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A new Proof of Desingularization over
fields of characteristic zero

Santiago Encinas and Orlando Villamayor

Abstract

We present a proof of embedded desingularization for closed sub-
schemes which does not make use of Hilbert-Samuel function and
avoids Hironaka’s notion of normal flatness (see also [17] page 224).
Given a subscheme defined by equations, we prove that embedded
desingularization can be achieved by a sequence of monoidal trans-
formations; where the law of transformation on the equations defining
the subscheme is simpler then that used in Hironaka’s procedure.

This is done by showing that desingularization of a closed sub-
scheme X, in a smooth sheme W, is achieved by taking an algorith-
mic principalization for the ideal I(X), associated to the embedded
scheme X. This provides a conceptual simplification of the origi-
nal proof of Hironaka. This algorithm of principalization (of Log-
resolution of ideals), and this new procedure of embedded desingu-
larization discussed here, have been implemented in MAPLE.

Introduction

In his monumental work ([20]), Hironaka proved desingularization, and a
strong form of principalization, also called Log-resolution, of ideals in regular
schemes; both results proved over fields of characteristic zero. His proof is
existential in the sense that it does not provide an algorithm in order to
achieve desingularization.

Different constructive proofs, following Hironaka’s approach, appear in
[7], [16], and in [27] (see also [28]). Each one of these proofs provides an
algorithm of desingularization which indicates where to blow-up in order to
eliminate the singularities in a step by step procedure. The idea is to define
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invariants of singular points, and to show that these invariants improve when
blowing up the set of worst singularities. Desingularization is then achieved
by repeatedly blowing up the set of worst points.

All algorithmic procedures mentioned above make use, as Hironaka did
in his original work, of the Hilbert Samuel function. Namely the invariant
attached to a singular point, consists of the full Hilbert Samuel function at
the given point, followed by other data.

The purpose of this work is to show that embedded desingularization
can be achieved in a different way, where the Hilbert Samuel functions are
avoided. In fact we show that desingularization follows from algorithmic
principalization.

Here principalization of ideals is meant in a strong form, in which the
ideal becomes locally monomial after a suitable sequence of monoidal trans-
formations (also called Log-resolution of ideals). Algorithmic principaliza-
tion of ideals, is stated here in 4.4 as an algorithm of resolution of basic
objects (see also 2.5).

This paper is organized so that the reader can easily get into what is new
in this proof, without having to go through technicalities. To this end we
do not include here details of algorithmic resolution of basic objects; here
we focus on showing why our short proof in 4.8 arises quite directly from
properties extracted from the algorithm. Let us mention that this algorithm
of resolution of basic objects treated in [17], and implemented in MAPLE
by Bodnár and Schicho, is available at

http://www.risc.uni-linz.ac.at/projects/basic/adjoints/blowup

and we encourage the reader to test on examples.

This proof has also led to stronger formulations of desingularization
in [12], and we also mention [14] for a proof in a different line. Applica-
tions of our proof to the study of desingularization of families of embedded
schemes were developed in [15].

In this paper we address equivariant desingularization for equidimen-
sional schemes embedded in smooth schemes. Those willing to postpone our
discussion on equivariance should skip Definition 1.4 and all Section 3.

The contents of this paper are also included in Matsuki’s clear and de-
tailed discussion of algorithmic desingularization (see [24]).

We finally refer to [11] for an extension of this proof to the class of locally
embedded excellent schemes, and for a full description of this equivariant
algorithm in that more ample context. That paper also includes the stronger
form of desingularization introduced in [13], the result of desingularization of
families of embedded schemes in [15], and other applications of the theorem.
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1. Embedded desingularization

Definition 1.1. Let W be a regular scheme and let Y1, . . . , Yk ⊂ W be a set
of closed subschemes. We say that Y1∪. . .∪Yk have normal crossing at a point
ξ ∈ W if there exists a regular system of parameters {x1, . . . , xd} ⊂ OW,ξ,
such that for each i ∈ {1, . . . , k}, either I(Yi)ξ = OW,ξ, or

I(Yi)ξ = 〈xi1 , . . . , xisi
〉

for some xi1 , . . . , xisi
∈ {x1, . . . , xd}. We say that Y1 ∪ . . . ∪ Yk have normal

crossing in W if they have normal crossing at any point of W .

