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Periodic Quasiregular Mappings
of Finite Order

David Drasin and Swati Sastry

Abstract
The authors construct a periodic quasiregular function of any fi-

nite order ρ, 1 ≤ ρ < ∞. This completes earlier work of O. Martio
and U. Srebro.

1. Introduction

Let f be a (sense-preserving) quasiregular map on R
m (m ≥ 2). Thus f is

ACLm and there is a K < ∞ with

|f ′(x)|m ≤ KJf (x) a.e.,

where the left side is the norm of the induced operator on the tangent space
at x, and the right side is the Jacobian determinant. The now-standard
reference is Rickman’s monograph [4]. These mappings carry much of the
geometric theory of analytic and meromorphic functions to higher dimen-
sions. Suppose in addition that f is entire. We then set

M(r, f) = max
|x|≤r

|f(x)|,

and define the order ρ of f by

ρ = lim sup
r→∞

log log M(r, f)

log r
.

Perhaps the most important function in the theory is V. Zoric’s analogue
of the exponential function, Z(x) (cf. [4, p. 15]). It it is not a local home-
omorphism, has order one, and is periodic in m − 1 of the variables. Using
the Zoric function, O. Martio and U. Srebro [3] observed that there exist
(m − 1)–periodic mappings of order 1 and ∞, and (Theorem 8.7) that 1 is
a lower bound for the orders of such functions.
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They raise a question [3, p. 38] which is answered by our

Theorem 1.1 Let ρ, 1 ≤ ρ ≤ ∞ be given. Then there exists an (m − 1)–
periodic K(m)-quasiregular map g of exact order ρ.

In view of [3], this theorem has significance only when ρ ∈ (1,∞). The main
step in our construction is Theorem 2.1, in which we associate an entire K–qr
map f to any of a class of slowly increasing functions ν(r) which satisfy (2.2)
below; K will be independent of the specific choice of ν and depend only on
the dimension m. For example, let ν(r) = ρ(log r)ρ−1 for any fixed ρ > 1.
Not only will we have log M(r, f) ∼ (log r)ρ, but for most large x,

(1.2) log |f(x)| ∼ (log |x|)ρ,

where the symbol ∼ means that the ratio of the two sides is bounded above
and below by positive constants. From this it is routine to see that

(1.3) g(x) = f ◦ Z(x)

is entire, (m − 1)–periodic, K1–qr and of exact order ρ. In the special case
m = 2 and K = 1 (analytic functions), the functions of Theorem 2.1 exhaust
the class of entire functions of very slow completely regular growth. These
functions are discussed, for example, in [1, §6.7].

In [3, p. 38] Martio and Srebro raise another question, for which Theo-
rem 1.1 yields a negative answer. So long as ρ > 1, the function f will have
infinitely many zeros in R

m. Then (1.3) guarantees that g also has infinitely
many zeros in each fundamental region Ω of the function Z in R

m. Martio
and Srebro had asked if ρ must always be infinite whenever g is quasiregular,
(m − 1)–periodic and some equation g(x) = a has infinitely many solutions
in a fundamental region. They show in Theorem 8.7 that when ρ = 1 each
a ∈ R

m has only finitely many preimages in each Ω. Our Theorem 1.1 im-
plies that their theorem is sharp: when f is chosen as in (1.2) and (1.3),
then g assumes all values infinitely often in each Ω.

2. A generalization of the power mapping

Theorem 2.1 Let ν(r) be a positive increasing function such that ν → ∞,

(2.2) rν ′(r) <
ν(r)

2
, rν ′(r) = o(ν(r)) (r → ∞),

and set

(2.3) A(r) = exp

∫ r

1

ν(t)t−1dt.
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Then there exists an entire K = K(m) − qr map f on R
m with

(2.4) M(r, f) ∼ A(r) (r → ∞).

