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Elliptic Self-Similar Stochastic Processes

Albert Benassi and Daniel Roux

Abstract

Let M be a random measure and L be an elliptic pseudo-differen-
tial operator on Rd. We study the solution of the stochastic problem
LX = M, X(0) = 0 when some homogeneity and integrability condi-
tions are assumed. If M is a Gaussian measure the process X belongs
to the class of Elliptic Gaussian Processes which has already been
studied. Here the law of M is not necessarily Gaussian. We charac-
terize the solutions X which are self-similar and with stationary incre-
ments in terms of the driving measure M . Then we use appropriate
wavelet bases to expand these solutions and we give regularity results.
In the last section it is shown how a percolation forest can help with
constructing a self-similar Elliptic Process with non stable law.

1. Introduction

1.1. Self-similarity, ellipticity

The scale invariance property plays a fundamental role in many areas of the-
oretical and applied sciences. A single word can unify different occurrences
of this concept: the word fractal, as coined by Mandelbrot in [9]. Roughly
speaking a fractal set F presents the same aspect at different scales of ob-
servation: every little part of F looks like the entire object after zooming.
A mathematical definition of this property is “self-similarity”.

The class of self-similar stochastic processes indexed by Rd is very large,
even if we only consider processes with stationary increments as we shall do
in the sequel. A complete description is known in the Gaussian case since
the results of Dobrushin [5], but this is not longer true in the general case,
even when restricted to stable laws.
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In [1] the notion of ellipticity is defined for a Gaussian process indexed
by Rd. The reproducing kernel Hilbert space of the process is then the en-
ergy space of an elliptic operator. An orthonormal basis of this space can
be build which is made of wavelets adapted to the elliptic operator. The
decomposition of the process on this basis is the first step of a multi-scale
analysis which leads to many results, e.g. explicit constants for continuity
modulus. In this framework a process is with stationary increments when
the symbol of the operator is with constant coefficients. And it is self-similar
when the symbol is homogeneous.

In the present paper we plan to study a broad class of stochastic processes
indexed by Rd which are self-similar and with stationary increments. No as-
sumption is made about the laws of these processes, but they are required
to be elliptic. This is a key point for all the properties to be later studied.
So let us first introduce ellipticity with the help of two examples, determin-
istic and random, and at the same time present a general method to yield
elliptic self-similar and with stationary increments (E.S.S.S.I.) processes.

1.2. Examples and Notations

As a first example we consider two functions of the real variable t

(1.1) x(t) =
∑
n∈Z

b−nH sin(bnt), z(t) =
∑
n∈Z

|t− bn|−K − |t+ bn|−K ,

with parameters b > 1, H,K ∈ (0, 1) fixed.
The first function x is known as trigonometric Weierstrass ’s function and

it is continuous on R. The second one is only almost everywhere defined and
locally integrable (w.r.t. the Lebesgue measure on R).

We can easily check

(1.2) b−Hx(bt) = x(t), bKz(bt) = z(t), for all t ∈ R .

This means that the functions are invariant by a discrete subgroup of dila-
tions, and such an invariance property is a self-similarity property. Functions
x and z belong to a class of self-similar functions which is defined by Jaffard
in [7] and which includes the solutions of Iterated System of Functions. It is
proved in [7] that all these functions obey the multifractal formalism.

Let us further study the relationship between functions x and z. We need
here to introduce pseudo-differential operators (p.d.o.) associated to homo-
geneous symbols ρ on Rd, where d is a fixed integer ≥ 1. The notations |.|,
|.|∞ are used respectively for the euclidean and the uniform standard norms.
In this paper the symbols that we consider are real valued functions defined
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on Rd, symmetric and homogeneous: for some constant m

for any r > 0 and any ξ ∈ Rd, ρ(rξ) = rmρ(ξ).

As an alternative definition we can start with a symmetric function s on the
unit euclidean sphere Σd−1 and set

(1.3) ρ(ξ) = |ξ|ms
( ξ

|ξ|
)
.

To every symbol ρ is associated a p.d.o. L[ρ] which is given on a suitable
domain of regular functions by

(1.4) L[ρ]ϕ(t) =

∫
ξ∈Rd

ρ(ξ)ϕ̂(ξ)eitξ dξ

(2π)d

where tξ denotes the scalar product of Rd and ϕ̂ = Fϕ the Fourier transform
of ϕ.

Coming back to functions x and z, let us consider the tempered distri-
bution T on R (here d = 1) given by

T (t) =
∑
n∈Z

sin(bnt).

In the distribution meaning its Fourier transform is T̂ =−iπ∑
n∈Z

(δbn−δ−bn),
if we denote by δa the Dirac measure located in a. Using a regularisation
procedure, we can write functions x and z as

x(t) =
1

2π
< T̂ ,

eit. − 1

|.|H >, z(t) = c < T̂ , |t− .|−K − |.|−K >

with c = −2iπ−1 sin(Kπ/2)Γ(1 − K), Γ the usual Gamma function. It is
now easy to check that x and z are the respective solutions of the following
pseudo-differential problems

(1.5)

{
L[|.|H ] x = T
x(0) = 0

{
L[|.|1+K ] z = −cT̂

z(0) = 0

In the second example we consider stochastic processes. Let us first recall
that a process X = {X(t), t ∈ Rd} is said self-similar with scale parameter
H if it satisfies the following identity

∀η > 0, {η−HX(η t), t ∈ Rd} =Law {X(t), t ∈ Rd}
where =Law means equality in law for stochastic processes.
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The standard Fractional Brownian Motion (F.B.M.) with parameter H
(0 < H < 1) is the centered real Gaussian process BH with covariance
function

E(BH(s)BH(t)) =
1

2
(|s|2H + |t|2H − |s− t|2H), s, t ∈ R

and the general F.B.M. is X = cBH , c ∈ R. We say in such a situation that
processes X and BH have same laws up to a mulptiplicative constant. From
this definition it is easily seen that every F.B.M. is H-self-similar and with
stationary increments. Let us now show that it is also solution of an elliptic
pseudo-differential problem and then an elliptic process. As it is well known
(see [11]), the F.B.M. admits various integral representations. A first one,
called moving average representation, is

(1.6) X(t) = c1

∫
y∈R

{
|t− y|H−1/2 − | − y|H−1/2 Wr(dy) if H �= 1/2

1t−y>0 − 1−y>0 Wr(dy) if H = 1/2

where c1 ∈ R and Wr is the real Gaussian white noise, i.e. the real centered
Gaussian random measure which satisfies for every A,B bounded Borel sub-
sets of R,

E(Wr(A)Wr(B)) =

∫
y∈R

1A(y)1B(y) dy .

A second one is the so called harmonic representation

(1.7) X(t) = c2

∫
ξ∈R

exp(itξ) − 1

|ξ|H+1/2
Ŵr(dξ)

where c2 ∈ R. Using the last representation it can be seen that the Fractional
Brownian Motion is the solution of the following elliptic problem

L[|.|H+1/2]X = 2πc2Wr, X(0) = 0.

N.B.: It must be noticed that the Fourier transform of Wr is the standard
centered complex Gaussian white noise.

The link between the two representations is a Plancherel identity, the
kernel in the second integral being the Fourier transform of the kernel in the
first one.

