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Mappings of finite distortion:
Sharp Orlicz-conditions

Janne Kauhanen, Pekka Koskela, Jan Malý,

Jani Onninen and Xiao Zhong

Abstract

We establish continuity, openness and discreteness, and the condi-
tion (N) for mappings of finite distortion under minimal integrability
assumptions on the distortion.

1. Introduction

This paper is part of our program to establish the fundamentals of the
theory of mappings of finite distortion [5], [1], [6], [9], [10] which form a nat-
ural generalization of the class of quasiregular mappings, also called map-
pings of bounded distortion. In the previous papers we considered mappings
f ∈W 1,1(Ω,Rn) of exponentially integrable distortion. Here and throughout
the paper, Ω ⊂ R

n is an open, connected set. If f ∈ W 1,1(Ω,Rn) satisfies

|Df(x)|n ≤ K(x)J(x, f) a.e.,

where K(x) < ∞ and if J(·, f) ∈ L1
loc(Ω), we say that f is a mapping

of finite distortion. We call f a mapping of exponentially integrable dis-
tortion if furthermore exp(λK) ∈ L1

loc(Ω) for some λ > 0. Mappings of
exponentially integrable distortion in this sense were shown to have many
of the nice properties of a mapping of bounded distortion. Regarding the
necessity of the exponential integrability, an example from [9] shows that
no topological properties like openness can be expected if we merely as-
sume that exp(K/ log(e + K)2) be integrable. In this paper we further
examine the integrability assumptions on K. Let us replace the assumption
exp(λK) ∈ L1

loc(Ω) with exp(Ψ(K)) ∈ L1
loc(Ω). By the above, the critical
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power-like behavior of Ψ is linear. For the first theorem, we assume that
Ψ is a strictly increasing, differentiable function, and we make the following
two assumptions, the second of which is entirely harmless (see Remark 2.2):

(Ψ-1)

∫ ∞

1

Ψ′(t)
t

dt = ∞,

(Ψ-2) lim
t→∞

tΨ′(t) = ∞.

Then we have the following regularity result.

Theorem 1.1. Suppose that Ψ satisfies (Ψ-1) and (Ψ-2). Let f be a mapping
of finite distortion K with exp(Ψ(K)) ∈ L1

loc(Ω) and suppose that detDf =
J(·, f) ∈ L1

loc(Ω). Then f is continuous and either constant or both open
and discrete. Moreover, f maps sets of Lebesgue measure zero to sets of
measure zero.

The continuity here means the existence of a continuous representa-
tive. The claims of Theorem 1.1 were established in [6], [9] and [10] for
Ψ(t) = λt, λ > 0. In the planar setting, Theorem 1.1 is partially covered by
the results in [7].

As practical examples, Theorem 1.1 allows for

Ψ(t) = t ,
t

log(e+ t)
,

t

log(1 + t) log log(ee + t)
, . . .

for any string of iterated logarithms. Regarding the sharpness, we will show,
in particular, that

Ψ(t) =
t

tε
,

t

log1+ε(e+ t)
,

t

log(e+ t) log1+ε log(ee + t)
, . . .

are not sufficient, for any ε > 0. This easily follows from our next result
that is a substantial improvement on the construction that we gave in [9],
also see [7] regarding the part (a).

Theorem 1.2. Suppose that Ψ is a strictly increasing function and

(1.1)

∫ ∞

1

Ψ′(s)
s

ds <∞.

(a) There exists a mapping f : B → R
n of finite distortion K(x) = |Df(x)|n

J(x,f)
,

with integrable Jacobian, with∫
B

exp
[
Ψ(K(x))

]
dx <∞

and so that f maps B \ {0} homeomorphically onto the annulus {x ∈
R
n : 1 < |x| < b}. In particular, f has no continuous representative.
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(b) There exists a continuous, non-constant mapping f : Q0 = [0, 1]n → R
n

of finite distortion K(x) = |Df(x)|n
J(x,f)

, with integrable Jacobian, with∫
Q0

exp
[
Ψ(K(x))

]
dx <∞

and so that f is neither open, nor discrete, and it maps a set of measure
zero to a set of positive measure.