Moreover, on S(r) = {x; |x| = r}, we have (hm−1 is (m − 1)-Hausdorff
measure)

|f(x)| >
(
1 + o(1)

)
A(r) (|x| → ∞, x ∈ S(r) \ E(r)),

where hm−1(E(r)) = o(rm−1) = o(hm−1(S(r))).

When ν(r) ≡ n ∈ Z
+, the construction is a more complicated version

of the power mapping as described in [4, Ch.1, §3.2]. The theorem can be
reformulated to allow ν to tend to a finite limit, but since ν → ∞ in cases
of interest, we impose this additional hypothesis.

The map f depends on a sequence {rn} with

(2.5) ν(rn) = n,

and will be defined on the boundary of each m–cube Qr,

Qr = {x; ‖x‖∞ ≤ r}.

Every ∂Qr has 2m faces {Fj}, on each of which xj ≡ ±r for some 1 ≤ j ≤ m.

Note from (2.2) and (2.5) that

(2.6) n log
rn+1

rn

→ ∞,

since 1 =
∫ rn+1

rn
tν ′(t)dt/t = o(1)n log(rn+1/rn). We choose ε0 = ε0(m) with

(2.7) 0 < ε0 <
1

2
, sin−1 ε0 <

1

2
sin−1 m−1/2.

Then (2.6) yields r0 and n0 = n0(ε0, ν) ≥ 4 so that

(m + 1)rν ′(r)/ν(r) ≤ ε0 (r > r0), ν(r0) = n0 ∈ Z,(2.8)

n log
rn+1

rn

> (m + 1)ε−1
0 (n ≥ n0).(2.9)

In this and the next two sections we construct f on ∪∂Qr (r ≥ r0), leaving
the simpler range 0 ≤ r ≤ r0 to §5.

With the {rn} as in (2.5), let Jn (n ≥ n0) = [rn, rn+1]. We partition Jn

into m + 1 intervals J �
n = [r′n,�, r

′′
n,�] (0 ≤ � ≤ m), subject to r′n,0 = rn, r′′n,� =

r′n,�+1, r′′n,m = rn+1; (2.9) shows that we may suppose

(2.10) ε0 log

(
r′′n,�

r′n,�

)
= log

(
n + 1

n

)
, (1 ≤ � ≤ m, n ≥ n0).
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Thus for each 1 ≤ � ≤ m, r′′n,� = (1+o(1))r′n,� (n → ∞), while r′n,1/rn → ∞.
Since n ≥ n0 is usually fixed in §§2-4, we often ignore it in our notations.

In §3 we construct f on

⋃
n≥n0

⋃
r∈J0

n

Qr,

where we set J0 = J0
n = [r′n,0, r

′′
n,0] ≡ [r′0, r

′′
0 ] n ≥ n0. The situation is simpler

here since the combinatorics on each ∂Qr does not change with r, while in §4
we modify this approach on the {Jk

n}, n ≥ n0, k ≥ 1.

The map f has to evolve in J = Jn subject to:

(A) on ∂Qrn f is (a constant multiple of) a power-type map of ‘degree’ n
(cf. [4, p. 14]). Thus each of the 2m faces of ∂Qrn is first divided into (2n)m−1

congruent (m−1)-‘boxes’ K, where a box is the product of m closed intervals:
K = I1 × . . . × Im, with one Ij = {+r} or {−r} and |Ii| = r/n when i �= j.
With Sm−1 = 2m−1(m − 1)! as determined below (3.1), we then divide each
K into Sm−1 (m−1)-simplices Λr. The map f is defined on each Λr by (3.6),
so that f is K–qc on Λr, K–qr on Qr, with |f(x)| ∼ A(rn) for x ∈ ∂Qrn ;

(B) situation (A) holds on ∂Qrn+1 , with n + 1 in place of n;

(C) the process is such that f is K–qr and |f(x)| ∼ A(|x|) for most x on
every ∂Qr, r ≥ r0.