In view of the relation between functions x, z which are the solutions of
equations (1.5) we can look for the solution of the following elliptic problem

(1.8) L[|.|K+1/2]Z = Ŵr, Z(0) = 0 .
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In the case where 0 < K < 1 the following process

(1.9) Z(t) = Re
∫

ξ∈R

exp(itξ) − 1

|ξ|K+1/2
Wr(dξ)

is well defined and is solution of (1.8).
It is easily checked that Z is K− self-similar and with stationary incre-

ments. As the Gaussian white noise is invariant with respect to the Fourier
transform we find that Z is a version of the F.B.M. with parameter K. So
that the laws of X and Z are the same and there occurs no new process.

However, it is important to notice that scaling one process amounts to in-
verse scaling for the other. The same was already true for functions x and z,
see (1.2). As a consequence, even when H = K, a non trivial linear combi-
nation

Y = αX + βZ

(α �= 0 and β �= 0) is no longer self-similar. This deserves a special definition
that we now give in the general case of processes indexed by Rd.

Definition 1.1 We say a pair X,Z of stochastic processes enjoys Inverse
Scaling Invariance property with parameter (H,K) —or I.S.I.(H,K)— when

(1.10) {(η−HX(ηt), ηKZ(y/η)); t, y ∈ Rd} =Law {(X(t), Z(y)); t, y ∈ Rd}

∀η > 0. The notation will be shortened in I.S.I.(H) in the case H = K.

Remark 1.1 If the pair (X,Z) satisfies the I.S.I.(H,K) property then each
process is separately self-similar with respective parameter H,K and any
linear combination αX + βZ satisfies

∀η > 0, α
1

ηH
X(η.) + βηKZ(

.

η
) =Law αX(.) + βZ(.).

1.3. Purposes

Motivated by the previous examples we shall consider the following situation:
let ρ, ρ∗ some homogeneous symbols as given in (1.3) with respective degrees

(1.11) m =
d

α
+H, m∗ =

d

α∗ +K

where H,K are in (0,1) and α, α∗ are conjugate exponents,

1

α
+

1

α∗ = 1.
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Let L[ρ], L[ρ∗] the associated p.d.o., as in (1.4) and let M be a stochastic
measure on Rd in a sense which we will precise in section (3.1).

We plan to show that there exists a unique pair X,Z of processes indexed
by Rd which solves

(1.12)

{
L[ρ] X = M

X(0) = 0

{
L[ρ∗] Z = M̂

Z(0) = 0

in the distribution meaning. Then we study conditions on measure M which
involve for processes X and Z the two following properties : I.S.I.(H,K) and
stationarity of increments.

As an important class of M ’s we find the family of independently scat-
tered stochastic measures,

M(Bi), i = 1, . . . , n mutually independent if

Bi, i = 1, . . . , n are pairwise disjoints,

with SαS (=symmetric α−stable) laws. The two properties are linked, see
Remark 4.2. In this case processes X and Z belong to the class of SαS
processes, which is extensively studied: see [10], [15] and the book [13] with
all its references. In has been shown that the the Gaussian case (α = 2)
radically differs from the non-Gaussian one: only in the former case are
the laws of processes X,Z equal up to a multiplicative constant. This can
be proved after studying the behaviour of the codifference functions toward
infinity. The method we use in the present paper shed another light on this
result, by using the elliptic operators which are associated to these processes.

In the next section we study the regularity of E.S.S.S.I. processes. It is
shown that under some condition on the parameters almost all their paths
are continuous. The proof rests here on an appropriate decomposition of the
process, using a specially build wavelet basis in the spirit of [1].

In the last section we want to show how easy such a decomposition can
lead to new E.S.S.S.I. processes. The main idea there is to consider a perco-
lation forest in connection with the wavelet decomposition. These processes
can be useful models for physical systems which exhibit both properties:
1) intermittency (which corresponds to the forest), 2) self-similarity and
stationary increments (this corresponds to the wavelet basis). It will be
clear that the processes we obtain in this case are with non stable laws.
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2. Elliptic equations, notations and first results

2.1. Fourier transform of homogeneous functions

Let us recall some properties of the Fourier transform F we shall need.
We denote by S(Rd) the space of functions which are smooth on Rd and
rapidly decaying at infinity. This space is equipped with its usual locally con-
vex topology. We denote by S ′(Rd) the space of tempered distributions, its
dual. The Banach space of functions which are of p−power integrable (resp.
essentially bounded) w.r.t. the Lebesgue measure is denoted by Lp(Rd) when
1 ≤ p <∞ (resp. p = ∞).

If T is a integrable function or a tempered distribution on Rd we know

(2.1) F(T (η .))(ξ) = |η|−dT̂
(ξ
η

)
, F(T (y + .))(ξ) = exp(−iyξ)T̂ (ξ),

are valid ∀η �= 0, ∀y ∈ Rd.

If γ ∈ (−d, 0) and ξ �= 0 we have

(2.2) F(|.|γ)(ξ) = c(γ, d)
1

|ξ|d+γ
with c(γ, d) = 2d+γπd/2Γ(d+γ

2
)/Γ(−γ

2
).

This result can be extended to every γ �∈ −d − 2C if we replace ordinary
power functions by pseudo-functions Pf |.|γ , see Schwartz [14].

As a more general result, we know that the Fourier transform of a γ-
homogeneous distribution is a −(d + γ)-homogeneous distribution. Let r a
measurable function defined on the unit sphere Σd−1 which is (1) real-valued
(2) bounded and (3) symmetric and γ ∈ (−d, 0); there exists a smooth func-
tion q on Σd−1 with the same properties (1), (2), (3) such that, when ξ �= 0,

(2.3) F
(
|.|γr

( .

|.|
))

(ξ) = c(γ, d)
1

|ξ|d+γ
q
( ξ

|ξ|
)
.

The same is valid for a general γ by using pseudo-functions, see [14].
We set τγ(r) = c(γ, d)q, which defines a positive linear transformation

for real functions on the unit sphere Σd−1.

2.2. Ellipticity hypothesis. Kernels

We consider parameters β and H such that

(2.4) β ≥ 1, 0 < H < 1

and a real-valued symmetric measurable function s on Σd−1 which satisfies
an “ellipticity” condition

(2.5) ∃c > 0, c ≤ s(t) ≤ 1

c
∀t ∈ Σd−1.
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Then we set q = c(−H − d/β, d)τ−H−d/β(1/s) and define two kernels Rβ,s

and Kβ,s by

Rβ,s(t, ξ) :=
exp(itξ) − 1

|ξ| d
β

+H s(ξ/|ξ|) (2π)d
(2.6)

Kβ,s(t, y) := |t− y|H− d
β q((t− y)/|t− y|) − | − y|H− d

β q(−y/| − y|).(2.7)

Lemma 2.1 We suppose (2.4), (2.5) hold, 1 ≤ β < ∞ and t ∈ Rd; then
both functions Kβ,s(t, .) and Rβ,s(t, .) are with β−power integrable w.r.t. the
Lebesgue measure. As functions of t they are continuous with respect to the
Lβ(Rd)−norm. Furthermore

(2.8) ∀(t, ξ) ∈ Rd × Rd \ {0}, F(Kβ,s(t, .))(ξ) = Rβ∗,s(t, ξ).

Proof. Let us begin with Kβ,s(t, y).

