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A Computer Algebra Solution to a
Problem in Finite Groups

Gert-Martin Greuel

Abstract

We report on a partial solution of the conjecture that the class
of finite solvable groups can be characterised by 2–variable identities.
The proof requires pieces from number theory, algebraic geometry,
singularity theory and computer algebra. The computations were
carried out using the computer algebra system Singular.

1. The Problem

The following problem has been communicated to me by B. Kunyavskii:
characterise the class of finite solvable groups by 2–variable identities. The an-
swer to this question would solve conjectures in the theory of finite and
profinite groups and has potential applications to graph theory.

To explain the problem, note that a group G is abelian if and only if
[x, y] = 1 for all x, y ∈ G where [x, y] = xyx−1y−1 is the commutator.
Recall also that a finite group G is nilpotent if and only if it satisfies the
Engel identity [x, y]n for some n and all x, y ∈ G (here [x, y]1 = [x, y]
and [x, y]n+1 =

[
[x, y]n, y

]
). It has been conjectured that some Engel–like

identities should characterise also the class of finite solvable groups. The
following, more precise, conjecture is due to B. Plotkin (cf. [7]).

For a given word w in the letters X,Y,X−1, Y −1, consider the sequence
Un = Uw

n of words defined inductively by

U1 = w

Un+1 = [XUnX−1, Y UnY −1] .
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Conjecture 1.1 (B. Plotkin) There exists a word w such that a finite
group G is solvable if and only if there exists an n ≥ 1 satisfying Uw

n (x, y) = 1
for all x, y ∈ G.

One may even conjecture that for any word w such that the sequence
Uw

n does not contain the trivial word Uw
n = 1 for some n, the conclusion of

Conjecture 1.1 holds.
The starting point for the proof is the following Theorem:

Theorem 1.2 (J. Thompson [8]) The minimal finite non–solvable groups
(that is, all subgroups are solvable) are:

(1) PSL(2, p), p prime number, p = 5 or p = ±2 (mod 5), p �= 3.

(2) PSL(2, 2n), n ≥ 2.

(3) PSL(2, 3n), n ≥ 3, odd.

(4) PSL(3, 3).

(5) Sz(2n), n ≥ 3.

In view of this result, Conjecture 1.1 is implied by

Conjecture 1.3 Let G be one of the groups in Thompson’s list (1)-(5).
Then there exists a word w in X,Y,X−1, Y −1, independent of G, such that
for all n there exists x, y ∈ G satisfying Un(x, y) �= 1.

Conjecture 1.3 has been proved for all cases except for the Suzuki groups
in (5) by using, in particular, computer algebra computations.

Theorem 1.4 ([2]) Conjecture 1.3 holds for the word w = X−1Y XY −1

and the groups (1)-(4) in Thompson’s list.1

While several attempts to prove the above conjectures by using the struc-
ture theory of finite groups failed, the following, completely different ap-
proach (in the spirit of [3]) leads to a proof of Theorem 1.4.

For any of the groups in (1)-(3), consider its standard linear representa-
tion, that is, consider the matrices

x =

(
0 −1
1 t

)
, y =

(
1 b
c 1 + bc

)

as elements of PSL(2, pn), p any prime number. (The case (4), PSL(3, 3) is
easy.) Then it is easy to see that U1(x, y) �= 1 for all x, y as above.

1Meanwhile (October 2002), all cases, including the Suzuki case (5), have been settled
by the authors, too, using the word w2 = X−2Y −1X. Hence Conjecture 1.3 is proved
with w = w2.
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Consider the matrix equation U1(x, y) = U2(x, y). If this has a solution
for some x, y as above, then, by definition of the sequence Un, Un(x, y) =
U1(x, y) �= 1 for all n ≥ 1. Hence, it suffices to show that U1(x, y) = U2(x, y)
has a solution.

Consider the ideal I generated by the entries of the matrix U1(x, y) −
U2(x, y) which is an ideal in Z[b, c, t].

