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Polynomial growth harmonic functions
on complete Riemannian manifolds

Yong Hah Lee

Abstract

In this paper, we give a sharp estimate on the dimension of the
space of polynomial growth harmonic functions with fixed degree on
a complete Riemannian manifold, under various assumptions.

1. Introduction

The classical Liouville theorem, which states that any positive harmonic
function on R

2 must be constant, has long been an interesting topic of
study to analysts and geometers. In 1975, Yau [26] generalized the clas-
sical Liouville theorem to complete Riemannian manifolds with nonnegative
Ricci curvature. He proved that every positive harmonic function on such a
manifold is constant. After the work, he conjectured the following:

Conjecture 1.1 Let M be a complete Riemannian manifold with nonnega-
tive Ricci curvature. Let r(x) denote the distance of any point x from a fixed
point o in M . Then the space of harmonic functions of polynomial growth
of degree at most d

Hd(M) = {f : ∆f = 0, |f |(x) = O(rd(x)) as r(x) → ∞}
must be finite dimensional for any d ≥ 0.

As partial results, the case of linear growth on this conjecture has been
well developed by Cheeger, Colding and Minicozzi II [3], Li and Tam [20, 21],
and Wang [25]. Recently, in a series of papers [5]-[11], Colding and Mini-
cozzi II proved that the conjecture is true. To be precise, they prove that
the conjecture is also true on a complete Riemannian manifold M if the
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manifold satisfies the volume doubling condition and the Poincaré inequality
as follows:

(V) there exists a constant ν > 0 such that for any x ∈ M and 0 < s ≤ r,

Vx(r) ≤
(r

s

)ν

Vx(s),

where Vx(r) denotes the volume of the geodesic ball Br(x);

(P) there exists a constant C > 0 such that for any x ∈ M and r > 0,

∫
Br(x)

f 2 ≤ Cr2

∫
Br(x)

|∇f |2,

where f ∈ C∞(Br(x)) satisfying
∫

Br(x)
f = 0.

It is well known that these properties are valid on any manifold with nonneg-
ative Ricci curvature with ν being the dimension of the manifold. Colding
and Minicozzi II [10] and Li [19] also considered manifolds satisfying weaker
conditions as follows:

(W) there exist constants C > 0 and ν > 0 such that for any x ∈ M and
0 < s ≤ r,

Vx(r) ≤ C
(r

s

)ν

Vx(s);

(M) there exists a constant λ > 0 such that for any x ∈ M and r > 0, any
nonnegative subharmonic function f on M

f(x) ≤ λ

Vx(r)

∫
Br(x)

f.

They proved that on a complete Riemannian manifold satisfying the condi-
tions (W) and (M), the space of harmonic functions of polynomial growth
of fixed degree is finite dimensional. Note that if a manifold satisfies the
conditions (W) and (P), then the mean value property (M) also holds on
the manifold. (See [14] or [23].) On the other hand, Wang [25] proved,
by introducing a new inner product, the finite dimensionality of the space
of linear growth harmonic functions on a complete Riemannian manifold
with nonnegative Ricci curvature outside a compact set and finite first Betti
number. Recently, based on the argument of Li [19], Tam [24] generalized
the result of Wang to the case of polynomial growth harmonic functions
with any fixed degree. To be precise, he gave a sharp bound on the dimen-
sion of the space of harmonic functions of polynomial growth of fixed degree
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on a complete Riemannian manifold, which has Ricci curvature decaying at
least quadratically to zero near infinity and whose ends satisfy the volume
comparison property, introduced in [21].

In this paper, we will estimate the dimension of the space of polynomial
growth harmonic functions with fixed degree on a complete Riemannian
manifold M with finitely many ends, each of which satisfies the volume dou-
bling condition, the mean value property, and the finite covering condition
as follows:

Let E be an end, explained in Section 2, of M and o be a fixed point in M ;

(W)0 there exist constants C > 0 and ν > 0 such that for all Br(x) ⊂ E
and any 0 < s ≤ r,

Vx(r) ≤ C
(r

s

)ν

Vx(s);

(M)0 there exists a constant λ > 0 such that for all Br(x) ⊂ E and any
nonnegative subharmonic function f on E,

f(x) ≤ λ

Vx(r)

∫
Br(x)

f ;

(C)0 there exist a positive integer m0 and points x1, x2, . . . , xm0 in ∂CE,r for
all r > 0 large enough such that

∂CE,r ⊂
m0⋃
j=1

Br/4(xj)

and ∪m0
j=1Br/4(xj) is connected, where CE,r denotes the unbounded

component of E \ Br(o).