We set c0 = max|z|=1 |q(z)| and c1 = max|v|=|w|=1,v �=w |q(w)−q(v)|/|w−v|
which are finite constants as we know q is smooth on Σd−1 and we set also
ρ = |y|, y = ρu, µ = H − d/β. If |t|/ρ ≤ 1/2 we get

|Kβ,s(t, y)| = ρµ

(∣∣∣ t
ρ
− u

∣∣∣µq( t/ρ − u

|t/ρ − u|
)
− q

( −u
| − u|

))
≤ ρµ

(
c0

∣∣∣∣∣∣ t
ρ
− u

∣∣∣µ − 1
∣∣∣ + 2c1

∣∣∣ t
ρ

∣∣∣) ≤ c2 ρ
µ |t|
ρ

= c2ρ
H−d/β−1|t|

and then

(2.9)

∫
|y|≥2|t|

|Kβ,s(t, y)|β dy ≤ c3|t|β
∫ +∞

ρ=2|t|
ρβH−d−β+d−1 dρ

which is finite because H < 1.

The β−integrability of Kβ,s(t, .) around 0 and around t is easily reduced
to the β−integrability of y �→ G(y) := 1|y|≤1|y|H−d/βq(y/|y|). By using polar
decomposition this last property is equivalent to condition∫ 1

0

rHβ−d rd−1 dr < +∞.

This is satisfied if and only if βH > 0, which is true since H > 0.

Let us now prove that t �→ Kβ,s(t, .) is continuous at 0 w.r.t. the
Lβ(Rd)−norm. Using the translation invariance of Lebesgue measure we
need only to work at t = 0. We can split the integral in two parts, according
to |y| ≤ 1 or |y| > 1. As G belongs to Lβ(Rd) and β < ∞, we know the
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function t ∈ Rd �→ G(t− .) is continuous w.r.t. the Lβ(Rd)−norm and this
gives the continuity property for the first part. The second part is controlled
with the help of inequality (2.9) so that we get the desired result.

The same methods can be applied to Rβ,s(t, .). It belongs to the space
Lβ(Rd, dt) when conditions∫ 1

0

rβ−Hβ−d rd−1 dr <∞ and

∫ +∞

1

r−Hβ−d rd−1 dr <∞
are satisfied, and we get the same conclusions as above.

To show that (2.8) holds we assume first that Hβ < d. We are then
in the case where γ = H − d/β (the parameter used for Kβ,s(t, .)) and
γ′ = −H − d/β∗ = d − γ (the parameter used for Rβ∗,s(t, .)) both belong
to (−d, 0), that is the case where functions are locally integrable. Then the
formula (2.8) is a direct application of (2.3) with equality between functions
on Rd\{0}. The result extends as usual to the general case in the framework
of pseudo-functions. But using the β−integrability property just proved
above it is also an ordinary functional equality. �

We denote by Rβ,s and Kβ,s the operators with kernels Rβ,s(t, ξ) and
Kβ,s(t, y) respectively,

(2.10) Rβ,sf(t) =

∫
Rd

Rβ,s(t, ξ)f(ξ) dξ, Kβ,sf(t) =

∫
Rd

Kβ,s(t, y)f(y) dy.

In the general case the kernels Rβ,s and Kβ,s are distributions on Rd and
we consider integrals of (2.10) in the distribution meaning.

2.3. Elliptic pseudo-differential problems

In the sequel α is a positive number such that 1 < α ≤ 2, α∗ its conjugate
exponent and H,K are in (0, 1). We consider a function s which satisfies
ellipticity condition (2.5) and symbols ρ, ρ∗ associated with s as in (1.3) with
respective degree m = d/α +H, m∗ = d/α∗ +K. For the p.d.o. associated
with the symbols ρ, ρ∗ we use the simplified notations Lα and Lα∗ . We shall
also shorten notations of previously defined kernels and operators and simply
write Rβ, Rβ, Kβ, Kβ, forgetting to write the dependance on s.

We consider the following two problems:

• to find functions u such that

(P∗) Lα∗u(t) = (2π)−df̂(−t), u(0) = 0

• to find functions v such that

(P ) Lαv(t) = g(t), v(0) = 0.
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We look for solutions in some Banach spaces which we now define. Let us
denote by ∆ be the d−dimensional laplacian and by W r,β

0 the Sobolev ho-
mogeneous space

(2.11) W r,β
0 =

{
u, (−∆)r/2u∈Lβ(Rd), Dµu(0) = 0 for µ ∈ Cd, |µ| ≤ r− d

β

}
equipped with the seminorm ‖u‖r,β =

(∫
Rd |(−∆)r/2u (t)|β dt)1/β

.

Lemma 2.2 Let α ∈ (1, 2], H ∈ (0, 1) and m = d/α+H, m∗ = d/α∗ +H.
Then Wm,α

0 and Wm∗,α∗
0 are Banach spaces and the condition in 0 reduces

to u(0) = 0.

This Banach space property is valid for W r,β
0 under general conditions,

as explained in the book of Meyer ([12]), chapter VI. The case which is
considered here satisfies 0 < r−d/β < 1 so that no condition for derivatives
of order ≥ 1 in 0 is needed.

Once the spaces are well defined we get existence and unicity results as
given in the following theorem.

Theorem 2.1 We suppose that 1 < α ≤ 2, f, g ∈ Lα(Rd), and s satis-
fies (2.5). Then

(i) Rα∗(f) is well defined and is the unique element in Wm∗,α∗
0 solution

of problem (P∗).

(ii) Rα(ĝ) is well defined and is the unique element in Wm,α
0 solution of

problem (P ).

(iii) Furthermore we have Plancherel like formulas

(2.12) Rα∗(f) = Kα(f̂), Rα(ĝ) = Kα∗(g).

Proof. Using the integrability result of Lemma 2.1 we can assert that for
every f ∈ Lα(Rd) the following integral makes sense and defines a continuous
function uf of the t variable∫

ξ∈Rd

Rα∗(t, ξ) f(ξ) dξ =: uf (t).

This function uf clearly vanishes at 0. To see that uf ∈ Wm∗,α∗
0 it remains

to prove

(2.13) (−∆)m∗/2uf ∈ Lα∗
(Rd).
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Let us first suppose that f ∈ Lα
0 (Rd), the subspace of functions α−integrable

which vanish on some neighbourhood of 0. In this case uf (t) = U(t)−U(0),

with U := F−1( f(.)
|.|m∗ s(./|.|)), therefore

F(uf ) =
f(.)

|.|m∗s(./|.|) − (2π)dU(0)δ0

and then

< |.|m∗F(uf ), ϕ >=<
f(.)

s(./|.|) , ϕ >

for every ϕ ∈ S(Rd). This means that in the distribution meaning

(−∆)m∗/2uf = (2π)−dF(
f

s(./|.|)).

As α ≤ 2 we know that FLα(Rd) ⊂ Lα∗
(Rd), see [16], so that we get (2.13).

Recalling the definition of the operator Lα∗ and using previous equalities
we get also

F(Lα∗uf )(ξ) = s(ξ/|ξ|)|ξ|m∗F(uf )(ξ)(2.14)

= f(ξ)(2.15)

which means that uf solves the problem (P∗).

As Lα
0 (Rd) is a dense subspace of the Banach space Lα(Rd) the result

holds for every f ∈ Lα(Rd).