We conclude this section with a PL version of the sphere Sm. While
Rickman’s map is based on the manifold Sm being in the range (and is a
so-called Alexander map) our construction in §4 seems to require the poly-
hedron P of Proposition 2.12. Let S ′ = {|x′| = 1} ∩ {xm = 0} be the unit
(m − 2)–sphere. Depending on the context, we may view α ∈ S ′ as a vec-
tor in R

m−1 or one in R
m whose final coordinate is zero. Choose m points

α0, . . . , αm−1 ∈ S ′ so that the vectors αj−α0 (1 ≤ j ≤ m−1) form a basis of
R

m−1 which is L(m)–bilipschitz equivalent to the standard basis, the origin
is in the convex hull of the {αi}, and the map (αj − α0) → ej is sense-
preserving; the {ej} are the standard basis of R

m−1. Let ∆ be the convex
hull of the {αi}, and s∆ = {sp ; p ∈ ∆}. For s > 0 and q = s

∑
λiα

i ∈ ∆s,
consider the function

(2.11) λ(q) = λs(q) = ms inf
i

λi (q ∈ ∆s).

(The factor m ensures that max∆s λ(q) = s).
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Proposition 2.12 For each s > 0, the graph of the function λs(q), q ∈ ∆s,
is a polyhedron P+ = P+

s ⊂ {xm ≥ 0}. If we define P− as the graph
of −λs(q), then

P = P+ ∪ P−

is a polyhedron composed of subsets of a finite number of hyperplanes with 0
in its interior. If q ∈ ∂∆s, then λ(q) = 0.

The ray from 0 to the point (q,±λ(q)) ∈ P makes an angle Φ with P
such that

(2.13) | sin Φ| > 3τ > 0,

where τ depends only on the specific choice of the {αi}.

Proof. It suffices to consider s = 1. Then P determined by 2m hyperplanes
each of which contains m − 1 of the {αi} and one of the points (α,±1),
where α =

∑
αi/m is the barycenter of ∆, so it is clear that 0 is interior

to P . The normal to each of these hyperplanes has a nonzero component
orthogonal to the hyperplane {xm = 0}, so the result follows by elementary
linear algebra. �

3. The first stage

Recall the {Jn} = {∪0≤�≤mJ �
n}, n ≥ n0, from the discussion of (2.10). Let

r ∈ J0
n, and consider a face F ⊂ ∂Qr on which xj = εr, for ε = ±1. Then

for 1 ≤ i ≤ n, i �= j, the planes

(3.1) Πi
p(n) = {xi = pr/n}, |p| ≤ n,

divide F into (2n)m−1 (m− 1)-boxes K, and barycentric subdivision of each
box in turn partitions F into a union of (m − 1)-simplices Λr, which are
positively or negatively oriented with respect to the standard orientation
∂Qr inherits from R

m. As r ∈ ∪n≥n0J
0
n and 1 ≤ j ≤ m vary, note that each

vertex b(r) of Λr may be associated to a vector p ∈ Z
m:

(3.2) b(r) =
( p1

2n
,
p2

2n
, . . . ,

pm

2n

)
r,

with |pi| ≤ 2n; on F , pj ≡ 2εn. Each Λr is L–bilipschitz equivalent to the
standard (m − 1)–simplex, up to the scaling factor (cf. (2.3))

r

ν(r)
=

A(r)

A′(r)
,
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with L = L(m). Thus

(3.3) L−1 r

ν(r)
≤ | bi(r) − bj(r)| ≤ L

r

ν(r)
(i �= j).