We are going to show that the variety V (I) has a rational point (b, c, t) ∈
(Fpn)3 for all (p, n) occurring in (1)-(3) of Thompson’s list. This is equivalent
to U1(x, y) = U2(x, y) having a solution x, y ∈ PSL(2, pn).

To show that V (I) has a rational point, we use:

• the Hasse–Weil bound for the number of rational points on an abso-
lutely irreducible curve and its generalisation to singular curves,

• simple facts from algebraic geometry and singularity theory,

• simple generalisations of basic results from the theory of standard
bases,

• extensive computations, using Singular.

Remark: The word w in Theorem 1.4 is the first of the following four
words found by a computer search through about 10,000 shortest words in
X,X−1, Y, Y −1, for which the equation U1 = U2 had a non–trivial solution
in PSL(2, p), p < 1000:

w1 = X−1Y XY −1X , w2 = X−2Y −1X ,
w3 = Y −2X−1, w4 = XY −2X−1Y X−1 .

Meanwhile we could verify that also w2 satisfies the statement of Theo-
rem 1.4.

Acknowledgements: The present paper is a report on joint work in prepa-
ration with T. Bandman, F. Grunewald, B. Kunyavskii, G. Pfister and
E. Plotkin ([2]), which will appear elsewhere. I should particularly like
to thank B. Kunyavskii for many interesting discussions on the subject. It
is also a pleasure to thank the organisers of the conference in honour of
J. L. Vicente for providing a stimulating atmosphere during the conference.
Special thanks to H. Schönemann, who provided the necessary changes of
the kernel of Singular.
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2. Principal Steps of the Proof

We present only the principal steps for proving Theorem 1.4 and the groups
(1) in Thompson’s list. The other cases are similar. The arguments which we
present are valid for sufficiently large prime numbers p ≥ p0. The bound p0

can be explicitely determined and is small enough so that the remaining cases
can be checked case by case. For small p, a variety of different methods and
tricks has been used for which we refer to [5]. Here we concentrate mainly
on arguments from singularity theory, which helped to solve the problem for
large p.

(1) Create the ideal I ⊂ Z[b, c, t] generated by the entries of U1(x, y) −
U2(x, y). Show that it defines a smooth curve C in A3(C). Indeed,
computing a Gröbner basis without any division2 of the ideal defining
the singular locus, we find a p such that C defines a smooth curve in
A3(Fq) for all primes q ≥ p.

We want to show: For p sufficiently large, C has a rational point,
that is, a point in (Fp)

3. Since U1(x, y) �= 1 for all x, y, this is equiva-
lent to U1(x, y) = U2(x, y) having a solution and, hence, proves Theo-
rem 1.4 (1) for large p.

(2) Compute the ideal Ih ⊂ Z[b, c, t, h] of the projective closure C of
C in P3, h is the homogenising variable. Compute the Hilbert poly-
nomial of Ih as 16t − 24, hence C is of degree d = 16 and arithmetic
genus pa = 25.

(3) Compute the singular locus of C. We obtain that C has four singular
points: p1 = (1 : 0 : 0 : 0), p2 = (1 : 0 : 1 : 0), p3 = (0 : 1 :
0 : 0), p4 = (0 : 1 : −1 : 0), lying on H∞ = {h = 0}. We obtain
these points by computing a primary decomposition of the ideal 〈Ih, h〉
defining C ∩ H∞.

(4) Make a local analysis of the singularities by computing the tangent
cone of I at each singular point.

Compute, for each singular point, a primary decomposition of the ideal
defining the tangent cone. We obtain that C has four different smooth
branches at p1 and p3 and two different smooth branches at p2 and p4.

(5) Compute the delta invariants δ1, . . . , δ4 of p1, . . . , p4 by analysing the
tangent cone at these points further and computing intersection and
Milnor numbers. We obtain δ1 = δ3 = 4, δ2 = δ4 = 2. Hence, the
geometric genus of C is pg = 13.