Definition 1.2. Let W be a pure dimensional scheme, smooth over a field k
of characteristic zero, and let E = {H1, . . . , Hr} be a set of smooth hyper-
surfaces in W with normal crossing. The couple (W,E) is said to be a pair.

1.3. Transformation of pairs. A regular closed subscheme Y ⊂ W is said
to be permissible for a pair (W,E) if Y has normal crossing with E (i. e.
with ∪r

i=1Hi).

Given (W,E) and Y as above, let

W ←− W1

be the blow up at Y , and set E1 = {H ′
1, . . . , H

′
r, H

′
r+1}, where H ′

i denotes the
strict transform of Hi, and H ′

r+1 = Π−1(Y ) is the exceptional hypersurface
in W1. The permissibility of Y insures that W1 is smooth, and that E1 has
normal crossing. We say that

(W,E) ←− (W1, E1)

is a transformation of pairs defined by the permissible center Y .

A sequence of transformations of pairs:

(1.3.1) (W0, E0) ←− (W1, E1) ←− · · · ←− (Wk, Ek)

with centers Yi, i = 0, 1, . . . , k − 1 is a composition of transformations.

Definition 1.4. We say that an isomorphism Θ : W0 → W0 defines an
isomorphism on the pair (W0, E0) if Θ(Hi) ⊂ Hi for any Hi ∈ E0.

A group G is said to act on a pair (W0, E0), if it acts on W0, and if any
Θ ∈ G defines an isomorphism on the pair.

Let now
(W0, E0) ←− (W1, E1)

be a transformation of pairs defined by a permissible center Y ⊂ W0. Assume
that a group G acts both on the pair (W0, E0) and also on Y ⊂ W0. In this
case G also acts on the pair (W1, E1) ([11, Lemma 4.2]).
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A sequence of transformations of pairs (1.3.1) is said to be G-equivariant
if G acts on the pairs (Wi, Ei), 0 ≤ i ≤ k−1, and Θ(Yi) = Yi for 0 ≤ i ≤ k−1,
for any Θ ∈ G. In such case the group G acts on the pair (Wk, Ek).

Note that by a step by step lifting of the action, we can also state that
(1.3.1) is equivariant if G acts on acts on the pair (W0, E0), and also on the
centers Yi for 0 ≤ i ≤ k − 1.

Theorem 1.5 (Embedded Desingularization). Given a closed reduced
and equidimensional subscheme X0 ⊂ W0, there is a sequence of transfor-
mations of pairs

(W0, E0 = ∅) ←− · · · ←− (Wr, Er)

inducing a proper birational morphism Π : Wr −→ W0, so that setting
Sing(X0) as the singular locus of X0, Reg(X0) = X0 − Sing(X0), and
Xr ⊂ Wr the strict transform of X0, then:

(i) The morphism Π defines an isomorphism

W0 \ Sing(X0) ∼= Wr \
⋃

H∈Er

H

and hence Reg(X) ∼= Π−1(Reg(X)) ⊂ Xr via Π.

(ii) Xr is regular and has normal crossing with Er.

(iii) (Equivariance) Any action of a group G on X0 ⊂ W0 has a unique
natural lifting to an action on (Wr, Er) and on Xr ⊂ Wr(3.1).

Proof: See 4.8. �

2. Basic Objects

2.1. We will prove Theorem 1.5 as a corollary of the algorithm of principal-
ization. We will essentially unify principalization and desingularization by
means of the notions of basic objects and of algorithmic resolution of basic
objects, which we now introduce.

Definition 2.2. [16, Definition 1.2] A basic object (W0, (J0, b), E0), is a pair
(W0, E0), an ideal J0 ⊂ OW0 , and a positive integer b. We require that
(J0)ξ �= 0 for any ξ ∈ W0.

Note here that OW0,ξ is a local regular ring; let νJ0(ξ) denote the order
of (J0)ξ at the local ring OW0,ξ (the biggest integer such that the correspond-
ing power of the maximal ideal contains (J0)ξ).