Note that these properties are satisfied on a complete Riemannian mani-
fold with nonnegative Ricci curvature outside a compact set and finite first
Betti number. We prove in Section 2 that for given 0 < α < 1/4, if
{x1, x2, . . . , xm(α)} is a maximal set of points in ∂CE,r such that d(xi, xj) ≥
αr for i 	= j, then m(α) ≤ Cα−ν for some constant C > 0. Using this result,
we have an upper bound of the dimension of the space of polynomial growth
harmonic functions as follows:

Theorem 1.2 Let M be a complete Riemannian manifold with finitely many
ends Ei, i = 1, 2, . . . , l, each of which satisfies the conditions (W)0, (M)0

and (C)0. Then there is a constant C > 0 such that for any d ≥ 0,

dimHd(M) ≤ C
(
1 +

l∑
i=1

dνi

)
,

where νi denotes the order ν in (W)0 corresponding to each end Ei.
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The order of d may not be sharp. In Section 3, we consider some specific
cases and give a sharp bound of the dimension with respect to each case.
One is the case of a connected sum of complete Riemannian manifolds, each
of which satisfies the mean value property (M) and the following volume
doubling condition:

(V′) there exist constants C > 0 and ν > 0 such that for any point x and
sufficiently large 0 < s ≤ r,

Vx(r) − Vx(s) ≤ C
{(r

s

)ν

− 1
}

Vx(s).

The condition (V′) is stronger than (W), but weaker than (V). Therefore,
any complete Riemannian manifold with nonnegative Ricci curvature still
satisfies the condition (V′).

Theorem 1.3 Let Mi, i = 1, 2, . . . , l, be complete Riemannian manifolds
satisfying the conditions (V′) and (M). Let M be a connected sum of
M1,M2, . . . ,Ml. Then there is a constant C > 0 such that for any d ≥ 0,

dimHd(M) ≤ C
(
1 +

l∑
i=1

dνi−1
)
,

where νi denotes the order ν in (V′) corresponding to Mi.

Another is the case when M is a complete n-dimensional Riemannian mani-
fold with nonnegative Ricci curvature outside a compact set and finite
first Betti number. In this case, we prove that for any end E of M , if
{x1, x2, . . . , xm(α)} is a maximal set of points in ∂CE,r such that d(xi, xj) ≥
αr for i 	= j, then m(α) = O(αn−1) as α → 0. From this result, we obtain a
sharp estimate of the dimension in such a way that dimHd(M) = O(dn−1)
as d → ∞.

An ingredient exploited in this paper is the concept of the rough isome-
try which is more general one than the bi-Lipschitz map. In Section 4, we
estimate an upper bound of the dimension of the space of polynomial growth
harmonic functions on a complete Riemannian manifold being roughly iso-
metric to each case mentioned just above. The key step in doing so is to
examine the rough isometric invariance of the conditions needed in obtaining
the upper bound of the dimension. For example, one can easily check that
the number of ends and the volume doubling condition are invariant under
rough isometries between complete Riemannian manifolds. On the other
hand, it is not clear whether or not the mean value property for nonnegative
subharmonic functions is roughly isometric invariant. Therefore, in order
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to deploy our theory via rough isometry, we assume the Poincaré inequality
instead of the mean value property since the Poincaré inequality is a roughly
isometric invariant (see [12]). Furthermore, as mentioned above, the mean
value property follows from the volume doubling condition and the Poincaré
inequality. By using these facts, we will prove that if a complete Rieman-
nian manifold M is roughly isometric to a connected sum N of complete
Riemannian manifolds satisfying the volume doubling condition (V′) and
the Poincaré inequality (P), then dimHd(M) is bounded by the same order
of d as that of dimHd(N). Such an argument can be also applied to the case
of a complete Riemannian manifold being roughly isometric to a complete
Riemannian manifold with nonnegative Ricci curvature outside a compact
set and finite first Betti number.

2. Volume doubling condition, mean value property and
finite covering condition

We begin with defining ends of a complete Riemannian manifold M : Fix
a point o ∈ M . We denote by �(r) the number of unbounded components
of M \ Br(o). It is easy to prove that �(r) is nondecreasing in r > 0. Let
limr→∞ �(r) = l, where l may be infinity, then we say that the number of
ends of M is l. If l is finite, then we can choose r0 > 0 such that �(r) = l
for all r ≥ r0, and there exist mutually disjoint unbounded components
E1, E2, . . . , El of M \Br0(o). We call each Ei an end of M for i = 1, 2, . . . , l.

