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Interpolation and extrapolation of
smooth functions by linear operators

Charles Fefferman

Abstract

Let Cm,1(Rn) be the space of functions on R
n whose mth deriv-

atives are Lipschitz 1. For E ⊂ R
n, let Cm,1(E) be the space of all

restrictions to E of functions in Cm,1(Rn). We show that there exists
a bounded linear operator T : Cm,1(E) → Cm,1(Rn) such that, for
any f ∈ Cm,1(E), we have Tf = f on E.

0. Introduction

Fix m,n ≥ 1. In [8], we studied the following problems:

Large Finite Problem: Given a finite set E ⊂ R
n and functions f : E → R

and σ : E → [0,∞), find the least M > 0 for which there exists F ∈ Cm(Rn),
satisfying ‖F‖Cm(Rn) ≤ M , and |F (x) − f(x)| ≤ M · σ(x) for all x ∈ E.

Infinite Problem: Given an arbitrary set E ⊂ R
n and functions f : E → R

and σ : E → [0,∞), decide whether there exist a function F ∈ Cm−1,1(Rn)
and a finite constant M , satisfying

(0.1) ‖F‖Cm−1,1(Rn) ≤ M and |F (x) − f(x)| ≤ M · σ(x) for all x ∈ E.

In the special case σ ≡ 0, the Infinite Problem amounts to deciding whether
a given function f : E → R extends to a Cm−1,1 function on all of R

n. (As
usual, Cm−1,1(Rn) denotes the space of functions whose (m−1)rst derivatives
are Lipschitz 1.) This is a variant of a classical problem of Whitney [18]. Im-
portant work on closely related questions was done by Whitney [17, 18, 19],
Glaeser [9], Brudnyi and Shvartsman [2–6, 12, 13, 14], and Bierstone-Milman-
Pawlucki [1], as explained partially in [8].
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In this paper, we will show that an essentially optimal M may be achieved
for the two problems above, by taking F to depend linearly on f . More
precisely, for the Large Finite Problem, we have the following result.

Theorem 1 Let E ⊂ R
n be finite, and let σ : E −→ [0,∞) be given. Let

C(E) be the vector space of (real-valued) functions on E. Then there exists
a linear map T : C(E) −→ Cm(Rn), with the following property:

Let f ∈ C(E) be given. Assume there exists F ∈ Cm(Rn), with

‖F‖Cm(Rn) ≤ 1 and with |F (x) − f(x)| ≤ σ(x) for all x ∈ E.

Then we have

‖Tf‖Cm(Rn) ≤ A and |Tf(x) − f(x)| ≤ A · σ(x) for all x ∈ E,

for a constant A depending only on m and n.

For the Infinite Problem, we introduce a Banach space Cm−1,1(E, σ) as-
sociated to an arbitrary set E ⊂ R

n and a function σ : E −→ [0,∞).
This space consists of all functions f : E −→ R for which there exist
F ∈ Cm−1,1(Rn) and M < ∞ satisfying (0.1). The norm ‖f‖Cm−1,1(E,σ)

is defined as the infimum of all possible M in (0.1).

Our result for the Infinite Problem is as follows:

Theorem 2 Let E ⊂ R
n be an arbitrary subset, and let σ : E −→ [0,∞)

be given. Then there exists a linear map T : Cm−1,1(E, σ) −→ Cm−1,1(Rn),
with the following property:

Let f ∈ Cm−1,1(E, σ) be given with ‖f‖Cm−1,1(E,σ) ≤ 1. Then we have

‖Tf‖Cm−1,1(Rn) ≤ A and |Tf(x) − f(x)| ≤ A · σ(x) for all x ∈ E

for a constant A depending only on m and n.

One of the conjectures of Brudnyi and Shvartsman in [4] is closely anal-
ogous to our Theorems 1 and 2. One of their theorems [5] includes the case
σ = 0, m = 2 of our results as a special case. I am grateful to Brudnyi and
Shvartsman for raising with me the issue of linear dependence of F on f
above, and also to E. Bierstone and P. Milman for valuable discussions.

An interesting refinement of Theorem 1 concerns operators of “bounded
depth”. We say that an operator T : C(E) −→ Cm(Rn) has “bounded
depth” if every point of R

n has a neighborhood U , for which Tf |U depends
only on f |S for a subset S ⊂ E, with #(S) bounded a-priori in terms of m
and n. (Here, #(S) denotes the number of points in S.) The operator T in
the conclusion of Theorem 1 may be taken to have bounded depth. This fol-
lows without difficulty from our proof of Theorem 1, but we omit the details.
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Most of our proof of Theorem 1 repeats ideas in [8] with straightforward
modifications. However, we need one additional idea, which we now sketch.

In [8], we introduced the sets

Kf (y; S,C) =
{
Jy(F ) : F ∈ Cm(Rn), ‖F‖Cm(Rn) ≤ C,

|F (x) − f(x) | ≤ C · σ(x) on S
}

for y ∈ R
n, S ⊂ E. Here, and throughout this paper, Jy(F ) denotes the

(m − 1)-jet of F at y.

A crucial point in [8] was to show that, for suitable k# depending only
on m and n, there is an (m − 1)rst degree polynomial P belonging to
Kf (y; S,C) for all S ⊂ E having at most k# elements. The set of all such P
was called Kf (y; k#, C) in [8].

Roughly speaking, any polynomial in Kf (y; k#, C) is a plausible guess
for the (m − 1)-jet at y of the function Tf in Theorem 1.

To prove Theorem 1, we must not only show that Kf (y; k#, C) is non-
empty; we must produce a P ∈ Kf(y; k#, C) that depends linearly on f .
Once this is done, we can essentially repeat the arguments in [8] for large
finite sets E and strictly positive σ, because all the functions F ∈ Cm(Rn)
constructed in [8] depend linearly on f and P .

To find P ∈ Kf (y; k#, C) depending linearly on f , we introduce the
auxiliary convex sets

Γ(y, S) = {Jy(ϕ) : ‖ϕ‖Cm(Rn) ≤ 1 and |ϕ(x)| ≤ σ(x) on S} .

By using elementary properties of convex sets, reminiscent of our applica-
tions of Helly’s theorem in [8], we show that there exists a subset Sy ⊂ E,
with the following properties:

(a) The number of points in Sy is bounded by a constant depending only
on m and n; and

(b) Any polynomial P ∈ Γ(y, Sy) belongs also to C ·Γ(y, S), for any S ⊂ E
with at most k# points, where C is a constant depending only on m
and n. The set Sy depends only on the set E and the function σ,
not on f .

Because Sy contains only a few points (property (a) above), it is easy to fit a
function F ∈ Cm(Rn) to f on Sy, with F depending linearly on f . We may
then simply define P to be the (m − 1)-jet of F at y. Thus, P depends
linearly on f . Thanks to property (b) above, we can show also that P
belongs to Kf(y; k#, C). This argument appears in Section 10 below, in a
lightly disguised form that doesn’t explicitly mention F . (The minimization
of the quadratic form in Section 10 is morally equivalent to finding F as
sketched above, as we see from the standard Whitney extension theorem.)
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Once Theorem 1 is established, it isn’t hard to deduce Theorem 2. We pro-
ceed by applying Theorem 1 to arbitrarily large finite subsets of E, and then
passing to a Banach limit. (We recall Banach limits in Section 15 below.)

We now begin the proofs of Theorems 1 and 2. Unfortunately, we assume
from here on that the reader is thoroughly familiar with [8].

1. Notation

Fix m,n ≥ 1 throughout this paper.

Cm(Rn) denotes the space of functions F : R
n → R whose derivatives of

order ≤ m are continuous and bounded on R
n. For F ∈ Cm(Rn), we define

‖F‖Cm(Rn) = sup
x∈Rn

max
|β|≤m

|∂βF (x)| and ‖∂mF‖C0(Rn) = sup
x∈Rn

max
|β|=m

|∂βF (x)|.

For F ∈ Cm(Rn) and y ∈ R
n, we define Jy(F ) to be the (m − 1)-jet of F

at y, i.e., the polynomial

Jy(F )(x) =
∑

|β|≤m−1

1

β!

(
∂βF (y)

) · (x − y)β.

Cm−1,1(Rn) denotes the space of all functions F : R
n → R, whose deriv-

atives of order ≤ m − 1 are continuous, and for which the norm

‖F‖Cm−1,1(Rn) = max
|β|≤m−1

{
sup
x∈Rn

|∂βF (x)| + sup
x,y∈Rn

x �=y

|∂βF (x) − ∂βF (y)|
|x − y|

}

is finite.

Let P denote the vector space of polynomials of degree ≤ m − 1 on R
n

(with real coefficients), and let D denote the dimension of P .

Let M denote the set of all multi–indices β = (β1, . . . , βn) with |β| =
β1+· · ·+βn ≤ m−1. Let M+ denote the set of multi–indices β = (β1, . . . , βn)
with |β| ≤ m.

If α and β are multi–indices, then δβα denotes the Kronecker delta, equal
to 1 if β = α and 0 otherwise.

We will be dealing with functions of x parametrized by y (x, y ∈ R
n).

We will often denote these by ϕy(x), or by P y(x) in case x 	→ P y(x) is a
polynomial for fixed y. When we write ∂βP y(y), we always mean the value

of
(

∂
∂x

)β
P y(x) at x = y; we never use ∂βP y(y) to denote the derivative of

order β of the function y 	→ P y(y).

We write B(x, r) to denote the ball with center x and radius r in R
n.

If Q is a cube in R
n, then δQ denotes the diameter of Q; and Q� denotes the

cube whose center is that of Q, and whose diameter is 3 times that of Q.
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If Q is a cube in R
n, then to “bisect” Q is to partition it into 2n congruent

subcubes in the obvious way. Later on, we will fix a cube Q◦ ⊂ R
n, and

define the class of “dyadic” cubes to consist of Q◦, together with all the
cubes arising from Q◦ by repeated bisection. Each dyadic cube Q other
than Q◦ arises from bisecting a dyadic cube Q+ ⊆ Q◦, with δQ+ = 2δQ. We
call Q+ the dyadic “parent” of Q. Note that Q+ ⊂ Q�.