Theorem 1.1 is based on the arguments in [6], [9], [10] together with the
following new observations. The integrability conditions on K,Ψ guarantee
that Φ(|Df |) is locally integrable in Ω for a strictly increasing function Φ
that satisfies the conditions

(Φ-1)

∫ ∞

1

Φ(t)

t1+n
dt = ∞.

(Φ-2) There is p ∈ (n − 1, n) such that t �→ t−pΦ(t) increases for large
values of t.

Secondly, relying on recent results in [4], [11] and [3], we conclude that the
point-wise Jacobian J(x, f) then coincides with the so-called distributional
Jacobian. This is the key fact in many of the estimates in [6], [9], [10] and
we obtain the proposed topological and analytical results.

In the course of this argument we in fact establish the following result.

Theorem 1.3. Let f ∈ W 1,1
loc (Ω,Rn) be a mapping of finite distortion K.

Suppose that Φ(|Df |) + Kq ∈ L1
loc(Ω), with q > n − 1 and Φ satisfying

(Φ-1) and (Φ-2). Then f is continuous and either constant or both open
and discrete. Moreover, f maps sets of Lebesgue measure zero to sets of
measure zero.

Here, the assumption (Φ-1) is critical: the examples referred to in part (b)
of Theorem 1.2 satisfy

Φ(|Df |) + exp
[
Ψ(K(x))

] ∈ L1(Q0);

see formulas (3.10) and (3.13). The assumption (Φ-2) is also necessary.
For (a), it is enough to consider f(x) = x(1 + |x|)/|x|, then Φ(Df) ∈ L1(B)
for any Φ violating (Φ-2). Concerning the necessity for (b), see Remark 3.1.
Thus Theorem 1.3 gives a sharp extension of the celebrated results by
Reshetnyak (c.f. [13], [14], [15]) on mappings of bounded distortion. It still
remains unknown if the Ln−1-integrability of K is already sufficient under
the given assumptions on |Df |; this is not known even when |Df | ∈ Ln(Ω).
For this see [12], the monograph [8], and the references therein.
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2. Proof of Theorem 1.1

We call a continuously differentiable and strictly increasing function Ψ :
[0,∞) → [0,∞) with Ψ(0) = 0 and lim

t→∞
Ψ(t) = ∞ an Orlicz function.

In the course of this section, we associate with Ψ two other Orlicz func-
tions (see equation (2.2)):

(2.1)
ψ(t) = t exp(Ψ(t)),

g(s) =
s

ψ−1(s)
− 1, s > 0, and g(0) = 0.

We notice that ψ is strictly increasing so that the inverse function ψ−1 makes
sense. We immediately have

(2.2) g(ψ(t)) = exp(Ψ(t)) − 1.

In the first lemma we do not assume (Ψ-2).

Lemma 2.1. Assume that Ψ is an Orlicz function satisfying (Ψ-1). Then

(a)

∫ ∞

1

g(s)

s2
ds = ∞ and

(b) given a, b ≥ 0 we have

g(ab) ≤ a+ exp(Ψ(b)) − 1.

Proof. By the change of variables s = ψ(t) and (2.2) we obtain∫ ∞

ψ(1)

g(s) + 1

s2
ds =

∫ ∞

1

(g(ψ(t)) + 1)ψ′(t)
ψ(t)2

ds

=

∫ ∞

1

ψ′(t)
t ψ(t)

dt

=

∫ ∞

1

(1 + tΨ′(t)) exp(Ψ(t))

t2 exp(Ψ(t))
dt

=

∫ ∞

1

( 1

t2
+

Ψ′(t)
t

)
dt = ∞.

This proves (a). Regarding (b), we distinguish two cases; naturally we may
assume that a �= 0 �= b. If ab ≤ ψ(b), then by (2.2)

g(ab) ≤ g(ψ(b)) = exp(Ψ(b)) − 1.

If ab ≥ ψ(b), then

g(ab) =
ab

ψ−1(ab)
− 1 ≤ ab

b
− 1 = a− 1.

