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Two–microlocal Besov spaces
and wavelets

Shinya Moritoh and Tomomi Yamada

Abstract

We give a characterization of the two–microlocal Besov spaces in
terms of the local Besov type conditions. As an easy consequence, we
obtain the inclusions between the two–microlocal Besov spaces and
the local Besov spaces. These results are natural extensions of those
obtained by Jaffard and Meyer, who treated the pointwise Hölder
regularity in terms of two–microlocal estimates. The Daubechies
wavelets play a key role throughout the paper.

1. Introduction

Our aim in this note is to characterize the two–microlocal Besov spaces in
terms of the local Besov type conditions.

This characterization is a natural extension of Theorem 1.2 in [3]. As
an easy consequence, we obtain the inclusions between the two–microlocal
Besov spaces and the local Besov spaces, which are a natural extension of
Proposition 1.3 in [3], too.

In Section 2, we begin with the definition of the homogeneous Besov
spaces Ḃs

p,q(R
n) from [5]. After introducing an orthonormal wavelet basis

composed of compactly supported smooth wavelets from [1], we define the
two–microlocal Besov spaces Bs,s′

p,q (U), where U is an open subset in R
n.

However, we treat only the case where p = q in our theorems, which are
stated in Section 3. The proof is carried out in Section 4. The main point
is the dyadic decomposition of the domain under consideration.
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2. Notations and definitions

Let R
n be n–dimensional real Euclidean space and Z

n be the lattice of all
points k = (k1, . . . , kn) ∈ R

n, where the components k1, . . . , kn are integers.
Let S ′ = S ′(Rn) be the set of all tempered distributions on R

n. If f belongs
to the Schwartz space S = S(Rn), then

Ff(ξ) = (2π)−n/2

∫
Rn

e−i〈x, ξ〉f(x)dx, ξ ∈ R
n,

denotes the Fourier transform of f . Here 〈x, ξ〉 =
∑n

j=1 xjξj is the scalar
product of x = (x1, . . . , xn) and ξ = (ξ1, . . . , ξn). The inverse Fourier trans-
form F−1f is given by

F−1f(x) = (2π)−n/2

∫
Rn

ei〈x, ξ〉f(ξ)dξ, x ∈ R
n.

The transforms F and F−1 are extended in the usual way from S to S ′.

Let {ϕj(x)}∞j=−∞ ⊂ S(Rn) satisfy

1) supp ϕj ⊂ {x ∈ R
n; 2j−1 � |x| � 2j+1}, j ∈ Z,

2) for every multi–index α there exists a positive number Cα such that

2j|α||Dαϕj(x)| � Cα, j ∈ Z, x ∈ R
n,

and

3)

∞∑
j=−∞

ϕj(x) ≡ 1, x ∈ R
n \ {0}.

Here Dα in 2) above are classical derivatives. Let s > 0 and 1 � p, q � ∞.
Then the homogeneous Besov space Ḃs

p,q(R
n) is defined as the set of all

tempered distributions f (modulo polynomials) satisfying

‖f |Ḃs
p,q(R

n)‖ =

( ∞∑
j=−∞

2jsq‖F−1(ϕjFf)|Lp(R
n)‖q

)1/q

< ∞

(usual modification if q = ∞). Here ‖ · |Lp(R
n)‖ stands for the usual

Lp–norm. See Definition 2 of Section 5.1.3 in [5]. The definition of Ḃs
p,q(R

n)
is independent of the choice {ϕj(x)}∞j=−∞. See Theorem 5.1.5 in [5].

Let us now consider an orthonormal wavelet basis on R
n. Such a basis is

composed by translations and dilations of (2n−1) functions ψ(i)(i ∈ {0, 1}n−
(0, . . . , 0)). We assume in the following that these wavelets are compactly
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supported smooth wavelets, whose supports are included in a ball centered
at the origin. See [1]. Let ψ

(i)
j,k(x) = 2nj/2ψ(i)(2jx−k), j ∈ Z, k ∈ Z

n. Then
the wavelet decomposition of f ∈ S ′ will be written

f(x) =
∑
j∈Z

∑
k∈Zn

Cj,kψj,k(x), Cj,k = 〈f, ψj,k〉,

where we can forget the index i.

Let us recall the fact that f ∈ Ḃs
p,q(R

n) if and only if

∑
j∈Z

2jq(s+ n/2−n/p)

( ∑
k∈Zn

|Cj,k|p
)q/p

< ∞.

See Chapter VI, (10.5) in [4].

After these preliminaries we can define the local Besov spaces Bs
p,q(U) and

the two–microlocal Besov spaces Bs,s′
p,q (U), where U is an open subset in R

n.