For any finite set X, write #(X) to denote the number of elements of X.
If X is infinite, then we define #(X) = ∞.

Let E ⊂ R
n and σ : E −→ [0,∞) be given. Then, as in the Introduction,

Cm−1,1(E, σ) denotes the space of all functions f : E −→ R, for which there
exist M > 0, F ∈ Cm−1,1(Rn), with

(a) ‖F‖Cm−1,1(Rn) ≤ M and

(b) |F (x) − f(x)| ≤ Mσ(x) for all x ∈ E.

The norm ‖f‖Cm−1,1(E,σ) is defined as the infimum of the set of all M > 0
for which there exists an F satisfying (a) and (b).

Similarly, Cm(E, σ) denotes the space of all functions f : E −→ R, for
which there exist M > 0, F ∈ Cm(Rn), with

(c) ‖F‖Cm(Rn) ≤ M and

(d) |F (x) − f(x)| ≤ Mσ(x) for all x ∈ E.

The norm ‖f‖Cm(E,σ) is defined as infimum of all M > 0 for which there
exists F satisfying (c) and (d).

Suppose E⊂ R
n (finite), σ :E → (0,∞) and δ> 0 are given. If f :E → R,

then the norm ‖f‖Cm(E,σ;δ) is defined as the infimum of all M > 0 for which
there exists F ∈ Cm(Rn), with ‖∂βF‖C0(Rn) ≤ Mδ−|β| for |β| ≤ m, and

|F (x) − f(x)| ≤ Mδ−mσ(x) for all x ∈ E .

We write Cm(E, σ; δ) for the space of all functions f : E → R, equipped with
the above norm.

If δ > 0 and F ∈ Cm(Rn), then we define

‖F‖Cm(Rn;δ) = max
|β|≤m

δ|β| ‖∂βF‖C0(Rn) .

We write Cm(Rn; δ) for the space Cm(Rn) equipped with the norm ‖F‖Cm(Rn;δ).

If E ⊂ R
n is finite, then C0(E) denotes the space of functions f : E → R,

equipped with the norm ‖f‖C0(E) = maxx∈E |f(x)|.
A subset K ⊂ R

d is called symmetric if, for any x ∈ R
d, x ∈ K implies

−x ∈ K. If K ⊂ R
d is symmetric, and if C > 0 is given then CK denotes

the set of all the points Cx ∈ R
d with x ∈ K.
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2. Sharp Whitney

One of the main results of [8] is as follows.

Sharp Whitney Theorem for Finite Sets. Given m,n ≥ 1, there exist
constants k#

sw(m,n) and A(m,n), depending only on m and n, for which the
following holds.

Let E ⊂ R
n be finite, and let f : E → R, σ : E → [0,∞) be func-

tions on E. Assume that, given any S ⊂ E with #(S) ≤ k#
sw(m,n), there

exists F S ∈ Cm(Rn), with ‖F S‖Cm(Rn) ≤ 1 and |F S(x) − f(x)| ≤ σ(x) for
all x ∈ S.

Then there exists F ∈ Cm(Rn), with

‖F‖Cm(Rn) ≤ A(m,n) and |F (x) − f(x)| ≤ A(m,n) · σ(x) for all x ∈ E.

In terms of the spaces Cm(E, σ; δ), we have the following

Corollary. Given m,n ≥ 1, there exist constants k#
sw(m,n) and A(m,n),

depending only on m and n, for which the following holds.

Let E ⊂ R
n be finite, let f : E −→ R, let σ : E −→ [0,∞), and let

δ > 0. Then

‖f‖Cm(E,σ;δ) ≤ A(m,n) · max{‖f‖Cm(S,σ|S ;δ) : S ⊂ E,#(S) ≤ k#
sw(m,n)} .

Proof. The case δ = 1 is immediate from Sharp Whitney for Finite Sets;
the general case follows by rescaling. �

3. A Lemma on Convex Sets

The following result is surely known (probably in sharper form) but I haven’t
found it in the literature.

Lemma on Convex Sets. Let F be a finite collection of compact, convex,
symmetric subsets of R

D. Suppose 0 is an interior point of each K ∈ F .
Then, with CD depending only on D, and with � = D · (D + 1), there exist
K1, . . . ,K� ∈ F , with

K1 ∩ · · · ∩ K� ⊂ CD ·
( ⋂

K∈F
K

)
.

Proof. We use the following standard results on convex sets.

Helly’s Theorem ([16]). Let F be any collection of compact, convex
subsets of R

D. If the intersection of all the sets K ∈ F is empty, then
already the intersection of some (D + 1) sets K1, . . . ,KD+1 ∈ F is empty.
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Fritz John’s Lemma (See the simple proof by A. Córdoba and A. Gallego
in [10]). Let K ⊂ R

D be any bounded, symmetric, convex set with non-empty
interior. Then there exists an ellipsoid E ⊂ R

D, centered at the origin, with
E ⊂ K ⊂ CDE, where CD depends only on D.

Proof of the Lemma on Convex Sets. Let K∗ be the intersection of all
the sets K ∈ F . Then K∗ is compact, convex, symmetric, and contains 0 as
an interior point. Applying the Lemma of F. John, we obtain an ellipsoid
E ⊂ R

D, centered at the origin, with E ⊂ K∗ ⊂ CD · E. Applying a linear
transformation to R

D, we may assume without loss of generality that E is
the unit ball. Hence, for constants cD, C ′

D, depending only on D, we have

(3.1)
cDQ ⊂ K∗ ⊂ C ′

DQ,

with Q = {x = (x1, . . . , xD) ∈ R
D : |xj| < 1 for each j} .

Given K ∈ F and 1 ≤ j ≤ D, we set

Cap(K, j) = {(x1, . . . , xD) ∈ K : xj ≥ C ′
D} .

Each Cap(K, j) is a compact, convex subset of R
D. Moreover, since K∗ ⊂

C ′
DQ, we know that the intersection of all the sets Cap(K, j) (K ∈ F) is

empty, for each fixed j. Applying Helly’s Theorem to the Cap(K, j), we

obtain sets K(j)
1 , . . . ,K(j)

D+1 ∈ F , for which the intersection of Cap(K(j)
i , j)

over i = 1, . . . , D + 1 is empty. This means that every x = (x1, . . . , xD) ∈
K(j)

1 ∩ · · · ∩ K(j)
D+1 satisfies xj < C ′

D. Since the K(j)
i are symmetric, we have

|xj| < C ′
D for all

x = (x1, . . . , xD) ∈
D+1⋂
i=1

K(j)
i .

Consequently, the intersection

D⋂
j=1

D+1⋂
i=1

K(j)
i

is contained in C ′
DQ, which in turn is contained in(

C ′
D

/
CD

)
·

⋂
K∈F

K,

thanks to (3.1). Thus, we have found D · (D + 1) sets K(j)
i ∈ F , whose

intersection is contained in
C ′′

D ·
⋂
K∈F

K.

The proof of the Lemma is complete. �
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4. Statement of the Main Lemmas

Fix A ⊂ M. We state two results involving A. For the second result, we
use an order relation between multi-indices, defined in [8] and denoted by >.

Weak Main Lemma for A. Given m,n ≥ 1, there exist constants k#, a0,
depending only on m and n, for which the following holds.

Suppose we are given a finite set E ⊂ R
n and a function σ : E → (0,∞).

Suppose we are also given a point y0 ∈ R
n and a family of polynomials

Pα ∈ P, indexed by α ∈ A. Assume that the following conditions are satis-
fied:

(WL1) ∂βPα(y0) = δβα for all β, α ∈ A.

(WL2) |∂βPα(y0) − δβα| ≤ a0 for all α ∈ A, β ∈ M.

(WL3) Given S ⊂ E with #(S) ≤ k#, and given α ∈ A, there exists
ϕS

α ∈ Cm(Rn), with

(a) ‖∂mϕS
α‖C0(Rn) ≤ a0.

(b) |ϕS
α(x)| ≤ Cσ(x) for all x ∈ S.

(c) Jy0(ϕS
α) = Pα.

Then there exists a linear operator E : Cm(E, σ) −→ Cm(Rn), satisfying the
following conditions:

(WL4) E has norm at most C ′;

(WL5) |Ef(x) − f(x)| ≤ C ′ · ‖f‖Cm(E,σ) · σ(x) for all f ∈ Cm(E, σ) and
x ∈ E∩B(y0, c′). Here, c′ and C ′ in (WL4,5) depend only on C,m, n
in (WL1,2,3).

Strong Main Lemma for A. Given m,n ≥ 1, there exists k#, depending
only on m and n, for which the following holds.

Suppose we are given a finite set E ⊂ R
n, and a function σ : E → (0,∞).

Suppose we are also given a point y0 ∈ R
n, and a family of polynomials

Pα ∈ P, indexed by α ∈ A. Assume that the following conditions are satis-
fied:

(SL1) ∂βPα(y0) = δβα for all α, β ∈ A.

(SL2) |∂βPα(y0)| ≤ C for all α ∈ A, β ∈ M with β ≥ α.
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(SL3) Given S ⊂ E with #(S) ≤ k# and given α ∈ A, there exists ϕS
α ∈

Cm(Rn) with

(a) ‖∂mϕS
α‖C0(Rn) ≤ C,

(b) |ϕS
α(x)| ≤ Cσ(x) for all x ∈ S,

(c) Jy0(ϕS
α) = Pα.

Then there exists a linear operator E : Cm(E, σ) −→ Cm(Rn), satisfying the
following conditions:

(SL4) E has norm at most C ′;

(SL5) |Ef(x) − f(x)| ≤ C ′‖f‖Cm(E,σ) · σ(x) for all f ∈ Cm(E, σ) and all
x ∈ E ∩ B(y0, c′). Here, c′ and C ′ in (SL4,5) depend only on C,m, n
in (SL1,2,3).