The second part of Theorem 2.1 deals with problem (P ). Here we use
ĝ ∈ Lα∗

(Rd) and Rα(t, .) ∈ Lα(Rd) (see Lemma 2.1). Then

vg(t) :=

∫
ξ∈Rd

Rα(t, ξ) ĝ(ξ) dξ

is a well defined continuous function on Rd, vanishing at 0. That the function
vg belongs toWm,α

0 and gives a solution to problem (P ) can be proved exactly
as above for (P∗), working first in the case where g vanishes in 0, then using
a density argument.

The identities (2.12) are now deduced from the result (2.8) of Lemma 2.1
by using the well known Plancherel formulas.

To complete the proof we must show that the solution of problem (P∗)
(resp. (P )) is unique. Using equality (2.14) and the definition of spaceWm∗,α∗

0

we see that the kernel of operator Lα∗ reduces to the nullspace. This im-
plies the required unicity for problem (P∗). The same method applies to
problem (P ). �



778 A. Benassi and D. Roux

3. Elliptic stochastic processes

3.1. Generalized processes

The notion of linear process has been studied by Gelfand [6]. When the
parameter set is S(Rd) a linear process is called a generalized process or a
random distribution. We use two notations

ϕ �→ Y (ϕ, ω) or ϕ �→< Y (ω), ϕ >

for a generalized process Y : S(Rd) �→ L0(Ω,P). The Fourier transform Ŷ
of a generalised process Y is defined as usual by duality. It is also denoted
by FY .

In order to define invariance properties we introduce several operators
Sµ, Tt, Uξ by setting

∀y ∈ Rd, Sµ(f)(y) = f(µy), Tt(f)(y) = f(y − t), Uξ(f)(y) = eiξ.yf(y)

given t, ξ ∈ Rd and µ ∈ R.

A linear process Y is said to enjoy

1. (SM1), stationarity, if ∀t ∈ Rd

Law({Y (Ttϕ), ϕ ∈ S(Rd)}) = Law({Y (ϕ), ϕ ∈ S(Rd)}),

2. (SM2), unitarity, if ∀ξ ∈ Rd

Law({Y (Uξϕ), ϕ ∈ S(Rd)}) = Law({Y (ϕ), ϕ ∈ S(Rd)}),

3. (SM3), scaling property of order k, if ∀η �= 0

Law({Y (Sηϕ), ϕ ∈ S(Rd)}) = Law({|η|−k−dY (ϕ), ϕ ∈ S(Rd)})

It should be noticed that if Y satisfies scaling property of order K then Ŷ
satisfies scaling property of order d−K.

Definition 3.1 Let ν be some deterministic measure on (Rd,Rd) and β≥1,
p≥1. A generalized process M is said of type (β, p) with control measure ν if

(3.1) ∃c > 0, ∀ϕ ∈ S(Rd), ‖M(ϕ)‖Lp(Ω,P) ≤ c‖ϕ‖Lβ(Rd,dν).



Elliptic Self-Similar Stochastic Processes 779

Such a M can be extended as a linear process on the space Lβ(Rd, dν) and
in particular M(1A) makes sense when ν(A) < ∞: the notation M(A) =
M(1A) is used and M is called a random measure. The following countably
additivity property is satisfied: for every sequence (Ai)i∈N of Borel sets which
are pairwise disjoints and such that ν(∪i∈NAi) <∞ we have

M(∪i∈NAi) =
∑
i∈N

M(Ai),

with convergence in Lp(Ω, dP) sense.

A random measure is said independently scattered when for every se-
quence of pairwise disjoint sets (Ai)i∈N the corresponding random sequence
(M(Ai), i ∈ C) is an independent sequence. In the present paper this
independence property is not necessarily required.

We shall denote by SLβ,p(Rd, ν) the space of generalized processes M
for which (3.1) is true. We define the norm of M ∈ SLβ,p(ν) as the best
constant c in (3.1). If ν is the Lebesgue measure on Rd we simply write SLβ,p.

3.2. The stochastic problems

Let us now introduce the spaces of stochastic processes which are useful for
the setting of our elliptic stochastic problems. We recall m = d/α + H,
m∗ = d/α∗ + K where H,K are in (0,1), α, α∗ are conjugate exponents,
α ∈ (1, 2], see (1.11). As H,K are in (0,1) the conditions in 0 are order zero
conditions.

Definition 3.2 We shall say that a generalized stochastic process X belongs
to SWm,α,p

0 (Rd, ν) if

(−∆)m/2X ∈ SLα∗,p(Rd, ν) and X(0) = 0

where we define the vanishing in 0 condition by using Gaussian densities
gσ(x) = (σ

√
2π)−d exp(− x2

2σ2 ),

X(0) = 0 ⇐⇒ lim
σ→0

< X , gσ >= 0 in L0(Ω,P).

We consider the two equations

(SP∗) Lα∗X = M, X(0) = 0 ,

(SP ) LαZ = M̂, Z(0) = 0 ,

where M is a random measure and Lα, Lα∗ are elliptic operators. The sym-
bols are homogeneous with respective degrees m,m∗ which satisfy (1.11) and
they depend on a function s which satisfy (2.5).
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Theorem 3.1 We suppose M is a stochastic measure of type (α, p) with
control measure ν = Lebesgue measure on Rd.

There exists a unique pair (X,Z) in SWm∗,α∗,p
0 × SWm,α,p

0 such that X
(resp. Z) solves (SP∗) (resp. (SP )) which is given by

X = Rα∗(M̂), Z = Rα(M).

Furthermore we have Plancherel like formulas

(3.2) Rα∗(M̂) = Kα(M), Rα(M) = Kα∗(M̂)

in the distribution meaning.

Proof. From Lemma (2.1) we know that R̂α∗(x, .) = Kα(x, .) ∈ Lα(Rd)
and since the generalised process M is of type (p, α) we get a well defined
ordinary process X by setting

Xx =< M̂,Rα∗(x, .) >=< M, R̂α∗(x, .) > .

Let us now prove a Fubini like result: we have equality

(3.3) < Rα∗(M̂), ϕ >=< M,Rα∗ϕ̂ >,

as processes indexed by ϕ ∈ Lα(Rd). This is a consequency of the symmetry
of the operator Rα∗ ◦ F , which is proved as soon as we get

(3.4) < Rα∗ϕ̂, ψ >=< ϕ,Rα∗ψ̂ >,

for ϕ, ψ running through a dense subspace of Lα(Rd). Let us consider S0 the
set of functions ψ ∈ S(Rd) with vanishing mean,

∫
Rd ψ(t) dt = 0. As α > 1,

S0 is a dense subspace of Lα(Rd).

For every ϕ ∈ S0 we have

Rα∗ϕ̂(x) = (2π)−d

∫
Rd

eixξ − 1

|ξ|m∗s(ξ/|ξ|) ϕ̂(ξ) dξ = (2π)−dF
(

ϕ̂

|.|m∗S

)
(−x) − c

with c a constant. And thus for every ϕ, ψ ∈ S0 we get

< Rα∗Fϕ, ψ >=<
ϕ̂

|.|m∗S
− cδ0, ψ̂ >

=

∫
Rd

ϕ̂(ξ)ψ̂(ξ)

|ξ|m∗s(ξ/|ξ|) dξ − c

∫
Rd

ψ(t) dt,=

∫
Rd

ϕ̂(ξ)ψ̂(ξ)

|ξ|m∗s(ξ/|ξ|) dξ

an expression which is symmetric in ϕ, ψ. The equality (3.3) is proved.
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Let us see that X ∈ SWm∗,α∗,p
0 . The vanishing in 0 condition is obvious

(K(0, y) ≡ 0) so it remains to prove

(3.5) E| < X, (−∆)m∗/2ψ > |p ≤ c|ψ|p
Lα(Rd)

.