Through this section, M is assumed to be a complete Riemannian mani-
fold with finitely many ends E1, E2, . . . , El, each of which satisfies the con-
ditions (W)0, (M)0 and (C)0, and we denote by νi the order ν in (W)0

corresponding to each end Ei.

Suppose that D is a rank k vector bundle over M with a metric. Fix
0 < α < 1/4. Then by the conditions (W)0 and (C)0, for each end Ei

and any r > r0, there exists a maximal set {xi
1, x

i
2, . . . , x

i
mi(α)} of points in

∂CEi,r such that d(xi
j , x

i
k) ≥ αr/4 if j 	= k, where mi(α) is independent of r.

We now define a positive semidefinite symmetric bilinear form Sr on the
space of sections Γ(D) of D by

Sr(u, v) =
1

volAr

∫
Ar

〈u, v〉 +

l∑
i=1

mi(α)∑
j=1

1

Vxi
j
(αr)

∫
Bαr(xi

j)

〈u, v〉 ,

for u, v ∈ Γ(D), where Ar = ∪l
i=1(M \ CEi,r).

Applying the argument in [19] to our case, we get the following two
lemmas similar to those of [19]. (See also [24].)
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Lemma 2.1Let K be an N-dimensional subspace of Γ(D) such that ∆|u|2≥0
for all u ∈ K. Then there is a constant C > 0 such that for any 0 < α < 1/4
and an orthonormal basis {u1, u2, . . . , uN} for K with respect to S(1+α)r,

N∑
i=1

Sr(ui, ui) ≤ C(1 +

l∑
i=1

mi(α))

for all sufficiently large r ≥ r0.

Proof. Put F (x) =
∑N

i=1 |ui|2(x), then F is subharmonic in M . Let E be
an end of M , and x0 be a point in ∂CE,(1+α)r such that

F (x0) = sup
∂CE,(1+α)r(o)

F.

By [18], one can find an N × N orthogonal matrix (aij) such that vi =∑N
j=1 ajiuj and vi(x0) = 0 for i ≥ k + 1. Hence F (x) ≤ ∑k

i=1 |vi|2(x0) for all
x ∈ ∂CE,(1+α)r. By the condition (M)0,

(2.1) sup
∂CE,(1+α)r

F ≤ λ

Vα(1+α)r/2(x0)

k∑
i=1

∫
Bα(1+α)r/2(x0)

|vi|2.

Let {x1, x2, . . . , xm(α)} be the maximal set of points in ∂CE,(1+α)r chosen in
defining S(1+α)r. Then there exists a point xj such that

d(x0, xj) ≤ α(1 + α)
r

4
.

Since Bα(1+α)r/2(x0) ⊂ Bα(1+α)r(xj) ⊂ E, by the condition (W)0 and (2.1),

sup
∂CE,(1+α)r

F ≤ Cλ

Vα(1+α)r(xj)

k∑
i=1

∫
Bα(1+α)r(xj)

|vi|2

for some constant C > 0. Since {v1, v2, . . . , vN} is orthonormal with respect
to S(1+α)r, F (x) ≤ Ckλ for all x ∈ ∂CE,(1+α)r. Applying the above argument
to each end, by the maximum principle, we get the consequence. �

Slightly modifying the proof of Lemma 2 in [19], one can easily prove the
following lemma:

Lemma 2.2 Let K be an N-dimensional subspace of Γ(D) with polynomial
growth of degree at most d. Then for any 0 < α < 1/4, there exists r > r0

such that if {u1, u2, . . . , uN} is an orthonormal basis for K with respect to
S(1+α)r, then

N∑
i=1

Sr(ui, ui) ≥ N(1 + α)−(2d+1).
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We are now ready to prove Theorem 1.2:

Proof of Theorem 1.2. Let K be an N -dimensional subspace of Hd(M).
In the case that 0 < d ≤ 1, fix an 0 < α < 1/4. Combining Lemma 2.1 and
Lemma 2.2, we get

N ≤ C (1 + α)2d+1
(
1 +

l∑
i=1

mi

)
≤ C (1 + α)3

(
1 +

l∑
i=1

mi

)
,

where C > 0 is a constant and mi = mi(α). Hence N is bounded.

Next, consider the case that d > 1. Put α = (4d)−1. Then by Lemma 2.1,
there is a constant C > 0 such that if r > r0 and {u1, u2, . . . , uN} is an
orthonormal basis for (K, S(1+α)r), then

N∑
i=1

Sr(ui, ui) ≤ C
(
1 +

l∑
i=1

mi

)
,

where mi = mi(1/4d). On the other hand, by Lemma 2.2, we can find r > r0

such that if {u1, u2, . . . , uN} is an orthonormal basis for (K, S(1+α)r), then

N∑
i=1

Sr(ui, ui) ≥ N(1 + 1/4d)−(2d+1).