5. Plan of the Proof

Recall from [8] that subsets of M are totally ordered by a relation denoted
by <. As in [8], we will establish the Weak and Strong main lemmas

for any A ⊂ M, by proving the following results.

Lemma PP1. The Weak and Strong main lemmas both hold for A=M.

Lemma PP2. Fix A ⊂ M, with A �= M. Assume that the Strong main

lemma holds for each Ā < A. Then the Weak main lemma holds for A.

Lemma PP3. Fix A ⊆ M, and assume that the Weak main lemma

holds for all Ā ≤ A. Then the Strong main lemma holds for A.

Once we have established these three Lemmas, the two Main lemmas

must hold for all A, by induction on A. Taking A to be the empty set in
(say) the Weak main lemma, we see that hypotheses (WL1,2,3) hold
vacuously; hence we obtain the following result.

Local Theorem 1. Given m,n ≥ 1, there exist A, c′ > 0, depending only
on m and n, for which the following holds.

Let E ⊂ R
n be finite, and let σ : E −→ (0,∞) be given. Let y0 ∈ R

n.
Then there exists a linear operator E : Cm(E, σ) −→ Cm(Rn), with norm at
most A, and satisfying

|Ef(x) − f(x)| ≤ A ‖f‖Cm(E,σ) · σ(x)

for all f ∈ Cm(E, σ) and all x ∈ E ∩ B(y0, c′).

We will then relax the hypothesis σ : E → (0,∞) to σ : E → [0,∞), and
next deduce Theorem 1 by using an obvious partition of unity. Finally,
we deduce Theorem 2 from Theorem 1. These arguments are given in
sections 14–17.
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6. Starting the Main Induction

In this section, we prove Lemma PP1. That is, we prove the two Main

lemmas for A = M. We simply take E = 0, and assume either (WL1,2,3)
or (SL1,2,3), for our given E, σ.

Suppose ‖f‖Cm(E,σ) ≤ 1. Then there exists F ∈ Cm(Rn) with

‖F‖Cm(Rn) ≤ 2 and |F (x) − f(x)| ≤ 2σ(x) on E .

Hence, |f(x)| ≤ 2 + 2σ(x) on E. On the other hand, the proof of (6.2) in
Section 6 of [8] applies here, and shows that

σ(x) ≥ 1

2C
for all x ∈ E ∩ B(y0, c′),

with C as in (WL1,2,3) or (SL1,2,3), and with c′ determined by C,m, n.
Consequently,

|Ef(x) − f(x)| = |f(x)| ≤ (4C + 2) · σ(x) for all x in E ∩ B(y0, c′) .

This holds provided ‖f‖Cm(E,σ) ≤ 1. The conclusions of the two Main

lemmas are now obvious. �

7. Non-Monotonic Sets

In this section, we prove Lemma PP2 for non-monotonic A.

Lemma NMS. Fix a non-monotonic set A ⊂ M, and assume that the
Strong main lemma holds for all Ā < A. Then the Weak main lemma

holds for A.

Proof. Let E, σ satisfy (WL1,2,3) for A. Since A is not monotonic,
there exist multi-indices ᾱ, γ̄, with ᾱ ∈ A, ᾱ + γ̄ ∈ M\A. We set Ā =
A ∪ {ᾱ + γ̄}. As in the proof of Lemma 7.1 in [8], we see that Ā < A, and
that the hypotheses (SL1,2,3) of the Strong main lemma hold for Ā,
with constants depending only on C,m, n in (WL1,2,3) for A.

Applying the Strong main lemma for Ā, we obtain a linear operator
E : Cm(E, σ) −→ Cm(Rn), satisfying (SL4,5), with constants C ′, c′ de-
pending only on C,m, n in (WL1,2,3) for A. However, (SL4,5) are the
same as the conclusions (WL4,5) of the Weak main lemma for A. The
proof of Lemma NMS is complete. �
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8. A Consequence of the Main Inductive Assumption

In this section, we establish the following result.

Lemma CMIA. Fix A ⊂ M, and assume that the Strong main lemma

holds, for all Ā < A. Then there exists k#
old ≥ k#

sw(m,n), depending only on
m and n, for which the following holds.

Let A > 0 be given, let Q ∈ R
n be a cube, Ê ⊂ R

n a finite set,
σ : Ê −→ (0,∞) a function. Suppose that, for each y ∈ Q∗∗, we are given
a set Āy < A and a family of polynomials P̄ y

α ∈ P, indexed by α ∈ Āy.
Assume that the following conditions are satisfied:

(G1) ∂βP̄ y
α(y) = δβα for all β, α ∈ Āy, y ∈ Q∗∗

(G2) |∂βP̄ y
α(y)| ≤ Aδ

|α|−|β|
Q for all α ∈ Āy, β ≥ α, y ∈ Q∗∗.

(G3) Given S ⊂ Ê with #(S) ≤ k#
old, and given y ∈ Q∗∗ and α ∈ Āy, there

exists ϕS
α ∈ Cm(Rn), with

(a) ‖∂mϕS
α‖C0(Rn) ≤ A · δ|α|−m

Q ,

(b) |ϕS
α(x)| ≤ A · δ|α|−m

Q · σ(x) for all x ∈ S,

(c) Jy(ϕ
S
α) = P̄ y

α

Then there exists E : Cm(Ê, σ; δQ) −→ Cm(Rn; δQ), with the following prop-
erties:

(G4) E has norm at most A′;

(G5) |Ef(x) − f(x)| ≤ A′δ−m
Q ‖f‖Cm(Ê,σ;δQ) · σ(x) for all f ∈ Cm(Ê, σ; δQ)

and all x ∈ Ê ∩ Q∗.

Here, A′ depends only on A,m, n.

Proof. As in Section 8 of [8], a rescaling reduces matters to the case δQ = 1.

Let δQ = 1, and assume (G1,2,3). For each y ∈ Q∗∗, the hypothe-

ses (SL1,2,3) of the Strong main lemma for Āy hold, with Ê, σ, y,
P̄ y

α(α ∈ Āy), A in place of E, σ, y0, Pα(α ∈ A), C in (SL1,2,3).
In fact, (SL1,2,3) are immediate from (G1,2,3), provided we take k#

old

to be the max of k#
sw(m,n) and the constants k# appearing in the strong

main lemma for all Ā < A.



324 C. Fefferman

Hence, the Strong main lemma for Āy produces an operator Ey :

Cm(Ê, σ) −→ Cm(Rn) satisfying

(8.1) ‖Ey‖ ≤ A′;

and

(8.2) |Eyf(x) − f(x)| ≤ A′ · ‖f‖Cm(Ê,σ) · σ(x)

for all f ∈ Cm(Ê, σ), x ∈ Ê ∩ B(y, c′), y ∈ Q∗∗ .

Here, A′ and c′ are determined by A,m, n in (G1,2,3).

Given f ∈ Cm(Ê, σ), we set F y = Eyf for each y ∈ Q∗∗. We then
define F from the F y as in (8.1)-(8.9) in [8]. Since F ∈ Cm(Rn) depends
linearly on the F y, which depend linearly on f , the map E : f −→ F is a
linear operator from Cm(Ê, σ) to Cm(Rn). Moreover, if

‖f‖Cm(Ê,σ) ≤ 1,

then (8.1) and (8.2) show that

‖F y‖Cm(Rn) ≤ A′

and
|F y(x) − f(x)| ≤ A′ · σ(x)

for all x ∈ Ê ∩ B(y, c′).

Hence, the proof of (8.8) and (8.9) in [8] goes through here, and we have

‖F‖Cm(Rn) ≤ C ′′

with C ′′ determined by A,m, n; and

|F (x) − f(x)| ≤ A′ · σ(x)

for all x ∈ Ê ∩ Q∗. That is,

(8.3) ‖Ef‖Cm(Rn) ≤ C ′′ if ‖f‖Cm(Ê,σ) ≤ 1 ;

and

(8.4) |Ef(x) − f(x)| ≤ A′ · σ(x) for all x ∈ Ê ∩ Q∗ ,

provided ‖f‖Cm(Ê,σ) ≤ 1 .

From (8.3) and (8.4) we obtain trivially the desired conclusions (G4,5)
in the case δQ = 1. The proof of the Lemma is complete. �
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9. Set-up for the Main Induction

In this section, we give the set-up for the proof of Lemma PP2 in the
monotonic case. We fix m,n ≥ 1 and A ⊂ M. We let k# be a large
enough integer determined by m and n, to be picked later. We suppose we
are given E ⊂ R

n finite, σ : E −→ (0,∞), y0 ∈ R
n, Pα ∈ P indexed by

α ∈ A. In addition, we suppose we are given a positive number a1. We fix
k#, E, σ, y0, (Pα)α∈A, a1 until the end of Section 12. We make the following
assumptions.

(SU0) A is monotonic, and A �= M.

(SU1) The Strong main lemma holds for all Ā < A.

(SU2) ∂βPα(y0) = δβα for all β, α ∈ A.

(SU3) |∂βPα(y0) − δβα| ≤ a1 for all α ∈ A, β ∈ M.

(SU4) a1 is less than a small enough constant determined by m and n.

(SU5) Given S ⊂ E with #(S) ≤ k#, and given α ∈ A, there exists ϕS
α ∈

Cm(Rn), with

(a) ‖∂mϕS
α‖C0(Rn) ≤ a1,

(b) |ϕS
α(x)| ≤ σ(x) for all x ∈ S,

(c) Jy0(ϕS
α) = Pα.

Most of the effort of this paper goes into proving the following result.

Lemma SU.I. Assume (SU0-SU5). Then there exists a linear operator
E : Cm(E, σ) −→ Cm(Rn), satisfying

(a) ‖E‖ ≤ A, and

(b) |Ef(x) − f(x)| ≤ A‖f‖Cm(E,σ) · σ(x) for all f ∈ Cm(E, σ) and all
x ∈ E ∩ B(y0, a).

Here, A and a are determined by a1,m, n.

Note that a1 is not assumed to depend only on m and n, and that the
constant C in (WL3) (b) has in effect been set equal to 1 in (SU5)(b).