It is sufficient to prove (3.5) for functions ψ in S(Rd) such that∫
Rd

Fψ(ξ)

s(ξ/|ξ|) dξ = 0

the general result will be true by a density argument (when α > 1). For
such a ϕ we have

< X, (−∆)m∗/2ψ >=

∫
Rd

Rα∗(| . |m∗Fψ) dM

=

∫
Rd

(∫
Rd

eitξ − 1

(2π)ds(ξ/|ξ|)Fψ(ξ) dξ

)
M(dt) =

∫
Rd

Hψ(t) M(dt)

whereH=op(1/S) is the pseudo-differential operator with symbol 1/s(ξ/|ξ|).
Since S is bounded by positive constants this operator is bounded in the
Lα(Rd) norm. As M is of type (p, α) we get for some constant c∣∣∣ ∫

Rd

Hψ dM
∣∣∣
Lp(Ω)

≤ c|ψ|Lα(Rd)

which gives the result (2.5).

In order to show that X = Rα∗FM solves problem (SP∗) it is enough
to prove

(3.6) ∀ϕ ∈ S(Rd), < Lα∗Rα∗FM,ϕ >=< M,ϕ > .

But this is an easy consequency of Theorem 2.1 where we have seen that

∀ϕ ∈ S(Rd), Lα∗Rα∗Fϕ = ϕ.

The solution of problem (SP∗) is unique: in fact if X ∈ SWm∗,α∗,p
0 (µ)

and satisfies
∀ϕ ∈ S(Rd), < Lα∗X,Fϕ >= 0

we obtain

∀ϕ ∈ S(Rd),

∫
Rd

ϕ(ξ)|ξ|m∗s(ξ/|ξ|)FX(ξ) dξ = 0

and as X(0) = 0 we can conclude X = 0 in SWm∗,α∗,p
0 .

The previous arguments can be adapted to solve problem (SP ) and there-
fore the corresponding proof is omitted. The first Plancherel formula is a
direct consequence of equation (3.3). The second one is similar. �
Remark 3.1 The previous results can be extended to measures ν which are
equivalent to Lebesgue measure.
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4. Self-similar Processes

4.1. Condition for self-similarity

We are looking for scaling properties of processes X,Z which are respective
solutions of (SP∗), (SP ). As these processes are linked by the stochastic
measure M it seems more relevant to study the Inverse Scaling Invariance
(H,K) property.

Theorem 4.1 Let us suppose that hypotheses of Theorem 3.1 hold. The so-
lution X,Z of (SP∗), (SP ) is Inverse Scale Invariant with parameter H,K
and also with stationary increments if the linear process M satisfies condi-
tions SM1 to SM3 with k = −d/α∗.

Proof. By hypothesis the random measure M satisfies (SM3) with k =
−d/α∗,

∀µ > 0, (

∫
Rd

ϕ(
ξ

µ
)M(dξ), ϕ ∈S(Rd)) =Law (µd/α

∫
Rd

ϕ(ξ)M(dξ), ϕ ∈S(Rd)).

Using a regularisation argument we get the following equality in law of or-
dinary processes
(4.1)

∀µ > 0, (

∫
Rd

ft(ξ/µ) M(dξ), t ∈ Rd) =Law (µd/α

∫
Rd

ft(ξ) M(dξ), t ∈ Rd)

when the function t �→ ft is continuous with values in Lα(Rd). We notice
that the result still holds when ft is a vector valued function. Let us look
at the following case

ft(ξ) =

(
|t− ξ|H−d/αq

( t− ξ

|t− ξ|
)
− |ξ|H−d/αq

(−ξ
|ξ|

)
,

eitξ − 1

|ξ|K+d/αs(ξ/|ξ|)
)

= (f 1
t (ξ), f 2

t (ξ)) ∈ R2.

We know from Theorem 3.1

(4.2) Xt =

∫
Rd

f 1
t (ξ) M(dξ),

(4.3) Zt =

∫
Rd

f 2
x(ξ) M(dξ).

It is easy to check that ∀η > 0,

η−Hf 1
ηt(ξ) = η−d/αf 1

t

(ξ
η

)
η+Kf 2

ηt(ξ) = η−d/αf 1
t

(ξ
η

)
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so that (4.1) gives the inverse scaling property

(4.4) ∀η > 0,

(
1

ηH
X(η.), ηKZ(

.

η
)

)
=Law (X(.), Z(.)).

The I.S.I. property is now proved and the main hypothesis was (SM3). The
proof of stationarity of increments are similar and we do not give any details.
Using hypothesis (SM1), the translation invariance in law for M , we can
show that the increments of the process X are stationary. In order to get
the same result for process Z we need hypothesis (SM2). In fact as we know

F(f(.− t))(ξ) = F(f)(ξ) eit.ξ

the effect on process Z is precisely the translation invariance in law of its
increments. �

Remark 4.1 The converse statement is valid: if X,Z satisfies ISI(H,H)
then M satisfies SM1, SM2, SM3.

Remark 4.2 Let M be a random measure which satisfies SM1, SM2, SM3.
Let us suppose moreover that M is independently scattered on Rd. Then M
is an α−stable measure. To prove this it is sufficient to work with rectangles
A =

∏d
j=1(0, tj) in Rd. For every positive integer n, we can decompose

the set A =
∏d

j=1(0, tj) into nd nonoverlapping pieces which are images

under translations of B =
∏

j(0,
tj
n
). Using hypotheses SM1, SM3 we get the

identity

nd/αT =Law

∑
1≤i≤nd

Ti

where Ti are independent copies of T := M(B). This leads to the very
definition of α−stable law.

4.2. Proportionality of Laws

We recall processes U and V are said with proportional laws if up to a
multiplicative factor their laws are equal

∃η > 0, (U(t), t ∈ Rd) =Law (ηV (t), t ∈ Rd).

In the case d = 1 and Gaussian laws (α = 2) if processes X1, X2 are both
H−self-similar with stationary increments then they are with proportional
laws. This means the F.B.M. is essentially the only one such process.

The more general α−stable case is studied in the book of Samorodnitsky-
Taqqu ([13], chapter 7): the random measure is supposed to be indepently
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scattered α−stable; the processes Z,X are respectively called harmonizable
and moving average fractional stable motions. It is shown in [13] that the
laws of X and Z are not proportional if α < 2. This result can be generalized
as follows.

Corollary 4.1 We suppose the conditions of Theorem 3.1 to hold, 1<α≤2.
The processes X,Z are with proportional laws if and only if α = 2.

Proof. From (SP ), (SP∗) we get

LαLα∗X = LαM, Lα∗LαZ = Lα∗M̂ .

If the laws of X and Z were equal up to the multiplicative factor c we
should get

LαM =Law cLα∗M̂

then Rα∗LαM =Law cM̂ and as a consequence

Rα∗Lα = cF .

Coming back to the definition of these operators this happens if and only if
α = 2. �

N.B.: In the case where the random measure M is independently scattered
this is the Gaussian case.