Hence we get

N ≤ C
(
1 +

l∑
i=1

mi

)
,

where C is independent of d.

To get the consequence, it suffices to prove that mi ≤ Cdνi for each
i = 1, 2, . . . , l. For the sake of convenience, let us just denote a fixed end
by E. By the condition (C)0, for any r > r0, there exists a maximal set
A0 = {xi : i = 1, 2, . . . ,m0} of points in ∂CE,r such that d(xi, xj) ≥ r/4
for i 	= j and ∪m0

i=1Br/4(xi) is connected. For each i, j ∈ {1, 2, . . . ,m0} with
i ≤ j, there exists a chain of balls Br/4(xi), Br/4(xi+1), . . . , Br/4(xj) of length
at most m0 such that Br/4(xk) ∩ Br/4(xk+1) 	= ∅ for k = i, i + 1, . . . , j − 1.
Hence by the condition (W)0, we get

(2.2) Vxi
(r/4) ≤ Cm0−1Vxj

(r/4),

for some constant C > 0.

By adding some points in ∂CE,r to A0, we can choose a maximal set
Aα = {yi : i = 1, 2, . . . ,m(α)} of points in ∂CE,r such that d(yi, yj) ≥ αr
for i 	= j. Then for each yi ∈ Aα, there exists a point xji

∈ A0 such that
d(yi, xji

) ≤ r/4.
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Let us denote the αr-neighborhood of CE,r by Bαr(CE,r). Then by the
condition (W)0 and (2.2), we get

volBαr(CE,r) ≤
∑

xj∈A0

Vxj
((α + 1/4)r) ≤ m0C

m0−1Vxji
((α + 1/4)r)

≤ m0C
m0−1Vyi

((α + 1/2)r) ≤ Cα−νVyi
(αr/2).

Since Bαr/2(yi)’s are mutually disjoint, we have

m(α)volBαr(CE,r) ≤ Cα−ν
∑

yi∈Aα

Vyi
(αr/2) ≤ Cα−νvolBαr(CE,r).

Letting α = (4d)−1, m(α) ≤ Cdν for some constant C > 0. �

3. A sharp estimate of the dimension of the space of

polynomial growth harmonic function

In this section, we estimate a sharp bound of the dimension of the space
of polynomial growth harmonic functions for some specific cases. We first
consider the case of a connected sum of complete Riemannian manifolds
satisfying the conditions (V′) and (M).

Lemma 3.1 Let M be a complete Riemannian manifold satisfying (V′),
and let o be a fixed point in M . For any 0 < α < 1/4 and r > 0, let
{x1, x2, . . . , xm} be a maximal set of points in ∂Br(o) such that d(xi, xj) ≥
2αr for i 	= j, then m ≤ Cα−ν+1, where C is independent of α and r.

Proof. For any 0 < α < 1/4 and r > 0, by (V′), we have

Vo((1 + α)r) − Vo((1 − α)r) ≤ C
{(1 + α

1 − α

)ν

− 1
}

Vo((1 − α)r)(3.1)

≤ CαVo(r).

Applying (V′) again, we get

Vo(r) ≤ Vxi
(2r) ≤ C

( 2

α

)ν

Vxi
(αr)

for each i = 1, 2, . . . ,m. Since Bαr(xi)’s are mutually disjoint, by (3.1)

mVo(r) ≤ C
( 2

α

)ν
m∑

i=1

Vxi
(αr) ≤ C

( 2

α

)ν

(Vo((1 + α)r) − Vo((1 − α)r))

≤ C
( 2

α

)ν

αVo(r).

Hence we have the consequence. �
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Using Lemma 3.1, we can prove Theorem 1.3, which is a generalization
of the result of [16]:

Proof of Theorem 1.3. We may assume that M = ∪l
i=1(Mi \ Ki) ∪ K,

where Ki and K denote some compact subsets of Mi and M , respectively.
For each i = 1, 2, . . . , l, fix a point oi ∈ Ki and denote by Bi

r(oi) the geodesic
ball in Mi with radius r and center oi.

For given 0 < α < 1/4, choose a maximal set {xi
1, x

i
2, . . . , x

i
mi
} of points

in ∂Bi
r(oi) such that d(xi

j , x
i
k) ≥ αr if j 	= k. We now define a positive

semidefinite bilinear form Sr on Hd(M) by

Sr(u, v) =
1

volAr

∫
Ar

uv +

l∑
i=1

mi∑
j=1

1

Vxi
j
(αr)

∫
Bαr(xi

j)

uv,

where Ar = ∪l
i=1(B

i
r(oi) \ Ki) ∪ K and r > 0 is sufficiently large. Similarly

arguing as in the proof of Theorem 1.2, we get

dimHd(M) ≤ C(1 +
l∑

i=1

mi).