2The result will not be a Gröbner basis over Z but a pseudo Gröbner basis, which
means that, for any prime number p such that p does not divide any leading coefficient,
the result is a Gröbner basis over the field Zp (cf. [4], [5]).
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(6) Now we use the (generalised) Hasse–Weil bound for the number of
rational points Nq(C) = #C(Fq) of an absolutely irreducible projective
curve C, defined over a finite field Fq:

Nq(C) ≥ q + 1 − 2pg
√

q −
∑

p∈ Sing(C)

(rp − 1)

where rp denotes the number of local analytic branches of the germ
(C, p). This is an easy improvement of the bound given in [1] (which
involves δp instead of rp − 1).

We want to show Np(C) > 0 for large primes p.

Since C = C � H∞ ∩ C and #H∞ ∩ C = 4, we obtain

Np(C) ≥ p − 26
√

p − 11 ,

that is, Np(C) > 0 if p > 700, provided C is absolutely irreducible.

(7) It remains to show that C is absolutely irreducible. This is the hard-
est part.

Project C ⊂ P3 from the point p3 = (0 : 1 : 0 : 0) to P2 by elimi-
nating c from the ideal I ⊂ Z[b, c, t, h]. The result is a homogeneous
polynomial f of degree 12.

Now we make an “Ansatz”

f = f1 · f2 ,

with 1 ≤ deg f1 ≤ 12, deg f2 = 12 − deg f1, where the coefficients of
f1, resp. f2, are indeterminates a1, . . . , aN , resp. b1, . . . , bM , that is,
f1 ∈ Z[a1, . . . , aN , b, t, h], f2 ∈ Z[b1, . . . , bM , b, t, h].

Compute the ideal H ⊂ Z[a1, . . . , aN , b1, . . . , bM ] generated by the co-
efficients of f − f1 · f2.

(8) Compute a Gröbner basis of H in Q[a1, . . . , aN , b1, . . . , bM ] but without
any division. That is, the result is defined over Z and during the
computation no division occurred (here we had to change the kernel of
Singular). It turns out that, in all cases, the result is an integer n,
and hence the following holds:

For any prime p such that p � n, the reduction of H mod p, that is
the image of H in Zp[a1, . . . , aN , b1, . . . , bM ], has no solution over the
algebraic closure Zp of Zp. This is an easy generalisation of the well–
known corresponding result for Gröbner bases over fields (cf. [4], [5]).

Hence, for any p � n, the decomposition f = f1 · f2 is impossible over
Zp and, therefore, the image of f in Zp[b, t, h] is absolutely irreducible.
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(9) For the remaining finitely many primes p which divide n, we check by
a direct computation that C has a point in (Zp)

3.

(10) All computations were done by using the computer algebra system
Singular ([6]). To be able to compute a pseudo Gröbner basis, we
had to change the kernel of Singular slightly. This is available in
Singular-2-0-3 or higher by setting option(contentSB). However, a
straightforward Gröbner computation led to much too large integers n.
Therefore, we invented a “divide and conquer” strategy to keep n
small, for which we refer to [5], and to the Singular code which is
available from the authors.

3. SINGULAR Computations

In this section we present the Singular computations for steps (1)-(5)
which are needed for the computation of the geometric genus of the space
curve C3. We omit the computations for proving that C is absolutely irre-
ducible, which is much more involved (cf. [5]). The sequence of commands
below may be used as a model to attack related problems.

We start by loading all Singular libraries:

LIB "all.lib"; //load all libraries

Step (1)

Create the polynomial ring and the matrices X and Y representing elements
of PSL(2, pn):

ring r = 0,(b,c,t),dp; //global (affine) ring
matrix X[2][2] = 0, -1,

1, t;
matrix Y[2][2] = 1, b,

c, 1+bc;

Create the word w:

matrix iX = inverse(X);
matrix iY = inverse(Y);
matrix U1 = iX*Y*X*iY*X; //the word w
matrix N = X*U1*iX;
matrix M = Y*U1*iY;
matrix iN = inverse(N);
matrix iM = inverse(M);
matrix U2 = N*M*iN*iM;