The following result is trivial. (Compare with Lemma 9.2 in [8].)

Lemma SU.II. Lemma SU.I implies Lemma PP2.
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10. Applying Lemmas on Convex Sets

We place ourselves in the setting of Section 9, and we assume (SU0–SU5).
Recall that we have fixed E ⊂ R

n finite, and σ : E −→ (0,∞).

For y ∈ R
n and S ⊂ E, we set

(10.1) Γ(y, S) = {Jy(ϕ) : ‖ϕ‖Cm(Rn) ≤ 1, and |ϕ(x)| ≤ σ(x) on S} ⊆ P .

Each Γ(y, S) is bounded, convex, symmetric, and contains 0 as an interior
point. Moreover, there are only finitely many subsets S ⊂ E. Hence, we
may apply the Lemma on convex sets to the closures of the Γ(y, S) for
any fixed y, and S ⊂ E arbitrary, subject to #(S) ≤ k#. Thus, we obtain
subsets S1, . . . , SD·(D+1) ⊂ E, with #(Si) ≤ k# for each i, and satisfying the
following inclusion:

D(D+1)⋂
i=1

Γ(y, Si) ⊂ CD ·
⋂
S⊂E

#(S)≤k#

Closure (Γ(y, S)) .

Moreover, Closure (Γ(y, S)) ⊂ 2Γ(y, S), since 0 is an interior point of the
convex set Γ(y, S). Hence, with C ′

D = 2CD, we have

(10.2)

D·(D+1)⋂
i=1

Γ(y, Si) ⊂ C ′
D ·

⋂
S⊂E

#(S)≤k#

Γ(y, S) .

Here, C ′
D depends only on D, and of course the Si depend on y. Let

(10.3) Sy = S1 ∪ · · · ∪ SD(D+1) .

Then, obviously,

Sy ⊂ E(10.4)

#(Sy) ≤ D · (D + 1) · k#,(10.5)

and Γ(y, Sy) ⊂ Γ(y, Si) for i = 1, . . . , D(D + 1), so that (10.2) implies

(10.6) Γ(y, Sy) ⊂ C ′
D · Γ(y, S) for all S ⊂ E with #(S) ≤ k# .

Next, using Sy, we introduce a linear operator

(10.7) T y : Cm(E, σ) −→ P .

We proceed as follows. Let Sy ∪ {y} = {x1, . . . , xN}, with xN = y. We in-
troduce the vector space PN of all

(10.8) 	P = (Pµ)1≤µ≤N with each Pµ ∈ P .
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Given a function f ∈ Cm(E, σ), we define a quadratic function Qy
f on PN ,

by setting

Qy
f

(
	P
)

=
N∑

µ=1

∑
|β|≤m−1

|∂βPµ(xµ)|2 +
∑
µ �=ν

∑
|β|≤m−1

|∂β(Pµ − Pν)(xµ)|2
|xµ − xν |2·(m−|β|)

+
N∑

µ=1

1xµ∈E · |Pµ(xµ) − f(xµ)|2
(σ(xµ))2

(10.9)

for 	P as in (10.8). Here, the characteristic function 1xµ∈E enters, since we
don’t know whether y belongs to E.

The quadratic function Qy
f contains 0th, 1st, and 2nd degree terms in 	P .

The sum of the second-degree terms is a strictly positive-definite quadratic
form, independent of f . Also, the first degree terms are linear in f . It follows
that 	P 	→ Qy

f(
	P ) achieves a minimum at a point 	P (f, y) ∈ PN that depends

linearly on f for fixed y. The components of 	P (f, y) may be denoted by
Pµ(f, y) ∈ P , for µ = 1, . . . , N . We define T y in (10.7) by setting

(10.10) T yf = PN(f, y) .

Thus, T y is a linear operator from Cm(E, σ) to P . Note that

(10.11) T yf depends only on f |Sy∪{y} if y ∈ E, and only on f |Sy if y /∈ E .

Next, we prove the following result.

Lemma 1. Given y ∈ R
n and f ∈ Cm(E, σ), there exists F̃ ∈ Cm(Rn) with

‖F̃‖Cm(Rn) ≤ C ‖f‖Cm(E,σ) ,(10.12)

|F̃ (x) − f(x)| ≤ C · σ(x) · ‖f‖Cm(E,σ) for all x ∈ Sy ,(10.13)

Jy(F̃ ) = T yf .(10.14)

Here, C depends only on m and n.

Proof. Throughout the proof, let C denote a constant determined by m
and n. Without loss of generality, we may suppose that

(10.15) ‖f‖Cm(E,σ) = 1 .

By definition of the norm in (10.15), there exists F ∈ Cm(Rn), with

‖F‖Cm(Rn) ≤ 2 , and(10.16)

|F (x) − f(x)| ≤ 2σ(x) for all x ∈ E .(10.17)
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Define 	P = (Pµ)1≤µ≤N ∈ PN by setting Pµ = Jxµ(F ). Thus, (10.16)
and (10.17) imply the following estimates:

|∂βPµ(xµ)| ≤ 2 for 1 ≤ µ ≤ N , |β| ≤ m − 1 .

|∂β(Pµ − Pν)(xµ)| ≤ C|xµ − xν |m−|β| for µ �= ν, |β| ≤ m − 1 .

|Pµ(xµ) − f(xµ)| ≤ 2σ(xµ) if xµ ∈ E .

Hence, for this 	P , each summand in (10.9) is at most C. Moreover, (10.5)
shows that the number of summands in (10.9) is at most C.

Consequently, Qy
f(

	P ) ≤ C. Since 	P (f, y) was picked to minimize Qy
f , we

conclude that Qy
f(

	P (f, y)) ≤ C. In particular, we have

(10.18) |∂β[Pµ(f, y)] (xµ)| ≤ C

for 1 ≤ µ ≤ N , |β| ≤ m − 1,

(10.19) |∂β[Pµ(f, y) − Pν(f, y)] (xµ)| ≤ C · |xµ − xν |m−|β|

for µ �= ν, |β| ≤ m − 1 and

(10.20) | [Pµ(f, y)](xµ) − f(xµ)| ≤ C σ(xµ)

if xµ ∈ E.
By the standard Whitney extension theorem (see [11] or [15]), (10.18)

and (10.19), there exists a function F̃ ∈ Cm(Rn), with

(10.21) ‖F̃‖Cm(Rn) ≤ C ,

and

(10.22) Jxµ(F̃ ) = Pµ(f, y) for eachµ = 1, . . . N .

By (10.20), (10.22) and the definition of x1, . . . , xN , we have

(10.23) |F̃ (x) − f(x)| ≤ C σ(x) for all x ∈ Sy .

Moreover, (10.10) and (10.22) yield

(10.24) Jy(F̃ ) = T yf ,

since xN = y.

Under our assumption (10.15), results (10.21), (10.23) and (10.24) are
precisely the conclusions (10.12), (10.13) and (10.14) of Lemma 1. The proof
of the lemma is complete. �
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For y ∈ R
n, f ∈ Cm(E, σ), M > 0, we define, as in [8], Kf (y, k#,M)

as the set of P ∈ P such that, given S ⊂ E with #(S) ≤ k#, there exists
F S ∈ Cm(Rn) with ‖F S‖Cm(Rn) ≤ M, |F S(x) − f(x)| ≤ M · σ(x) for all
x ∈ S and Jy(F

S) = P .

Lemma 2. Given y ∈ R
n and f ∈ Cm(E, σ) with ‖f‖Cm(E,σ) ≤ 1, we have

T yf ∈ Kf (y, k#, C)

for a large enough C determined by m and n.

Proof. Let F̃ be as in Lemma 1. Since ‖f‖Cm(E,σ) ≤ 1, we have

‖F̃‖Cm(Rn) ≤ C ,(10.25)

|F̃ (x) − f(x)| ≤ C · σ(x) on Sy, and(10.26)

Jy(F̃ ) = T yf ;(10.27)

throughout the proof of Lemma 2, C,C ′, c, etc. denote constants determined
by m and n.

Also, since ‖f‖Cm(E,σ) ≤ 1, there exists F ∈ Cm(Rn), with

‖F‖Cm(Rn) ≤ C , and(10.28)

|F (x) − f(x)| ≤ C · σ(x) on E .(10.29)

From (10.25)–(10.29), and (10.4), we see that

‖F − F̃‖Cm(Rn) ≤ C ,

|(F − F̃ )(x)| ≤ C · σ(x) on Sy ,

Jy(F − F̃ ) = Jy(F ) − T yf .

Comparing these results with definition (10.1), we see that

(10.30) Jy(F ) − T yf ∈ C · Γ(y, Sy) .

Now let S ⊂ E, with #(S) ≤ k#. By (10.6) and (10.30), we have

Jy(F ) − T yf ∈ C ′ · Γ(y, S).

This means that there exists ϕS ∈ Cm(Rn), with

Jy(ϕ
S) = Jy(F ) − T yf ,(10.31)

‖ϕS‖Cm(Rn) ≤ C ′ ,(10.32)

|ϕS(x)| ≤ C ′ · σ(x) on S .(10.33)
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We set F S = F − ϕS. Then (10.31) gives

(10.34) Jy(F
S) = T yf ;

and from (10.28) and (10.32) we see that

(10.35) ‖F S‖Cm(Rn) ≤ C ′′ .

Also, (10.29) and (10.33) yield

(10.36) |F S(x) − f(x)| ≤ C ′′′ · σ(x) on S .

Thus, given S ⊂ E with #(S) ≤ k#, there exists F S ∈ Cm(Rn), satisfy-
ing (10.34), (10.35) and (10.36). Thus T yf ∈ Kf (y, k#, C ′′′′), which is the
conclusion of Lemma 2. The proof of the lemma is complete. �

Lemma 2 above substitutes for Lemma 10.1 in [8]. The proofs of Lem-
mas 10.2, 10.3 and 10.4 in [8] remain valid here. In place of Lemma 10.5
in [8], we use the following result.