Letting α = (4d)−1, by Lemma 3.1, there is a constant C > 0 such that
mi ≤ Cdνi−1 for each i = 1, 2, . . . , l. Hence the result follows. �

Next, we consider the case of a complete Riemannian manifold with non-
negative Ricci curvature outside a compact set and finite first Betti number.
We introduce a relative volume comparison, which plays a crucial role in
obtaining a sharp estimate of the dimension:

Lemma 3.2 Let M be a complete Riemannian manifold with Ricci curva-
ture satisfying RicM(x) ≥ −(n − 1)K/(1 + r(x))2, where K is a positive
constant and r(x) denotes the distance from x to a fixed point o in M . Then
for any 0 < α < 1/4 and r > r0,

Vo((1 + α)r) − Vo((1 − α)r) ≤ Cα(Vo((1 − α)r) − Vo(r0)).

Proof. Let g be the solution of the linear equation g′′ = −Kg/(1 + t)2 with
initial condition g(0) = 0 and g′(0) = 1. Then

g(t) =
1

β1 − β2

(
(1 + t)β1 − (1 + t)β2

)
,

where β1 = (1 + (1 + 4K)1/2)/2 and β2 = (1 − (1 + 4K)1/2)/2.
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By the relative volume comparison in [4], we get

Vo((1 + α)r) − Vo((1 − α)r)

Vo((1 − α)r) − Vo(r0)
≤

∫ (1+α)r

(1−α)r

(
(1 + t)β1 − (1 + t)β2

)n−1
dt∫ (1−α)r

r0

(
(1 + t)β1 − (1 + t)β2

)n−1
dt

.

Since β1 > β2 and r is sufficiently large, we get for sufficiently small δ > 0

Vo((1 + α)r) − Vo((1 − α)r)

Vo((1 − α)r) − Vo(r0)

≤
(
(1 + α)β1(n−1) − (1 − α)β1(n−1)

)
rβ1(n−1) + O(rβ1(n−1)−δ)

(1 − α)β1(n−1)rβ1(n−1) + O(rβ1(n−1)−δ)
≤ Cα,

where C depends only on β1(n − 1). �
In [22], Liu proved that if M is a complete Riemannian manifold with

nonnegative Ricci curvature outside a compact set, then M has only finitely
many ends. He also proved that there exist an integer m0 > 0 and points
x1, x2, . . . , xm0 in ∂Br(o) such that for each sufficiently large r > 0,

∂Br(o) ⊂
m0⋃
i=1

Br/4(xi),

where o is a fixed point in M . Hence, for each end E of M , ∂CE,r is also
covered by finitely many geodesic balls of radius r/4 with centers in ∂CE,r.
On the other hand, Li and Tam [21] proved that if M also has finite first
Betti number, then each end E of M satisfies the volume comparison prop-
erty (VC) as follows:

(VC) There is a constant C > 0 such that for any r > 0 large enough and
any x ∈ ∂CE,r,

volAE
r,r0

≤ CVx(r/2),

where AE
r,r0

denotes (Br(o) \ Br0(o)) ∩ E.

As mentioned above, the conditions (W)0, (M)0 and (C)0 are valid on any
complete Riemannian manifold with nonnegative Ricci curvature outside a
compact set and finite first Betti number. So, we can apply the argument
employed in Section 2 to this case.

Theorem 3.3 Let M be a complete n-dimensional Riemannian manifold
with nonnegative Ricci curvature outside a compact set and finite first Betti
number. Then M has finitely many ends Ei, i = 1, 2, . . . , l, and there is a
constant C > 0 such that for any d ≥ 0,

dimHd(M) ≤ C(1 +
l∑

i=1

dνi−1) ≤ C(1 + ldn−1),

where νi (≤ n) denotes the order ν in (W)0 corresponding to each Ei.
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Proof. Let E be an end of M , then by attaching a compact set K, E ∪ K
can be regarded as a complete Riemannian manifold with nonnegative Ricci
curvature outside a geodesic ball Br0(o) containing K and finite first Betti
number. Assume that E satisfies the volume doubling condition (W)0 with
order ν.