�
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Remark 2.2. The condition (Ψ-1) is crucial for our considerations and
shown to be necessary by our counterexamples. However, this condition
alone is too weak for our purposes. To demonstrate this, let us consider a
sequence {ak} with ak+1 > kak and function Ψ which increases from 2ak−1

to ak on [ak, 2ak] and from ak to 2ak on [2ak, ak+1]. Then∫ 2ak

ak

Ψ′(t)
t

dt ≥ ak − 2ak−1

2ak
−→ 1

2

and thus (Ψ-1) is verified. On the other hand, if e2ak < a
1/k
k+1 then exp(Ψ(t))

is not comparable with any tq, q > 1. This means also that integrability of
exp(Ψ(K)) would not imply integrability of Kq.

This consideration shows that something should be added to the condi-
tion (Ψ-1). The condition (Ψ-1) implies that lim supt→∞ tΨ′(t) = ∞. It will
not exclude important examples of Orlicz functions if we assume that this
limsup turns to limit. Among power-like functions Ψ(t) = tα, (Ψ-1) corre-
sponds to α < 1, while (Ψ-2) is true for all α > 0. This explains in what
sense we regard (Ψ-2) to be “harmless”.

Lemma 2.3. Assume that Ψ is an Orlicz function satisfying (Ψ-2) and ε ∈
(0, 1). Then there exists s0 ∈ (0,∞) such that the functions h : s �→ sε−1g(s)
is increasing on (s0,∞).

Proof. By (2.2) we rewrite

h(ψ(t)) = ψ(t)ε−1(1 + g(ψ(t)) = tε−1 exp(εΨ(t)).

Hence
(h(ψ(t)))′ = tε−2 exp(εΨ(t))

[
ε tΨ′(t) − (1 − ε)

]
.

By (Ψ-2) we find a t0 such that h(ψ(t)) increases for t > t0. We conclude
that h(s) = sε−1(g(s) + 1)− sε−1 is increasing on (s0,∞), where s0 = ψ(t0).

�
Now we collect results which enable us to derive regularity properties of

a mapping of finite distortion from integrability of its differential. Let us
consider a class X(Ω) ⊂ Ln−1(Ω) of measurable functions on Ω satisfying
the following two conditions:

(X-1) J(·, f) ∈ L1
loc(Ω) and detDf = DetDf provided f ∈ W 1,1(Ω,Rn),

|Df | ∈ X(Ω) and J(·, f) ≥ 0 a.e.

(X-2) if g, h ≥ 0 are measurable, g ≤ ch for some 0 < c <∞ and h ∈ X(Ω),
then g ∈ X(Ω).



862 J. Kauhanen, P. Koskela, J. Malý, J. Onninen and X. Zhong

Here the statement detDf = DetDf means that∫
Ω

ϕ J(x, f) dx = −
∫

Ω

fi J(x, f1, . . . , fi−1, ϕ, fi+1, . . . , fn) dx

for each i = 1, . . . , n and for all ϕ ∈ C∞
0 (Ω).

The following proposition states the weak monotonicity of a mapping f ,
see [6, Definition 1.5], under assumptions which are adapted to our situation.

Proposition 2.4. Let X be a space of measurable functions satisfying
(X-1) and (X-2). Let f = (f1, . . . , fn) ∈ W 1,n−1(Ω) be a mapping of finite
distortion with |Df | ∈ X(Ω). Then the coordinate functions of f are weakly
monotone.

Proof. We follow the standard idea as in [6, Section 4]. Let us consider a
ball B ⊂⊂ Ω. We prove e.g. that if f1 ≤ M on ∂B in the sense of traces,
i.e. the positive part of f1 −M belongs to W 1,1

0 (B), then f1 ≤ M a.e. in
B. We consider the truncated function f̃1 = min(f1,M) and the mapping
f̃ = (f̃1, f2, . . . , fn). Notice that, by (X-2), |Df̃ | ∈ X(Ω). Let ϕ be a smooth
test function with compact support in Ω such that ϕ = 1 on B. Since f1

differs from f̃1 only on B where Dϕ = 0, we have f1Dϕ = f̃1Dϕ, and thus∫
Ω

ϕ J(x, f) dx = −
∫

Ω

f1 J(x, ϕ, f2, . . . , fn) dx

= −
∫

Ω

f̃1 J(x, ϕ, f2, . . . , fn) dx =

∫
Ω

ϕ J(x, f̃) dx.

Hence, if we set E = {f̃ �= f}, we have∫
E

J(x, f) dx =

∫
E

J(x, f̃) dx = 0.