Lemma 3. Suppose

k# ≥ (D + 1) · k#
1 and k#

1 ≥ 1.

Let y ∈ B(y0, a1) be given. Then there exists a linear map

T#
y : Cm(E, σ) −→ P

with the following property:

If ‖f‖Cm(E,σ) ≤ 1, then T#
y f ∈ K#

f (y; k#
1 , C), with C depending only on

m and n.

Recall that K#
f (y; k,M) consists of those polynomials P ∈ Kf (y; k,M)

for which ∂βP (y) = 0 for all β ∈ A.

Proof of Lemma 3. We follow the proof of Lemma 10.5 in [8].

By Lemma 10.3 in [8], there exist polynomials P y
α ∈ P(α ∈ A), satisfying

(WL1)y,. . . ,(WL3)y in [8]. We define

T#
y f = T yf −

∑
α∈A

(∂α(T yf)(y)) · P y
α .

As promised, T#
y is a linear map from Cm(E, σ) to P . Moreover, if

‖f‖Cm(E,σ) ≤ 1, then Lemma 2 above gives T yf ∈ Kf (y; k#, C). Therefore,

the proof of Lemma 10.5 in [8] applies, with P = T yf and P̃ = T#
y f . (The

constant 2 in (10.27) in [8] has to be replaced by C, but that has no effect
on the rest of the argument.) Thus, as in the proof of Lemma 10.5 in [8], we
find that P̃ ∈ K#

f (y; k#
1 , C ′′). This is the desired property of T#

y f . The proof
of Lemma 3 is complete. �
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11. Good News

Again, we place ourselves in the setting of Sect. 9 and we assume SU0-SU5.

We define the cube Q◦ and its Calderón-Zygmund decomposition as in
Section 11 of [8]. The good news is that all the arguments in Sections 11–14
of [8] work here as well. In particular, we have the crucial Lemma 14.3
from [8], which we restate here in a slightly weaker form than in [8].

Lemma GN. Let y ∈ Q∗∗ and y′ ∈ (Q′)∗∗, where Q and Q′ are CZ cubes.
Let f ∈ Cm(E, σ), and let P ∈ K#

f (y; k#
A , C) and P ′ ∈ K#

f (y′; k#
A , C) be

given, where C depends only on m,n; and assume

(11.1) k# ≥ (D + 1) · k#
A and k#

A ≥ (D + 1)2 · k#
old.

If the cubes Q and Q′ abut, then we have

(11.2) |∂β(P ′ − P )(y′)| ≤ C ′ · (a1)
−(m+1) δ

m−|β|
Q for all β ∈ M.

Here, C ′ depends only on m and n.

12. Proof of Lemmas SU.I and PP2

In this section, we prove Lemma SU.I. By Lemma SU.II, this will prove
Lemma PP2 as well. We place ourselves in the setting of Section 9, and
assume (SU0–SU5). In particular,

E is a given, finite subset of R
n,(12.1)

σ : E −→ (0,∞) is given, and(12.2)

A ⊂ M is given.(12.3)

We use the Calderón-Zygmund decomposition from Section 11 of [8].
Let Qν(1 ≤ ν ≤ νmax) be the CZ cubes, and let δν = δQν= diameter of Qν ,
yν= center of Qν. Recall that

(12.4) δν ≤ a1 ≤ 1 for each ν, thanks to (11.3) in [8].

We take

(12.5) k# = (D + 1)3 · k#
old.

Let θ̃ν(1 ≤ ν ≤ νmax) be a cut-off function, with the following properties.

0 ≤ θ̃ν ≤ 1 on R
n, θ̃ν = 1 on Q∗

ν , supp θ̃ν ⊂ Q∗∗
ν ,(12.6)

|∂β θ̃ν | ≤ C · δ
−|β|
ν for β ∈ M.(12.7)

Throughout this section, we write c, C,C ′, etc. to denote constants deter-
mined by m and n.
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Fix ν(1 ≤ ν ≤ νmax). Recall that, since Qν is a CZ cube, it is OK.
(See section 11 of [8] for the notion of an OK cube.) Thus,

(12.8)
For each y ∈ Q∗∗

ν , we are given Āy < A, and polynomials
P̄ y

α ∈ P(α ∈ Āy) satisfying (OK1), (OK2), (OK3) in [8].

The following result is straightforward.

Lemma 1. The hypotheses of Lemma CMIA in Section 8 hold here, with
A = (a1)

−(m+1), for the set E, the function σ, the cube Qν, the sets of multi-
indices A and Āy(y ∈ Q∗∗

ν ), and the polynomials P̄ y
α(y ∈ Q∗∗

ν , α ∈ Āy).

Proof. The hypotheses of Lemma CMIA are as follows:

• The Strong main lemma holds for all Ā < A. (That’s just (SU1),
which we are assuming here.)

• E ⊂ R
n is finite, and σ : E −→ (0,∞). (That’s contained in (12.1)

and (12.2).)

• For each y ∈ Q∗∗
ν , we are given Āy < A and P̄ y

α(α ∈ Āy). (That’s
immediate from (12.8).)

• Conditions (G1), (G2), (G3) hold, with A = (a1)
−(m+1). (That’s

immediate from (OK1), (OK2), (OK3) for Qν ; these conditions hold,
thanks to (12.8).)

The proof of Lemma 1 is complete. �
From Lemma 1 and Lemma CMIA, we obtain a linear operator

(12.9) Eν : Cm(E, σ; δν) −→ Cm(Rn; δν), satisfying

(12.9a) ‖Eν‖ ≤ A′, and

(12.10)

⎡
⎣ |Eνf(x) − f(x)| ≤ A′ · ‖f‖Cm(E,σ;δν) · δ−m

ν · σ(x)

for all f ∈ Cm(E, σ; δν) and all x ∈ E ∩ Q∗
ν .

⎤
⎦

Here, and throughout this section, A′, A′′, A, a, etc., denote constants deter-
mined by a1,m, n.

Next, we bring in Lemma 3 from Section 10, applied with

k#
1 = (D + 1)2 · k#

old, y = yν .

(Note that yν ∈ B(y0, a1) as required in Lemma 3, since yν ∈ Qν ⊆ Q◦ ⊂
B(y0, a1).) Thus, we obtain a linear map

(12.11) T#
ν : Cm(E, σ) −→ P ,

satisfying the following:

(12.12) If ‖f‖Cm(E,σ) ≤ 1, then T#
ν f ∈ K#

f (yν ; (D + 1)2 · k#
old , C) .
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Using the map T#
ν and the cut-off function θ̃ν (see (12.6), (12.7)), we

define a linear map

(12.13) Lν : Cm(E, σ) −→ Cm(E, σ; δν)

by setting

(12.14) (Lνf)(x) = (f(x) − (T#
ν f)(x)) · θ̃ν(x) for all x ∈ R

n .

Lemma 2. The norm of Lν from Cm(E, σ) to Cm(E, σ; δν), is at most C ′δm
ν .

Proof. Suppose ‖f‖Cm(E,σ) ≤ 1. Then (12) and the definition of K#
f yield

the following.

(12.15) Let S⊂E, with #(S) ≤ k#
old . Then there exists F S ∈ Cm(Rn) , with

‖F S‖Cm(Rn) ≤ C ,(12.16)

|F S(x) − f(x)| ≤ C · σ(x) on S , and(12.17)

Jyν (F
S) = T#

ν f .(12.18)

From (12.16), (12.18) and Taylor’s theorem, we have

|∂β(F S − T#
ν f)| ≤ Cδm−|β|

ν on Q∗∗
ν , for |β| ≤ m .

Together with properties (12.6), (12.7) of θ̃ν , this implies that

(12.19) |∂β{θ̃ν · (F S − T#
ν f)}| ≤ Cδm−|β|

ν on R
n , for |β| ≤ m .

On the other hand, (12.6), (12.14) and (12.17) show that

|{θ̃ν · (F S − T#
ν f)}(x) − Lνf(x)| = |θ̃ν(x) · (F S(x) − f(x))|

≤ |F S(x) − f(x)| ≤ C · σ(x)

for all x ∈ S. Together with (12.19), this shows the following:

(12.20) Given S ⊂ E with #(S) ≤ k#
old, there exists F̃ S ∈ Cm(Rn) , with

‖∂βF̃‖C0(Rn) ≤ Cδm−|β|
ν for |β| ≤ m and

|F̃ S(x) − Lνf(x)| ≤ C · σ(x) for all x ∈ S .

Comparing (12.20) with the definition of the Cm(E, σ; δ) norm, we learn
that

(12.21) ‖Lνf‖Cm(S,σ|S ;δν) ≤ C · δm
ν for all S ⊂ E with #(S) ≤ k#

old .

We recall from Lemma CMIA that k#
old ≥ k#

sw(m,n). Consequently, (12.21)
and the Corollary in section 2 together imply that

‖Lνf‖Cm(E,σ;δν) ≤ C · δm
ν .

This holds whenever ‖f‖Cm(E,σ) ≤ 1. The proof of Lemma 2 is complete. �
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Next, we introduce a partition of unity on Q0. We no longer fix ν. For
each ν (1 ≤ ν ≤ νmax), we introduce a cut-off function θ̂ν , satisfying

(12.22) 0 ≤ θ̂ν ≤ 1 on R
n, θ̂ν = 1 on Qν , θ̂ν(x) = 0 for dist(x,Qν) > ĉδν ,

and

(12.23) |∂β θ̂ν | ≤ Cδ−|β|
ν for |β| ≤ m .

Taking ĉ small enough in (12.22), and recalling Lemma 11.2 in [8], we obtain
the following.

(12.24) If Qµ contains a point of supp θ̂ν , then Qµ and Qν coincide or abut .