The vertices of ∪∂QrΛr are put into m classes bi, 0 ≤ i ≤ m − 1, using the
standard model ∆ of Proposition 2.12. On some face F ⊂ ∂Qr choose a
positively oriented simplex Λ0

r, and label its vertices bi(r), 0 ≤ i ≤ m − 1,
the ordering taken so that the map

(3.4)
∑

λib
i(r) →

∑
λiα

i (λ1 ≥ 0,
∑

λi = 1)

from Λ0
r to ∆ has positive Jacobian. We may then consistently assign clases

bi to any of the vertices of all Λr ⊂ ∂Qr, so that if Λr and Λ′
r share a lower

dimensional subsimplex, the vertices common to both simplexes belong to
the same class. Note that the mapping (3.4) when defined on each simplex Λr

is sense preserving if Λr is positively oriented, and sense reversing otherwise.

With s = A(r) (r ∈ J0
n) from (2.3), let p =

∑
λib

i(r) ∈ Λr ⊂ ∂Qr, set

(3.5) p′ = s(
∑

λiα
i) (s = A(r)),

and, recalling the function λ(p′) of (2.11), define

(3.6) f(p) = (p′,±λ(p′)) =
(
s
∑

λiα
i,±λ(p′)

)
(s = A(r)).

The first entry on the right side of (3.6) is an (m−1)-vector, and the second
is a scalar, and the ± sign is taken according to whether (3.4) preserves or
reverses orientation. Thus (3.6) is always sense preserving.

Lemma 3.7 Let B : e1, . . . , em be the standard basis of R
m. Then there is

a K1 < ∞ such that at almost each point p and f(p) exist bases V = {vi}
and W = {wi} of the tangent spaces Tp and Tf(p) such that the linear maps
determined by

ei ↔ vi, ei ↔ wi

are K1-quasiconformal. Moreover, if Jf is the Jacobian matrix relative to
the bases V and W, then

Jf = A′(r)I.

Hence, if K2 is the dilatation of the map (3.4), then f is K = K2
1K2-

quasiregular.
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Proof. Given p =
∑

λib
i(r) ∈ Λr ⊂ ∂Qr, define p′ by (3.5). Assume

there is a + sign in (3.6), and λk = mini λi in a neighborhood of p. The
basis for Tp consists of V = {v1, . . . , vm} such that vm =

∑
λi(b

i)′(r), and
for 1 ≤ t ≤ m − 1, the {vt} are the vectors (ν(r)/r)(bσ(t) − bk), where
the {σ(t)}m−1

i=1 exhaust the range 1 ≤ t ≤ m, σ �= k, ordered so that V
is positively oriented with respect to B. At f(p) = (p′, λ(p)) the basis
of Tf(p) will be normalized Df -images of V , so that when t < m, wt =
(αh(t) − αk,−m). When r ∈ J0

n (n ≥ n0) the final basis vector wm in W
is wm =

( ∑
λiα

i,mλk

)
, but this will be modified in Lemma 4.7 for the

situation r ∈ ∪�≥1J
�
n, n ≥ n0.

Since λ(p′) is also determined by the coefficient λk of bk for p′ near p, (3.6)
shows that f is linear near p. Hence if t < m and h is small,

p + hvt = bk +
∑

i�=σ(t),k

λib
i + (λσ(t) + h(ν(r)/r))(bσ(t) − bk),

and (2.3), (2.11), (3.5) and (3.6) yield for 1 ≤ t ≤ m − 1 that

(3.8) Df(vt) =
f(p + hvσ(t)) − f(p)

h
=

ν(r)

r
A(r)(ασ(t)−αk,−m) ≡ A′(r)wt.

Next, consider Df(vm). Let r′ = r+h and consider the image of p+hvm =∑
λi(b

i + h(bi)′). By (3.1),

p + hvm =
∑

λi(b
i(r) + h(bi)′(r)) =

∑
λib

i(r′) (r′ = r + h),

so that f(p + hvm) − f(p) = (A(r′) − A(r))(
∑

λiα
i,mλk), and

(3.9) Df(vm) = A(r′)wm.