We finally define

Sing(J0, b) = {ξ ∈ W0 | νJ0(ξ) ≥ b} (⊂ W0) ,

which is a closed subset in W0.
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2.3. Transformation of basic objects. [16, Definition 1.4] We shall say
that Y0 is permissible for the basic object (W0, (J0, b), E0) if Y0 is permissible
for the pair (W0, E0), and, in addition, Y0 ⊂ Sing(J0, b). In such case let
W0 ←− W1 be the blow-up with center Y0 and denote by H1 ⊂ W1 the ex-
ceptional hypersurface. In the particular case in which Y0 is irreducible, with
generic point ξ, then ξ ∈ Sing(J0, b) and νJ0(ξ) ≥ b (since Y0 ⊂ Sing(J0, b)).

Set c1 = νJ0(ξ); there is a factorization

J0OW1 = I(H1)
c1 J̄1

for a well defined sheaf of ideals J̄1 ⊂ OW1 . In the general case, in which Y0

is not necessarily irreducible, we obtain, in a similar way, a well defined
expression as above, where now c1 ≥ b is locally constant on H1.

We define
J1 = I(H1)

c1−bJ̄1

and set
(W0, (J0, b), E0) ←− (W1, (J1, b), E1)

which we call a transformation of basic objects.
It should be noted, that in general, the sheaf of ideals J1 is not the strict

transform of J0.

Definition 2.4. A sequence of transformations of basic objects

(2.4.1) (W0, (J0, b), E0) ←− · · · ←− (Wk, (Jk, b), Ek)

is a resolution of (W0, (J0, b), E0) if Sing(Jk, b) = ∅.
2.5. Assume, for simplicity, that E0 = ∅ so that ∪Hi (Hi ∈ Ek in 2.4.1) is
the exceptional locus of the composition W0 ←− Wk. It follows from the
notion of transformation of basic objects, that if (2.4.1) is a resolution then:

J0OWk
= Jk.M

where M is an invertible sheaf of ideals supported on ∪Hi (locally spanned
by a monomial), and Jk is a sheaf of ideals with order at most b−1 at points
of Wk.

In particular, if b = 1 in the resolution 2.4.1, Jk = OWk
so

J0OWk
= M

Hence, the total transform of J0 is an invertible sheaf of ideals, locally defined
by a monomial (monomialization).
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3. Equivariance

3.1. Let G be a group acting on W , and X ⊂ W a subscheme; we say that
G acts on X ⊂ W when the action on W induces, by restriction, an action
on X. If X ⊂ W is simply a closed set we view it as a subscheme with the
unique reduced structure.

Since we will prove both desingularization and monomialization by means
of resolutions of basic objects, we discuss now the notion of group actions
within that context.

Definition 3.2. Group actions on basic objects. Consider a basic
object (W0, (J0, b), E0) and a group G acting on the pair (W0, E0). We
will say that G acts on the basic object when following conditions holds:

0) The group G acts on Sing(J0, b) ⊂ W0, namely

Θ(Sing(J0, b)) = Sing(J0, b)

for any Θ ∈ G.

k) Whenever a sequence of transformations of basic objects

(3.2.1) (W0, (J0, b), E0) ←− · · · ←− (Wk, (Jk, b), Ek)

is such that the induced sequence of pairs

(3.2.2) (W0, E0) ←− · · · ←− (Wk, Ek)

is G-equivariant (1.4), then the group G acts on Sing(Jk, b) ⊂ Wk, namely

Θ(Sing(Jk, b)) = Sing(Jk, b)

for any Θ ∈ G.

3.3. Main Example. Note that the previous definition involves all possible
G-equivariant sequences of transformations of basic objects.

If a group G acts on W0, each Θ ∈ G defines an isomorphism Θ# :
OW0 → OW0 . Suppose now that a group G acts on a pair (W0, E0), and
that J0 is a is G-invariant sheaf of ideals (i.e. Θ#(J0) = J0 for any Θ ∈ G).
We claim that in these conditions, for any b, the group G acts on the basic
object (W0, (J0, b), E0).

So assume that Y0 is permissible for the basic object (W0, (J0, b), E0), and
G-invariant. Note that Y0 ⊂ Sing(J0, b) is permissible for the pair (W0, E0).
Set W0 ←− W1 the blow-up with center Y0, and denote by H1 ⊂ W1 the
exceptional hypersurface.