For a sufficiently large r > r0, choose a maximal set A0 = {xi : i =
1, 2, . . . ,m0} of points in ∂CE,r such that d(xi, xj) ≥ r/4 for any i 	= j.
Then ∂CE,r is covered by Br/4(xi)’s and ∪xi∈A0Br/4(xi) is connected. By the
condition (VC), there exists a constant C > 0 such that

(3.2) volAE
r,r0

≤ CVxi
(r/4)

for each xi ∈ A0.
By adding some points to A0, we can choose a maximal set Aα = {yi : i =

1, 2, . . . ,m} of points in ∂CE,r such that d(yi, yj) ≥ αr and A0 ⊂ Aα. Then
for each yj ∈ Aα, there exists a point xij ∈ A0 such that Br/4(xij ) ⊂ Br/2(yj).
This implies, by the condition (W)0, that

Vxij
(r/4) ≤ Cα−νVyj

(αr/2).

Combining this with (3.2), we get

volAE
r,r0

≤ Cα−νVyj
(αr/2)

for all yj ∈ Aα. Since ∪yj∈AαBαr/2(yj) ⊂ AE
(1+α)r,(1−α)r, by Lemma 3.2,

m volAE
r,r0

≤ Cα−νvolAE
(1+α)r,(1−α)r

≤ Cα−ν+1volAE
r,r0

.

Hence m ≤ Cα−ν+1 for some constant C > 0.
Since M also satisfies the condition (M)0, similarly arguing as in the

proof of Theorem 1.2, we get the consequence. �
As a simple case, let us consider a connected sum of complete n-dimen-

sional Riemannian manifolds with nonnegative Ricci curvature. By the
splitting theorem of Cheeger and Gromoll [2], a complete n-dimensional
Riemannian manifold M with nonnegative Ricci curvature splits isometri-
cally as R

k × Nn−k, where k ≤ n and N contains no line. Especially, in the
case when M is a universal cover of a compact Riemannian manifold with
nonnegative Ricci curvature, N becomes a compact set. Since the volume
doubling condition (W)0 is assumed for sufficiently large radii, the condition
(W)0 holds on M with the order ν = k. Therefore, it is reasonable to take
the order ν in (W)0 being less than or equal to the dimension n. Similarly
arguing as in the proof of Theorem 3.3, we get the following corollary:
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Corollary 3.4 Let M be a connected sum of complete n-dimensional Rie-
mannian manifolds M1,M2, . . . ,Ml with nonnegative Ricci curvature. Then
for any d ≥ 0,

dimHd(M) ≤ C
l∑

i=1

(1 + dνi−1) ≤ Cl(1 + dn−1),

where νi (≤ n) denotes the order ν in (W)0 corresponding to each Mi.

4. Rough isometry and polynomial growth harmonic
functions

We begin with introducing the definition of the rough isometry and some
local assumptions. A map, not necessarily continuous, ϕ : X → Y is called
a rough isometry between two metric spaces X and Y if ϕ satisfies the
following condition:

(R) for some τ > 0, the τ -neighborhood of the image ϕ(X) covers Y ;

there exist constants a ≥ 1 and b ≥ 0 such that

a−1d(x1, x2) − b ≤ d(ϕ(x1), ϕ(x2)) ≤ ad(x1, x2) + b

for all x1, x2 ∈ X, where d denotes the distances of X and Y induced
from their metrics, respectively.

Especially, being roughly isometric is an equivalence relation. However,
since the rough isometry is not necessarily continuous, two roughly isometric
metric spaces may have completely different topology. So, in order to deploy
our theory via rough isometries between manifolds, it is needed to add the
following local assumptions on each manifold:
Let ϕ : M → N be a rough isometry satisfying the condition (R).

(i) there exists a constant C ≥ 1 such that for any point x ∈ M

C−1Vx(1) ≤ Vϕ(x)(1) ≤ CVx(1);

(ii) there exists a constant Cr > 0 depending only on r > 0 such that for
any point x ∈ M (N , respectively)

Vx(2r) ≤ CrVx(r);

(iii) there exists a constant Cr > 0 depending only on r > 0 such that for
any point x ∈ M ∫

Br(x)

|f | ≤ Cr

∫
Br(x)

|∇f |,

where f ∈ C∞(Br(x)) with
∫

Br(x)
f = 0.
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Note that these local assumptions are satisfied on any complete Rieman-
nian manifold with Ricci curvature bounded below by a constant and the
positive injectivity radius (see [1], [15] or [12]). From now on, when we say
that a map ϕ : M → N is a rough isometry between complete Riemannian
manifolds M and N , it means that the conditions (R), (i), (ii) and (iii) are
valid, unless otherwise specified. And τ, a and b always mean those which
appear in (R).