We check that the bases V and W satisfy the assertions of Lemma 3.7.
First consider p ∈ Λr. The explicit form of the simplices Λr and the arrange-
ment of the {σ(t)} show that the first m − 1 vectors vi form part of such a
basis at Tp and lie parallel to that face F of ∂Qr which contains p, while (3.3)
implies |vi| ∼ 1. In addition, we deduce from (3.1) that |vm| ∼ 1, and that
(the vector from 0 to) p makes an angle Θ with F such that | sin Θ| > m−1/2,
so Θ is uniformly bounded away from 0. Thus V is related to B as claimed
in the Lemma.

Now consider W . That |wi| = |(αi−αk,−m)| ∼ 1 for i < m follows from
properties of the {αi}. In addition, we have that |wm| = |(

∑
λiα

i,mλk)|∼1.
This follows from (2.11) and (3.6) when λk(= min λi) > η > 0, but when
λk is small, then

∑
λiα

i lies near ∂∆, and so
∑

λi already has magnitude
at least h for some fixed h > 0. To check that the {wi} span R

m appropri-
ately, note that the {wj} (j < m) span the tangent plane at f(p) ∈ A(r)P .
Hence (2.13) ensures that wm has a uniformly nontrivial normal component
to A(r)P at f(p). �
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4. Interpolation

In order to define f on ∂Qr for r ∈ Jk
n(k ≥ 1, n ≥ n0) we follow the scheme

of §3, but need to arrange new simplices (or partial simplices) so that (B)
in §2 holds when r = rn+1. We do this by working with the (m − 1) free
coordinates on a given face F one at a time, and when r ∈ J �

n, this will
be x�.

Consider, for example, the face F ⊂ ∂Qr on which xj ≡ r. For each
1 ≤ i ≤ m, i �= j, F again is partitioned by (m−1)-planes orthogonal to the
xi-axis. This has already been described when r ∈ J0, so consider a fixed
� ≥ 1. Then for each i < �, i �= j, the planes

(4.1) Πi
p(n + 1) = {xi = pr/(n + 1)}, |p| ≤ n + 1

divide F into 2(n + 1) congruent slices, and when i > �, i �= j, the {Πi
p(n)},

|p| ≤ n of (3.1) divide F into 2n congruent slices.

We next consider i = �, and recall ε0 in (2.7) and that J �
n = [r′�, r

′′
� ]. Then

use (2.10) to define ν�(r) with

(4.2)

ν�(r
′
�) = n, ν�(r

′′
� ) = n + 1,

d(log ν�(r))

d(log r)
≡ rν ′

�(r)

ν�(r)
=

1

log(r′′� /r
′
�)

≡ ε0 (r′� ≤ r ≤ r′′� ),

and partition F by planes Π�
p(ν�) ≡ {x� = pr/ν�(r), p ∈ Z, 0 ≤ |p| ≤ n}.

As r increases in J �
n, each Π�

±p(ν�) recedes from {x� = ±r} and so for the
appropriate choice of n∗ ∈ {n, n + 1}, the {Πi

p(n
∗)} (i �= j, �, and |p| ≤ n∗),

{Π�
p(ν�)} and {x� = ±r} create new boxes K ⊂ F , which when r = r′′� are

all congruent. Boxes whose boundary is disjoint from {x� = ±r} are called
interior boxes, and the others are boundary boxes.

As in §3, these boxes must be divided into simplices, and f defined
simplex by simplex. If K0 is an interior box, its barycentric subdivision leads
at once to oriented simplies Λr as in §3, with vertices b(r) having coordinates
bi(r), such that for i �= j, i < �, we have bi = (2pi)r/2(n + 1) (|pi| ≤ n + 1),
while b� = (2p�)r/(2ν�(r)) (|p�| ≤ n) and bi = (2pi)r/(2n), |pi| ≤ n when
i > �, i �= j. On F we have bj ≡ r. This again allows the simplex structure
and orientation to be transferred to the interior boxes. The only new feature
is that the coordinate b� of each vertex satisfies