Since J(x, f) ≥ 0, it follows that Jf = 0 a.e. on E and thus, as f is a
mapping of finite distortion, Df = 0 a.e. in E. It follows that D(f1− f̃1) = 0
a.e. in Ω which yields that f1 = f̃1 ≤M a.e. in B. �

The following proposition summarizes the outcome of [9] and [10].

Proposition 2.5. Let X be a space of measurable functions satisfying
(X-1) and (X-2). Let f = (f1, . . . , fn) ∈ W 1,n−1(Ω) be a mapping of finite
distortion K ∈ Lq(Ω), q > n − 1, and |Df | ∈ X(Ω). Suppose that f is
continuous. Then f is open and discrete and maps sets of measure zero to
sets of measure zero.
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Proof. In [9, Theorems 2.1, 2.4, 3.1] it was shown that a mapping satisfying
the hypotheses is open, discrete, and sense-preserving. By [10, Lemma 3.2],
a continuous sense-preserving mapping f ∈ W 1,p(Ω,Rn), p > n − 1, for
which detDf = DetDf maps sets of measure zero to sets of measure zero.
We only need to check that f ∈ W 1,p(Ω,Rn) for some p > n− 1. Because of
the locality of our claim, it suffices to check that |Df | ∈ Lploc(Ω) for some p >
n− 1, which follows by means of the Hölder inequality from the assumption
J(·, f) ∈ L1

loc(Ω) and from the fact that K ∈ Lqloc(Ω) with q > n− 1. �

The assumption
∫

Ω
Φ (|Df(x)|) dx <∞ with Φ as above has two impor-

tant consequences.

Proposition 2.6. [11, Corollary 1.3] Let Φ be an Orlicz-function that sat-
isfies (Φ-1) and (Φ-2). Let f ∈ W 1,1(Ω,Rn) satisfy J(x, f) ≥ 0 a.e. x ∈ Ω,
and assume that

∫
Ω

Φ (|Df(x)|) dx < ∞. Then detDf ∈ L1
loc(Ω) and

detDf = DetDf .

The following proposition is essentially [6, Theorem 1.6], but with slightly
weakened assumptions on Φ.

Proposition 2.7. Let Φ be an Orlicz-function that satisfies (Φ-1) and
(Φ-2). Let u ∈ W 1,1(Ω) be a weakly monotone function, and assume that∫

Ω
Φ (|Du(x)|) dx <∞. Then u has a continuous representative.

Proof. We will follow the proof of [6, Theorem 1.6] with a small modifi-
cation. By C we denote various constants which may change from line to
line. Fix a point a ∈ Ω and R > 0 with B(a, 2R) ⊂ Ω, and denote by ω(r)
the essential oscillation of u on B(a, r), 0 < r < R. By [6, Lemma 7.2], for
almost every radius r ∈ (0, R) we have

ω(r)p ≤ Crp−n+1

∫
∂B(a,r)

|∇u|p dS.

We consider a t0 such that t−pΦ(t) is increasing on (t0,∞) and a constant τ
such that

(2.3) Φ(τ) = −
∫
∂B(a,r)

Φ(∇u) dS,

where −∫ stands for the integral average. Write λ = max(τ, t0). Then we
estimate∫

∂B(a,r)

|∇u|p dS ≤
∫
∂B(a,r)∩{|∇u|>λ}

|∇u|p dS +

∫
∂B(a,r)∩{|∇u|≤λ}

|∇u|p dS

≤ λp

Φ(λ)

∫
∂B(a,r)

Φ(∇u) dS + Crn−1λp ≤ 2Crn−1λp.
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It follows that
ω(r)

Cr
≤ λ

and thus

Φ
(ω(r)

Cr

)
≤ Φ(λ) ≤ −

∫
∂B(a,r)

[Φ(t0) + Φ(∇u)] dS.

Now we may continue as in the proof of [6, Theorem 1.6]. �

Proof of Theorem 1.3. Proposition 2.6 shows that our space LΦ(Ω) qual-
ifies for X(Ω) with (X-1) and (X-2). By Proposition 2.4 we see that the
coordinate functions of f are weakly monotone which implies continuity by
Proposition 2.7. Then Proposition 2.5 yields the conclusion. �

Proof of Theorem 1.1. Let Φ(t) = g(tn) where g is as in (2.1). Then by
Lemma 2.1 (b)∫

Ω

Φ(|Df |) dx =

∫
Ω

g(|Df |n) dx ≤
∫

Ω

g
(
J(x, f)K(x)

)
dx

≤
∫

Ω

J(x, f) dx+

∫
Ω

exp(K(x)) dx <∞.