Definition 2.1 Let s > 0 and 1 � p, q � ∞. Then f ∈ S ′(Rn) is said
to belong to the local Besov space Bs

p,q(U) if there exists an F ∈ Ḃs
p,q(R

n)
such that f |U = F |U , where f |U denotes the restriction of f to U . The norm
‖f |Bs

p,q(U)‖ of f is then the infimum of all possible norms of F in Ḃs
p,q(R

n).

Definition 2.2 Let s > 0, s′ ∈ R and 1 � p, q � ∞. Then f ∈ S ′(Rn)
is said to belong to the two–microlocal Besov space Bs,s′

p,q (U) if the following
two–microlocal estimate holds:

‖f |Bs,s′
p,q (U)‖=

[ ∑
j∈Z

2 j q (s+n
2
−n

p
)

{∑
k∈Zn

∣∣∣(1 + 2j d(k2−j , U)
)s′

Cj,k

∣∣∣p
} q

p
] 1

q

<∞ ,

where d(k2−j , U) denotes the distance from k2−j to U (usual modification if
p = ∞ or q = ∞).

The two–microlocal estimate in Definition 2.2 above can be described equiva-
lently by using the Littlewood–Paley decompositions. See Definition 1.1 and
Proposition 1.4 in [3].

Let x0 ∈ R
n. Then by taking the inductive limit with respect to x0 ∈ U

of the function spaces in Definitions 2.1 and 2.2, we can define the pointwise
function spaces as follows:

Definition 2.3 Let s > 0, s′ ∈ R and 1 � p, q � ∞. Then

1) Bs
p,q(x0) = lim−−−−→

x0∈U

Bs
p,q(U), and 2) Bs,s′

p,q (x0) = lim−−−−→
x0∈U

Bs,s′
p,q (U).
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It is easy to see that f ∈ S ′(Rn) belongs to the two–microlocal Besov space
Bs,s′

p,q (x0) if and only if the following two–microlocal estimate holds:

‖f |Bs,s′
p,q (x0)‖ =

=

[∑
j∈Z

2jq(s+ n/2−n/p)

{ ∑
k∈Zn

∣∣∣(1 + 2j|k2−j − x0|
)s′

Cj,k

∣∣∣p
}q/p]1/q

< ∞.

In order to state the local Besov type conditions in Theorem 3.1 below,
we shall use the following notation: If ρ(ε) is a function of the real variable ε,
defined for all positive ε, we write ρ(ε) = O(p)(ε−s) if and only if

∫ ∞

0

(ρ(ε)εs)p dε

ε
=

∫ ∞

0

ρ(ε)pεsp−1dε < ∞.

We can say that the symbol O(p) is a homogeneous Lp–version of the Hör-
mander symbol O(2) used in Theorem 7.1 in [2].

3. Theorems

Our first theorem is now stated as follows:

Theorem 3.1 Let s > 0, s′ < 0 and 1 � p � ∞. Let U be an open subset
in R

n and Aρ = {x ∈ R
n; d(x, U) < ρ, x /∈ U}. Then f ∈ S ′(Rn) belongs

to Bs,s′
p,p (U) if and only if there exists a decomposition f = f1 + f2 such that

f1 ∈ Ḃs
p,p(R

n),

and
‖f2|Bs+s′

p,p (Aρ)‖ = O(p)(ρ−s′) for every ρ > 0.

The following theorem is an easy consequence of Theorem 3.1 above and the
characterizations of the homogeneous Besov spaces by using differences. See
Section 5.2.3, Theorem 2 and Section 2.5.12, Remark 3 in [5].

Theorem 3.2 Let s > s′ > 0 and 1 � p � ∞. Let U be an open subset
in R

n and x0 a point in R
n. Then we have the following inclusions:

Bs,−s′
p,p (U) ⊂ Bs

p,p(U) ⊂ Bs,−s
p,p (U),

and
Bs,−s′

p,p (x0) ⊂ Bs
p,p(x0) ⊂ Bs,−s

p,p (x0).

Remark 3.3 Theorem 1.2 and Proposition 1.3 in [3] treat the case where
p = ∞ of our theorems, as mentioned in the introduction.
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4. Proof of Theorem 3.1

We denote by C ′ the diameter of the support of the wavelet ψ. Let f ∈
Bs,s′

p,p (U). Then its wavelet coefficients satisfy

(4.1)
∑
j∈Z

2jp(s+ n/2−n/p)
∑
k∈Zn

∣∣∣(1 + 2jd(k2−j , U)
)s′

Cj,k

∣∣∣p < ∞.

We write f as

f =
∑

supp ψj,k∩U �=φ

Cj,kψj,k +
∑

supp ψj,k∩U=φ

Cj,kψj,k = f1 + f2.

If supp ψj,k ∩ U 	= φ, then 2jd(k2−j , U) is estimated from above by some
constant comparable to C ′. Therefore f1 ∈ Ḃs

p,p(R
n). Next we split the

wavelet decomposition of f2 into three sums f2 =
∑

1 +
∑

2 +
∑

3:

The first,
∑

1, corresponds to the wavelets whose supports do not inter-
sect Aρ, and we can forget this sum because of Definition 2.1.