Let us examine whether the properties used in previous sections are in-
variant under rough isometries between complete Riemannian manifolds.
First of all, the number of ends is a rough isometric invariant and, in ad-
dition, each rough isometry between manifolds can be reduced to a rough
isometry between ends (see [17]). It is easy to prove the rough isometric
invariance of the volume doubling condition (W)0. Next, let us consider the
following Poincaré inequality:

(P)0 there exist a constant C > 0 and an integer k ∈ N such that for all
Br(x) ⊂ E, ∫

Br/k(x)

f 2 ≤ Cr2

∫
Br(x)

|∇f |2,

where f ∈ C∞(Br(x)) with
∫

Br/k(x)
f = 0.

Slightly modifying the argument in [12], one can prove that the condi-
tion (P)0 is also invariant under rough isometries. Therefore, the mean
value property (M)0 is valid on any end being roughly isometric to an end
satisfying the conditions (W)0 and (P)0.

We now introduce a modified version of the finite covering condition (C)0

as follows:

(C′)0 for any 0 < α < 1/4 and all r > r0 large enough, there exist an integer
m = m(α) and points x1, x2, . . . , xm in ∂CE,r such that

∂CE,r ⊂
m⋃

i=1

Bαr/2(xi)

and ∪m
i=1Bαr/2(xi) is connected.

In [21], Li and Tam proved that if a complete Riemannian manifold M has
finitely many ends and finite first Betti number, then each ∂CE,r is connected
for sufficiently large r > 0, where E is an end of M . Therefore, if an end
of such a manifold M satisfies the condition (C)0, then the condition (C′)0

is also valid on the end. Unfortunately, we don’t know whether the finite
covering condition (C′)0 is a rough isometric invariant. However, we get a
modified version of the condition (C′)0 through rough isometries, which is
sufficient to take over the role of (C′)0 in proving our result.
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Lemma 4.1 Let ϕ : D → E be a rough isometry between ends D and E.
Suppose that D satisfies the finite covering condition (C′)0. Then for any
0 < α < 1/4 and all r > 0 large enough, there exists a sequence {Hr} of
compact hypersurfaces in E such that d(∂E,Hr) → ∞ as r → ∞,

Hr ⊂
m⋃

i=1

B3a2αr(ϕ(xi))

and ∪m
i=1B3a2αr(ϕ(xi)) is connected, where m and x1, x2, . . . , xm denote those

in (C′)0 corresponding to D. In particular, each Hr divides E into a bounded
subset Kr and the unbounded component Ur of E \ Hr.

Proof. By the definition of ϕ, one can easily prove that ∪m
i=1B3a2αr(ϕ(xi))

is connected.

We claim that for sufficiently large r > 0, ∪m
i=1B3a2αr(ϕ(xi)) divides E

into a bounded set and a unbounded component. Otherwise, there exists
an arclength parametrized curve γ : [0,∞) → E such that γ(0) ∈ ∂E,
γ(t) → ∞ as t → ∞ and

(4.1) Bc(γ[0,∞)) ∩
m⋃

i=1

B2a2αr(ϕ(xi)) = ∅,

where c = 5a2(τ + a + b). By the definition of ϕ, one can choose a sequence
{xk}k∈N in D such that d(ϕ(xk), γ(k)) ≤ τ for each k ∈ N. By joining xk

and xk+1 by minimal geodesic, we get a curve σ : [0,∞) → D such that
σ(0) ∈ Br0(∂D) for some r0 > 0, σ(t) → ∞ as t → ∞ and

σ[0,∞) ⊂
⋃
k∈N

Ba(2τ+b+1)(xk).

By the definition of ϕ, we have ϕ(σ[0,∞)) ⊂ B4a2(τ+a+b)(γ[0,∞)), hence
Bτ (ϕ(σ[0,∞))) ⊂ Bc(γ[0,∞)).

On the other hand, σ must intersect ∂CD,r at a point x0, which implies
that ϕ(x0) ∈ Bc(γ[0,∞)). By the definition of ϕ, we also have

ϕ(∂CD,r) ⊂ Bτ

(
ϕ
( m⋃

i=1

Bαr(xi)
)) ⊂

m⋃
i=1

B2a2αr(ϕ(xi)).

Hence

ϕ(x0) ∈ Bc(γ[0,∞)) ∩
m⋃

i=1

B2a2αr(ϕ(xi)),

but this contradicts to (4.1). Thus we get the claim. The rest of the proof
follows from the condition (R). �
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Let M be a complete Riemannian manifold being roughly isometric to
a complete Riemannian manifold with ends Di, i = 1, 2, . . . , l, each of
which satisfies the conditions (W)0, (P)0 and (C′)0. Then M has ends
Ei, 1, 2, . . . , l, and by Lemma 4.1, each end Ei satisfies the following: For
any fixed 0 < α < 1/(40a3), there exist an integer mi = mi(α) and points
xi

1, x
i
2, . . . , x

i
mi

such that d(∂Ei, H
i
r) → ∞ as r → ∞,

H i
r ⊂

mi⋃
j=1

Bα̃r(ϕ(xi
j))

and ∪mi
j=1Bα̃r(ϕ(xi

j)) is connected, where H i
r divides Ei into a bounded subset

K i
r and the unbounded component U i

r of Ei \ H i
r, and α̃ = 3a2α.