By Lemma 2.3 and Lemma 2.1 (a), the function Φ satisfies (Φ-1) and (Φ-2)
(for all p ∈ (n − 1, n)), and the inclusion LΦ

loc(Ω) ⊂ Lploc(Ω) holds for all
p ∈ (n− 1, n). Hence the assumptions of Theorem 1.3 are verified. �

3. Proof of Theorem 1.2

We begin by giving examples of discontinuous mappings of finite distortion
with the distortion function having the desired degree of regularity (also
see [7]). We consider mappings f : B → R

n of the form

(3.1) f(x) =
x

|x| ρ(|x|).

The function t → ρ(t), for 0 ≤ t ≤ 1, will continuously increase from the
value 1 at t = 0 to b > 1 at t = 1. Thus f will map homeomorphically
the punctured unit ball B \ {0} onto the annulus {x ∈ R

n : 1 < |x| < b}.
We may calculate the differential matrix of f and its determinant by using
the familiar formulas

(3.2) Df(x) =
ρ(|x|)
|x| I +

(
ρ′(|x|) − ρ(|x|)

|x|
)
x⊗ x

|x|2 ,
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where x⊗ x is the n× n matrix whose i, j-entry equals xixj, and

(3.3) J(x, f) = ρ′(|x|)
(
ρ(|x|)
|x|

)n−1

.

Our choice for ρ will satisfy

(3.4) ρ′(t) ≤ β
ρ(t)

t

for some β ≥ 1. Consequently, the norm of differential matrix in question
satisfies

(3.5) |Df(x)| ≤ (β + 2)
ρ(|x|)
|x|

and the dilatation function K satisfies

(3.6) K(x) =
|Df(x)|n
J(x, f)

≤ (β + 2)n
ρ(|x|)

|x|ρ′(|x|) .

We may assume that Ψ(1) = 1. We define ρ by setting

ρ(t) = exp

(
λ

∫ ∞

Ψ−1(log e
t
)

Ψ′(s)
s

ds

)

for 0 < t < 1, where λ is a constant, whose value will be determined later.
Using the change of variables

s = Ψ−1
(
log

e

r

)
we obtain

ρ(t) = exp

(
λ

∫ t

0

dr

rΨ−1
(
log e

r

)
)
.

For the Jacobian integral we compute

∫
B

J(x, f) dx = C(n)

∫ 1

0

ρn−1(t)ρ′(t) dt = C(n)(ρn(1) − ρn(0)) <∞.

We also have

(3.7)
t ρ′(t)
ρ(t)

= t
(
log ρ(t)

)′
=

λ

Ψ−1
(
log e

t

) .
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This quantity tends to zero as t → 0 and thus there exists t0 > 0 such
that (3.4) follows with constant 1 for all t ∈ (0, t0). Fix λ = 3n. By (3.6)
and (3.7) we obtain

exp Ψ (K(x)) ≤ exp Ψ

(
3n ρ(|x|)
|x| ρ′(|x|)

)

≤ exp Ψ
(
Ψ−1

(
log

e

|x|
))

=
e

|x|
for all x ∈ B(0, t0) \ {0}. Hence exp Ψ ◦K ∈ L1(B), as desired.

The construction we need for part (b) of Theorem 1.2 is a substantial
improvement on the construction in [9]. For the convenience of the reader
we present here also the part of the construction from [9] that need not be
altered.

We begin by introducing some notation. Besides the usual Euclidean
norm |x| = (x2

1 + · · · + x2
n)

1/2 we will use the cubic norm ‖x‖ = maxi |xi|.
Using the cubic norm, the x0-centered closed cube with edge length 2r > 0
and sides parallel to coordinate axes can be represented in the form

Q(x0, r) = {x ∈ R
n : ‖x− x0‖ ≤ r}

We then call r the radius of Q. Let us denote cQ(x0, r) = Q(x0, cr) if c > 0.
We will use the notation a � b if there is a constant c > 0 (not depending on
(integration) variables or summation indices) such that a ≤ cb, and we write
a ≈ b if a � b and b � a. For technical reasons we will assume that Ψ(1) = 1.