Since Y0 is closed and regular, it is the disjoint union of irreducible
components Y0 = Z1 ∪ · · · ∪ Zs, each Zi with generic point, say ξi ∈
Sing(W0, b). Note that H1 is also a union of s irreducible components, say
H1 = V1 ∪ · · · ∪ Vs.
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Let
J0OW1 = I(H1)

c1 J̄1 and J1 = I(H1)
c1−bJ̄1

be as in 2.3, and note that the locally constant function c1 is constant and
equal to νJ0(ξi) along each component Vi.

On the other hand, the group G acts on the set {ξ1, ..., ξs}, and if
Θ(ξi) = ξj for some Θ ∈ G, then νJ0(ξi) = νJ0(ξj), since Θ(J0) = J0.

Since the action of G can be lifted to W1, and since J0 is G-invariant, it
follows that the total transform J0OW1 is G-invariant.

We leave it to the reader to check that the sheaves of ideals I(H1)
c1 ,

I(H1)
c1−b, and J1 are G-invariant in W1. In particular G acts on Sing(J1, b) ⊂

W1. A step by step argument shows now that G acts on the basic object
(W0, (J0, b), E0) in the sense of 3.2.

Take for instance a group G acting on X ⊂ W (3.1), where X is a
subscheme defined by a sheaf of ideals J . In this case J is G-invariant, so G
acts on the basic object (W, (J, 1), ∅).

4. Algorithms of Desingularization

4.1. We now discuss the notion and properties of algorithmic resolution of
basic object, which will lead us to a constructive proof of the theorem of
desingularization.

Definition 4.2. Fix a totally ordered set (I,≤), and a closed set F ⊂ W .
A function h : F −→ I is said to be upper-semi-continuous if:

i) h takes only finitely many values, and

ii) {ξ ∈ F | h(ξ) ≥ α} is a closed set, for any α ∈ I.

We denote by max h the maximum value in I achieved by h, and set Max h =
{ξ ∈ F | h(ξ) = max h} which is closed in F .

Given a basic object (W, (J, b), E), we say that an upper-semi-continuous
function

h : Sing(J, b) −→ I

is equivariant if, for any group G acting on this basic object,

h(ξ) = h(Θ(ξ)) ∀ ξ ∈ Sing(J, b) ∀ Θ ∈ G.

4.3. Note that if h is equivariant, then any group G acting on the basic
object (W, (J, b), E) also acts on the closed set Max h ⊂ W . If, in addition,
Max h is permissible for (W,E), then any such G also acts on the transform
of the basic object with center Max h.
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4.4. Algorithm of resolution of basic objects. Let d be a non-negative
integer. An algorithm of resolution for d-dimensional basic objects con-
sists of:

A: A totally ordered set (Id,≤).

B: For each basic object (W0, (J0, b), E0) with d = dim W0:

i: An equivariant function f d
0 : Sing(J0, b) −→ Id is defined, and this

function has the property that Max f d
0 ⊂ Sing(J0, b) is permissible

for (W0, (J0, b), E0). Suppose, by induction, that an equivariant

sequence with centers Yi ⊂ Sing(Ji, b),i = 0, . . . , r − 1:

(4.4.1) (W0, (J0, b), E0)←· · ·←(Wr−1, (Jr−1, b), Er−1)←(Wr, (Jr, b), Er)

together with equivariant functions f d
i : Sing(Ji, b) −→ Id, i =

0, . . . , r − 1 have been defined, and that Yi = Max f d
i . Then:

ii: If Sing(Jr, b) �= ∅, an equivariant function f d
r : Sing(Jr, b) −→ Id

is defined, and Max f d
r is permissible for (Wr, (Jr, b), Er).

Note that B(ii) says that whenever Sing(Jr, b) �= ∅ there is
an equivariant enlargement of (4.4.1) with center Yr = Max f d

r

(see 4.3).

C: For some index r, depending on the basic object (W0,(J0,b),E0), the equi-
variant sequence constructed in B is a resolution (i. e. Sing(Jr, b) = ∅).

4.5. We refer the reader to [8] for an implementation of the algorithm treated
in [17, Theorem 7.13], to see how it works on examples.