5. Wavelet decomposition, regularity

In this section we study regularity of paths and wavelet decomposition of
processes X, Z solutions of problems (SP∗), (SP ). We refer to [1] for similar
results in the Gaussian case, α = 2.

Wavelet decomposition find many applications. It is the starting point
for building a new family of self-similar processes in the next section. In [1]
it was the key point for giving exact constants in local or uniform continu-
ity modulus. Here we study first the Hölder continuity property of paths;
various methods are available. In a first part we give a condition which in-
sures Hölder continuous paths using Kolmogorov’s criterion. The following
parts are independent of the first one; we give the wavelet decomposition of
both processes and then we show how it can be applied in the important
case where M is independently scattered to prove optimality of the given
condition for path continuity.
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5.1. Hölder continuity

Theorem 5.1 We suppose that the hypotheses of Theorem 3.1 are fullfilled.
Processes X,Z are respective solutions of problems (SP∗), (SP ). If Hα > d
there exists a modification of X such that almost all sample paths are Hölder-
continuous of order any ε < Hα − d. The same result is true for Z under
condition Hα∗ > d, with ε < Hα∗ − d.

We use the following version of Kolmogorov’s criterion, see [3], adapted to
the Rd case.

Lemma 5.1 Let {ξ(x), x ∈ [0, 1]d} a process which satisfies

P ( |ξ(y) − ξ(x)| > g(|y − x|) ) ≤ f(|y − x|)
where f, g are non negative and non decreasing functions on R+. If∑

m≥1

2mdf(2−m) <∞

and if for some c > 0 the sequence Gn =
∑

m≥n+1 g(2
−m) satisfies

Gn ≤ cg(2−n)

we can find a modification η of ξ and some constant c′ > 0 such that with
probability 1

|η(y) − η(x)| ≤ c′g(|y − x|)
Let c1 = max|u|=1

∫ |Kα(u, y)|α dy, a finite constant by Lemma (2.1).
After a change of scale y = |t| y′ we get∫

Rd

|Kα(t, y)|α dy ≤ c1|t|Hα

and using homogeneity∫
Rd

|Kα(t, y) −Kα(s, y)|α dy ≤ c1|t− s|Hα.

As the stochastic measure M is of (α, p) type

rα P ( |Xt −Xs| > r ) = rα P( |K̃αM(t) − K̃αM(s)| > r )

≤ c2 ‖Kα(t, .) −Kα(s, .)‖α
Lα(Rd)

≤ c1c2 |t− s|Hα

for every r > 0.
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Let us define functions f(ρ) = ρHα+ε, g(ρ) = ρε/α and observe

∀n,
∑

m≥n+1

g(2−m) ≤ cg(2−n)

with c = (2ε/α − 1)−1, and∑
m≥1

2mdf(2−m) = (2αH−d−ε − 1)−1.

Hypotheses of Lemma 5.1 are satisfied and the Theorem 5.1 is proved for
process X. The proof for Z is similar and thus omitted. �

Remark 5.1 Recall 0 < H < 1. If 1 < α ≤ 2 the condition given for regu-
larity of trajectories of X requires d = 1. Notice that for d > 1 we get con-
tinuous paths for restrictions to one dimensional subspaces, (X(τv), τ ∈ R),
v fixed in Rd \ {0}: such a restriction inherit ellipticity property from the
process (X(t), t ∈ Rd). Notice also that if Hα ≤ d we can define

(5.1) X̃(t) =

∫
Rd

exp(itξ) − ∑
0≤k≤1+d−αH(itξ)k/k!

|ξ|d/α∗+H s(ξ/|ξ|) (2π)d
M̂(dt).

which is the very process to study continuity of paths, see [1].

5.2. Wavelet decomposition

We denote by | |∞ the sup-norm on Rd, |x|∞ = max |xi|, 1 ≤ i ≤ d. Let us
recall well known facts about wavelet bases on Rd and define suitable func-
tions for the following decomposition. A wavelet basis (Ψλ)λ on Rd is indexed
by a countable set

Λ = {λ = (j, k, l), j ∈ Z, k ∈ Zd, l ∈ Ed}
where Ed = {0, 1}d \ {(0, . . . , 0)}. To generate such a basis a finite family of
smooth functions (mother-functions) is needed, G = (Gl)l∈Ed

. It is chosen
so that setting

Ψλ(t) = Gl(2
jt− k), Ψλ(t) =

Ψλ(t)

‖Ψλ‖L2(Rd)

,

the family (Ψλ)λ∈Λ becomes an orthonormal basis of L2(Rd). It is well known
that a wavelet basis gives also an unconditional basis for most functional
spaces, see [12]. Let us express this result for the case of Lα(Rd) spaces in
the following Lemma, where we use the notation

Ψλ,α(t) =
Ψλ(t)

|Ψλ|Lα(Rd)

= cα2jd/αGl(2
jt− k).
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Lemma 5.2 If 1 < α < ∞, then (Ψλ,α)λ∈Λ is an unconditional basis of
Lα(Rd).

We refer to [4] for existence of G = (Gl)l∈Ed
sharing the properties that

we need in the present work: smoothness, vanishing moments up to some
finite order N ,

(5.2)
∂µĜl

∂tµ
(0) = 0 for |µ|∞ ≤ N .

and compact support. We can choose N > m∗ and then denote by r = r(N)
the radius of a ball centered at the origin and which contains the support
of Gl for every l ∈ Ed.

Let us set
θl(t) = cα∗Rα∗(Ĝl)(t)

and notice that

θ̂l(ξ) =
cα∗Ĝl(ξ)

|ξ|m∗s(ξ/|ξ|)
makes sense since we know (5.2) is valid up to N . As s is bounded and is
greater than some c > 0, the functions θl are smooth and rapidly decreasing
at infinity. We denote by c(γ) some positive constant such that

(5.3) ∀z ∈ Rd, |θl(z)| ≤ c(γ)

1 + |z|γ .

Let us define two families of functions on Rd by setting

Φλ,α(t) = θl(2
jt+ k) − θl(k)

Φ̃λ,α(t) = cα∗Rα(Gl(.− k))(2−jt)

and also a family of random variables

ηλ = M(Ψλ,α).

We can now get a wavelet-based decomposition for X (resp. Z) the solution
of problem (SP∗) (resp. (SP )).

Theorem 5.2 We suppose that the hypotheses of Theorem 3.1 are fullfilled
and that X,Z are the respective solutions of problems (SP∗), (SP ). Then
the following equalities

X(t) =
∑
λ∈Λ

2−jHΦλ,α(t)ηλ(5.4)

Z(t) =
∑
λ∈Λ

2jHΦ̃λ,α(2−jt)ηλ(5.5)
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hold in the distribution meaning on Rd. The family (ηλ)λ satisfies some
stationarity properties:

(i) for every fixed (j, l) the sequence (ηλ)k∈Zd is stationary

(ii) if we set νj = (ηj,k,l)k,l, the sequence (νj)j∈Z is stationary.

Therefore the decompositions given in (5.4), (5.5) can be written as

(5.6) X(t) =
∑
j∈Z

2−jHXj(2
jt), Z(t) =

∑
j∈Z

2jHZj(2
−jt)

where (Xj(t))j, (Zj(t))j are stationary sequences of processes with stationary
increments.