3New versions of Singular (2-0-4 and higher) will contain a procedure genus which
computes the geometric genus of a reduced curve automatically.
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Create the ideal I of entries of the matrix U1 − U2:

ideal I = ideal(U1-U2);
I;
//--> I[1]=-b6c4+b5c5-b6c3t+4b5c4t-2b4c5t+3b5c3t2-5b4c4t2+b3c5t2
//--> -3b4c3t3+2b3c4t3+b3c3t4-b6c2-4b5c3+3b4c4+2b3c5-b5c2t
//--> +12b4c3t-2b3c4t-2b2c5t+7b4c2t2-11b3c3t2-b2c4t2-7b3c2t3
//--> +3b2c3t3+2b2c2t4-3b5c-8b4c2+4b3c3+5b2c4+bc5+3b4ct+12b3c2t
//--> +2b2c3t-2bc4t+2b3ct2-3b2c2t2-4bc3t2-2b2ct3-bc2t3-2b4
//--> -10b3c+2b2c2+4bc3+c4+2b3t+6b2ct+c3t+2bct2-b2c-b2t+bct
//--> +bt2-5b2-2bc+c2+bt-ct-b-c-1
//--> I[2]=b6c3-b5c4+b6c2t-4b5c3t+2b4c4t-3b5c2t2+5b4c3t2-b3c4t2
//--> +3b4c2t3-2b3c3t3-b3c2t4+b6c+3b5c2-3b4c3-2b3c4-10b4c2t
//--> +2b3c3t+2b2c4t-5b4ct2+10b3c2t2+b2c3t2+6b3ct3-3b2c2t3
//--> -2b2ct4+2b5+4b4c-6b3c2-5b2c3-bc4-4b4t-8b3ct+2bc3t+2b3t2
//--> +3b2ct2+4bc2t2+bct3-b2c2-2b2ct+bc2t-b2t2+2bct2+bt3+3b3
//--> -7b2c-5bc2-c3-4b2t+2bct-c2t+bt2-2bc-c2-2bt-ct-2b-2c-1
//--> I[3]=-b6c5+b5c6-b6c4t+4b5c5t-2b4c6t+3b5c4t2-5b4c5t2+b3c6t2
//--> -3b4c4t3+2b3c5t3+b3c4t4-b6c3-5b5c4+4b4c5+2b3c6-2b5c3t
//--> +16b4c4t-4b3c5t-2b2c6t+10b4c3t2-16b3c4t2-10b3c3t3+5b2c4t3
//--> +3b2c3t4-4b5c2-11b4c3+6b3c4+7b2c5+bc6+3b4c2t+20b3c3t
//--> +2b2c4t-4bc5t+6b3c2t2-9b2c3t2-6bc4t2-6b2c2t3+bc2t4-4b4c
//--> -16b3c2+5b2c3+7bc4+2c5+4b3ct+14b2c2t+c4t+b2ct2-c3t2-bct3
//--> -b3-11b2c-bc2+3c3+b2t+4bct-2c2t+ct2+b2-bt-2b-2c+1
//--> I[4]=b6c4-b5c5+b6c3t-4b5c4t+2b4c5t-3b5c3t2+5b4c4t2-b3c5t2
//--> +3b4c3t3-2b3c4t3-b3c3t4+b6c2+4b5c3-4b4c4-2b3c5+b5c2t
//--> -14b4c3t+4b3c4t+2b2c5t-8b4c2t2+15b3c3t2+9b3c2t3-5b2c3t3
//--> -3b2c2t4+3b5c+6b4c2-8b3c3-7b2c4-bc5-5b4ct-14b3c2t+4bc4t
//--> +8b2c2t2+6bc3t2+3b2ct3-bct4+b4+6b3c-12b2c2-8bc3-2c4-2b3t
//--> -10b2ct+4bc2t-c3t+b2t2+4bct2+c2t2+b2c+b2t-bct-bt2+b2-6bc
//--> -5c2-bt+ct+b+c+t-1

We now have to show that I defines a curve and that its reduction mod p
has rational points for sufficiently large p.