Condition C says that for i = 0, 1, . . . , k, the functions fi : Sing(Ji, b) →
Id define a resolution of the basic object (W0, (J0, b), E0), with centers Max f d

i .
We will refer to it as the resolution defined by the algorithm, or the resolu-
tion defined by the functions fi. Note that B says that this resolution is
equivariant.

Let B = (W0, (J0, b), E0) be a basic object. If U0 ⊂ W0 is a non-empty
open set, then we set the restriction of the basic object to be

(W0, (J0, b), E0)U0 = (U0, (J |U0 , b), EU0) ,

where J |U0 is the restriction of the sheaf of ideal to U0 and EU0 = {H ∩U0 |
H ∈ E}. If

(4.5.1) (W0,(J0, b), E0)←· · ·← (WN−1,(JN−1, b), EN−1)←(WN ,(JN , b), EN)

is the resolution defined by the algorithm, it induces naturally a sequence

(4.5.2)
(W0,(J0, b), E0)U0 ←· · ·← (WN−1, (JN−1, b), EN−1)UN−1

←(WN ,(JN , b), EN)UN

where each Uk is an open subset in Wk (the pull back of U0 in Wk).
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Each function fi : Sing(Ji, b) → Id induces by restriction a function on
Ui ∩ Sing(Ji, b). Note that if Max f d

i ∩ Ui = ∅, then

(Wi, (Ji, b), Ei)Ui
←− (Wi+1, (Ji+1, b), Ei+1)Ui+1

is the identity map, and hence can be neglected from (4.5.2).

4.6. Properties of the algorithm. Algorithmic principalization has the
following properties (see [17, p. 192]):

p1: The functions defining the algorithmic resolution of the d-dimensional
basic object (W0, (J0, b), E0)U0 are the restriction of the functions fk

defining (4.5.1). In particular (4.5.2) is the resolution of (W0, (J0, b), E0)U0

defined by the algorithm.

p2: For the resolution defined by the algorithm, say (4.5.1):

max f d
0 > max f d

1 > · · · > max f d
N−1 .

p3: If J0 is the ideal of a regular pure dimensional subvariety X0, E0 = ∅
and b = 1, then the function f d

0 is constant.

p4: For any i = 0, . . . , N − 1, the closed set Max f d
i is smooth and equidi-

mensional. Furthermore, the dimension is determined by the value
max f d

i .

4.7. It follows from Property p1), that if ξ ∈ Sing(Ji, b), i = 0, . . . , r − 1,
and ξ �∈ Yi, then f d

i (ξ) = fd
i+1(ξ

′) via the natural identification of the point ξ
with a point ξ′ of Sing(Ji+1, b)

4.8. Proof of theorem 1.5. Fix notation as in theorem 1.5, and consider
the basic object

(W0, (J0, 1), E0),

where W0 = W , J0 = I(X) and E0 = ∅. Clearly X = Sing(J0, 1).

Take U = W \Sing(X). By p3) we know that the function f0 : Sing(J0, 1)
→ (Id,≤) is constant on the restriction to Sing(J0, 1)∩U (on the restriction
(W0, (J0, 1), E0)U). Let a(d) denote this constant value along the points
in U ∩ X.

By 4.4 C), we know that the algorithm provides a resolution of the basic
object (W0, (J0, 1), E0) by means of a finite sequence of blow-ups

(4.8.1) (W0,(J0, 1), E0)←(W1, (J1, 1), E1)← . . .←(WN ,(JN , 1), EN) ,

at permissible centers Yi ⊂ Sing(Ji, b) for i = 0, 1, . . . , N − 1. There-
fore Sing(JN , b) = ∅, and by p1) and p2), there must be an index k ∈
{0, 1, . . . , N} such that max fk = a(d). Such index k is unique by p2).
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Now U can be identified with an open set, say U again, of Wk (note that
the centers of the transformations in sequence (4.8.1) are defined by Max fi

and max fi > a(d) for i < k). If Xk denotes the strict transform of X in Wk,
then

Xk ∩ U = X ∩ U = Max fk ∩ U.

Since X ∩ U = Reg(X) is dense in X, it follows that Xk is the union of
some of the components of Max fk, and hence it is regular and has normal
crossing with the exceptional components by Definition 4.4 (A)). This proves
(i) and (ii) of Theorem 1.5.