Next we consider the sum
∑

2 whose coefficients satisfy 2jρ � 10C ′;
in that case, because 2jd(k2−j , U) can be estimated from above by some
constant comparable to 10C ′, we have that

∑
2 ∈ Ḃs

p,p(R
n).

Finally we consider the remaining sum
∑

3 whose coefficients satisfy
2jρ � 10C ′. We decompose Aρ into the “curved annuli” as follows:

(4.2) Aρ =
⋃

m∈Z; 2−m�ρ

{
x ∈ R

n; 2−m−1 � d(x, U) � 2−m
}

=
⋃

m; 2mρ�1

Dm.

By using this decomposition (4.2), we can write (4.1) as follows:

(4.3)
∑

j; 2jρ�10C′
2jp(s+ n/2−n/p)

∑
m; 2mρ�1

(
1 + 2(j−m)

)s′p ∑
k; k2−j∈Dm

|Cj,k|p < ∞.

The case where m > j+L(C ′), L(C ′) being an integer dependent only on C ′,
is negligible because supp ψj,k ∩U = φ. Therefore we obtain from (4.3) that

∑
j; 2jρ�10C′

∑
m; 2mρ�1,

m�j+L(C′)

2jp(s+ n/2−n/p)2(j−m)s′p
∑

k; k2−j∈Dm

|Cj,k|p =(4.4)

=
∑

m; 2mρ�1

2−ms′p
∑

j; 2jρ�10C′,
j�m−L(C′)

2jp(s+ n/2−n/p+s′)
∑

k; k2−j∈Dm

|Cj,k|p < ∞.
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On the other hand, the O(p)–condition that for every ε > 0,∫ ε

0

(
ρs′‖f2|Bs+s′

p,p (Aρ)‖
)p dρ

ρ
< ∞

follows from the condition that

(4.5)
∑

u∈Z; 2−u�ε

2−us′p
∑

j; 2jρ�10C′
2jp(s+s′+ n/2−n/p)

∑
v∈Z; v�u

∑
k; k2−j∈Dv

|Cj,k|p < ∞.

Because supp ψj,k ∩ U = φ, and the geometric series
∑

u; u�v 2−us′p is esti-

mated from above by some constant comparable to 2−vs′p (note that s′ < 0),
this last condition (4.5) follows from that

(4.6)
∑

v; 2vε�1

2−vs′p
∑

j; 2jρ�10C′,
j�v−L(C′)

2jp(s+s′+ n/2−n/p)
∑

k; k2−j∈Dv

|Cj,k|p < ∞.

It follows from (4.4) and (4.6) that the remaining sum
∑

3 satisfies the local
Besov O(p)–condition, as desired.

Conversely let us assume that f =f1+f2 satisfies the following conditions:

(4.7) f1 ∈ Ḃs
p,p(R

n),

and

(4.8) ‖f2|Bs+s′
p,p (Aρ)‖ = O(p)(ρ−s′) for every ρ > 0.

We note that if the support of the wavelet ψj,k is completely included in Aρ,
then any function extending f2 outside Aρ has the same wavelet coeffi-
cient Cj,k. From this remark, Definition 2.1 and the assumption (4.8), we
have that for any ρ > 0,

(4.9)
∑

u; 2uρ�1

2−us′p
∑
j∈Z

2jp(s+s′+ n/2−n/p)
∑

k; k2−j∈A2−u

|Cj,k|p < ∞.

The condition (4.9) is equivalent to that∑
j∈Z

2jp(s+s′+ n/2−n/p)
∑
k∈Zn

|Cj,k|p
∑

u; 2uρ�1,

2ud(k2−j ,U)�1

2−us′p < ∞.

After the calculation of the geometric sum, we arrive at the following:

(4.10)
∑
j∈Z

2jp(s+s′+ n/2−n/p)
∑
k∈Zn

|Cj,k|p
(
d(k2−j , U)s′p − ρs′p

)
< ∞.

Note that s′ < 0. Then as ρ → ∞ in (4.10), we obtain that∑
j∈Z

2jp(s+ n/2−n/p)
∑
k∈Zn

∣∣∣(1 + 2jd(k2−j , U)
)s′

Cj,k

∣∣∣p < ∞,

that is, f2 ∈ Bs,s′
p,p (U). Taking into account the assumption (4.7) that f1 ∈

Ḃs
p,p(R

n), we conclude that f = f1 + f2 ∈ Bs,s′
p,p (U).
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[4] Meyer, Y.: Ondelettes et Opérateurs I. Hermann, Paris, 1990.
[5] Triebel, H.: Theory of Function Spaces. Monographs in Mathematics 78.
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