We start by computing the dimension and singular locus of the variety de-
fined by I:

ideal sI = groebner(I); //compute a Groebner basis
dim(sI); //compute the dimension of I
//--> 1 //I defines a curve

dim_slocus(I); //the singular locus is empty
//--> -1
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Step (2)

Compute the projective closure C of C by homogenising I:

ring rh = 0,(b,c,t,h),dp; //h is the homogenizing variable
ideal I = imap(r,I);
ideal sI = groebner(I);
ideal hI = homog(sI,h); //the projective closure is given

//by a homogenized standard basis
ideal shI =std(hI); //a Groebner basis of hI

Compute the Hilbert polynomial, the degree and arithmetic genus of the
projective curve C:

The command hilb(shI); displays the first and the second Hilbert series
of C. The second Hilbert series is used to compute the Hilbert polynomial
of C. It is coded in the integer vector v=hilb(shI,2).

intvec v = hilb(shI,2);
v;
//--> 1,2,3,4,5,4,-1,-2,0

To compute the Hilbert polynomial we need a small procedure:

poly hp;
for(int i=1; i<=size(v); i++)
{
hp=hp+v[i]*(t-i+2); (t)^(-i+2)

}
hp;
//--> 16t-24 //the Hilbert polynomial

The Hilbert polynomial of C is 16t − 24. Hence C is a curve of degree 16
and arithmetic genus 25.

Step (3)

By Step (1) we know that C is non–singular. To check whether C is singular,
we compute the dimension of the singular locus of the affine cone of C:

dim_slocus(shI);
//--> 1 //curve is singular at infinity

Now compute the singular points of C at infinity:

ideal I0 = subst(hI,h,0); //intersection with line
//at infinity

list pr = primdecGTZ(I0); //make a primary decomposition

To locate the intersection points of C with the hyperplane at infinity, we
make a primary decomposition of the ideal I0 which defines the affine cone
over these points.



A Computer Algebra Solution to a Problem in Finite Groups 421

The primary decomposition is displayed by typing pr;. The list consists of
five entries pr[1],..., pr[5], we omit the entry pr[5] of the list, describ-
ing the embedded component corresponding to the vertex of the affine cone.
Each list entry pr[i] consists of two ideals pr[i][1], and pr[i][2], where
the first is the ideal of the primary component, while the second is the ideal
of the associated prime ideal. The Singular output is slightly changed to
save space:

pr;
//-->[1]: //-->[2]:
//--> [1]: //--> [1]:
//--> _[1]=c2 //--> _[1]=t5
//--> _[2]=b-t //--> _[2]=ct2
//--> [2]: //--> _[3]=c2+ct
//--> _[1]=c //--> _[4]=b2ct+t4
//--> _[2]=b-t //--> [2]:

//--> _[1]=t
//--> _[2]=c

//-->[3]: //-->[4]:
//--> [1]: //--> [1]:
//--> _[1]=c+t //--> _[1]=t5
//--> _[2]=b2 //--> _[2]=bt2
//--> [2]: //--> _[3]=bc2t-t4
//--> _[1]=c+t //--> _[4]=b2-bt
//--> _[2]=b //--> [2]:

//--> _[1]=t
//--> _[2]=b

Hence we see that C has four points at infinity: p1 = (1 : 0 : 0 : 0),
p3 = (1 : 0 : 1 : 0), p2 = (0 : 1 : 0 : 0), p4 = (0 : 1 : −1 : 0), the coordinates
are (b : c : t : h).