Define θν = θ̂ν

/(∑
µ
θ̂µ

)
on Q0. From (12.22), (12.23), (12.24), the Corol-

lary to Lemma 11.1 in [8], and Lemma 11.2 in [8], we obtain:∑
1≤ν≤νmax

θν = 1 on Q0 .(12.25)

0 ≤ θν ≤ 1 on Q◦ .(12.26)

|∂βθν | ≤ Cδ
−|β|
ν for |β| ≤ m .(12.27)

θν = 0 outside Q∗
ν .(12.28)

If x ∈ Qµ, then θν = 0 in a neighborhood of x,
unless Qµ and Qν coincide or abut.

(12.29)

Now we define

(12.30) Ẽf =
∑

1≤ν≤νmax

θν · [T#
ν f + Eν(Lνf)] on Q◦ .

Note that θν and Ẽf are defined only on Q◦. Since T#
ν , Eν , and Lν are

linear, (12.30) shows that

(12.31) Ẽ is a linear map from Cm(E, σ) to Cm(Q◦).

Suppose that f is given with

(12.32) ‖f‖Cm(E,σ) ≤ 1 .

Then, for each ν, we have

(12.33) ‖Lνf‖Cm(E,σ;δν) ≤ Cδm
ν

by Lemma 2.
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Hence, (12.9), (12.9a), (12.10) yield the estimates

‖Eν(Lνf)‖Cm(Rn;δν) ≤ A′′ · δm
ν ,(12.34)

|Eν(Lνf)(x) − Lνf(x)| ≤ A′′ · σ(x) for all x ∈ E ∩ Q∗
ν .(12.35)

For all x ∈ E ∩ Q◦, we have

|θν · [T#
ν f + Eν(Lνf)](x) − θν · f(x)| =

= θν(x) · |T#
ν f(x) + [Eν(Lνf)(x) − Lνf(x)] + Lνf(x) − f(x)| =

= θν(x) · |T#
ν f(x) + [Eν(Lνf)(x) − Lνf(x)] +

+ θ̃ν(x) · [f(x) − T#
ν f(x)] − f(x)|

= θν(x) · |T#
ν f(x) + [Eν(Lνf)(x) − Lνf(x)] + [f(x) − T#

ν f(x)] − f(x)|
(because θ̃ν = 1 on supp θν ; see (12.6) and (12.28))

= θν(x) · |Eν(Lνf)(x) − Lνf(x)| ≤ θν(x) · A′′ · σ(x)

(thanks to (12.35) when x ∈ Q∗
ν , and thanks to (12.28) when x /∈ Q∗

ν).
Summing over ν, and recalling (12.25) and (12.30), we find that

(12.36) |Ẽf(x) − f(x)| ≤ A′′ · σ(x) for all x ∈ E ∩ Q◦ .

We prepare to estimate the derivatives of Ẽf . To do so, we note that (12.12)
and (12.32) yield

|∂β(T#
ν f) (yν)| ≤ C for |β| ≤ m − 1 ,

since we may take S=empty set in the definition of K#
f (yν ; (D+1)2 ·k#

old, C).

For |β| = m, we have ∂β(T#
ν f) ≡ 0, since T#

ν f ∈ P. Thus,

(12.37) |∂β(T#
ν f)(yν)| ≤ C for |β| ≤ m .

Since T#
ν f ∈ P, (12.37) and (12.4) show that

(12.38) |∂β(T#
ν f)| ≤ C on Q∗

ν , for |β| ≤ m .

We need to compare T#
ν f with T#

µ f when Qν and Qµ abut.

From (12.12) and (12.32), we have

T#
ν f ∈ K#

f (yν ; (D + 1)2 · k#
old , C) , and

T#
µ f ∈ K#

f (yµ; (D + 1)2 · k#
old , C) .

Hence, we may apply Lemma GN (in section 11), with k#
A = (D +1)2 · k#

old.
(See (12.5).) Thus,

|∂β(T#
µ f − T#

ν f)(yµ)| ≤ A · δm−|β|
ν for |β| ≤ m − 1 .
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Recalling Lemma 11.2 in [8], and recalling that T#
µ f, T#

ν f ∈ P, we conclude
that

(12.39)

[
|∂β(T#

µ f − T#
ν f)| ≤ A′ · δ

m−|β|
µ on Q∗

ν ∪ Q∗
µ for |β| ≤ m ,

whenever Qµ and Qν abut.

]

We are almost ready to estimate the derivatives of Ẽf . It is convenient to set

Pν = T#
ν f, Fν = Eν(Lνf) , F̃ = Ẽf .

Thus, Pν ∈ P, Fν ∈ Cm(Rn), and we have the following estimates:

• |∂βPν | ≤ C on Q∗
ν , for |β| ≤ m. (See (12.38).)

• |∂β(Pν − Pµ)| ≤ A′ · δ
m−|β|
µ on Q∗

µ ∪ Q∗
ν for |β| ≤ m, whenever Qµ

and Qν abut. (See (12.39).)

• |∂βFν | ≤ A′′ · δ
m−|β|
ν on R

n, for |β| ≤ m (See (12.34).)

Moreover,

• F̃ =
∑

1≤ν≤νmax

θν · [Pν + Fν ] (See (12.30).)

Thanks to the above bullets and properties (12.25)–(12.29) of the θν ’s,
the discussion in Section 15 of [8], starting at (15.32) and ending at (15.40)
there, applies here as well. (The idea goes back to Whitney.) In particular,
estimate (15.40) there yields here the estimate

(12.40) |∂β(Ẽf)(x)| ≤ A′′′ for all x ∈ Q◦, |β| ≤ m .

The extension operator has the good property that (12.36) and (12.40) hold
whenever f satisfies (12.32). However, Ẽf is only defined on Q◦.

To remedy this, we pick a cut-off function θ◦ ∈ Cm(Rn), with

θ◦ = 1 on B(y0, c′a1) , supp θ◦ ⊂ Q◦ , 0 ≤ θ◦ ≤ 1 on R
n , and

|∂βθ◦| ≤ Ca
−|β|
1 for |β| ≤ m .

Setting Ef = θ · (Ẽf), we obtain a linear operator

(12.41) E : Cm(E, σ) −→ Cm(Rn) .

From (12.40) and the defining properties of θ◦, we see that

(12.42) ‖Ef‖Cm(Rn) ≤ A4 if ‖f‖Cm(E,σ) ≤ 1 .
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From (12.36) and the defining properties of θ◦, we see that

(12.43) |Ef(x) − f(x)| ≤ A′′ · σ(x) for all x ∈ E ∩ B(y0, c′a1) ,

provided ‖f‖Cm(E,σ) ≤ 1 .

The conclusions (a) and (b) of Lemma SU.I are immediate from (12.42)
and (12.43). (We may take a = c′a1.) The proofs of Lemmas SU.I and PP2
are complete. �

13. Proof of Lemma PP3

In this section, we prove Lemma PP3. We fix A ⊂ M, and assume that the
Weak main lemma holds for all Ā ≤ A. We must show that the Strong

main lemma holds for A. We may assume that the Weak main lemma

holds for all Ā ≤ A, with k# and a0 independent of Ā. (Although each
Ā ≤ A gives rise to its own k# and a0, we may simply use the maximum
of all the k#, and the minimum of all the a0, arising in the Weak main

lemma for all Ā ≤ A.) Fix k# and a0 as in the Weak main lemma

for Ā ≤ A.

Let E, σ, y0, Pα(α ∈ A) satisfy the hypotheses of the Strong main

lemma for A. Without loss of generality, we may suppose

(13.1) y0 = 0.

We want to find a linear operator E :Cm(E, σ) → Cm(Rn) satisfying (SL4,5).

In this section, we say that a constant is “controlled” if it is determined
by C,m, n in the hypotheses (SL1,2,3) of the Strong main lemma for A.
We write c, C, C ′, C1, etc. to denote controlled constants. Also, we intro-
duce a small constant ā to be picked later. Initially, we do not assume that
ā is a controlled constant. We say that a constant is “weakly controlled” if
it is determined by ā, together with C,m, n in (SL1,2,3). We write c(ā),
C(ā), C ′(ā), etc., to denote weakly controlled constants. Note that the
constants k# and a0 are controlled. We assume that

(13.2) ā is less than a small enough controlled constant.

We proceed as in Sections 16 and 17 of [8]. Section 16 of [8] goes through
unchanged here. We introduce the linear map

(13.3)
T : (x̂1, . . . , x̂n) 	→ (λ1x̂1, . . . , λnx̂n),

with λ1, . . . , λn > 0 picked as in Section 17 of [8].
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We define

(13.4) Ê = T−1(E), σ̂ = σ ◦ T.

As in Section 17 of [8], we may construct a set of multi-indices

(13.5) Ā ≤ A,

for which the following result is valid.

Lemma 1. (WL1), (WL2), (WL3) hold for the set Ê, the function σ̂, the
set Ā of multi-indices, the base point y0 = 0, and for some family of poly-
nomials P̄ᾱ(ᾱ ∈ Ā). Moreover, the constant called C in hypothesis (WL3)
for Ā, Ê, σ̂, y0 = 0, (P̄ᾱ)ᾱ∈Ā, is weakly controlled.

To prove Lemma 1, we just repeat the argument from (17.4a) through(17.27)

of [8], omitting the discussion of F S and F̂ Ŝ.

Since we are assuming that the Weak main lemma holds for all Ā ≤ A,
we obtain from (13.5) and Lemma 1 that there exists a linear operator

Ê : Cm(Ê, σ̂) −→ Cm(Rn), satisfying(13.6)

‖Ê‖ ≤ C1(ā), and(13.7) [ |Ê f̂(x̂) − f̂(x̂)| ≤ C1(ā) · ‖f̂‖Cm(Ê,σ̂) · σ̂(x̂)

for all f̂ ∈ Cm(Ê, σ̂) , and for all x̂ ∈ Ê ∩ B(0, c1(ā))

]
(13.8)

Now, given f ∈ Cm(E, σ), we define f̂ = f ◦ T on Ê, then set

(13.9) Ef = (Ê f̂) ◦ T−1 .