Proof. Let us first prove the following wavelet decomposition of M ,

M(dt) =
∑
λ∈Λ

Ψλ,α∗(t)M(Ψλ,α) dt.

We know that for every ϕ ∈ Lα(Rd) ∩ L2(Rd)

ϕ =
∑
λ∈Λ

< Ψλ, ϕ > Ψλ = cα∗
∑
λ∈Λ

< Ψλ,α∗ , ϕ > Ψλ,α

and as M is countably additive

< M,ϕ > = cα∗
∑
λ∈Λ

< Ψλ,α∗ , ϕ >< M,Ψλ,α >

with convergence in the Lp(Ω,P) sense. Then we get the following equalities
in the distribution meaning for the solution X of problem (SP∗).

X(t) = Rα∗M̂(t) =< M̂,Rα∗(t, .) >=< M, R̂α∗(t, .) >

=
∑
λ∈Λ

< Ψλ,α∗ , R̂α∗(t, .) >< M,Ψλ,α >

= cα∗
∑
λ∈Λ

2jd/α∗Rα∗Ψ̂λ(t) < M,Ψλ,α >

=
∑
λ∈Λ

2−jH
(
θl(2

jt− k) − θl(−k)
)
< M,Ψλ,α >

=
∑
λ∈Λ

2−jH
(
θl(2

jt− k) − θl(−k)
)
ηλ.

The solution Z of problem (SP ) is given by

Z(t) = RαM(t)
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and using the decomposition of M again we get

Z(t) =
∑
λ∈Λ

< Ψλ,α∗ , Rα(t, .) >< M,Ψλ,α >

= cα∗
∑
λ∈Λ

2jd/α∗
< Gl(2

j.− k), Rα(t, .) >< M,Ψλ,α >

= cα∗
∑
λ∈Λ

2jd/α∗
< Gl(2

j.− k), Rα(t, .) > ηλ

= cα∗
∑
λ∈Λ

2jH < Gl(.− k), Rα(2−jt, .) > ηλ.

which gives the expected formula.
The proof of stationarity properties is elementary by changing variables

so we skip the proof. �

5.3. Application to path regularity

Let us now see how the wavelet decomposition can help to get an insight
into path regularity. We discuss optimality of condition Hα > d for path
continuity of X in the important case where M is independently scattered.
We split the random wavelet sum as∑

j,k,l

ηj,k,l (θl(2
jt− k) − θl(−k)) =

∑
j≥0

ρ̃j(t) +
∑
j≥0

σ̃j(t) +
∑
j<0

τ̃j(t)

ρj(t) =
∑

l∈Ed,|k|∞≤2j+1

ηj,k,l θl(2
jt− k), ρ̃j(t) = ρj(t) − ρj(0)

σj(t) =
∑

l∈Ed,|k|∞>2j+1

ηj,k,lθl(2
jt− k), σ̃j(t) = σj(t) − σj(0)

τ̃j(t) =
∑

l∈Ed,k∈Zd

ηj,k,l (θl(2
jt− k) − θl(−k))

In the following proposition we consider only σj and τj’s. We get conver-
gence results without assumingHα > d or increments ofM are independent.
We recall 0 < H < 1.

Proposition 5.1 Suppose we choose the wavelet family such that (5.3) is
satisfied with γ > d. Then with probability 1, we obtain uniform convergence
on bounded sets for the series

∑
j≥0 2−jH σ̃j(t),

∑
j<0 2−jH τ̃j(t). So we get

continuous functions of t.
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Proof. We use localisation of wavelets given in (5.3) so that

sup
|t|≤1

|σj(t)| ≤
∞∑

q=1

∑
l∈Ed,|k|∞=q+2j+1

sup
|t|≤1

|θl(2
jt− k)||ηj,k,l|

≤
∞∑

q=1

c(γ)

1 + |2j + q|γ
∑

l∈Ed,|k|∞=q+2j+1

|ηj,k,l|.

We recall ηλ = M(Ψλ,α) with functions Ψλ,α normalized in Lα(Rd) and (3.1)
holds; then we get

E(sup
|t|≤1

|σj(t)|) ≤ c1

∞∑
q=1

1

1 + |2j + q|γ
∑

l∈Ed,|k|∞=q+2j+1

|Ψj,k,l,α|Lα

≤ c2

∞∑
q=1

1

1 + |2j + q|γ (2d − 1)(q + 2j+1)d−1 ≤ c3

∞∑
q=1

1

q1+γ−d
= c4.

Let us turn to j < 0. We rely now upon smoothness of θ functions.
We know that for j < 0 and |t| ≤ 1

|θl(2
jt− k) − θl(−k)| ≤ 2j max

1≤i≤d, |z−k|≤1

∣∣∂θl

∂zi

(z)
∣∣

and therefore

E(sup
|t|≤1

|τ̃j(t)|) ≤ 2jc5

∞∑
q=1

1

1 + qγ

∑
|k|∞=q,l∈Ed

E|ηj,k,l| ≤ c62
j .

Using Markov inequality we get

P(sup
|t|≤1

|σj(t)| ≥ 2jH/2) ≤ c42
−jH/2,P(sup

|t|≤1

|τ̃j(t)| ≥ 2j(1+H)/2) ≤ c62
j(1−H)/2

and from the Borel-Cantelli Lemma, with probability 1

sup
|t|≤1

2−jH |σj(t)| < 2−jH/2, if j large enough

sup
|t|≤1

2−jH |τ̃j(t)| ≤ 2j(1−H)/2, if −j large enough.

The uniform convergence of
∑

j≥0 2−jHσj and of
∑

j<0 2−jH τ̃j on T =

|t| ≤ 1 follows. The same is true for
∑

j>0 2−jH σ̃j and it extends to every

bounded T in Rd.



Elliptic Self-Similar Stochastic Processes 791

It remains to study
∑

j>0 2−jH ρ̃j(t). From now on we suppose M is with
independent increments.

Case Hα > d

We partition the set Zd into (2i+1)d pieces Ph = h+iZd, |h|∞ ≤ i where the
integer i is chosen such that 2i+ 1 ≥ r(N); with this choice the supports of
Ψj,k,l,α,Ψj,k′,l,α are disjoint for distinct k, k′ in the same Ph. Let us work with
h and l fixed and study uniform convergence of

∑
j>0 2−jHρj;h,l(t), where

ρj;h,l(t) =
∑

k∈Q(j,h)

θl(2
jt− k)ηj,k,l, and Q(j, h) = {k ∈ Ph, |k|∞ ≤ 2j+1}.

We know here that M is independently scattered. It is then an α−stable
stochastic measure, see Remark 4.2. Using the tail behaviour of l1 norm for
a stable vector, see [13, p. 16 and 197], and disjoint supports of Ψj,k,l,α we
find

P(
∑

Q(j,h)

|M(Ψj,k,l,α)| > r ) ∼ K(α)r−αcard(Q(j, h))

when r → +∞, with K(α) = (1− α)/ cos(α/2)Γ(2− α). As θl are bounded
functions on Rd we get

P(sup
|t|≤1

|2−jHρj;h,l(t)| ≥ 2−jε) ≤ c12
−jα(H−ε)2(j+1)d.

By choosing 0 < ε < H − d/α and we deduce from Borel-Cantelli Lemma
that almost surely for j large enough,

sup
|t|≤1

|2−jHρj;i,l(t)| <∞.