Now it only remains to show that the resolution of singularities of X
that we have achieved is equivariant. This follows now from 3.3, together
with the equivariant resolution of the basic object (W0, (J0, 1), E0) provided
by the algorithm of resolution of basic objects.

5. Extension of the theorem of algorithmic desingular-
ization

Our proof of desingularization in 4.8 extends to an ample class of schemes
and analytic spaces. This point has been addressed in [15] (see 5.11), and
also in section 8 of [11]. Here we will only discuss the extension of our proof
to locally embedded schemes.

5.1. We refer to [16, 6.9] for properties of the algorithm of resolution of basic
objects, proved in [16, Theorem 6.13]. The following are two examples, from
which we conclude properties on the desingularization (5.2). Fix a basic
object (W0, (J0, b), E0).

1. Let W ′
0 −→ W0 be an étale morphism and, J ′

0 ⊂ OW ′
0

and E′
0 the pull-

backs of J0 and E0; so that (W ′
0, (J

′
0, b), E

′
0) is a basic object. Then

the algorithmic resolution of (W ′
0, (J

′
0, b), E

′
0) is the pull-back of that

of (W0, (J0, b), E0).

2. Let W ′
0 −→ W0 be defined by an arbitrary extension of the base field

and consider the pull-back (W ′
0, (J

′
0, b), E

′
0). Then the algorithmic res-

olution of (W ′
0, (J

′
0, b), E

′
0) is also the pull-back of the resolution of

(W0, (J0, b), E0).

5.2. The following properties hold for theorem 1.5.

1. Let W ′
0−→W0 be an étale morphism and X ′

0⊂W ′
0 the pull-back of X0.

Then the algorithmic desingularization (X ′
r⊂W ′

r)−→(X ′
0⊂W ′

0) is the
pull-back of that of (Xr ⊂ Wr) −→ (X0 ⊂ W0).
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2. If W ′
0 −→ W0 is defined by an arbitrary extension of the base field,

then the algorithmic desingularization (X ′
r ⊂ W ′

r) −→ (X ′
0 ⊂ W ′

0) is
the pull-back of that of (Xr ⊂ Wr) −→ (X0 ⊂ W0).

They both follow from the algorithmic proof in 4.8 and 5.1.

5.3. Extension to locally embedded schemes. The embedded desingu-
larization in theorem 1.5 defines a non-embedded desingularization, namely
a proper birational morphism Xr −→ X0, where Xr is regular, and the
morphism is an isomorphism over Reg(X0). Let us show that our proce-
dure of desingularization will also define non-embedded desingularization
for schemes which can be locally embedded in smooth schemes. This is al-
ways the case for a noetherian separated scheme X0, of finite type over a
field k of characteristic zero. It suffices to prove that for two embeddings
of X0 (local embeddings) we obtain the same non-embedded desingulariza-
tion. We first address the following lemma, also important for the study of
equivariance for non-embedded desingularization:

Lemma 5.4. Let W0 and W ′
0 be pure dimensional schemes, smooth over k,

with dim W0 = dim W ′
0, and let J0 ⊂ OW0 and J ′

0 ⊂ OW ′
0
, be two sheaves

of ideals. Assume that for two points ξ0 ∈ W0 and ξ′0 ∈ W ′
0 that there is

an isomorphism Θ : ÔW0,ξ0 −→ ÔW ′
0,ξ′0 such that Θ(Ĵ0) = Ĵ ′

0 (where ÔW0,ξ0

and ÔW ′
0,ξ′0 denote the completions of OW0,ξ0 and OW ′

0,ξ′0 respectively, and

Ĵ0 = J0ÔW0,ξ0, Ĵ ′
0 = J ′

0ÔW ′
0,ξ′0).

Then there is a common étale neighborhood ξ̃0 ∈ W̃0 of both ξ0 and ξ′0,
and and an ideal J̃0 ⊂ OW̃0

such that

J̃0 = J0OW̃0
= J ′

0OW̃0
.