Thus, E is a linear operator from Cm(E, σ) to Cm(Rn). Since λ1, . . . , λn

in (13.3) satisfy

(13.10) c(ā) ≤ λi ≤ 1 (i = 1, . . . , n)

(see [8] estimate (17.7) ), the operator f 	→ f̂ has norm at most C(ā) as a
map from Cm(E, σ) to Cm(Ê, σ̂). Similarly, (13.9) shows that

‖Ef‖Cm(Rn) ≤ C(ā) · ‖Ê f̂‖Cm(Rn) .

Together with (13.7), this shows that the operator

(13.11) E : Cm(E, σ) −→ Cm(Rn) has norm at most C2(ā).
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Also, from (13.8), (13.9), (13.10), we see that

(13.12)

[
|Ef(x) − f(x)| ≤ C1(ā) · ‖f̂‖Cm(Ê,σ̂) · σ(x)

whenever x ∈ E and T−1x ∈ B(0, c1(ā)).

]

Another application of (13.10) shows that

(13.13)

[
x ∈ B(0, c3(ā)) implies T−1x ∈ B(0, c1(ā)),

for a suitable weakly controlled constant c3(ā).

]

Again using the fact that the operator f 	→ f̂ has norm at most C(ā) as
a map from Cm(E, σ) to Cm(Ê, σ̂), we derive from (13.12) and (13.13) the
following conclusion.

(13.14)

[
|Ef(x) − f(x)| ≤ C3(ā) · ‖f‖Cm(E,σ) · σ(x),

whenever f ∈ Cm(E, σ) and x ∈ E ∩ B(0, c3(ā)).

]

Thus, if ā satisfies (13.2), then the operator E satisfies (13.11) and (13.14).
We now take ā to be a controlled constant, small enough to satisfy (13.2).
Then the constants C2(ā), C3(ā), c3(ā) are determined entirely by C,m, n
in hypotheses (SL1,2,3). Hence, (13.11) and (13.14) are the desired prop-
erties (SL4,5) for the linear operator E . Thus, the Strong main lemma

holds for Ā.

The proof of Lemma PP3 is complete. �

14. Proof of Theorem 1

By now, we have proven Lemmas PP1, PP2 and PP3. Consequently, we have
established the Local Theorem 1 in Section 5. To pass to Theorem 1, we first
prove the following simple result.

Lemma 1. In the Local Theorem 1, the hypothesis σ : E −→ (0,∞) may
be relaxed to σ : E −→ [0,∞).

Proof. Let E ⊂ R
n be finite, let σ : E −→ [0,∞), and let y0 ∈ R

n. Since
E is finite there exists a linear operator

(14.1) E trivial : C0(E) −→ Cm(Rn),

with

(14.2) E trivialf(x) = f(x) for all x ∈ E.
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We have

(14.3) ‖E trivialf‖Cm(Rn) ≤ Γ(E) · ‖f‖C0(E)

for all f , with Γ(E) a finite constant depending on E. We write

(14.4) E = E0 ∪ E1,

with

(14.5) E0 = {x ∈ E : σ(x) = 0} and E1 = {x ∈ E : σ(x) > 0}.
For a small enough ε > 0 to be picked below, define

(14.6) σε(x) =

{
σ(x) if x ∈ E1

ε if x ∈ E0

Thus, σε : E −→ (0,∞), so the Local Theorem 1 applies to E, σε. Let E
be the operator provided by the Local Theorem 1 for E, σε. Note that

(14.7) ‖f‖Cm(E,σε) ≤ ‖f‖Cm(E,σ) for any f , simply because σε ≥ σ.

Thus, for any function f : E −→ R, we have

‖Ef‖Cm(Rn) ≤ A ‖f‖Cm(E,σε), and(14.8)

|Ef(x) − f(x)| ≤ A ‖f‖Cm(E,σε) · σε(x) for all x ∈ E ∩ B(y0, c′).(14.9)

Here A and c′ depend only on m and n. From (14.5), (14.6), (14.9), we have

(14.10) |Ef(x) − f(x)| ≤ Aε · ‖f‖Cm(E,σε)

for all f and for all x ∈ E0 ∩ B(y0, c′).
We define a linear operator L : Cm(E, σε) −→ C0(E) by setting

(14.11) Lf(x) =

{
f(x) − Ef(x) for x ∈ E0 ∩ B(y0, c′)
0 for all other x ∈ E

.

We then define the linear operator Ẽ : Cm(E, σε) −→ Cm(Rn), by setting

(14.12) Ẽf = Ef + E trivial (Lf) for all f .

Note that

‖Ẽf‖Cm(Rn) ≤ ‖Ef‖Cm(Rn) + Γ(E) · ‖Lf‖C0(E) (see (14.3))(14.13)

≤ A ‖f‖Cm(E,σε) + Γ(E) · ‖Lf‖C0(E) (see (14.8))

≤ A ‖f‖Cm(E,σε) + Γ(E) · [Aε · ‖f‖Cm(E,σε)] (see (14.10), (14.11))

≤ 2A · ‖f‖Cm(E,σε),

provided we take

(14.14) ε <
1

Γ(E)
.
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Let x ∈ E1 ∩ B(y0, c′). Then we have Lf(x) = 0 by definition (14.11),
hence E trivial(Lf)(x) = 0 by (14.2). Consequently, (14.9) and (14.12) show
that

|Ẽf(x)−f(x)| = |Ef(x)−f(x)| ≤ A ‖f‖Cm(E,σε) ·σε(x) = A ‖f‖Cm(E,σε) ·σ(x).

(See (14.6).) Thus,

(14.15) |Ẽf(x) − f(x)| ≤ A ‖f‖Cm(E,σε) · σ(x)

for all f , and for all x ∈ E1 ∩ B(y0, c′).

On the other hand, suppose x ∈ E0 ∩ B(y0, c′). Then (14.11) gives
Lf(x) = f(x) − Ef(x), hence (14.2) yields E trivial(Lf)(x) = f(x) − Ef(x);
and therefore (14.12) implies Ẽf(x) = f(x). Thus, we have

(14.16) |Ẽf(x) − f(x)| ≤ A ‖f‖Cm(E,σε) · σ(x) (both sides vanish)

for all f , and for all x ∈ E0 ∩ B(y0, c′).

From (14.4), (14.15), (14.16), we conclude that

(14.17) |Ẽf(x) − f(x)| ≤ A ‖f‖Cm(E,σε) · σ(x)

for all f , and for all x ∈ E ∩ B(y0, c′).

From (14.7), (14.13), (14.17), we obtain the following:

‖Ẽf‖Cm(Rn) ≤ 2A ‖f‖Cm(E,σ) for all f ; and(14.18)

|Ẽf(x) − f(x)| ≤ A ‖f‖Cm(E,σ) · σ(x)(14.19)

for all f and for all x ∈ E ∩ B(y0, c′).

Since A and c′ depend only on m and n, the conclusions of the Local
Theorem 1 are immediate from (14.18) and (14.19). The proof of the Lemma
is complete. �

It is now easy to finish the proof of Theorem 1. Let E ⊂ R
n be finite,

and let σ : E −→ [0,∞) be given.
For each y ∈ R

n, we obtain from Lemma 1 above a linear operator
Ey : Cm(E, σ) −→ Cm(Rn), satisfying for each f ∈ Cm(E, σ) the estimates

‖Eyf‖Cm(Rn) ≤ A ‖f‖Cm(E,σ) and(14.20)

|Eyf(x) − f(x)| ≤ A ‖f‖Cm(E,σ) · σ(x) for all x ∈ B(y, c′) ∩ E.(14.21)

Here A, c′ depend only on m and n. For the rest of this section, we use
c, C,C ′, etc., to denote constants depending only on m and n.
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We introduce a partition of unity

(14.22)
∑

ν

θν(x) = 1 for all x ∈ R
n,

where

(14.22a) ‖θν‖Cm(Rn) ≤ C,

0 ≤ θν ≤ 1 on R
n,(14.23)

suppθν ⊂ B(yν ,
1

2
c′) with c′ as in (14.21), and(14.24)

no point of R
n belongs to more than C of the balls B(yν , c

′).(14.25)

For f ∈ Cm(E, σ), we define

(14.26) Ef =
∑

ν

θν · (Eyνf).

We have

‖Ef‖Cm(Rn) ≤ C · sup
ν

‖ θν · (Eyνf) ‖Cm(Rn)(14.27)

(by (14.24), (14.25), (14.26))

≤ C ′ sup
ν

‖Eyνf ‖Cm(Rn) (see (14.22a))

≤ C ′′ ‖f‖Cm(E,σ) (see (14.20)).

Also, for x ∈ E ∩ B(yν , c
′), we have

(14.28) |θν(x)Eyνf(x) − θν(x)f(x)| ≤ A ‖f‖Cm(E,σ) · θν(x)σ(x),

thanks to (14.21) and (14.23).

On the other hand, for x ∈ E \ B(yν , c
′), (14.28) still holds, since both

sides are zero, thanks to (14.24). Thus (14.28) holds for all x ∈ E. Sum-
ming (14.28) over ν, and recalling (14.22) and (14.26), we find that

(14.29) |Ef(x) − f(x)| ≤ A ‖f‖Cm(E,σ) · σ(x)

for all f ∈ Cm(E, σ) and all x ∈ E.

Since C ′′ and A depend only on m and n, estimates (14.27) and (14.29)
are the conclusions of Theorem 1. The proof of Theorem 1 is complete. �
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15. Banach Limits

In this section, we recall the basic properties of Banach limits.

A directed set is a set D with a partial order >, with the property that,
given any E1, E2 ∈ D, there exists E ∈ D, with E ≥ E1 and E ≥ E2.

Let D be a directed set. A D-sequence is a function from D to the real
numbers. We denote D-sequences by 	ξ = (ξE)E∈D.

We write C◦(D) to denote the vector space of bounded D-sequences,
equipped with the sup norm.

From a well-known application of the Hahn-Banach theorem (see, eg. [7]),
there exists a linear functional �D : C◦(D) −→ R, satisfying the estimate

lim inf
E−→∞

ξE ≤ �D(	ξ) ≤ lim sup
E−→∞

ξE for all 	ξ = (ξE)E∈D ∈ C◦(D) .