We will prove part (b) of Theorem 1.2 by giving a mapping f : Q0 →
R
n so that f = Id on ∂Q0, J(x, f) < 0 a.e. and so that the rest of the

requirements hold for |J(x, f)|; the desired mapping is then obtained by
employing an auxiliary reflection in a hyperplane.

In the following, we will construct a sequence of continuous, piecewise
continuously differentiable mappings fk : Q0 → R

n. First we introduce a
sequence of compact sets in Q0 whose intersection is a Cantor set.

The unit cube Q0 is first divided into 2n cubes with radius 1/4, which
are each in turn divided into a subcube with radius (1/4)/2 and a difference
of two cubes which we refer to as an annulus. The family Q1 consists of
these 2n subcubes. The remainder of the construction is then self-similar.
The subcube is divided into 2n cubes which are each in turn divided into
a subcube with radius 4−2/2 and an annulus. The family Q2 consists of
these 22n subcubes (see Figure 1). Continuing this way, we get the families
Qk, k = 1, 2, 3, . . ., for which the radius of Q ∈ Qk is r(Q) = rk = 2−2k−1

and the number of cubes in Qk is #Qk = 2nk. It easily follows that the
resulting Cantor set is of measure zero.
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Q1 Q2

Figure 1: Families Q1 and Q2.

We are now ready to define the mappings fk. Define f0(x) = x. We will
give a mapping f1 that leaves the boundaries ∂(2Q), Q ∈ Q1 fixed, turns
each annulus 2Q \ Q inside out and stretches the cube Q so that f1 is
continuous (see Figure 2). The Jacobian determinant Jf1 will be negative in
each annulus 2Q \Q and positive in each cube Q. Next, f2 equals f1 in the
annulae 2Q \ Q, Q ∈ Q1, turns each annulus 2Q \ Q, Q ∈ Q2, inside out,
stretches the cube Q and shifts the image so that f2 is continuous. Moreover,
Jf2 is negative a.e. in Q0 \

⋃
Q∈Q2

Q and positive in
⋃
Q∈Q2

Q. We will then
continue in this manner.

f1

Figure 2: The mapping f1 acting on 2Q, Q ∈ Q1.

To be precise, let f0(x) = x on Q0 and let a sequence {εk}k∈N of small
positive real numbers satisfy

(3.8)
∞∑
k=1

εk <∞.

This sequence will be fixed later. For k = 1, 2, ... define

ϕk(r) =




2−k−1(1 + ε1) · · · (1 + εk−1)(1 + 2rk−r
rk

εk), rk ≤ r ≤ 2rk

2−k−1(1 + ε1) · · · (1 + εk)
r
rk
, 0 ≤ r ≤ rk
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and

fk(x) =



fk−1(x), x �∈ ⋃Q∈Qk

2Q

fk−1(z(Q)) +
x−z(Q)

‖x−z(Q)‖ϕk
(‖x−z(Q)‖), x ∈ 2Q, Q ∈ Qk.

Here z(Q) is the center of the cube Q. Now

log
k∏
j=1

(
1 + εj

)
=

k∑
j=1

log
(
1 + εj

) ≤ k∑
j=1

εj,

and using the fact (3.8) we infer that

∞∏
j=1

(
1 + εj

)
<∞.

Thus

(3.9)
k∏
j=1

(
1 + εj

) ≈ 1, k = 1, 2, ...

Using this we obtain

|fk+1(x) − fk(x)| � 2−k

and so the sum ∞∑
k=1

∣∣fk+1(x) − fk(x)
∣∣

and the sequence (fk) converge uniformly. Hence the limit f = limk→∞ fk
is continuous. Clearly f is differentiable almost everywhere, its Jacobian
determinant is strictly negative almost everywhere, and f is absolutely con-
tinuous on almost all lines parallel to coordinate axes.