We define a positive semidefinite bilinear form S̃r on Hd(M) by

S̃r(u, v) =
1

volAr

∫
Ar

uv +

l∑
i=1

mi∑
j=1

1

Vϕ(xi
j)
(α̃r)

∫
Bα̃r(ϕ(xi

j))

uv,

where Ar = ∪l
i=1K

i
r. It is needed to examine whether the argument used in

Section 2 can be well applied to this new bilinear form S̃r.

We claim that for sufficiently large r > 0, ∪mi
j=1Bα̃r(ϕ(xi

j))∪K i
r ⊂ K i

(1+β)r,

where β = 10a3α. Then we have the same consequence for the case of the
new bilinear form S̃r as that of Lemma 2.1.

Suppose that the claim is not true. Then there exists a point y ∈
Bα̃r(ϕ(xi

j)) ∩ Bα̃(1+β)r(ϕ(x)) for some xi
j ∈ ∂CDi,r and x ∈ ∂CDi,(1+β)r. By

the definition of ϕ, there exists a point w ∈ Di such that d(ϕ(w), y) ≤ τ ,
hence d(xi

j , w) ≤ a(α̃r + b + τ) and d(x,w) ≤ a(α̃(1 + β)r + b + τ). This
implies that d(xi

j , x) ≤ aα̃(2 + β)r + 2a(b + τ), which is impossible, since
xi

j ∈ ∂CDi,r and x ∈ ∂CDi,(1+β)r. Thus we get the claim. One can also easily
check the case of Lemma 2.2.

Using the above argument, we have a generalization of the result of Kim
and the present author [16] as follows:

Theorem 4.2 Let M be a complete Riemannian manifold roughly isometric
to a connected sum of complete Riemannian manifolds Mi, i = 1, 2, . . . , l,
each of which satisfies the conditions (V′) and (P). Then there is a constant
C > 0 such that for any d ≥ 0,

dimHd(M) ≤ C
(
1 +

l∑
i=1

dνi−1
)
,

where νi denotes the order ν in (V′) corresponding to Mi.
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Proof. As mentioned above, each end of M satisfies the conditions (W)0

and (P)0, hence (M)0. Applying the argument in Section 2 to the bilinear
form S̃r on Hd(M), for any 0 < α < 1/(40a3),

dimHd(M) ≤ C
(
1 +

l∑
i=1

mi(α)
)
.

Letting α = (4d)−1, by Lemma 3.1 and Lemma 4.1, there is a constant
C > 0 such that mi(1/4d) ≤ Cdνi−1 for each i = 1, 2, . . . , l. Hence the result
follows. �

Corollary 4.3 Let M be a complete Riemannian manifold roughly isomet-
ric to a connected sum of complete n-dimensional Riemannian manifolds Mi,
i = 1, 2, . . . , l, with nonnegative Ricci curvature. Then there is a constant
C > 0 such that for any d ≥ 0,

dimHd(M) ≤ C
(
1 +

l∑
i=1

dνi−1
)
≤ C(1 + ldn−1),

where νi denotes the order ν in (W)0 corresponding to Mi.

Similarly arguing as in Theorem 4.2, together with Theorem 3.3 and
Lemma 4.1, we get the following result:

Theorem 4.4 Let M be a complete n-dimensional Riemannian manifold
with nonnegative Ricci curvature outside a compact set and finite first Betti
number. Let N be a complete Riemannian manifold roughly isometric to M .
Then there is a constant C > 0 such that for any d ≥ 0,

dimHd(N) ≤ C
(
1 +

l∑
i=1

dνi−1
)
≤ C(1 + ldn−1),

where l is the number of ends of M and νi denotes the order ν in (W)0

corresponding to each end Ei of M .

Corollary 4.5 Let M be a complete Riemannian manifold with finitely many
ends Ei, i = 1, 2, . . . , l. Suppose that each Ei is roughly isometric to a Eu-
clidean space R

ni. Then there is a constant C > 0 such that for any d ≥ 0,

dimHd(M) ≤ C
(
1 +

l∑
i=1

dni−1
)
.
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