Here,

lim inf
E−→∞

ξE = sup
Ẽ∈D

( inf
E≥Ẽ

ξE), and lim sup
E−→∞

ξE = inf
Ẽ∈D

(sup
E≥Ẽ

ξE).

The functional �D is far from unique, but we fix some �D as above, and call
it a Banach limit.

16. Equivalence of Norms for Finite Sets

In this section, we prove the following straightforward result.

Lemma ENFS. Let E ⊂ R
n be finite, and let σ : E −→ [0,∞). Then, for

each f : E −→ R, we have

(16.1) c‖f‖Cm(E,σ) ≤ ‖f‖Cm−1,1(E,σ) ≤ C‖f‖Cm(E,σ) ,

with c and C depending only on m and n.

Proof. The second estimate is immediate from the definitions and the
fact that ‖F‖Cm−1,1(Rn) ≤ C‖F‖Cm(Rn) for any F ∈ Cm(Rn). Here and
throughout this proof, c, C, etc. stand for constants determined by m and n.

To prove the first estimate in (16.1), we may assume that

(16.2) ‖f‖Cm−1,1(E,σ) = 1.

We must then show that

(16.3) ‖f‖Cm(E,σ) ≤ C.
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In view of (16.2), there exists F ∈ Cm−1,1(Rn), with

‖F‖Cm−1,1(Rn) ≤ C, and(16.4)

|F (x) − f(x)| ≤ Cσ(x) for all x ∈ E.(16.5)

By convolving F with an approximate identity, we obtain a family of func-
tions Fδ ∈ Cm(Rn), parametrized by δ > 0, with the following properties:

‖Fδ‖Cm(Rn) ≤ C‖F‖Cm−1,1(Rn) ≤ C ′ (see (16.4));(16.6)

Fδ −→ F pointwise, as δ −→ 0.(16.7)

Let ε > 0 be small enough, to be picked later. Since (16.7) holds and E is
finite, we may pick δ > 0 small enough so that we have

(16.8) |Fδ(x) − F (x)| ≤ ε for all x ∈ E.

From now on, we fix δ satisfying (16.8) (and depending on ε, of course).
From (16.5) and (16.8), we get

(16.9) |Fδ(x) − f(x)| ≤ Cσ(x) + ε for all x ∈ E.

On the other hand, since E is finite, we have the following trivial remark:

(16.10) Given a function g ∈ C0(E), there exists G ∈ Cm(Rn), with

(a) G(x) = g(x) for all x ∈ E, and

(b) ‖G‖Cm(Rn) ≤ Γ(E) · ‖g‖C0(E),

for a finite constant Γ(E) depending on E. In view of (16.9), there exists a
function g : E −→ R, with

|g(x)| ≤ ε for all x ∈ E, and(16.11)

|(Fδ(x) − f(x)) − g(x)| ≤ Cσ(x) for all x ∈ E.(16.12)

Applying (16.10) to the function g in (16.11), (16.12), we obtain a function
G ∈ Cm(Rn), with the following properties:

‖G‖Cm(Rn) ≤ Γ(E) · ε; and(16.13)

|Fδ(x) − f(x) − G(x)| ≤ Cσ(x) for all x ∈ E.(16.14)

We pick ε < 1
/
Γ(E), and set F̃ = Fδ − G. From (16.6) and (16.13), we see

that

(16.15) ‖F̃‖Cm(Rn) ≤ C ′.

From (16.14) we have

(16.16) |F̃ (x) − f(x)| ≤ Cσ(x) for all x ∈ E.

Estimates (16.15) and (16.16) prove (16.3), thus completing the proof of the
Lemma. �
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17. Proof of Theorem 2

We assume here that m ≥ 2, leaving to the reader the task of modifying our
arguments for the case m = 1.

Let E ⊂ R
n, and let σ : E −→ [0,∞) be given. Let D denote the set

of all finite subsets E1 ⊂ E, partially ordered by inclusion: E1 ≤ E2 if and
only if E1 ⊆ E2. Thus D is a directed set. For each E1 ∈ D, we apply
Theorem 1, together with Lemma ENFS in Section 16, to obtain a linear
operator E [E1] : Cm−1,1(E1, σ|E1) −→ Cm(Rn), with

(17.1) ‖E [E1]f‖Cm(Rn) ≤ C‖f‖Cm−1,1(E1,σ|E1
)

and

(17.2) |(E [E1]f)(x) − f(x)| ≤ Cσ(x) · ‖f‖Cm−1,1(E1,σ|E1
) on E1, for all f .

Here, and throughout this section, c, C,C ′, etc., denote constants depending
only on m and n.

Note that (17.1) shows in particular that

(17.3) sup
E1∈D

|∂β(E [E1]f)(x)| ≤ C‖f‖Cm−1,1(E,σ)

for all f ∈ Cm−1,1(E, σ), |β| ≤ m, x ∈ R
n.

We define an element 	ξ(f, β, x) ∈ C◦(D), by setting

(17.4) 	ξ(f, β, x) = (∂β(E [E1]f)(x))E1∈D.

In view of (17.3), we have 	ξ(f, β, x) ∈ C◦(D), and

(17.5) ‖	ξ(f, β, x)‖C◦(D) ≤ C‖f‖Cm−1,1(E,σ),

for f ∈ Cm−1,1(E, σ), |β| ≤ m, x ∈ R
n.

Applying the Banach limit �D to 	ξ(f, β, x), we obtain functions Fβ(x),
defined by

(17.6) Fβ(x) = �D(	ξ(f, β, x)) for |β| ≤ m, x ∈ R
n,

with f ∈ Cm−1,1(E, σ) given. Note that the map

(17.7) E : f −→ F0 is linear.

(Here, 0 denotes the zero multi-index.) We will show that E satisfies the
conclusions of Theorem 2.
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First, we establish the smoothness of F0. Immediately from (17.5), (17.6)
and the properties of the Banach limit, we have

(17.8) supx∈Rn |Fβ(x)| ≤ C‖f‖Cm−1,1(E,σ) for |β| ≤ m.

Moreover, for x, y ∈ R
n, |β| ≤ m − 1, and E1 ∈ D, estimate (17.1) gives

|∂β(E [E1]f)(x) − ∂β(E [E1]f)(y)| ≤ C|x − y| · ‖f‖Cm−1,1(E,σ) .

Together with (17.4), this shows that

‖	ξ(f, β, x) − 	ξ(f, β, y)‖C◦(D) ≤ C|x − y| · ‖f‖Cm−1,1(E,σ) .

Taking the Banach limit, and recalling (17.6), we see that

(17.9) |Fβ(x)−Fβ(y)| ≤ C|x−y|·‖f‖Cm−1,1(E,σ) for |β| ≤ m − 1, x, y ∈ R
n.

Similarly, suppose x, y ∈ R
n (y = (y1, . . . , yn)), and let |β| ≤ m − 2.

For j = 1, . . . , n, let β[j] denote the sum of β and the jth unit multi-index.
Then (17.1) and Taylor’s theorem show that∣∣∣∂β(E [E1]f)(x + y) − ∂β(E [E1]f)(x) −

n∑
j=1

[
∂β[j](E [E1]f)(x)

]
yj

∣∣∣ ≤

≤ C|y|2 ‖f‖Cm−1,1(E,σ)

for all E1 ∈ D. That is,∥∥∥	ξ(f, β, x + y) − 	ξ(f, β, x)−
n∑

j=1

yj
	ξ(f, β[j], x)

∥∥∥
C◦(D)

≤

≤ C|y|2 ‖f‖Cm−1,1(E,σ) (see (17.4)) .

Applying the Banach limit and recalling (17.6), we find that∣∣∣Fβ(x + y) − Fβ(x) −
n∑

j=1

yjFβ[j](x)
∣∣∣ ≤ C|y|2 ‖f‖Cm−1,1(E,σ)

for x ∈ R
n, y = (y1, . . . , yn) ∈ R

n, f ∈ Cm−1,1(E, σ), |β| ≤ m − 2.

This shows that

(17.10) Fβ is differentiable, and
∂

∂xj

Fβ = Fβ[j],

for |β| ≤ m − 2 and j = 1, . . . , n. From (17.8), (17.9), (17.10), we conclude
that F0 ∈ Cm−1,1(Rn), and

(17.11) ‖F0‖Cm−1,1(Rn) ≤ C‖f‖Cm−1,1(E,σ).

Thus, we have established the smoothness of F0. Next, we estimate |F0(x)−
f(x)| for x ∈ E.
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For x̃ ∈ E, and let Ẽ1 = {x̃} ∈ D. If E1 ∈ D and E1 ≥ Ẽ1, then x̃ ∈ E1,
hence (17.2) implies that

|(E [E1]f)(x̃) − f(x̃)| ≤ Cσ(x̃) · ‖f‖Cm−1,1(E,σ) .

Consequently, we have

lim sup
E1−→∞

(E [E1]f)(x̃) ≤ f(x̃) + Cσ(x̃) · ‖f‖Cm−1,1(E,σ), and(17.12)

lim inf
E1−→∞

(E [E1]f)(x) ≥ f(x̃) − Cσ(x̃) · ‖f‖Cm−1,1(E,σ).(17.13)

Also, from (17.4), (17.6) with β = 0, and from the properties of the Banach
limit, we have

(17.14) lim inf
E1−→∞

(E [E1]f)(x̃) ≤ F0(x̃) ≤ lim sup
E1−→∞

(E [E1]f)(x̃).

Inequalities (17.12), (17.13), (17.14) show that

(17.15) |F0(x̃) − f(x̃)| ≤ Cσ(x̃) · ‖f‖Cm−1,1(E,σ).

We have proven (17.15) for all x̃ ∈ E and f ∈ Cm−1,1(E, σ).

Our estimates (17.11), (17.15) show that the linear operator E in (17.7)
maps Cm−1,1(E, σ) to Cm−1,1(Rn), and satisfies the conclusions of Theo-
rem 2. The proof of Theorem 2 is complete. �
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