
2

)

j(χ)

ε2

[
h

(
v − v − v∗

2
(1 − cos(ε χ)) +

|v − v∗|
2

n sin(ε χ)

)

+h

(
v∗+

v−v∗
2

(1−cos(εχ))−|v−v∗|
2

n sin(εχ)

)
−h(v)−h(v∗)

]2

dχ

i.e., for small ε,∫ π

χ=0

(2N−2+O(ε))
j(χ)

ε2

( |v−v∗|
2

)2 [
εχn·(∇vh(v)−∇v∗h(v∗))+O(ε2χ2)

]2
dχ,

which writes

|v− v∗|2
∫ π

χ=0

2N−4 j(χ) χ2
[
n · (∇vh(v) −∇v∗h(v∗))

]2
dχ + O(ε)

= 2N−4

(∫ π

o

j(χ) χ2 dχ

)
|v − v∗|2

[
n · (∇vh(v) −∇v∗h(v∗))

]2
+ O(ε).

As the unit vector n is orthogonal to v−v∗
|v−v∗| , we can introduce here the

orthogonal projection onto (v − v∗)⊥

DBo
bε,Φ(h) =

2N−4

4

(∫ π

o

j(χ) χ2 dχ

) ∫
RN

∫
RN

∫
SN−2((v−v∗)⊥)

Φ(|v−v∗|) |v−v∗|2

[
n · Π(v−v∗)⊥

(∇vh(v) −∇v∗h(v∗)
)]2

M M∗ dn dv dv∗ + O(ε).

It is straightforward to see that∫
SN−2((v−v∗)⊥)

(
n · u)2 dn = ζN ‖u‖2

with, for any u ∈ S
N−2

ζN =

∫
SN−2

(u · n)2 dn =
|SN−2|
N − 1

.
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Thus we get in the end

DBo
bε,Φ(h) =

|SN−2| 2N−4

4(N − 1)

(∫ π

o

j(χ) χ2 dχ

)
∫

RN

∫
RN

|v−v∗|2Φ(|v−v∗|)MM∗‖∇vh(v)−∇v∗h(v∗)‖2 dv∗dv+O(ε)

=
|SN−2| 2N−5

N − 1

(∫ π

o

j(χ) χ2 dχ

)
DLa

Φ (h) + O(ε).

This concludes the proof of Lemma 3.2. �

Coming back to the proof of Theorem 1.2, we first prove (1.6): we write
down inequality (3.2) on DBo

Φ,bε
since b̃ε is non-increasing, and we apply

Lemma 3.2 on each term, which gives

DLa(h) ≥ CLa
Φ DLa

0 (h),

where

CLa
Φ =

(
cΦ βR

8αN

)
.

Inequality (1.7) follows immediately.

It remains to prove the lower bound (1.8) on the first non-zero eigen-
value of the linearized Landau operator for Maxwellian molecules in dimen-
sion 3. Let us denote by λBo

0,bε
the first non-zero eigenvalue for the Boltzmann

linearized operator with B = bε: for all h ∈ L2(M) orthogonal in L2(M)
to 1, v, |v|2,

DBo
bε

(h) ≥ |λBo
0,bε

| ‖h‖2
L2(M).

We apply Lemma 3.2 to this inequality which leads to

DLa
0 (h) ≥ limε→0 |λBo

0,bε
|

c3,j
‖h‖2

L2(M)

for all h ∈ L2(M) orthogonal in L2(M) to 1, v, |v|2. An explicit formula
for |λBo

0,bε
| is given in [1]

|λBo
0,bε

| = π5/2

∫ π

0

sin3(θ) bε(θ) dθ

and thus

lim
ε→0

|λBo
0,bε

| = 2 π5/2

(∫ π

0

j(χ) χ2 dχ

)
which concludes the proof.
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