(4.3) rb′� = b�

(
1 − rν ′

l

ν�

)
≡ b�(1 − ε0),

instead of what appears in (3.2). Since n ≤ ν�(r) ≤ n+1, these simplices Λr

are (1 + o(1)-bilipschitz equivalent to those Λr for r ∈ J0
n, and so the map-

pings (3.4) are uniformly (1 + o(1))K2-qc (perhaps sense reversing).
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We next consider the boundary boxes, and partition them into what we
call partial simplices Λ∗

r. It suffices to work in {x� ≥ 0} ∩Qr. The xi-coord-
inates (i �= �) of these boxes are the same as those corresponding to vertices
of interior boxes, while the x�-coordinate, b�, is either (n/ν�(r))r or r. Let

r∗ =
1

2

(
1 +

n

ν�(r)

)
r =

(n + ν�(r)

2ν�(r)

)
r,

and H : {x� = r∗}. Then H lies midway between Π�
n(ν�) and {x� = r},

and each boundary box K is divided by H into two congruent subboxes
K±. Let K− = K ∩ {(nr/ν�) ≤ x� ≤ r∗} and K+ the reflection of K− in
H. In an obvious sense K− may be considered as a subset of a (phantom)
box K′ which is bounded by the hyperplanes Π�

n(ν�) and Π�
n+1(ν�) ≡ {x� =

r(n + 1)/ν�(r)}, as well as the various hyperplanes Πi
p(n

∗) (i �= j, �, n∗ ∈
{n, n + 1}) which meet ∂K. In particular, K′

− may be divided into oriented
simplices Λr generated by vertices in the classes bi(r) exactly as with the
interior boxes K. The vertices Λ∗

r of K− are of the form Λ∗
r = Λr ∩ K′, with

inherited orientation. In the same way, we obtain simplices (Λ′
r)

∗ ⊂ K+;
these are reflections of the {Λ∗

r} across H.

We place Λ∗
r ⊂ K′ in groups according to how many vertices Λr ⊃ Λ∗

r

does not have on Π�
n(ν�). This number, t(Λ∗

r), is at least 1 and at most m−1.
If (Λ′

r)
∗ ⊂ K+ is the reflection of Λ∗

r across H, set t(Λ′
r)

∗ = t(Λ∗
r), and note

that the vertices of Λr and Λ′
r which contribute to the appropriate t are of

the same classes {bi}, while orientations of the simplices are reversed. Let
T = T (Λ∗

r) be the vertices of Λr which contribute to t(Λ∗
r): we call these

the phantom vertices.

The mapping f of (3.7) must be modified so that

f is L–bilipschitz andK-qc in each Λ∗
r,

(f(x))m ≥ 0 on Λ∗
r, (f(x))m = 0 on ∂Λ∗

r,

where (·)m is the m-th coordinate. The important requirement is that
(f(x))m vanish in ∂Λ∗

r; otherwise reflection across the boundary (compare
with (3.6)) will not be possible. Note that (3.6) cannot be used, since
(f(x))m is usually nonzero when x ∈ K+ ∩ K− = H ∩ K. To avoid this
we use T to modify the function λ of (2.11). According to the definition
of t(Λ), if p =

∑
λib

i(r) ⊂ Λ∗
r, then

(4.4) 0 ≤
∑
T

λi ≤ L(r) ≡ ν�(r) − n

2
,

where the left equality holds when p ∈ Π�
n(ν�) and the right when p ∈ H.
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Thus if Ks is the image of Λ∗
r ∩ H, we have

p′ = s
∑

λiα
i ∈ Ks ⇐⇒

∑
T

λi =
ν�(r) − n

2
= L(r).