Proof: If Θ arises from an isomorphism Θ : W0 → W ′
0 mapping ξ0 ∈ W0

to ξ′0 ∈ W ′
0, and Θ(J0) = J ′

0, then it is enough to take W̃0 = W0 (note that
an isomorphism is an étale map).

We claim that this is the case in general, at least replacing W0 and W ′
0

by suitable étale neighborhoods in the given points: Since the local rings
OW0,ξ0/(J0)ξ and OW ′

0,ξ′0/(J
′
0)ξ′ are formally isomorphic, then their henseliza-

tions are isomorphic (see [5, 2.6]).

Now, an isomorphism of these henselizations can be lifted to an isomor-
phism of the henselizations of the regular local rings, say Γ : OW0,ξ0 →
OW ′

0,ξ′0 , mapping J0OW0,ξ0 to J ′
0OW ′

0,ξ′0 . Since both henselizations are direct
limits of étale neighborhoods, Γ also defines an isomorphism, as indicated
above, at suitable étale neighborhoods. �
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Proposition 5.5. Let X0 be a noetherian separated scheme of finite type
over k. Consider two closed immersions X0 ⊂ W0 and X0 ⊂ W ′

0, where
W0 and W ′

0 are pure dimensional smooth schemes over k. The embedded
desingularizations (1.5):

(X0 ⊂ W0, ∅) ←− (Xr ⊂ Wr, Er)

(X0 ⊂ W ′
0, ∅) ←− (X ′

r′ ⊂ W ′
r′ , E

′
r′)

define non-embedded desingularizations ϕ : Xr −→ X0 and ϕ′ : X ′
r′ −→ X0.

Then Xr = X ′
r′ and ϕ = ϕ′. Moreover the number of blowing ups also

coincide (i. e., r = r′).

Proof: Fix a point x0 ∈ X0, which will defines ξ0 ∈ W0 and ξ′0 ∈ W ′
0. Since

étale maps are open, it suffices to prove, that for any x0 ∈ X0 there is an
étale neighborhood where the pull-back of both X0 ←− Xr and X0 ←− X ′

r′

coincide.
Case A (n = dim(W0) = dim(W ′

0)). Consider now the two short exact
sequences

0 −→ J0 −→ OW0,ξ0 −→ OX0,x0 −→ 0

0 −→ J ′
0 −→ OW ′

0,ξ′0 −→ OX0,x0 −→ 0 .

Identify now S with the completion of both, the local regular rings OW0,ξ0

and OW ′
0,ξ′0 . We shall define an isomorphism Θ ∈ Aut(S) so that

(5.5.1) Θ(J0S) = J ′
0S .

The assertion, within case A, would then follow from 5.4. Let z1, . . . , zn be
a regular system of parameters of OW0,ξ0 mapping to y1, . . . , yn in OX0,x0 ,
and let z′1, . . . , z

′
n be a regular system of parameters in OW ′

0,ξ′0 mapping
to y′

1, . . . , y
′
n in OX0,x0 . If d denotes the embedded dimension of X0 at

ξ0, we may assume that both regular systems of coordinates are chosen so
that zd+1, . . . , zn and z′d+1, . . . , z

′
n map to zero at OX0,x0 . So that y1, . . . , yd

and y′
1, . . . , y

′
d are both generators of the maximal ideal mX0,x0 of OX0,x0 .

There exists g′
i,j ∈ OX0,x0 such that

yi = g′
i,1y

′
1 + · · · + g′

i,dy
′
d i = 1, . . . , d

Since the classes of y1, . . . , yd and y′
1, . . . , y

′
d are both basis of mX0,x0/m

2
X0,x0

,
the determinant of the matrix (g′

i,j)
d
i,j=1 is a unit in OX0,x0 .

Choose elements f ′
i,j ∈ OW ′

0,ξ′0 which map to g′
i,j. Note that the determi-

nant of the matrix (f ′
i,j)

d
i,j=1 is also a unit of OW ′

0,ξ′0 .
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Finally define a morphism Θ : S −→ S by setting Θ(zi) = f ′
i,1z

′
1 +

· · · + f ′
i,dz

′
d for i = 1, . . . , d, and Θ(zi) = z′i for i = d + 1, . . . , n. Now it

can be checked that Θ is an isomorphism, it induces the identy map at the
completion of OX0,x0 , and hence it fulfills 5.5.1.