We next estimate |Df(x)|, |J(x, f)| and K(x) at x ∈ int (2Q \ Q),
Q ∈ Qk. Fix k ∈ N. We see that, in the annulus int (2Q \ Q), f is a
radial mapping: f(x) = (x/‖x‖)ϕk(‖x‖). Hence we have

|Df(x)|/C1(n) ≤ max

{
ϕk(‖x‖)
‖x‖ , |ϕ′

k(‖x‖)|
}

≤ C1(n)|Df(x)|

and

Jf (x)/C2(n) ≤ ϕ′
k(‖x‖)ϕk(‖x‖)n−1

‖x‖n−1
≤ C2(n)Jf (x)
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a.e. in int (2Q \Q), see the formulas (3.2) and (3.3). By (3.8) and (3.9) we
obtain

(3.10)
∣∣Df(x)

∣∣ � ϕk(rk)

rk
≈ 2k

and

(3.11) J(x, f) ≈
(
ϕk(rk)

rk

)n−1

ϕ′
k(rk) ≈ −(2k)n−1

2k εk = −2knεk

and finally

(3.12) K(x) :=
|DF (x)|
|J(x, f)| � 2kn

2knεk
=

1

εk
.

Since

(3.13)

∣∣∣∣ ⋃
Q∈Qk

2Q \Q
∣∣∣∣ ≈ 2−kn,

we obtain in view of (3.8)

∫
Q0

∣∣J(x, f)
∣∣ dx �

∞∑
k=1

εk <∞.

By (3.12) there exists a constant β such that

K(x) ≤ β

εk
, x ∈ 2Q \Q, Q ∈ Qk.

We now define the numbers εk explicitly by setting

(3.14) εk =
β

Ψ−1(k)
.

Because
∫∞

1
Ψ′(s)
s
ds <∞, the change of variables

s = Ψ−1(t)

shows that ∫ ∞

1

dt

Ψ−1(t)
<∞.
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Thus the integral criterion for convergence of series establishes (3.8). By (3.12)
and (3.14),

exp Ψ
(
K(x)

) ≤ exp Ψ

(
β

εk

)
= exp k, x ∈ 2Q \Q, Q ∈ Qk,

and thus ∫
Q0

exp Ψ
(
K(x)

)
dx ≤ C

∞∑
k=1

(
2−ne

)k
<∞.

Next we will show that f maps a set of measure zero to a set of positive
measure by showing that

Q0 ⊂ f
( ∞⋂
k=1

⋃
Q∈Qk

Q
)
;

recall that the Cantor set
⋂∞
k=1

⋃
Q∈Qk

Q has measure zero. From the con-
struction it follows that for each k = 1, 2, 3, . . .

fk

( ⋃
Q∈Qk

Q
)
⊂ fk

( ⋃
Q∈Qk+1

2Q
)
⊂ fk+1

( ⋃
Q∈Qk+1

Q
)
.

Since Q0 ⊂ f1

(⋃
Q∈Q1

Q
)
, denoting

Hk =
⋃
Q∈Qk

Q

we have Q0 ⊂ fk(Hk) ⊂ fl(Hk) for all l ≥ k ≥ 1. Now (Hk) is a decreasing
sequence of compact sets, whence

Q0 ⊂
∞⋂
k=1

⋂
l≥k

fl(Hk) ⊂
∞⋂
k=1

f(Hk) ⊂ f
( ∞⋂
k=1

Hk

)
.

Notice that f is not open: it follows from the construction that f(∂Q0) =
∂Q0 ⊂ f(intQ0) whence f(Q0) = f(intQ0). Because f(Q0) is a nonempty
compact set, f(intQ0) is not open. To prove non-discreteness of f, let

Gk =
⋃
l≥k

f
( ⋃
Q∈Ql

int 2Q \Q
)
.

Then the sets Gk are dense and open, and by the Baire category theorem
their intersection is nonempty. But if y ∈ ∩kGk, then f−1(y) is an infinite
compact set and thus it is not discrete.

Remark 3.1. The example can be easily modified to show sharpness of the
condition (Φ-1) by setting

εk = 2−knΦ(2k)

in place of (3.14).



Mappings of finite distortion: Sharp Orlicz-conditions 871

Acknowledgements

J. K., P. K., J. O. and X. Z. are supported in part by the Academy of Finland,
project 39788, and J. K. also by the foundation Vilho, Yrjö ja Kalle Väisälän
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