Uniform convergence and continuity of the sum are easy consequences. We
have proved that almost all paths of X are continuous in the present case.

Case Hα < d

Reminding Prop. 5.1 the only sum to pay attention with is
∑

j≥0 2−jHρj(t).
As θ is rapidly decreasing we can heuristically replace ρj(t) by

ρj(t) =
∑

|k−2jt|≤R,l∈Ed

θ(2jt− k)ηj,k,l

with R some positive radius. Let us consider a bounded domain like D =
(1, 2)d and the discrete set Vj = (1, 2)d ∩ R2−jZd. We get an independent
sequence (ρj(t))t∈Vj

such that, for all t in Vj,

P(|ρj(t)| > r) ≥ c1r
−α

(∣∣∣ ∑
|k−2jt|≤R,l

θ(2jt− k)Ψλ,α(.)
∣∣∣
Lα

)α

≥ c2r
−α.
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As M is independently scattered,

P(max
t∈Vj

2−jH |ρ̃j(t)| ≤ j) =
∏
t∈Vj

1−P(|ρj(t)| >j2jH) ≤ (
1− c2(j2

jH)−α
)(2j/R)d

.

The sum
∑

j>0(1 − c2(j2
jH)−α)(2j/R)d

being finite we know from Borel-
Cantelli Lemma

2−jH max
t∈Vj

|ρj(t)| ≥ j

almost surely for j large. We can conclude that with probability 1 the paths of
processX are unbounded on (1, 2)d. The same is true on every domain in Rd.

�

6. Examples

In this paragraph we shall give examples of elliptic self-similar processes
with stationary increments.

Example 1. α = 2, (= α∗) and M is the Gaussian white noise. In this
situation X and Z are essentially the same process: their laws are equal up
to a multiplicative factor.

Example 2. 1 < α < 2 and M is the symmetric α−stable measure. In this
case, X and Z are fractional stable processes which are thoroughly studied
in [13].

Example 3. In the third example the law of the process will be non stable.
We follow ideas of [2] where a model of intermittency is proposed. It rests
upon the following remark: the set Λ which indices the wavelet basis can be
written as

Λ = T2d × Ed

if we denote by Tq the regular q−tree (from each vertex (q + 1) edges are
drawn). We restrict ourselves to the case d = 1 in which case E1 = {1}
and Λ reduces to T2. Using the 2-adic tree T2 we can encode the dyadic
cells of R, in such a way that the significative values of ψλ are taken on the
cell Cλ. Now let X an elliptic symmetric self-similar process with stationary
increments. The decomposition given in (5.4) can be now written as

(6.1) X(x) =
∑
λ∈T2

2−jHΦλ,α(x)ηλ.

In order to define intermittency in [2] the summation was restricted to a
subtree of T2. But we loose the self similarity property in doing this. There-
fore we restrict the summation to a forest F build from a family of subtrees
of T2. We shall choose a percolation forest.
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Let Bp be the Bernoulli law with parameter p, p ∈ (1/2, 1]. Let (Bλ)λ∈T2

an i.i.d. family of r.v. with law Bp. We say that an edge λ ∈ T2 is open if
Bλ = 1 and closed otherwise. An infinite percolation cluster is a connected
infinite set of open edges of T2. Let A be such a percolation set and r(A) the
vertex in A which is the closest to the root ∗. Then (A, r(A)) is a subtree
of T2, which is called a percolation subtree. We define the forest Fp as the
union of all percolation subtrees.

Every permutation on T2 acts on (Bλ)λ∈T2 and induces a permutation of
the forest, denoted by σFp. Then we know from [8]

Lemma 6.1
(i) for any permutation σ of T2,

Law(Fp) = Law(σFp)

(ii) If p > 1/2, with probability 1 we have

Fp �= ∅
and Fp contains infinitely many percolation subtrees.

Let M be a symmetric α−stable stochastic measure on Rd, and let us define
the stochastic process {Yp(x), x} for p ∈ (1/2, 1] as follows

(6.2) Yp(x) =
∑
λ∈Fp

2−jHΦλ,α(x)ηλ.

Theorem 6.1 If we suppose M and (Bλ)λ∈T2 stochastically independent and
p > 1/2 the process Yp is symmetric H−self-similar and with stationary
increments.

Proof. Let us define a stochastic measure Mp by

(6.3) Mp(dx) =
∑
λ∈Fp

Ψλ,α∗(x)ηλdx

Then it can be checked that the conditions of Theorem 3.3 are satisfied and
consequently that Yp is the solution of

Lα∗Yp = Mp, Yp(0) = 0.

We give now the proofs of the properties (SM1), (SM2), (SM3) for Mp, and
we use freely the formal notation

< T, ϕ >=

∫
Rd

ϕ(x)T ′(x) dx

when T is a distribution, possibly random.
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Proof of scaling property for Mp.

Let us change the variable x ∈ Rd in µx, for some µ > 0. We get

µdM ′
p(µx) =

∑
λ∈Fp

µd/α∗
Ψλ,α∗(µx)M(µd/αΨλ,α).

But M(µd/αΨλ,α) = µd < M ′(µ.), µd/αΨλ,α(µ.) > and we get the following
equality in law

M(µd/αΨλ,α) =Law µ
d/α < M ′(), µd/αΨλ,α(µ.) > .

So if we define new functions on Rd by

Ψ
[µ]
λ,α(x) = µd/αΨλ,α(µx), Ψ

[µ]
λ,α∗(x) = µd/α∗

Ψλ,α∗(µx)

we get new unconditional bases of respectively Lα(Rd) and Lα∗
(Rd). And

we can write

µdM ′
p(µx) =Law

∑
λ∈Fp

µd/αΨ
[µ]
λ,α∗(x)M(Ψ

[µ]
λ,α(x)).

If we denote by F [µ]
p the percolation forest associated with T2 encoding the

dyadic cells when unit length is µ, we deduce from Lemma (6.1) that

Law(F [µ]
p ) = Law(Fp)

thus the following equality in law∑
λ∈Fp

Ψ
[µ]
λ,α∗(x)M(Ψ

[µ]
λ,α(x)) =Law

∑
λ∈F [µ]

p

µd/αΨ
[µ]
λ,α∗(x)M(Ψλ,α).

Finally

µdM ′
p(µx) =Law µ

d/αM ′
p(x)

which is the scaling property we looked for.

Proof of stationarity property for Mp.

Thanks to the previous proof we have only to show that

M ′
p(x− 1) =Law M

′
p(x)
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But this is a consequence of the following equalities

M ′
p(x− 1) =

∑
λ∈Fp

Ψλ,α∗(x− 1)M(Ψλ,α)(6.4)

=
∑
λ∈Fp

Ψλ,α∗(x− 1) < M ′(.− 1),Ψλ,α(.− 1) >(6.5)

=Law

∑
λ∈Fp

Ψλ,α∗(x− 1) < M ′(.),Ψλ+1,α) >(6.6)

=
∑
λ∈Fp

Ψλ+1,α∗(x) < M ′(.),Ψλ+1,α) >(6.7)

=Law

∑
λ∈F+1

p

Ψλ,α∗(x) < M ′(.),Ψλ,α) >(6.8)

where F+1
p = {λ+ 1, λ ∈ Fp} and of Lemma (6.1).

Proof of unitarity property for Mp.

This property SM2 amounts to show SM1 for M̂ , which is proved just as
above. �
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