Step (4)

Make a local analysis of the points at infinity. We consider only the affine
chart (b = 1) which contains the points p1 = (0, 0, 0) and p3 = (0, 1, 0) in
affine coordinates:

ideal I1 = subst(hI,b,1); //set b=1

Make a local analysis in p1:

ideal T1 = tangentcone(I1); //the tangent cone of C at p1
list pr = primdecGTZ(T1); //primary decomposition

//of the tangent cone
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pr;
//-->[1]: //-->[2]: //-->[3]:
//--> [1]: //--> [1]: //--> [1]:
//--> _[1]=t-2h //--> _[1]=t+h //--> _[1]=h
//--> _[2]=c+h //--> _[2]=c2-ch+h2 //--> _[2]=c
//--> [2]: //--> [2]: //--> [2]:
//--> _[1]=t-2h //--> _[1]=t+h //--> _[1]=h
//--> _[2]=c+h //--> _[2]=c2-ch+h2 //--> _[2]=c

Hence, we obtain four different smooth branches because the second list en-
try pr[2] defines two (non–rational) points. Moreover, we see from pr[1]

and pr[3] that the branches 1 and 4 have rational tangent directions, and
from pr[2] that branches 2 and 3 have irrational tangent directions. There-
fore, two of the preimage points in the normalisation are rational and two
are irrational.

Step (5)

To compute the delta invariant of the singular point p1, we note that (C1, 0),
the union of branches 1 and 4, as well as (C2, 0), the union of the two
branches with irrational tangents, define both an A1–singularity. Since
δ(A1) = 1 and since δ

(
(C1, 0) ∪ (C2, 0)

)
= δ(C1, 0) + δ(C2, 0) + (C1 ∗ C2, 0)

we have to compute the intersection multiplicity of (C1 ∗C2, 0) of C1 and C2

at 0, which coincides with the intersection multiplicities of the tangents.

ring s = 0,(c,t,h),ds; //create a local ring
list pr = imap(rh,pr);
ideal i1, i2 = pr[1][2], pr[3][2];
ideal C1 = intersect(i1,i2);
ideal C2 = pr[2][2];
option(prot);
vdim(std(C1+C2)); //intersection multiplicity of C1 and C2
//--> 2 //intersection multiplicity is 2

Hence δ(C, p1) = 1 + 1 + 2 = 4.

Now let us compute δ of C at the point p3:

setring rh;
map phi = rh,b,c,t+1,h;
ideal I3 = phi(I1);
ideal T3= tangentcone(I3);
primdecGTZ(T3);
//-->[1]:
//--> [1]:
//--> _[1]=c2
//--> _[2]=t
//--> [2]:
//--> _[1]=c
//--> _[2]=t
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Hence we have a singularity of multiplicity 2 with one tangent, it must
be an Ak singularity with k > 1.

setring s;
ideal I3 = imap(rh,I3);
option(prot);
I3 = std(I3);
I3;
//--> I3[1]=t-c2+2ct+4t2+ch+th-2h2-c3-2c2t+4ct2+6t3+4cth+3t2h
//--> -7ch2-7th2-c3t-c2t2+3ct3+4t4+2c2th+6ct2h+4t3h-2c2h2
//--> -13cth2-11t2h2-4ch3-th3-3h4+ct4+t5+c3th+3c2t2h+4ct3h+2t4h
//--> +c3h2-4ct2h2-5t3h2-2c2h3-5cth3-3t2h3+ch4-2th4-2h5
//--> I3[2]=c2-ct-2ct2-cth+6ch2-2th2-c2t2-ct3-c2th-ct2h+5cth2
//--> -3t2h2+2ch3-2th3+7h4+c2th2-t3h2-2cth3-2t2h3-2ch4+5th4+4h5

We see that I3 is a complete intersection and we can compute its Milnor
number (using the Greuel-Lê formula implemented in Singular):

milnor(I3);
//--> 3

The curve C has at p3 an A3–singularity, hence δ(C, p3) = 2.

Similarly, we compute δ(C, p2) = 4, δ(C, p4) = 2. Altogether, the total
δ invariant is 12 and we can compute the geometric genus of the projective
closure of C as pg(C) = pa(C) − δ(C) = 25 − 12 = 13.
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