Now with p′ and λ(p′) as in (3.5) and (2.11), we define λ∗
s to have the same

effect relative to Λ∗
r: if

p′ = s
(∑

λiα
i
)
∈ ∆A(r)

and L is from (4.4), set

(4.5) λ∗(p′) = s min

(
λ(p′), (L(r) −

∑
T

λi)

)
,

so that now λ∗ ≡ 0 on KA(r). Then when r ∈ J �
n and p ∈ Λ∗

r (1 ≤ � ≤ m),
we modify (3.6) to

(4.6) f(p) = (p′,±λ∗(p′)) =
(
s
∑

λiα
i,±λ∗(p′)

)
(s = A(r)),

signs chosen so that f is sense preserving. If p ∈ ∂Λ∗
r and L(r)−

∑
T λi = 0,

then p ∈ H, and the extension to the symmetric (Λ′
r)

∗ is by reflection across
H and K.

Lemma 4.7 Let p ∈ ∂Qr, r ∈ J �
n � ≥ 1, n ≥ n0. Then at almost every

point p there are bases V and W of Tp and Tf(p) so that Lemma 3.7 holds.

Proof. Let p and p′ = f(p) be as in Lemma 3.7, with λk the minimum λ
near p. Take V and {w1, . . . , wm−1} exactly as in Lemma 3.7, but with the
final basis vector, wm, replaced by a certain ŵm. The first (m−1) components
of ŵm are those of wm, but (ŵm)m is modified to the bracketed term in (4.9)
below (so that the factor A′(r) in (4.9) does not appear in ŵm).

When λ∗(p′) = λ(p′), the lemma reduces to Lemma 3.7, so we compute Jf

when in a neighborhood Ω of p

(4.8) λ∗(p′) = s
(
L(r) −

∑
T

λi

)
< λ(p′),

so that the same set T is common to all p′ ∈ Ω. The first (m − 1) rows
of Jf are unchanged, as are all but the diagonal entry of the bottom row.
If p =

∑
λib

i(r), then p + hvm =
∑

λib
i(r′), r′ = r + h, so that once
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again
∑

T λi is invariant. Hence when (4.8) holds, (4.5) and (4.6) show that
if p ∈ Ω and h is small,

(
f(p+hvm)−f(p)

)
m

=
(
A(r′)−A(r)

)(
L(r′)−

∑
T

λi

)
+A(r)

(
L(r′)−L(r)

)
,

and hence (2.3), (4.2), (4.4) and (4.6) give that

(Df(vm))m = A′(r)
(
L(r) −

∑
T

λi

)
+ A(r)

ν ′
k

2

= A′(r)
(
L(r) −

∑
T

λi

)
+

1

2

(ν(r)

r

)
A(r)

(rν ′
�

ν�

)(ν�

ν

)

= A′(r)

[(
L(r) −

∑
λi

)
+

1

2
ε0

(ν�

ν

)]
.(4.9)

Thus if Df(vm) = ŵm, the mth component, (ŵ)m, satisfies

(ŵ)m = max

(
(wm)m,

(
L(r) −

∑
T

λi

)
+

1

2
ε0

ν�

ν

)

(recall wm from (3.9)). But (1/2 ≥ (L −
∑

λi) ≥ 0 and 2ν ≥ ν� ≥ (ν/2)
when r ∈ J �

n. This implies that 1 ≥ (ŵ)m ≥ ε0/4.

We check that these bases satisfy the assertions of Lemma 3.7, and so only
need consider ŵm in the situation that (4.8) holds near p. Now ε0/4 ≤ (ŵ)m

≤ |wm|, while for j < m, (wj)m ≡ −m. Hence ŵm makes an angle with
span[w1, . . . , wm−1] whose sine is uniformly bounded below. This proves
the Lemma. �

5. Completion of proof

To extend f to Qr0 , recall from §3 that

f(x) = A(r0)Ψ(x) (x ∈ ∂Qr0),

where Ψ : ∂Qr0 → PA(r0), the polyhedron P of Proposition 3.5. Then exactly
as in [2, p. 14] f is extended to the rest of R

m:

f(x) =
( r

r0

)n0

A(r0)Ψ
(r0

r
x
)

(x ∈ ∂Qr, r ≤ r0).
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