Now the result follows from 5.4 and 5.2.

Case B (dim W0 < dim W ′
0). We proceed by induction on m = dim W ′

0−
dim W0.

Note that the embedding dimension of X0 at ξ′0 is smaller than dim W ′
0.

So locally at ξ′0 there is a smooth hypersurface W ′′
0 ⊂ W ′

0 and X0 ⊂ W ′′
0 .

The embedded desingularization of X0 ⊂ W ′
0 is obtained from the resolu-

tion of the basic object (W ′
0, (IW ′

0
(X0), 1), E′

0) (see 4.8), where E′
0 = ∅ and

IW ′
0
(X0) ⊂ OW ′

0
is the ideal of X0 in W ′

0. Note that IW ′
0
(W ′′

0 ) ⊂ IW ′
0
(X0).

So that the maximum order of the ideal IW ′
0
(X0) is one. In this case the

algorithm of resolution for basic objects defines a basic object in dimension
dim W ′

0 − 1, say:
(
W ′′

0 ,
(
CoeffW ′′

0

(IW ′
0
(X0)

)
, 1

)
, E′′

0

)

with E′′
0 = ∅ (see [17, Lemma 6.12]). Where CoeffW ′′

0

(IW ′
0
(X0)

)
is the

coefficient ideal ([17, Definition 9.3]). And it follows from definition of the
coefficient ideal that in this case:

CoeffW ′′
0

(IW ′
0
(X0)

)
= IW ′′

0
(X0) .

So that the resolution of the basic objects

(W ′
0, (IW ′

0
(X0), 1), E′

0) and (W ′′
0 , (IW ′′

0
(X0), 1), E′′

0 )

are the same ([17, Lemma 6.12]). But by induction on m the resolution of
the basic objects

(W ′′
0 , (IW ′′

0
(X0), 1), E′′

0 ) and (W0, (IW0(X0), 1), E0)

are also equal, and the result follows in Case B. �
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[10] Bogomolov, F. and Pantev, T.: Weak hironaka theorem. Math. Res.
Lett. 3 (1996), 299–307.

[11] Bravo, A., Encinas, S. and Villamayor, O.: A Simplified proof of
desingularization and applications. To appear in Rev. Mat. Iberoamericana.
A copy is available at http://arXiv.org/abs/math.AG/0206244.

[12] Bravo, A. and Villamayor, O.: Strengthening a Theorem of Embedded
Desingularization. Math. Res. Lett. 8 (2001), 1–11.

[13] Bravo, A. and Villamayor, O.: A Strengthening of resolution of sin-
gularities in characteristic zero. Proc. London Math. Soc. 86 (2003), no. 2,
327–357.

[14] Encinas, S. and Hauser, H.: Strong resolution of singularities. Coment.
Math. Helv. 77 (2002), no. 4, 821–845.

[15] Encinas, S., Nobile, A. and Villamayor, O.: On algorithmic equires-
olution and stratification of Hilbert Schemes. Proc. London Math. Soc. 86
(2003), no. 3, 607–648.

[16] Encinas, S. and Villamayor, O.: Good points and constructive resolu-
tion of singularities. Acta Math. 181 (1998), no. 1, 109–158.

[17] Encinas, S. and Villamayor, O.: A course on constructive desingular-
ization and equivariance. In Resolution of singularities (Obergurgl, 1997),
147–227. Progr. Math. 181, Birkhäuser, Basel, 2000.
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Norm. Sup. (4) 8 (1975), 201–234.

[20] Hironaka, H.: Resolution of singularities of an algebraic variety over a
field of characteristic zero: I, II. Ann. of Math. 79 (1964), no. 1–2, 109–326.



A new Proof of Desingularization over fields of characteristic zero 353

[21] Hironaka, H.: Idealistic exponents of singularity. In Algebraic geometry
(J. J. Sylvester Sympos., Johns Hopkins Univ., Baltimore, Md., 1976), 52–
125. Johns Hopkins Univ. Press, Baltimore, Md., 1977.

[22] Lejeune-Jalabert, M. and Teissier, B.: Quelques calculs utiles pour
la résolution des singularités. Exposés faits au Centre de Mathématiques
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